WorldWideScience

Sample records for sensitive electrical detection

  1. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.

    Science.gov (United States)

    Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum

    2017-05-15

    E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Anastomotic leak detection by electrolyte electrical resistance.

    Science.gov (United States)

    DeArmond, Daniel T; Cline, Adam M; Johnson, Scott B

    2010-08-01

    To characterize a new method of postoperative gastrointestinal leak detection based on electrical resistance changes due to extravasated electrolyte contrast. Postoperative gastrointestinal leak results in increased patient morbidity, mortality, and hospital costs that can be mitigated by early diagnosis. A sensitive and specific diagnostic test that could be performed at the bedside has the potential to shorten the time to diagnosis and thereby improve the quality of treatment. Anaesthetized rats underwent celiotomy and creation of a 5-mm gastrotomy. In experimental animals, electrical resistance changes were measured with a direct current ohmmeter after the introduction of 5 cc of 23.4% NaCl electrolyte solution via gavage and measured with a more sensitive alternating current ohmmeter after the gavage of 1-5 cc of 0.9% NaCl. Comparison was made to negative controls and statistical analysis was performed. Leakage from the gastrotomy induced by as little as 1 cc of gavage-delivered 0.9% NaCl contrast solution was detectable as a statistically significant drop in electrical resistance when compared to results from negative controls. Electrical resistance change associated with electrolyte-gated leak detection is highly sensitive and specific and has the potential to be rapidly translated into clinical settings.

  3. ZnO nanorod biosensor for highly sensitive detection of specific protein binding

    International Nuclear Information System (INIS)

    Kim, Jin Suk; Park, Won Il; Lee, Chul Ho; Yi, Gyu Chul

    2006-01-01

    We report on the fabrication of electrical biosensors based on functionalized ZnO nanorod surfaces with biotin for highly sensitive detection of biological molecules. Due to the clean interface and easy surface modification, the ZnO nanorod sensors can easily detect streptavidin binding down to a concentration of 25 nM, which is more sensitive than previously reported one-dimensional (1D) nanostructure electrical biosensors. In addition, the unique device structure with a micrometer-scale hole at the center of the ZnO nanorod's conducting channel reduces the leakage current from the aqueous solution, hence enhancing device sensitivity. Moreover, ZnO nanorod field-effect-transistor (FET) sensors may open up opportunities to create many other oxide nanorod electrical sensors for highly sensitive and selective real-time detection of a wide variety of biomolecules.

  4. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    Directory of Open Access Journals (Sweden)

    Jong-in Hahm

    2011-03-01

    Full Text Available The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.

  5. Developing nucleic acid-based electrical detection systems

    Directory of Open Access Journals (Sweden)

    Gabig-Ciminska Magdalena

    2006-03-01

    Full Text Available Abstract Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in

  6. An electric detection of immunoglobulin G in the enzyme-linked immunosorbent assay using an indium oxide nanoparticle ion-sensitive field-effect transistor

    International Nuclear Information System (INIS)

    Lee, Dongjin; Cui, Tianhong

    2012-01-01

    Semiconducting nanoparticle ion-sensitive field-effect transistors (ISFETs) are used to detect immunoglobulin G (IgG) in the conventional enzyme-linked immunosorbent assay (ELISA). Indium oxide and silica nanoparticles were layer-by-layer self-assembled with the oppositely charged polyelectrolyte as the electrochemical transducer and antibody immobilization site, respectively. The assay was conducted on a novel platform of indium oxide nanoparticle ISFETs, where the electric signals are generated in response to the concentration of target IgG using the labeled detecting antibody. The sandwiched ELISA structure catalyzed the conversion of the acidic substrate into neutral substance with the aid of horseradish peroxidase. The pH change in the substrate solution was detected by nanoparticle ISFETs. Normal rabbit IgG was used as a model antigen whose detection limit of 0.04 ng ml −1 was found. The facile electric detection in the conventional assay through the semiconducting nanoparticle ISFET has potential applications as a point-of-care detection or a sensing element in a lab-on-a-chip system

  7. A storage ring experiment to detect a proton electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, V. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Andrianov, S. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada; Baessler, S. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; Bai, M. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Benante, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Berz, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Blaskiewicz, M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Bowcock, T. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Brown, K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Casey, B. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Conte, M. [Physics Department and INFN Section of Genoa, 16146 Genoa, Italy; Crnkovic, J. D. [Brookhaven National Laboratory, Upton, New York 11973, USA; D’Imperio, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fanourakis, G. [Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece; Fedotov, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fierlinger, P. [Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany; Fischer, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Gaisser, M. O. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France; Grosse-Perdekamp, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Guidoboni, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Hacıömeroğlu, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Hoffstaetter, G. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Huang, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Incagli, M. [Physics Department, University and INFN Pisa, Pisa, Italy; Ivanov, A. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Kawall, D. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; Kim, Y. I. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; King, B. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Koop, I. A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia; Lazarus, D. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lebedev, V. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Lee, M. J. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon 34141, South Korea; Lehrach, A. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Lenisa, P. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Levi Sandri, P. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Luccio, A. U. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lyapin, A. [Royal Holloway, University of London, Egham, Surrey, United Kingdom; MacKay, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Maier, R. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Makino, K. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Malitsky, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Marciano, W. J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meng, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meot, F. [Brookhaven National Laboratory, Upton, New York 11973, USA; Metodiev, E. M. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA; Miceli, L. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Moricciani, D. [Dipartimento di Fisica dell’Univ. di Roma “Tor Vergata” and INFN Sezione di Roma Tor Vergata, Rome, Italy; Morse, W. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Nagaitsev, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Nayak, S. K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Orlov, Y. F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Ozben, C. S. [Istanbul Technical University, Istanbul 34469, Turkey; Park, S. T. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pesce, A. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Petrakou, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pile, P. [Brookhaven National Laboratory, Upton, New York 11973, USA; Podobedov, B. [Brookhaven National Laboratory, Upton, New York 11973, USA; Polychronakos, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Pretz, J. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Ptitsyn, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Ramberg, E. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973, USA; Rathmann, F. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Rescia, S. [Brookhaven National Laboratory, Upton, New York 11973, USA; Roser, T. [Brookhaven National Laboratory, Upton, New York 11973, USA; Kamal Sayed, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Semertzidis, Y. K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Senichev, Y. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Sidorin, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Silenko, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus; Simos, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Stahl, A. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Stephenson, E. J. [Indiana University Center for Spacetime Symmetries, Bloomington, Indiana 47405, USA; Ströher, H. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Syphers, M. J. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Talman, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Talman, R. M. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Tishchenko, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Touramanis, C. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Venanzoni, G. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Vetter, K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Vlassis, S. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Won, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Physics Department, Korea University, Seoul 02841, South Korea; Zavattini, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Zioutas, K. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.

  8. A storage ring experiment to detect a proton electric dipole moment.

    Science.gov (United States)

    Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K

    2016-11-01

    A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.

  9. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  10. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  11. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  12. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  13. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    International Nuclear Information System (INIS)

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  14. On the detectability of transverse cracks in laminated composites through measurements of electrical potential change

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-01-07

    For structures made of laminated composites, real-time structural health monitoring is necessary as significant damage may occur without any visible signs on the surface. Inspection by electrical tomography seems a viable approach as the technique relies on voltage measurements from a network of electrodes over the boundary of the inspected domain to infer the change in conductivity within the bulk material. The change in conductivity, if significant, can be correlated to the degradation state of the material, allowing damage detection. We focus here on the detection of the transverse cracking mechanism which modifies the in-plane transverse conductivity of ply. The quality of detection is directly related to the sensitivity of the voltage measurements with respect to the presence of cracks. We demonstrate here from numerical experiments that the sensitivity depends on several parameters, such as the anisotropy in the electrical conductivity of the baseline composite ply or the geometricalparameters of the structure. Based on these results, applicability of electrical tomography to detect transverse cracks in a laminate is discussed.

  15. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Morais, A. P. [Biomedical Engineering Program, COPPE, Rio de Janeiro (Brazil); Salgado de Oliveira University, Marechal Deodoro Street, 217 – Centro, Niterói, Rio de Janeiro (Brazil); Pino, A. V. [Biomedical Engineering Program, COPPE, Rio de Janeiro (Brazil); Souza, M. N. [Biomedical Engineering Program, COPPE, Rio de Janeiro (Brazil); Electronics Department at Polytechnic School, Federal University of Rio de Janeiro, Centro de Tecnologia Bloco H sala 217, Ilha do Fundão, Rio de Janeiro (Brazil)

    2016-08-15

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.

  16. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model

    International Nuclear Information System (INIS)

    Morais, A. P.; Pino, A. V.; Souza, M. N.

    2016-01-01

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.

  17. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  18. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Chang, Fu-Yu; Chen, Ming-Kun; Jang, Ling-Sheng; Wang, Min-Haw

    2016-01-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz. (paper)

  19. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....

  20. On the detectability of transverse cracks in laminated composites using electrical potential change measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-03-01

    Real-time health monitoring of structures made of laminated composites is necessary as significant damage may occur without any visible signs on the surface. Inspection by electrical tomography (ET) seems a viable approach that relies on voltage measurements from a network of electrodes across the inspected domain to infer conductivity change within the bulk material. If conductivity decreases significantly with increasing damage, the obtained conductivity map can be correlated to the degradation state of the material. We focus here on detection of transverse cracks. As transverse cracks modify the in-plane transverse conductivity of a single ply, we expect them to be detectable by electrical measurements. Yet, the quality of detection is directly related to the sensitivity of the measurements to the presence of cracks. We use numerical experiments to demonstrate that the sensitivity depends on several material and geometrical parameters. Based on the results, the applicability of ET to detect transverse cracks is discussed. One conclusion from the study is that detecting transverse cracks using ET is more reliable in some laminate configurations than in others. Recommendations about the properties of either the pristine material or the inspected structures are provided to establish if ET is reliable in detecting transverse cracks.

  1. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  2. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize...... different pathogenic bacteria was analyzed, and conditions were optimized with different probe concentrations. Using this system, the reference strains and clinical isolates of Staphylococcus aureus and Escherichia coli were successfully detected; in both cases, the sensor showed a detection limit of 10 CFU....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  3. Enhancement of electrical and optical performance of N719 by co-sensitization

    Science.gov (United States)

    Shikoh, Ali Sephar; Ahmad, Zubair; Touati, Farid; Al-Muhtaseb, Shaheen A.

    2018-04-01

    This paper deals with the electrical, optical and electrochemical properties of a metal-free dye C78H74O8 (AS-2), which has been used to improve the photo-detection properties of C58H86N8O8RuS2 (N719) based Dye sensitized photo-sensors (DSPSs). Both dyes were mixed together in various proportions and the most promising ratio N719/AS-2 (1:0.25) was selected for staining photo-anodes for DSPS integration. The fabricated DSPSs were studied in terms of electrical parameters and photodetection properties. The N719/AS-2 (1:0.25) based DSPS were found to have a reduced leakage current, increased breakdown voltage and a closer proximity to an ideal diode, as compared to the N719 based DSPS. Further, the N719/AS-2 (1:0.25) based DSPS was also found to have better linearity at high irradiance levels, thus rendering the co-sensitized device useful as a photosensor in various applications. Electrochemical Impedance Spectroscopy (EIS) analysis was also performed to explain the interfacial charge recombination process.

  4. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  5. Nanogap biosensors for electrical and label-free detection of biomolecular interactions

    International Nuclear Information System (INIS)

    Kyu Kim, Sang; Cho, Hyunmin; Park, Hye-Jung; Kwon, Dohyoung; Min Lee, Jeong; Hyun Chung, Bong

    2009-01-01

    We demonstrate nanogap biosensors for electrical and label-free detection of biomolecular interactions. Parallel fabrication of nanometer distance gaps has been achieved using a silicon anisotropic wet etching technique on a silicon-on-insulator (SOI) wafer with a finely controllable silicon device layer. Since silicon anisotropic wet etching resulted in a trapezoid-shaped structure whose end became narrower during the etching, the nanogap structure was simply fabricated on the device layer of a SOI wafer. The nanogap devices were individually addressable and a gap size of less than 60 nm was obtained. We demonstrate that the nanogap biosensors can electrically detect biomolecular interactions such as biotin/streptavidin and antigen/antibody pairs. The nanogap devices show a current increase when the proteins are bound to the surface. The current increases proportionally depending upon the concentrations of the molecules in the range of 100 fg ml -1 -100 ng ml -1 at 1 V bias. It is expected that the nanogap developed here could be a highly sensitive biosensor platform for label-free detection of biomolecular interactions.

  6. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  7. Acquisition of electrical signals using commercial electronic components for detection system of Lead ion in distilled water

    Science.gov (United States)

    Pujiyanto; Yasin, M.; Rusydi, F.

    2018-03-01

    Development of lead ion detection systems is expected to have an advantage in terms of simplicity of the device and easy for concentration analysis of a lead ion with very high performance. One important part of lead ion detection systems are electrical signal acquisition parts. The electrical signal acquisition part uses the main electronic components: non inverting op-amplifier, instrumentation amplifier, multiplier circuit and logarithmic amplifier. Here will be shown the performance of lead ion detection systems when the existing electrical signal processors use commercial electronic components. The results that can be drawn from this experimental were the lead ion sensor that has been developed can be used to detect lead ions with a sensitivity of 10.48 mV/ppm with the linearity 97.11% and had a measurement range of 0.1 ppm to 80 ppm.

  8. A sensitive search for a muon electric dipole moment

    International Nuclear Information System (INIS)

    Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.

    2001-01-01

    We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon

  9. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.

  10. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    International Nuclear Information System (INIS)

    Hu Pingan; Zhang Jia; Wen Zhenzhong; Zhang Can

    2011-01-01

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10 4 -fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  11. Effects of sensitive electrical stimulation based cueing in Parkinson's disease: a preliminary study

    Directory of Open Access Journals (Sweden)

    Benoît Sijobert

    2016-06-01

    Full Text Available This study aims to investigate the effect of a sensitive cueing on Freezing of Gait (FOG and gait disorders in subjects suffering from Parkinson’s disease (PD. 13 participants with Parkinson’s disease were equipped with an electrical stimulator and a foot mounted inertial measurement unit (IMU. An IMU based algorithm triggered in real time an electrical stimulus applied on the arch of foot at heel off detection. Starting from standing, subjects were asked to walk at their preferred speed on a path comprising 5m straight, u-turn and walk around tasks. Cueing globally decreased the time to achieve the different tasks in all the subjects. In “freezer” subjects, the time to complete the entire path was reduced by 19%. FOG events occurrence was lowered by 12% compared to baseline before and after cueing. This preliminary work showed a positive global effect of an electrical stimulation based cueing on gait and FOG in PD.

  12. Sensitivity of radiation methods of diagnosis of electric potentials in dielectric materials

    International Nuclear Information System (INIS)

    Sapozhkov, Yu.I.; Smekalin, L.F.; Yagushkin, N.I.

    1985-01-01

    On the base of the albedo method the characteristics of radiation methods of diagnosis of electric potentials inside dielectrics, such as sensitivity and resolution are considered. Investigations are carried out for electron energies of tens keV. It is shown that with energy growth the sensitivity to electric field in the dielectrics volume drops. The target atomic number growth reduces the sensitivity approximately 1/lnz. The albedo method resolution in the investigated energy range is constant. The results obtained testify to the usability radiation methods of the diagnosis for control of electric fields of dielectric structural materials in the course of their operation

  13. Fast Change Point Detection for Electricity Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berkeley, UC; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

    2013-08-25

    Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

  14. Sensitivity quantification of remote detection NMR and MRI

    Science.gov (United States)

    Granwehr, J.; Seeley, J. A.

    2006-04-01

    A sensitivity analysis is presented of the remote detection NMR technique, which facilitates the spatial separation of encoding and detection of spin magnetization. Three different cases are considered: remote detection of a transient signal that must be encoded point-by-point like a free induction decay, remote detection of an experiment where the transient dimension is reduced to one data point like phase encoding in an imaging experiment, and time-of-flight (TOF) flow visualization. For all cases, the sensitivity enhancement is proportional to the relative sensitivity between the remote detector and the circuit that is used for encoding. It is shown for the case of an encoded transient signal that the sensitivity does not scale unfavorably with the number of encoded points compared to direct detection. Remote enhancement scales as the square root of the ratio of corresponding relaxation times in the two detection environments. Thus, remote detection especially increases the sensitivity of imaging experiments of porous materials with large susceptibility gradients, which cause a rapid dephasing of transverse spin magnetization. Finally, TOF remote detection, in which the detection volume is smaller than the encoded fluid volume, allows partial images corresponding to different time intervals between encoding and detection to be recorded. These partial images, which contain information about the fluid displacement, can be recorded, in an ideal case, with the same sensitivity as the full image detected in a single step with a larger coil.

  15. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  16. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  17. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  18. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    Science.gov (United States)

    Hao, L.; Lewin, P. L.; Swingler, S. G.

    2008-05-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC.

  19. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    International Nuclear Information System (INIS)

    Hao, L; Lewin, P L; Swingler, S G

    2008-01-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC

  20. Sensitive detection of rutin based on {beta}-cyclodextrin-chemically reduced graphene/Nafion composite film

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kunping; Wei Jinping [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2011-05-30

    Highlights: > {beta}-CD-graphene composite obtained via a simple sonication-induced assembly. > Accelerating electron transfer on electrode to amplify the electrochemical signal. > A highly sensitive electrochemical sensor for rutin detection. > Good selectivity and reproducibility for the detection of rutin in real samples. - Abstract: An electrochemical sensor based on chemically reduced graphene (CRG) was developed for the sensitive detection of rutin. To construct the base of the sensor, a novel composite was initially fabricated and used as the substrate material by combining CRG and {beta}-cyclodextrin ({beta}-CD) via a simple sonication-induced assembly. Due to the high rutin-loading capacity on the electrode surface and the upstanding electric conductivity of graphene, the electrochemical response of the fabricated sensor was greatly enhanced and displayed excellent analytical performance for rutin detection from 6.0 x 10{sup -9} to 1.0 x 10{sup -5} mol L{sup -1} with a low detection limit of 2.0 x 10{sup -9} mol L{sup -1} at 3{sigma}. Moreover, the proposed electrochemical sensor also exhibited good selectivity and acceptable reproducibility and could be used for the detection of rutin in real samples. Therefore, the present work offers a new way to broaden the analytical applications of graphene in pharmaceutical analysis.

  1. Method of shaping of direction-characterization of sensitivity of ionizing radiation detection probe

    International Nuclear Information System (INIS)

    Czarnecki, J.; Jaszczuk, J.; Kruczyk, M.; Slapa, M.; Wroblewski, T.

    1986-01-01

    A method of shaping of direction-characterization of sensitivity of the ionizing radiation detection probe, especially equipped with small gamma detectors is described. Two detectors are placed coaxially in the bases of the cylindrical shield. One of them is uncovered in the highest degree and the second is not covered to a maximum. The signals from them are processed on the standarized sequences of electrical impulses (taking into account the heights and the widths of the amplitude). 2 figs., 1 tab. (A.S.)

  2. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  3. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.

    Science.gov (United States)

    Kalvoy, Havard; Tronstad, Christian; Ullensvang, Kyrre; Steinfeldt, Thorsten; Sauter, Axel R

    2017-07-01

    In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neuralintraneural detection.

  4. Electricity Price Forecasting Based on AOSVR and Outlier Detection

    Institute of Scientific and Technical Information of China (English)

    Zhou Dianmin; Gao Lin; Gao Feng

    2005-01-01

    Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, this paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market.

  5. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-04-09

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires.

  6. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  7. A New Anomaly Detection System for School Electricity Consumption Data

    Directory of Open Access Journals (Sweden)

    Wenqiang Cui

    2017-11-01

    Full Text Available Anomaly detection has been widely used in a variety of research and application domains, such as network intrusion detection, insurance/credit card fraud detection, health-care informatics, industrial damage detection, image processing and novel topic detection in text mining. In this paper, we focus on remote facilities management that identifies anomalous events in buildings by detecting anomalies in building electricity consumption data. We investigated five models within electricity consumption data from different schools to detect anomalies in the data. Furthermore, we proposed a hybrid model that combines polynomial regression and Gaussian distribution, which detects anomalies in the data with 0 false negative and an average precision higher than 91%. Based on the proposed model, we developed a data detection and visualization system for a facilities management company to detect and visualize anomalies in school electricity consumption data. The system is tested and evaluated by facilities managers. According to the evaluation, our system has improved the efficiency of facilities managers to identify anomalies in the data.

  8. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Tai

    2016-02-01

    Full Text Available This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.

  9. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  10. Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules

    Science.gov (United States)

    Ajay; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2015-12-01

    In this paper, an analytical model for gate drain underlap channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DG-MOSFET) for label free electrical detection of biomolecules has been proposed. The conformal mapping technique has been used to derive the expressions for surface potential, lateral electric field, energy bands (i.e. conduction and valence band) and threshold voltage (Vth). Subsequently a full drain current model to analyze the sensitivity of the biosensor has been developed. The shift in the threshold voltage and drain current (after the biomolecules interaction with the gate underlap channel region of the MOS transistor) has been used as a sensing metric. All the characteristic trends have been verified through ATLAS (SILVACO) device simulation results.

  11. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  12. Nanowire-templated microelectrodes for high-sensitivity pH detection

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, Adrian; Mátéfi-Tempfli, Mária

    2009-01-01

    A highly sensitive pH capacitive sensor has been designed by confined growth of vertically aligned nanowire arrays on interdigited microelectrodes. The active surface of the device has been functionalized with an electrochemical pH transducer (polyaniline). We easily tune the device features...... by combining lithographic techniques with electrochemical synthesis. The reported electrical LC resonance measurements show considerable sensitivity enhancement compared to conventional capacitive pH sensors realized with microfabricated interdigited electrodes. The sensitivity can be easily improved...

  13. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  14. The sensitivity of a syndromic management approach in detecting ...

    African Journals Online (AJOL)

    In this setting, the Western Cape syndromic diagnostic procedure achieved reasonable levels of sensitivity in detecting Neisseria gonorrhoeae and Chlamydia trachornatis ID men and women, and in detecting Trichomonas vaginalis and bacterial vaginosis ID women. However, it was estimated to be only 36.4% sensitive in ...

  15. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  16. Electrical detection of hyperfine interactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Felix

    2012-12-15

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of {sup 31}P donors in Si:P with {sup 29}Si nuclear spins. We then apply EDESEEM to P{sub b0} defects at the Si/SiO{sub 2} interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by {sup 29}Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of {sup 31}P nuclear spin hyperfine transitions and the coherent manipulation and readout of the {sup 31}P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity <3000 nuclear spins. We apply EDENDOR to the {sup 31}P-P{sub b0} spin system and the {sup 31}P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the {sup 31}P{sup +} nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 {mu}s for the {sup 31}P{sub 0} nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of {sup 31}P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a {sup 31}P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a

  17. Electrical detection of hyperfine interactions in silicon

    International Nuclear Information System (INIS)

    Hoehne, Felix

    2012-01-01

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of 31 P donors in Si:P with 29 Si nuclear spins. We then apply EDESEEM to P b0 defects at the Si/SiO 2 interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by 29 Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of 31 P nuclear spin hyperfine transitions and the coherent manipulation and readout of the 31 P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity 31 P-P b0 spin system and the 31 P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the 31 P + nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 μs for the 31 P 0 nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of 31 P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a 31 P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a lock-in detection scheme for pEDMR, which improves the signal-to-noise ratio by one order of magnitude by removing low

  18. A novel nanoprobe for the sensitive detection of Francisella tularensis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-eun; Seo, Youngmin; Jeong, Yoon [Department of Bionano Technology, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Hwang, Mintai P. [Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Hwang, Jangsun [Department of Bionano Technology, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Choo, Jaebum; Hong, Jong Wook [Department of Bionano Technology, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Bionano Engineering, Hanyang University ERICA, Ansan 426-791 (Korea, Republic of); Jeon, Jun Ho; Rhie, Gi-eun [Division of High-risk Pathogen Research, Center for Infectious Disease, Korea National Institute of Health, Cheongju 363-951 (Korea, Republic of); Choi, Jonghoon, E-mail: jonghchoi@hanyang.ac.kr [Department of Bionano Technology, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Bionano Engineering, Hanyang University ERICA, Ansan 426-791 (Korea, Republic of)

    2015-11-15

    Highlights: • We prepare apoferritin nanoprobes decorated with antibodies and nanoparticles. • We examine nanoprobes for the sensitive detection of Francisella tularensis. • 10-fold decrease of minimum concentration of pathogen was achieved. • Simultaneous detection of multiple high-risk pathogens was obtained. - Abstract: Francisella tularensis is a human zoonotic pathogen and the causative agent of tularemia, a severe infectious disease. Given the extreme infectivity of F. tularensis and its potential to be used as a biological warfare agent, a fast and sensitive detection method is highly desirable. Herein, we construct a novel detection platform composed of two units: (1) Magnetic beads conjugated with multiple capturing antibodies against F. tularensis for its simple and rapid separation and (2) Genetically-engineered apoferritin protein constructs conjugated with multiple quantum dots and a detection antibody against F. tularensis for the amplification of signal. We demonstrate a 10-fold increase in the sensitivity relative to traditional lateral flow devices that utilize enzyme-based detection methods. We ultimately envision the use of our novel nanoprobe detection platform in future applications that require the highly-sensitive on-site detection of high-risk pathogens.

  19. A novel nanoprobe for the sensitive detection of Francisella tularensis

    International Nuclear Information System (INIS)

    Kim, Ji-eun; Seo, Youngmin; Jeong, Yoon; Hwang, Mintai P.; Hwang, Jangsun; Choo, Jaebum; Hong, Jong Wook; Jeon, Jun Ho; Rhie, Gi-eun; Choi, Jonghoon

    2015-01-01

    Highlights: • We prepare apoferritin nanoprobes decorated with antibodies and nanoparticles. • We examine nanoprobes for the sensitive detection of Francisella tularensis. • 10-fold decrease of minimum concentration of pathogen was achieved. • Simultaneous detection of multiple high-risk pathogens was obtained. - Abstract: Francisella tularensis is a human zoonotic pathogen and the causative agent of tularemia, a severe infectious disease. Given the extreme infectivity of F. tularensis and its potential to be used as a biological warfare agent, a fast and sensitive detection method is highly desirable. Herein, we construct a novel detection platform composed of two units: (1) Magnetic beads conjugated with multiple capturing antibodies against F. tularensis for its simple and rapid separation and (2) Genetically-engineered apoferritin protein constructs conjugated with multiple quantum dots and a detection antibody against F. tularensis for the amplification of signal. We demonstrate a 10-fold increase in the sensitivity relative to traditional lateral flow devices that utilize enzyme-based detection methods. We ultimately envision the use of our novel nanoprobe detection platform in future applications that require the highly-sensitive on-site detection of high-risk pathogens

  20. Signal sensitivity of alternating current potential drop measurement for crack detection of conductive substrate with tunable coating materials through finite element modeling

    International Nuclear Information System (INIS)

    Rao, Simha Sandeep; Zhao, Huijuan; Liu, Ming; Peng, Fei; Zhang, Bo

    2016-01-01

    We adopt a finite element numerical modeling approach to investigate the electromagnetic coupling effect of two parallel electric conductors with tunable electric conductivity σ and magnetic permeability μ . For two parallel conductors C and S ( μ C   ⋅  σ C   ≤  μ S   ⋅  σ S ), we find that the shape of current density profile of conductor S is dependent on the product of μ C   ⋅  σ C , while the magnitude is determined by the AC current frequency f . On the other hand, the frequency f affects not only the shape but also the magnitude of the current density profile of conductor C. We further adopt a coplanar model to investigate the signal sensitivity of alternating current potential drop (ACPD) measurement for both surface crack and inner crack detection. We find that with modified coating materials (lower electric conductivity and higher magnetic permeability, compared with the substrate material properties), the crack detection signal sensitivity can be greatly enhanced for both the cracks within the coating and at the coating/substrate interface, where cracks are most commonly encountered in real situations. (paper)

  1. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  2. Detection of electrically neutral and nonpolar molecules in ionic solutions using silicon nanowires

    Science.gov (United States)

    Wu, Ying-Pin; Chu, Chia-Jung; Tsai, Li-Chu; Su, Ya-Wen; Chen, Pei-Hua; Moodley, Mathew K.; Huang, Ding; Chen, Yit-Tsong; Yang, Ying-Jay; Chen, Chii-Dong

    2017-04-01

    We report on a technique that can extend the use of nanowire sensors to the detection of interactions involving nonpolar and neutral molecules in an ionic solution environment. This technique makes use of the fact that molecular interactions result in a change in the permittivity of the molecules involved. For the interactions taking place at the surface of nanowires, this permittivity change can be determined from the analysis of the measured complex impedance of the nanowire. To demonstrate this technique, histidine was detected using different charge polarities controlled by the pH value of the solution. This included the detection of electrically neutral histidine at a sensitivity of 1 pM. Furthermore, it is shown that nonpolar molecules, such as hexane, can also be detected. The technique is applicable to the use of nanowires with and without a surface-insulating oxide. We show that information about the changes in amplitude and the phase of the complex impedance reveals the fundamental characteristics of the molecular interactions, including the molecular field and the permittivity.

  3. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  4. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Zhongxu Hu

    2016-10-01

    Full Text Available This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1 mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz.

  5. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Science.gov (United States)

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  6. Ultrahigh Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.

    Science.gov (United States)

    Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang

    2018-05-31

    High sensitivity pressure sensors are crucial for the ultra-sensitive touch technology and E-skin, especially at the tiny pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to two hundred kPa -1 , and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 by using short channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels, and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny pressure range including LED switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

  7. Sensitivity and Dynamic Range Considerations for Homodyne Detection Systems

    DEFF Research Database (Denmark)

    Jaggard, Dwight L.; King, Ray J

    1973-01-01

    The effects of modulation frequency, RF reference power, and external bias upon the sensitivity and dynamic range of microwave homodyne detection systems was measured for point contact diodes and low l/f noise Schottky and backward diodes. The measurements were made at 4.89 GHz using a signal...... to noise ratio of 3 dB and a detection system bandwidth of 10 Hz. Maximum sensitivities of -135, -150, and -145 dBm, and dynamic ranges of 92, 110, and 124 dB were measured for the point contact, Schottky, and backward diodes at modulation frequencies of 30, 30, and 3 kHz, respectively. It was found...... that the level of RF reference signal needed to obtain the maximum sensitivity was equal to or somewhat above the point where the diode changes from square law to linear detection. The results are significant in that previously reported homodyne sensitivities (not necessarily maximum) were on the order of -90...

  8. Comparative sensitivity of quantitative EEG (QEEG) spectrograms for detecting seizure subtypes.

    Science.gov (United States)

    Goenka, Ajay; Boro, Alexis; Yozawitz, Elissa

    2018-02-01

    To assess the sensitivity of Persyst version 12 QEEG spectrograms to detect focal, focal with secondarily generalized, and generalized onset seizures. A cohort of 562 seizures from 58 patients was analyzed. Successive recordings with 2 or more seizures during continuous EEG monitoring for clinical indications in the ICU or EMU between July 2016 and January 2017 were included. Patient ages ranged from 5 to 64 years (mean = 36 years). There were 125 focal seizures, 187 secondarily generalized and 250 generalized seizures from 58 patients analyzed. Seizures were identified and classified independently by two epileptologists. A correlate to the seizure pattern in the raw EEG was sought in the QEEG spectrograms in 4-6 h EEG epochs surrounding the identified seizures. A given spectrogram was interpreted as indicating a seizure, if at the time of a seizure it showed a visually significant departure from the pre-event baseline. Sensitivities for seizure detection using each spectrogram were determined for each seizure subtype. Overall sensitivities of the QEEG spectrograms for detecting seizures ranged from 43% to 72%, with highest sensitivity (402/562,72%) by the seizure detection trend. The asymmetry spectrogram had the highest sensitivity for detecting focal seizures (117/125,94%). The FFT spectrogram was most sensitive for detecting secondarily generalized seizures (158/187, 84%). The seizure detection trend was the most sensitive for generalized onset seizures (197/250,79%). Our study suggests that different seizure types have specific patterns in the Persyst QEEG spectrograms. Identifying these patterns in the EEG can significantly increase the sensitivity for seizure identification. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Directory of Open Access Journals (Sweden)

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  10. Magnetogastrographic detection of gastric electrical response activity in humans

    International Nuclear Information System (INIS)

    Irimia, Andrei; Richards, William O; Bradshaw, L Alan

    2006-01-01

    The detection and characterization of gastric electrical activity has important clinical applications, including the early diagnosis of gastric diseases in humans. In mammals, this phenomenon has two important features: an electrical control activity (ECA) that manifests itself as an electric slow wave (with a frequency of 3 cycles per minute in humans) and an electrical response activity (ERA) that is characterized by spiking potentials during the plateau phase of the ECA. Whereas the ECA has been recorded in humans both invasively and non-invasively (magnetogastrography-MGG), the ERA has never been detected non-invasively in humans before. In this paper, we report on our progress towards the non-invasive detection of ERA from the human stomach using a procedure that involves the application of principal component analysis to MGG recordings, which were acquired in our case from ten normal human patients using a Superconducting QUantum Interference Device (SQUID) magnetometer. Both pre- and post-prandial recordings were acquired for each patient and 20 min of recordings (10 min of pre-prandial and 10 min of post-prandial data) were analysed for each patient. The mean percentage of ECA slow waves that were found to exhibit spikes of suspected ERA origin was 41% and 61% for pre- and post-prandial recordings, respectively, implying a 47% ERA increase post-prandially (P < 0.0001 at a 95% confidence level). The detection of ERA in humans is highly encouraging and points to the possible use of non-invasive ERA recordings as a valuable tool for the study of human gastric disorders

  11. Graphene Field-Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene-Tagged DNA Aptamer.

    Science.gov (United States)

    Wu, Guangfu; Dai, Ziwen; Tang, Xin; Lin, Zihong; Lo, Pik Kwan; Meyyappan, M; Lai, King Wai Chiu

    2017-10-01

    This study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe-modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG-FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Position sensitive detector used to detect beam profile

    International Nuclear Information System (INIS)

    Zhao Xiaoyan; Zhao Zhizheng; Zu Kailing; Zheng Jianhua; Wang Yifang

    2003-01-01

    In order to study the detecting system of the residual-gas beam profile, we introduce the principle and construction of the Position Sensitive Detector (PSD). The performance of PSD is tested. Position resolution, position linearity, detection efficiency and background are obtained

  13. Sensitive detection of nanomechanical motion using piezoresistive signal downmixing

    International Nuclear Information System (INIS)

    Bargatin, I.; Myers, E.B.; Arlett, J.; Gudlewski, B.; Roukes, M.L.

    2005-01-01

    We have developed a method of measuring rf-range resonance properties of nanoelectromechanical systems (NEMS) with integrated piezoresistive strain detectors serving as signal downmixers. The technique takes advantage of the high strain sensitivity of semiconductor-based piezoresistors, while overcoming the problem of rf signal attenuation due to a high source impedance. Our technique also greatly reduces the effect of the cross-talk between the detector and actuator circuits. We achieve thermomechanical noise detection of cantilever resonance modes up to 71 MHz at room temperature, demonstrating that downmixed piezoresistive signal detection is a viable high-sensitivity method of displacement detection in high-frequency NEMS

  14. Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps

    Science.gov (United States)

    Slocombe, L. L.; Lewis, R. A.

    2018-05-01

    Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.

  15. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices

    Science.gov (United States)

    Lou, Xiaohua

    2007-03-01

    A fully electrical scheme of spin injection, transport, and detection in a single ferromagnet-semiconductor structure has been a long-standing goal in the field of spintronics. In this talk, we report on an experimental demonstration of such a scheme. The devices are fabricated from epitaxial Fe/GaAs (100) heterostructures with highly doped GaAs as a Schottky tunnel barrier. A set of closely spaced Fe contacts on the top of an n-GaAs channel are used as spin injectors and detectors. Reference electrodes are placed at the far ends of the channel, allowing for non-local spin detection [1]. The electro-chemical potential of the detector is sensitive to the relative magnetizations of the injector and detector. In spin-valve measurements, a magnetic field is applied along the Fe easy axis to switch the relative magnetizations of injector and detector from parallel to antiparallel, resulting in a voltage jump that is proportional to the non-equilibrium spin polarization in the channel. A more rigorous test of electrical spin detection is the observation of the Hanle effect, in which an out-of-plane magnetic field is used to modulate and dephase the spin polarization in the channel. The magnitudes of the observed Hanle curves agree with the results of the spin-valve measurements. The dependence of the Hanle curves on temperature and contact separation is studied in detail and is consistent with a drift-diffusion model incorporating spin precession and relaxation. The spin polarization generated by spin injection (reverse bias at the injector) or spin accumulation (forward bias at the injector) is measured using the magneto-optical Kerr effect and is found to be in good agreement with the spin-dependent non-local voltage. Both the transport and optical measurements show a non-linear relationship between the bias voltage at the injector and the spin polarization in the channel. [1] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).

  16. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.

    Science.gov (United States)

    Zhang, Mingji; Or, Siu Wing

    2017-10-25

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

  17. Electrical detection of liquid lithium leaks from pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  18. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  19. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  20. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafizadeh-Tafti, Saeed [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Haqiqatkhah, Mohammad Hossein [Center of Excellence on Applied Electromagnetic Systems, School of Electrical & Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Saviz, Mehrdad [Antenna Laboratory, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717443, Tehran (Iran, Islamic Republic of); Faraji Dana, Reza [Center of Excellence on Applied Electromagnetic Systems, School of Electrical & Computer Engineering, University of Tehran, P.O. Box 14395-515, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Zanganeh, Somayeh [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Abdolahad, Mohammad, E-mail: m.abdolahad@ut.ac.ir [Nanoelectronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of)

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940 MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. - Highlights: • A CNT-chip is fabricated to stimulate cancer cells by electromagnetic wave. • Wave induced charges accumulation on the tip of CNTs penetrated into cells. • Transmembrane electrostatic states would be strongly affected due to such exchanges. • The cells' vitality changes could be happened and electrically detected with the same chip.

  1. Standard practice for detection sensitivity mapping of In-Plant Walk-through metal detectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This standard practice covers a procedure for determining the weakest detection path through the portal aperture and the worst-case orthogonal orientation of metallic test objects. It results in detection sensitivity maps, which model the detection zone in terms related to detection sensitivity and identify the weakest detection paths. Detection sensitivity maps support sensitivity adjustment and performance evaluation procedures (see Practices C1269 and C1309). Note 1—Unsymmetrical metal objects possessing a primary longitudinal component, such as handguns and knives, usually have one particular orientation that produces the weakest detection signal. The orientation and the path through the detector aperture where the weakest response is produced may not be the same for all test objects, even those with very similar appearance. Note 2—In the case of multiple specified test objects or for test objects that are orientation sensitive, it may be necessary to map each object several times to determine ...

  2. Four nondestructive electrochemical tests for detecting sensitization in type 304 and 304L stainless steels

    International Nuclear Information System (INIS)

    Majidi, A.P.; Streicher, A.

    1986-01-01

    Three different electrochemical reactivation tests are compared with etch structures produced in the electrolytic oxalic acid etch test. These nondestructive tests are needed to evaluate welded stainless steel pipes and other plant equipment for susceptibility to intergranular attack. Sensitization associated with precipitates of chromium carbides at grain boundaries can make these materials subject to intergranular attack in acids and, in particular, to intergranular stress corrosion cracking in high-temperature (289 0 C) water on boiling water nuclear reactor power plants. In the first of the two older reactivation tests, sensitization is detected by the electrical charge generated during reactivation. In the second, it is measured by the ratio of maximum currents generated by a prior anodic loop and the reactivation loop. A third, simpler reactivation method based on a measurement of the maximum current generated during reactivation is proposed. If the objective of the field tests, which are to be carried out with portable equipment, is to distinguish between nonsensitized and sensitized material, this can be accomplished most simply, most rapidly, and at lowest cost by an evaluation of oxalic acid etch structures

  3. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  4. Catalog of physical protection equipment. Book 1: Volume II. Intrusion detection components

    International Nuclear Information System (INIS)

    Haberman, W.

    1977-06-01

    This volume covers acoustic components, microwave/radar components, electro-optic barriers, electric field components, orientation components, ferrous metal detection components, proximity detection components, vibration detection components, seismic components, pressure-sensitive components, pressure mats, continuity components, electrical/magnetic switches, fire detection components, and mechanical contact switches

  5. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  6. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  7. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    International Nuclear Information System (INIS)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-01-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current–voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling. (paper)

  8. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    Science.gov (United States)

    Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  9. Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection

    International Nuclear Information System (INIS)

    Muhammad Subekti

    2009-01-01

    Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection. The present research was done for verification of previous developed method on Loss of Coolant Accident (LOCA) detection and perform simulations for knowing the sensitivity of the PWR monitoring system that applied neuro-expert method. The previous research continuing on present research, has developed and has tested the neuro-expert method for several anomaly detections in Nuclear Power Plant (NPP) typed Pressurized Water Reactor (PWR). Neuro-expert can detect the LOCA anomaly with sensitivity of primary coolant leakage of 7 gallon/min and the conventional method could not detect the primary coolant leakage of 30 gallon/min. Neuro expert method detects significantly LOCA anomaly faster than conventional system in Surry-1 NPP as well so that the impact risk is reducible. (author)

  10. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ultra-sensitive detection of leukemia by graphene

    Science.gov (United States)

    Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza

    2014-11-01

    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K

  12. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    Directory of Open Access Journals (Sweden)

    Douglas E H Hartley

    Full Text Available Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs. In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps was assessed in response to dichotically-presented i sinusoidal amplitude-modulated (SAM and ii half-wave rectified (HWR tones (100-ms duration; 70 dB SPL presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli

  13. the sensitivity of a syndromic management approach in detecting ...

    African Journals Online (AJOL)

    MANAGEMENT APPROACH IN. DETECTING SEXUALLY. TRANSMITTED DISEASES IN. PATIENTS AT A PUBLIC HEALTH. CLINIC IN CAPE TOWN. C Mathews, A van Rensburg, N Coetzee. Objectives. To evaluate the sensitivity of a syndromic diagnostic procedure in detecting and treating sexually transmitted diseases ...

  14. Sensitive Detection of Deliquescent Bacterial Capsules through Nanomechanical Analysis.

    Science.gov (United States)

    Nguyen, Song Ha; Webb, Hayden K

    2015-10-20

    Encapsulated bacteria usually exhibit strong resistance to a wide range of sterilization methods, and are often virulent. Early detection of encapsulation can be crucial in microbial pathology. This work demonstrates a fast and sensitive method for the detection of encapsulated bacterial cells. Nanoindentation force measurements were used to confirm the presence of deliquescent bacterial capsules surrounding bacterial cells. Force/distance approach curves contained characteristic linear-nonlinear-linear domains, indicating cocompression of the capsular layer and cell, indentation of the capsule, and compression of the cell alone. This is a sensitive method for the detection and verification of the encapsulation status of bacterial cells. Given that this method was successful in detecting the nanomechanical properties of two different layers of cell material, i.e. distinguishing between the capsule and the remainder of the cell, further development may potentially lead to the ability to analyze even thinner cellular layers, e.g. lipid bilayers.

  15. Rapid and Sensitive Detection of BLAD in Cattle Population

    Directory of Open Access Journals (Sweden)

    Daniela Elena Ilie

    2014-05-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is an autosomal recessive disorder with negative impact on dairy cattle breeding. The molecular basis of BLAD is a single point mutation (A→G, resulting in a single amino acid substitution (aspartic acid → glycine at amino acid 128 in the adhesion molecule CD18. The object of this study was to establish a fast and sensitive molecular genotyping assay to detect BLAD carriers using high-resolution melting (HRM curve analysis. We tested animals with known genotypes for BLAD that were previously confirmed by PCR-RFLP method, and then examined the sensitivity of mutation detection using PCR followed by HRM curve analysis. BLAD carriers were readily detectable using HRM assay. Thus, the PCR-HRM genotyping method is a rapid, easily interpretable, reliable and cost-effective assay for BLAD mutant allele detection. This assay can be useful in cattle genotyping and genetic selection.

  16. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    Science.gov (United States)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  17. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    Science.gov (United States)

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  18. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  19. Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.

    Science.gov (United States)

    Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-09-14

    Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.

  20. Electrical excitation and optical detection of ultrasounds in PZT based piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Babilotte, P; Diallo, O; Hue, L-P Tran Hu; Feuillard, G [University Francois Rabelais de Tours, Laboratory Imaging and Brain, Team Ultrasonic Characterisation and Piezoelectricity, ENIVL, Rue de la Chocolaterie, 41034 BLOIS CEDEX (France); Kosec, M; Kuscer, D, E-mail: philippe.babilotte@univ-tours.fr [Josef Stefan Institute, Jamova cesta 39, 1000 LJUBLJANA (Slovenia)

    2011-01-01

    The displacement response of piezoelectric PZT thick films fabricated by means of electrophoretic deposition and laid down an alumina substrate is investigated using coherent optical detection. According to thickness properties determined by electrical impedance measurements, the film presents a resonance around 40 MHz. Other resonance peaks are observed that correspond to eigen modes of the film substrate couple structure. Uniformity of the response of the integrated structure is studied across the surface of the sample when excited by either a continuous or impulse electrical voltage. Results on the amplitude of the detected signal versus the frequency and the input excitation voltage are reported. The optical detection used in these experiments is complementary to conventional techniques of characterization of piezoelectric devices such as electrical impedance measurements and allows getting information on the displacement response of the device.

  1. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  2. Impact Responses and Parameters Sensitivity Analysis of Electric Wheelchairs

    Directory of Open Access Journals (Sweden)

    Song Wang

    2018-06-01

    Full Text Available The shock and vibration of electric wheelchairs undergoing road irregularities is inevitable. The road excitation causes the uneven magnetic gap of the motor, and the harmful vibration decreases the recovery rate of rehabilitation patients. To effectively suppress the shock and vibration, this paper introduces the DA (dynamic absorber to the electric wheelchair. Firstly, a vibration model of the human-wheelchair system with the DA was created. The models of the road excitation for wheelchairs going up a step and going down a step were proposed, respectively. To reasonably evaluate the impact level of the human-wheelchair system undergoing the step–road transition, evaluation indexes were given. Moreover, the created vibration model and the road–step model were validated via tests. Then, to reveal the vibration suppression performance of the DA, the impact responses and the amplitude frequency characteristics were numerically simulated and compared. Finally, a sensitivity analysis of the impact responses to the tire static radius r and the characteristic parameters was carried out. The results show that the DA can effectively suppress the shock and vibration of the human-wheelchair system. Moreover, for the electric wheelchair going up a step and going down a step, there are some differences in the vibration behaviors.

  3. Localized leak detection utilizing moisture sensitive tape

    International Nuclear Information System (INIS)

    Riddle, P.

    1984-01-01

    Moisture sensitive tape (MST) has been used in various nuclear power plants to detect leaks in reactor piping systems. The sensor assembly consists of MST, transponder, and sensor carrier, and is installed on the exterior of thermal insulation. The components, applications, installation, and purchasing information are discussed in the paper

  4. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes.

    Science.gov (United States)

    Khan, M S; Dighe, K; Wang, Z; Srivastava, I; Daza, E; Schwartz-Dual, A S; Ghannam, J; Misra, S K; Pan, D

    2018-02-26

    Prostate-specific antigen (PSA) is a commonly used biomarker for the detection of prostate cancer (PCa) and there are numerous data available for its invasive detection in the serum and whole blood. In this work, an electrochemical sensing method was devised to detect traces of PSA in human saliva using a hybrid nanocomposite of graphene nanoplatelets with diblock co-polymers and Au electrodes (GRP-PS 67 -b-PAA 27 -Au). The pure graphitic composition on filter paper provides significantly high electrical and thermal conductivity while PS 67 -b-PAA 27 makes an amphiphilic bridge between GRP units. The sensor utilizes the binding of an anti-PSA antibody with an antigen-PSA to act as a resistor in a circuit providing an impedance change that in turn allows for the detection and quantification of PSA in saliva samples. A miniaturized electrical impedance analyzer was interfaced with a sensor chip and the data were recorded in real-time using a Bluetooth-enabled module. This fully integrated and optimized sensing device exhibited a wide PSA range of detection from 0.1 pg mL -1 to 100 ng mL -1 (R 2 = 0.963) with a lower limit of detection of 40 fg mL -1 . The performance of the biosensor chip was validated with an enzyme-linked immunosorbent assay technique with a regression coefficient as high as 0.940. The advantages of the newly developed saliva-PSA electrical biosensor over previously reported serum-PSA electrochemical biosensors include a faster response time (3-5 min) to achieve a stable electrical signal for PSA detection, high selectivity, improved sensitivity, no additional requirement of a redox electrolyte for electron exchange and excellent shelf life. The presented sensor is aimed for clinical commercialization to detect PSA in human saliva.

  5. Distinguishing bias from sensitivity effects in multialternative detection tasks.

    Science.gov (United States)

    Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin; Knudsen, Eric I

    2014-08-21

    Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making. © 2014 ARVO.

  6. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    Science.gov (United States)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  7. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  8. High sensitive quench detection method using an integrated test wire

    International Nuclear Information System (INIS)

    Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

    1981-01-01

    A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

  9. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors.

    Science.gov (United States)

    Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chen, Pei-Chi; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin

    2018-02-15

    In this study, we report the development of a high sensitivity assay for the detection of cardiac troponin I using electrical double layer gated high field AlGaN/GaN HEMT biosensor. The unique gating mechanism overcomes the drawback of charge screening seen in traditional FET based biosensors, allowing detection of target proteins in physiological solutions without sample processing steps. Troponin I specific antibody and aptamer are used as receptors. The tests carried out using purified protein solution and clinical serum samples depict high sensitivity, specificity and wide dynamic range (0.006-148ng/mL). No additional wash or sample pre-treatment steps are required, which greatly simplifies the biosensor system. The miniaturized HEMT chip is packaged in a polymer substrate and easily integrated with a portable measurement unit, to carry out quantitative troponin I detection in serum samples with < 2µl sample volume in 5min. The integrated prototype biosensor unit demonstrates the potential of the method as a rapid, inexpensive, high sensitivity CVD biomarker assay. The highly simplified protocols and enhanced sensor performance make our biosensor an ideal choice for point of care diagnostics and personal healthcare systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  11. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  12. Sensitive non-radioactive detection of HIV-1

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Nielsen, C; Hansen, J E

    1992-01-01

    This report describes the use of the polymerase chain reaction (PCR) for the non-radioactive detection of HIV-1 proviral genomic sequences in HIV-1 infected cells. We have developed a sensitive assay, using three different sets of nested primers and our results show that this method is superior...... to standard PCR for the detection of HIV-1 DNA. The assay described features the use of a simple and inexpensive sample preparation technique and a non-radioactive hybridization procedure for confirmation of results. To test the suitability of the assay for clinical purposes, we tested cell samples from 76...

  13. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  14. Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast

    International Nuclear Information System (INIS)

    Tenggara, Ayodya Pradhipta; Byun, Doyoung; Park, S J; Ahn, Y H; Yudistira, Hadi Teguh

    2017-01-01

    We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µ m-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µ g and 215 µ g for metamaterial structures with gap size 6.5 µ m fabricated on the silicon substrate and on the polyimide substrate, respectively. (paper)

  15. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  16. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    International Nuclear Information System (INIS)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young

    2017-01-01

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process

  17. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    Science.gov (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  18. High-sensitivity ultraviolet photoemission spectroscopy technique for direct detection of gap states in organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bussolotti, Fabio, E-mail: fabio@ims.ac.jp

    2015-10-01

    Highlights: • Density of gap states in organic thin film was detected by photoemission spectroscopy. • Inert gas exposure affects the density of gap states in organic thin films. • Density of gap states controls the energy level alignment at the organic/inorganic and organic/organic interfaces. - Abstract: We developed ultrahigh sensitivity, low-background ultraviolet photoemission spectroscopy (UPS) technique which does not introduce detectable radiation damages into organic materials. The UPS allows to detect density of states of the order of ∼10{sup 16} states eV{sup −1} cm{sup −3} even for radiation-sensitive organic films, this results being comparable to electrical measurements of charge trapping centers. In this review we introduce the method of ultrahigh sensitivity photoemission measurement and we present some results on the energy distribution of gap states in pentacene (Pn) films deposited on SiO{sub 2} and Au(1 1 1) substrate. For Pn/SiO{sub 2} thin film the results show that exposure to inert gas (N{sub 2} and Ar) atmosphere produces a sharp rise in gap states from 10{sup 16} to 10{sup 18} states eV{sup −1} cm{sup −3} and pushes the Fermi level closer to the valence band (0.15–0.17 eV), as does exposure to O{sub 2} (0.20 eV), while no such gas-induced effects are observed for Pn/Au(1 1 1) system. The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the Pn crystal grain boundaries. Similar results were obtained for CuPc/F{sub 16}CuPc thin films, a prototypical example of donor/acceptor interface for photovoltaic application.

  19. [The prediction of atrial fibrillation recurrence after electrical cardioversion with the chemoreflex sensitivity].

    Science.gov (United States)

    Budeus, M; Hennersdorf, M; Perings, C; Strauer, B E

    2004-04-01

    Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the reccurrence of atrial fibrilation after electrical cardioversion. We measured the CHRS among 43 patients 24 h after successful electrical cardioversion and the patients were controlled for at least 6 months. During the six months of follow-up a recurrence was observed in 18 patients with a mean of 8.3 days. There was no difference in organic heart disease or in the use of drugs. Left atrial diameter was not significantly larger in patients with a recurrence. Patients with a recurrence have a significantly lower CHRS than patients with sinus rhythm (2.41 +/- 1.82 vs 5.62 +/- 3.02 ms/mmHg, p atrial fibrillation. The predictive power of the method has to be examined by prospective investigations of a larger patient population and a longer follow-up. Patients with paroxysmal atrial fibrillation have a lower chemoreflex sensitivity (CHRS) which is characterized as an autonomic dysfunction. Because of this observation we examined the theory of an autonomic dysfunction as the reason for the recurrence of atrial fibrillation after electrical cardioversion.

  20. An electrical resistivity monitor for the detection of composition changes in Pb-17Li

    International Nuclear Information System (INIS)

    Hubberstey, P.; Barker, M.G.; Sample, T.

    1991-01-01

    An electrical resistivity monitor for the detection of composition changes in the lithium-lead eutectic alloy, Pb-17Li, has been developed. A miniature electromagnetic pump is used to sample alloy continuously from a pool or loop system and force it through a capillary section, within which the necessary resistance measurements are made, prior to its return to the bulk source. To calibrate the monitor, detailed resistivity-temperature and resistivity-composition data have been determined for Pb-Li alloys at temperatures from 600 to 800K and compositions from 0 to 20.5 at% Li. The resistivity increases with both temperature and composition; for Pb-17li at 723 K, dρ/dT=0.054x10 -8 ΩmK -1 , and dρ/d[Li]=1.27x10 -8 Ωm(at% Li) -1 . The sensitivity of the monitor is such that changes in composition of as little as ±0.05 at% Li can be detected and its response time is limited soley by the rate of sampling. (orig.)

  1. Screening mammography-detected cancers: the sensitivity of the computer-aided detection system as applied to full-field digital mammography

    International Nuclear Information System (INIS)

    Yang, Sang Kyu; Cho, Nariya; Ko, Eun Sook; Kim, Do Yeon; Moon, Woo Kyung

    2006-01-01

    We wanted to evaluate the sensitivity of the computer-aided detection (CAD) system for performing full-field digital mammography (FFDM) on the breast cancers that were originally detected by screening mammography. The CAD system (Image Checker v3.1, R2 Technology, Los Altos, Calif.) together with a full-field digital mammography system (Senographe 2000D, GE Medical Systems, Buc, France) was prospectively applied to the mammograms of 70 mammographically detected breast cancer patients (age range, 37-69; median age, 51 years) who had negative findings on their clinical examinations. The sensitivity of the CAD system, according to histopathologic findings and radiologic primary features (i.e, mass, microcalcifications or mass with microcalcifications) and also the false-positive marking rate were then determined. The CAD system correctly depicted 67 of 70 breast cancer lesions (97.5%). The CAD system marked 29 of 30 breast cancers that presented with microcalcifications only (sensitivity 96.7%) and all 18 breast cancers the presented with mass together with microcalcifications (sensitivity 100%). Twenty of the 22 lesions that appeared as a mass only were marked correctly by the CAD system (sensitivity 90.9%). The CAD system correctly depicted all 22 lesions of ductal carcinoma in situ (sensitivity: 100%), all 13 lesions of invasive ductal carcinoma with ductal carcinoma in situ (sensitivity: 100%) and the 1 lesion of invasive lobular carcinoma (sensitivity: 100%). Thirty one of the 34 lesions of invasive ductal carcinoma were marked correctly by the CAD system (sensitivity: 91.8%). The rate of false-positive marks was 0.21 mass marks per image and 0.16 microcalcification marks per image. The overall rate of false-positive marks was 0.37 per image. The CAD system using FFDM is useful for the detection of asymptomatic breast cancers, and it has a high overall tumor detection rate. The false negative cases were found in relatively small invasive ductal carcinoma

  2. Screening mammography-detected cancers: the sensitivity of the computer-aided detection system as applied to full-field digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sang Kyu; Cho, Nariya; Ko, Eun Sook; Kim, Do Yeon; Moon, Woo Kyung [College of Medicine Seoul National University and The Insititute of Radiation Medicine, Seoul National University Research Center, Seoul (Korea, Republic of)

    2006-04-15

    We wanted to evaluate the sensitivity of the computer-aided detection (CAD) system for performing full-field digital mammography (FFDM) on the breast cancers that were originally detected by screening mammography. The CAD system (Image Checker v3.1, R2 Technology, Los Altos, Calif.) together with a full-field digital mammography system (Senographe 2000D, GE Medical Systems, Buc, France) was prospectively applied to the mammograms of 70 mammographically detected breast cancer patients (age range, 37-69; median age, 51 years) who had negative findings on their clinical examinations. The sensitivity of the CAD system, according to histopathologic findings and radiologic primary features (i.e, mass, microcalcifications or mass with microcalcifications) and also the false-positive marking rate were then determined. The CAD system correctly depicted 67 of 70 breast cancer lesions (97.5%). The CAD system marked 29 of 30 breast cancers that presented with microcalcifications only (sensitivity 96.7%) and all 18 breast cancers the presented with mass together with microcalcifications (sensitivity 100%). Twenty of the 22 lesions that appeared as a mass only were marked correctly by the CAD system (sensitivity 90.9%). The CAD system correctly depicted all 22 lesions of ductal carcinoma in situ (sensitivity: 100%), all 13 lesions of invasive ductal carcinoma with ductal carcinoma in situ (sensitivity: 100%) and the 1 lesion of invasive lobular carcinoma (sensitivity: 100%). Thirty one of the 34 lesions of invasive ductal carcinoma were marked correctly by the CAD system (sensitivity: 91.8%). The rate of false-positive marks was 0.21 mass marks per image and 0.16 microcalcification marks per image. The overall rate of false-positive marks was 0.37 per image. The CAD system using FFDM is useful for the detection of asymptomatic breast cancers, and it has a high overall tumor detection rate. The false negative cases were found in relatively small invasive ductal carcinoma.

  3. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  4. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  5. Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.

    Science.gov (United States)

    Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K

    2015-10-01

    Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  7. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  8. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  9. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  10. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  11. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States

    International Nuclear Information System (INIS)

    Nakajima, Tadahiro; Hamori, Shigeyuki

    2010-01-01

    About ten years have passed since the deregulation of the U.S. retail electricity market, and it is now generally accepted that the available data is adequate to quantitatively assess and compare conditions before and after deregulation. This study, therefore, estimates the changes in price elasticity in the residential electricity market to examine the changes, if any, in household sensitivity (as a result of retail electricity market deregulation policies) to residential electricity rates. Specifically, six types of panel data are prepared, based on three cross-sections-all states (except for Alaska and Hawaii) and the District of Columbia, deregulated states, and non-deregulated states-and two time series-the period before deregulation and the period after deregulation. The panel empirical analysis techniques are used to determine whether or not the variables are stationary, and to estimate price elasticity. We find that there is no substantial difference in the price elasticity between deregulated and non-deregulated states for both periods-before deregulation and after deregulation. Thus, it can be said that the deregulation of the retail electricity market has not made consumers more sensitive to electricity rates and that retail deregulation policies are not the cause of price elasticity differences between deregulated and non-deregulated states.

  13. Change in consumer sensitivity to electricity prices in response to retail deregulation. A panel empirical analysis of the residential demand for electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tadahiro [The Kansai Electric Power Company, Incorporated, 6-16, Nakanoshima 3-chome, Kita-Ku, Osaka 530-8270 (Japan); Hamori, Shigeyuki [Faculty of Economics, Kobe University 2-1, Rokkodai, Nada-Ku, Kobe 657-8501 (Japan)

    2010-05-15

    About ten years have passed since the deregulation of the U.S. retail electricity market, and it is now generally accepted that the available data is adequate to quantitatively assess and compare conditions before and after deregulation. This study, therefore, estimates the changes in price elasticity in the residential electricity market to examine the changes, if any, in household sensitivity (as a result of retail electricity market deregulation policies) to residential electricity rates. Specifically, six types of panel data are prepared, based on three cross-sections - all states (except for Alaska and Hawaii) and the District of Columbia, deregulated states, and non-deregulated states - and two time series - the period before deregulation and the period after deregulation. The panel empirical analysis techniques are used to determine whether or not the variables are stationary, and to estimate price elasticity. We find that there is no substantial difference in the price elasticity between deregulated and non-deregulated states for both periods - before deregulation and after deregulation. Thus, it can be said that the deregulation of the retail electricity market has not made consumers more sensitive to electricity rates and that retail deregulation policies are not the cause of price elasticity differences between deregulated and non-deregulated states. (author)

  14. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Science.gov (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  15. Topological sensitivity based far-field detection of elastic inclusions

    Directory of Open Access Journals (Sweden)

    Tasawar Abbas

    2018-03-01

    Full Text Available The aim of this article is to present and rigorously analyze topological sensitivity based algorithms for detection of diametrically small inclusions in an isotropic homogeneous elastic formation using single and multiple measurements of the far-field scattering amplitudes. A L2-cost functional is considered and a location indicator is constructed from its topological derivative. The performance of the indicator is analyzed in terms of the topological sensitivity for location detection and stability with respect to measurement and medium noises. It is established that the location indicator does not guarantee inclusion detection and achieves only a low resolution when there is mode-conversion in an elastic formation. Accordingly, a weighted location indicator is designed to tackle the mode-conversion phenomenon. It is substantiated that the weighted function renders the location of an inclusion stably with resolution as per Rayleigh criterion. 2000 MSC: 35R30, 35L05, 74B05, 47A52, 65J20, Keywords: Inverse elastic scattering, Elasticity imaging, Topological derivative, Resolution analysis, Stability analysis

  16. Quantitative electrical detection of immobilized protein using gold nanoparticles and gold enhancement on a biochip

    International Nuclear Information System (INIS)

    Lei, Kin Fong

    2011-01-01

    Electrical detection of the concentration of protein immobilized on a biochip is demonstrated. The concentration of the direct immobilized protein can be determined by the resistance values measured by an ohm-meter directly. Indium tin oxide interdigitated electrodes were utilized as the detection sites on the biochip. Protein, i.e. antibody, of certain concentration was first immobilized on the detection site. Gold nanoparticles were then applied to indicate the immobilized protein. Since the gold nanoparticles were tiny, a detectable electrical signal could not be generated. Hence, a gold enhancement process was performed for signal amplification. Gold nanoparticles were enlarged physically, such that a conductive metal layer was formed on the detection site. The presence and concentration of protein can be determined by the resistance value across the electrode measured by an ohm-meter. An immobilized protein concentration ranging from 50 to 1000 ng ml −1 can be detected quantitatively by the resistance values from 4300 to 1700 Ω. The proposed technique is potentially extended for the detection of immunoassay on the biochip. Since the protocol of the electrical detection does not involve sophisticated equipment, it can therefore be used for the development of a portable immunoassay device

  17. Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors.

    Science.gov (United States)

    Pürerfellner, Helmut; Sanders, Prashanthan; Sarkar, Shantanu; Reisfeld, Erin; Reiland, Jerry; Koehler, Jodi; Pokushalov, Evgeny; Urban, Luboš; Dekker, Lukas R C

    2017-10-03

    Intermittent change in p-wave discernibility during periods of ectopy and sinus arrhythmia is a cause of inappropriate atrial fibrillation (AF) detection in insertable cardiac monitors (ICM). To address this, we developed and validated an enhanced AF detection algorithm. Atrial fibrillation detection in Reveal LINQ ICM uses patterns of incoherence in RR intervals and absence of P-wave evidence over a 2-min period. The enhanced algorithm includes P-wave evidence during RR irregularity as evidence of sinus arrhythmia or ectopy to adaptively optimize sensitivity for AF detection. The algorithm was developed and validated using Holter data from the XPECT and LINQ Usability studies which collected surface electrocardiogram (ECG) and continuous ICM ECG over a 24-48 h period. The algorithm detections were compared with Holter annotations, performed by multiple reviewers, to compute episode and duration detection performance. The validation dataset comprised of 3187 h of valid Holter and LINQ recordings from 138 patients, with true AF in 37 patients yielding 108 true AF episodes ≥2-min and 449 h of AF. The enhanced algorithm reduced inappropriately detected episodes by 49% and duration by 66% with adapts sensitivity for AF detection reduced inappropriately detected episodes and duration with minimal reduction in sensitivity. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology

  18. Effects of visual attention on chromatic and achromatic detection sensitivities.

    Science.gov (United States)

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  19. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  20. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    Science.gov (United States)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  2. Nitrogen-detected TROSY yields comparable sensitivity to proton-detected TROSY for non-deuterated, large proteins under physiological salt conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Imai, Misaki [Japan Biological Informatics Consortium, Research and Development Department (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan)

    2016-02-15

    Direct detection of the TROSY component of proton-attached {sup 15}N nuclei ({sup 15}N-detected TROSY) yields high quality spectra with high field magnets, by taking advantage of the slow {sup 15}N transverse relaxation. The slow transverse relaxation and narrow line width of the {sup 15}N-detected TROSY resonances are expected to compensate for the inherently low {sup 15}N sensitivity. However, the sensitivity of {sup 15}N-detected TROSY in a previous report was one-order of magnitude lower than in the conventional {sup 1}H-detected version. This could be due to the fact that the previous experiments were performed at low salt (0–50 mM), which is advantageous for {sup 1}H-detected experiments. Here, we show that the sensitivity gap between {sup 15}N and {sup 1}H becomes marginal for a non-deuterated, large protein (τ{sub c} = 35 ns) at a physiological salt concentration (200 mM). This effect is due to the high salt tolerance of the {sup 15}N-detected TROSY. Together with the previously reported benefits of the {sup 15}N-detected TROSY, our results provide further support for the significance of this experiment for structural studies of macromolecules when using high field magnets near and above 1 GHz.

  3. A highly sensitive method for detection of molybdenum-containing proteins

    International Nuclear Information System (INIS)

    Kalakutskii, K.L.; Shvetsov, A.A.; Bursakov, S.A.; Letarov, A.V.; Zabolotnyi, A.I.; L'vov, N.P.

    1992-01-01

    A highly sensitive method for detection of molybdenum-containing proteins in gels after electrophoresis has been developed. The method involves in vitro labeling of the proteins with the radioactive isotope 185 W. The method used to detect molybdenum-accumulating proteins in lupine seeds, xanthine dehydrogenase and another molybdenum-containing protein in wheat, barley, and pea seedlings, and nitrate reductase and xanthine dehydrogenase in bacteroides from lupine nodules. Nitrogenase could not be detected by the method. 16 refs., 5 figs

  4. Security attack detection algorithm for electric power gis system based on mobile application

    Science.gov (United States)

    Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan

    2017-05-01

    Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.

  5. A Novel SPM Probe with MOS Transistor and Nano Tip for Surface Electric Properties

    International Nuclear Information System (INIS)

    Lee, Sang H; Lim, Geunbae; Moon, Wonkyu

    2007-01-01

    In this paper, the novel SPM (Scanning Probe Microscope) probe with the planar MOS (Metal-Oxide-Semiconductor) transistor and the FIB (Focused Ion Beam) nano tip is fabricated for the surface electric properties. Since the MOS transistor has high working frequency, the device can overcome the speed limitation of EFM (Electrostatic Force Microscope) system. The sensitivity is also high, and no bulky device such as lock-in-amplifier is required. Moreover, the nano tip with nanometer scale tip radius is fabricated with FIB system, and the resolution can be improved. Therefore, the probe can rapidly detect small localized electric properties with high sensitivity and high resolution. The MOS transistor is fabricated with the common semiconductor process, and the nano tip is grown by the FIB system. The planar structure of the MOS transistor makes the fabrication process easier, which is the advantage on the commercial production. Various electric signals are applied using the function generator, and the measured data represent the well-established electric properties of the device. It shows the promising aspect of the local surface electric property detection with high sensitivity and high resolution

  6. Sensitivity towards fear of electric shock in passive threat situations.

    Science.gov (United States)

    Ring, Patrick; Kaernbach, Christian

    2015-01-01

    Human judgment and decision-making (JDM) requires an assessment of different choice options. While traditional theories of choice argue that cognitive processes are the main driver to reach a decision, growing evidence highlights the importance of emotion in decision-making. Following these findings, it appears relevant to understand how individuals asses the attractiveness or riskiness of a situation in terms of emotional processes. The following study aims at a better understanding of the psychophysiological mechanisms underlying threat sensitivity by measuring skin conductance responses (SCRs) in passive threat situations. While previous studies demonstrate the role of magnitude on emotional body reactions preceding an outcome, this study focuses on probability. In order to analyze emotional body reactions preceding negative events with varying probability of occurrence, we have our participants play a two-stage card game. The first stage of the card game reveals the probability of receiving an unpleasant electric shock. The second stage applies the electric shock with the previously announced probability. For the analysis, we focus on the time interval between the first and second stage. We observe a linear relation between SCRs in anticipation of receiving an electric shock and shock probability. This finding indicates that SCRs are able to code the likelihood of negative events. We outline how this coding function of SCRs during the anticipation of negative events might add to an understanding of human JDM.

  7. Enhanced sensing of dengue virus DNA detection using O_2 plasma treated-silicon nanowire based electrical biosensor

    International Nuclear Information System (INIS)

    Rahman, S.F.A.; Yusof, N.A.; Hashim, U.; Hushiarian, R.; Nuzaihan, M.N.M.; Hamidon, M.N.; Zawawi, R.M.; Fathil, M.F.M.

    2016-01-01

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O_2) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O_2 plasma treated-SiNW device could be reduced to 1.985 × 10"−"1"4 M with a linear detection range of the sequence-specific DNA from 1.0 × 10"−"9 M to 1.0 × 10"−"1"3 M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (LoD) as low as 1.985

  8. GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection

    Directory of Open Access Journals (Sweden)

    Tony Chopard

    2014-12-01

    Full Text Available This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation.

  9. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  11. Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example

    International Nuclear Information System (INIS)

    Åberg, M.; Widén, J.; Henning, D.

    2012-01-01

    In the future, district heating companies in Sweden must adapt to energy efficiency measures in buildings and variable fuel and electricity prices. Swedish district heating demands are expected to decrease by 1–2% per year and electricity price variations seem to be more unpredictable in the future. A cost-optimisation model of a Swedish local district heating system is constructed using the optimisation modelling tool MODEST. A scenario for heat demand changes due to increased energy efficiency in buildings, combined with the addition of new buildings, is studied along with a sensitivity analysis for electricity price variations. Despite fears that heat demand reductions will decrease co-generation of clean electricity and cause increased global emissions, the results show that anticipated heat demand changes do not increase the studied system's primary energy use or global CO 2 emissions. The results further indicate that the heat production plants and the fuels used within the system have crucial importance for the environmental impact of district heat use. Results also show that low seasonal variations in electricity price levels with relatively low winter prices promote the use of electric heat pumps. High winter prices on the other hand promote co-generation of heat and electricity in CHP plants. -- Highlights: ► A MODEST optimisation model of the Uppsala district heating system is built. ► The impact of heat demand change on heat and electricity production is examined. ► An electricity price level sensitivity analysis for district heating is performed. ► Heat demand changes do not increase the primary energy use or global CO 2 emissions. ► Low winter prices promote use of electric heat pumps for district heating production.

  12. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  13. Electric Characterization and Modeling of Microfluidic-Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Adriano Sacco

    2012-01-01

    Full Text Available The electric response to an external periodic voltage of small amplitude of dye-sensitized solar cells (DSCs made up with an alternative architecture has been investigated. DSCs have been fabricated with a reversible sealing structure, based on microfluidic concepts, with a precise control on the geometric parameters of the active chamber. Cells with different electrolyte thicknesses have been characterized, without varying the thickness of the TiO2 layer, both under illumination and in dark conditions. Measurements of the electric impedance have been performed in the presence of an external bias ranging from 0 V to 0.8 V. The experimental data have been analyzed in terms of a transmission line model, with two transport channels. The results show that the photovoltaic performances of the microfluidic cell are comparable with those obtained in irreversibly sealed structures, actually demonstrating the reliability of the proposed device.

  14. Bumble Bees (Bombus terrestris use mechanosensory hairs to detect electric fields

    Directory of Open Access Journals (Sweden)

    Sutton Gregory

    2016-01-01

    Full Text Available Bees and flowers have an intricate relationship which benefits both organisms. Plants provide nectar bees, in turn, distribute pollen to fertilize plants. To make pollination work, flowers need a mechanism to incentivize individual bees to visit only a single species of flower. Flowers, like modern advertising agencies, use multiple senses to create a floral ‘brand’ that is easily recognized. Size, smell, colour, touch, and even temperature are used to allow bees to differentiate between flower species. Recently, a new sense has been found that is usable by bees to differentiate flowers, an ‘electric sense’: they can identify flowers based only on the flower’s electric field. This new sense provides a novel example of how flowers differentiate themselves to bees and has obvious implications for how bees and flowers interact with the electrical world around us. Bumble bees detect this electric field by using their body hairs, which bend in the presence of electric charge.

  15. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  16. Drop weight impact measurements of HE sensitivity: modified detection methods

    International Nuclear Information System (INIS)

    Preston, D N; Brown, G W; Tappan, B C; Oshwald, D M; Koby, J R; Schoonover, M L

    2014-01-01

    High explosives small-scale sensitivity testing has been a hallmark of safety screening since WWII. Sensitivity testing was once crude and simple; broom sticks were used to scrape explosives on the floor while experimenters would look, listen, and smell for signs of a reaction. Since then, a wide variety of testing apparatus have been developed to explore the effects of different stimuli on explosives. In concert with the development of the machines themselves, the reaction detection methods have also evolved. This paper's focus is on the Los Alamos National Laboratory's (LANL) drop weight impact machine and reaction detection methods. A critical evaluation of results is presented with cautionary examples of false positives that can occur with non-explosive materials.

  17. Modified electrical survey for effective leakage detection at concrete hydraulic facilities

    Science.gov (United States)

    Lee, Bomi; Oh, Seokhoon

    2018-02-01

    Three original electrode arrays for the effective leakage detection of concrete hydraulic facilities through electrical resistivity surveys are proposed: 'cross-potential', 'direct-potential' and modified tomography-like arrays. The main differences with respect to the commonly used arrays are that the current line-sources are separated from potential pole lines and floated upon the water. The potential pole lines are located directly next to the facility in order to obtain intuitive data and useful interpretations of the internal conditions of the hydraulic facility. This modified configuration of the array clearly displays the horizontal variation of the electrical field around the damaged zones of the concrete hydraulic facility, and any anomalous regions that might be found between potential poles placed across the facilities. In order to facilitate the interpretation of these modified electrical surveys, a new and creative way of presenting the measurements is also proposed and an inversion approach is provided for the modified tomography-like array. A numerical modeling and two field tests were performed to verify these new arrays and interpretation methods. The cross and direct potential array implied an ability to detect small variations of the potential field near the measurement poles. The proposed array showed the overall potential distribution across the hydraulic facility which may be used to assist in the search of trouble zones within the structure, in combination with the traditional electrical resistivity array.

  18. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    Science.gov (United States)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  19. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    OpenAIRE

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, ...

  20. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  1. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  2. Using linked hospitalisation data to detect nursing sensitive outcomes: a retrospective cohort study.

    Science.gov (United States)

    Schreuders, Louise Winton; Bremner, Alexandra P; Geelhoed, Elizabeth; Finn, Judith

    2014-03-01

    Nursing sensitive outcomes are adverse patient health outcomes that have been shown to be associated with nursing care. Researchers have developed specific algorithms to identify nursing sensitive outcomes using administrative data sources, although contention still surrounds the ability to adjust for pre-existing conditions. Existing nursing sensitive outcome detection methods could be improved by using look-back periods that incorporate relevant health information from patient's previous hospitalisations. Retrospective cohort study at three tertiary metropolitan hospitals in Perth, Western Australia. The objective of this research was to explore the effect of using linked hospitalisation data on estimated incidence rates of eleven adverse nursing sensitive outcomes by retrospectively extending the timeframe during which relevant patient disease information may be identified. The research also explored whether patient demographics and/or the characteristics of their hospitalisations were associated with nursing sensitive outcomes. During the 5 year study period there were 356,948 hospitalisation episodes involving 189,240 patients for a total of 2,493,654 inpatient days at the three tertiary metropolitan hospitals. There was a reduction in estimated rates for all nursing sensitive outcomes when a look-back period was applied to identify relevant health information from earlier hospitalisations within the preceding 2 years. Survival analysis demonstrates that the majority of relevant patient disease information is identified within approximately 2 years of the baseline nursing sensitive outcomes hospitalisation. Compared to patients without, patients with nursing sensitive outcomes were significantly more likely to be older (70 versus 58 years), female, have Charleson comorbidities, be direct transfers from another hospital, have a longer inpatient stay and spend time in intensive care units (p≤0.001). The results of this research suggest that nursing sensitive

  3. Electrical characterization of dye sensitized nano solar cell using natural pomegranate juice as photosensitizer

    Science.gov (United States)

    Adithi, U.; Thomas, Sara; Uma, V.; Pradeep, N.

    2013-02-01

    This paper shows Electrical characterization of Dye Sensitized Solar Cell using natural dye, extracted from the pomegranate as a photo sensitizer and ZnO nanoparticles as semiconductor. The constituents of fabricated dye sensitized solar cell were working electrode, dye, electrolyte and counter electrode. ZnO nanoparticles were synthesized and used as semiconductor in working electrode. Carbon soot was used as counter electrode. The resistance of ZnO film on ITO film was found out. There was an increase in the resistance of the film and film changes from conducting to semiconducting. Photovoltaic parameters of the fabricated cell like Short circuit current, open circuit voltage, Fill factor and Efficiency were found out. This paper shows that usage of natural dyes like pomegranate juice as sensitizer enables faster and simpler production of cheaper and environmental friendly solar cell.

  4. Fluorescent Gold Nanoprobes for the Sensitive and Selective Detection for Hg2+

    Directory of Open Access Journals (Sweden)

    Chai Fang

    2010-01-01

    Full Text Available Abstract A simple, cost-effective yet rapid and sensitive sensor for on-site and real-time Hg2+ detection based on bovine serum albumin functionalized fluorescent gold nanoparticles as novel and environmentally friendly fluorescent probes was developed. Using this probe, aqueous Hg2+ can be detected at 0.1 nM in a facile way based on fluorescence quenching. This probe was also applied to determine the Hg2+ in the lake samples, and the results demonstrate low interference and high sensitivity.

  5. Electrical detection of single magnetic skyrmion at room temperature

    Directory of Open Access Journals (Sweden)

    Riccardo Tomasello

    2017-05-01

    Full Text Available This paper proposes a protocol for the electrical detection of a magnetic skyrmion via the change of the tunneling magnetoresistive (TMR signal in a three-terminal device. This approach combines alternating spin-transfer torque from both spin-filtering (due to a perpendicular polarizer and spin-Hall effect with the TMR signal. Micromagnetic simulations, used to test and verify such working principle, show that there exists a frequency region particularly suitable for this achievement. This result can be at the basis of the design of a TMR based read-out for skyrmion detection, overcoming the difficulties introduced by the thermal drift of the skyrmion once nucleated.

  6. Sensitivity of the probability of failure to probability of detection curve regions

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2016-01-01

    Non-destructive inspection (NDI) techniques have been shown to play a vital role in fracture control plans, structural health monitoring, and ensuring availability and reliability of piping, pressure vessels, mechanical and aerospace equipment. Probabilistic fatigue simulations are often used in order to determine the efficacy of an inspection procedure with the NDI method modeled as a probability of detection (POD) curve. These simulations can be used to determine the most advantageous NDI method for a given application. As an aid to this process, a first order sensitivity method of the probability-of-failure (POF) with respect to regions of the POD curve (lower tail, middle region, right tail) is developed and presented here. The sensitivity method computes the partial derivative of the POF with respect to a change in each region of a POD or multiple POD curves. The sensitivities are computed at no cost by reusing the samples from an existing Monte Carlo (MC) analysis. A numerical example is presented considering single and multiple inspections. - Highlights: • Sensitivities of probability-of-failure to a region of probability-of-detection curve. • The sensitivities are computed with negligible cost. • Sensitivities identify the important region of a POD curve. • Sensitivities can be used as a guide to selecting the optimal POD curve.

  7. Sensitivity towards fear of electric shock in passive threat situations.

    Directory of Open Access Journals (Sweden)

    Patrick Ring

    Full Text Available Human judgment and decision-making (JDM requires an assessment of different choice options. While traditional theories of choice argue that cognitive processes are the main driver to reach a decision, growing evidence highlights the importance of emotion in decision-making. Following these findings, it appears relevant to understand how individuals asses the attractiveness or riskiness of a situation in terms of emotional processes. The following study aims at a better understanding of the psychophysiological mechanisms underlying threat sensitivity by measuring skin conductance responses (SCRs in passive threat situations. While previous studies demonstrate the role of magnitude on emotional body reactions preceding an outcome, this study focuses on probability. In order to analyze emotional body reactions preceding negative events with varying probability of occurrence, we have our participants play a two-stage card game. The first stage of the card game reveals the probability of receiving an unpleasant electric shock. The second stage applies the electric shock with the previously announced probability. For the analysis, we focus on the time interval between the first and second stage. We observe a linear relation between SCRs in anticipation of receiving an electric shock and shock probability. This finding indicates that SCRs are able to code the likelihood of negative events. We outline how this coding function of SCRs during the anticipation of negative events might add to an understanding of human JDM.

  8. Low Sensitivity of T-Cell Based Detection of Tuberculosis among ...

    African Journals Online (AJOL)

    Low Sensitivity of T-Cell Based Detection of Tuberculosis among HIV Co-Infected Tanzanian In-Patients. ... with and without HIV infection. Design: Cross-sectional study. ... like Tanzania. Larger studies in resource-poor settings are required.

  9. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq.

    Science.gov (United States)

    Kucukural, Alper; Özadam, Hakan; Singh, Guramrit; Moore, Melissa J; Cenik, Can

    2013-10-01

    Unlike DNA, RNA abundances can vary over several orders of magnitude. Thus, identification of RNA-protein binding sites from high-throughput sequencing data presents unique challenges. Although peak identification in ChIP-Seq data has been extensively explored, there are few bioinformatics tools tailored for peak calling on analogous datasets for RNA-binding proteins. Here we describe ASPeak (abundance sensitive peak detection algorithm), an implementation of an algorithm that we previously applied to detect peaks in exon junction complex RNA immunoprecipitation in tandem experiments. Our peak detection algorithm yields stringent and robust target sets enabling sensitive motif finding and downstream functional analyses. ASPeak is implemented in Perl as a complete pipeline that takes bedGraph files as input. ASPeak implementation is freely available at https://sourceforge.net/projects/as-peak under the GNU General Public License. ASPeak can be run on a personal computer, yet is designed to be easily parallelizable. ASPeak can also run on high performance computing clusters providing efficient speedup. The documentation and user manual can be obtained from http://master.dl.sourceforge.net/project/as-peak/manual.pdf.

  10. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  11. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  12. Development of a HIV-1 Virus Detection System Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2015-04-01

    Full Text Available Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM, electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS using plasmonic nanoparticle.

  13. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    Science.gov (United States)

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  14. Enhanced sensing of dengue virus DNA detection using O{sub 2} plasma treated-silicon nanowire based electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.F.A., E-mail: siti_fatimah0410@yahoo.com [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Yusof, N.A., E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Hashim, U. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hushiarian, R. [La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086 (Australia); Nuzaihan, M.N.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hamidon, M.N. [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Zawawi, R.M. [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Fathil, M.F.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-10-26

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O{sub 2}) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O{sub 2} plasma treated-SiNW device could be reduced to 1.985 × 10{sup −14} M with a linear detection range of the sequence-specific DNA from 1.0 × 10{sup −9} M to 1.0 × 10{sup −13} M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (Lo

  15. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    Science.gov (United States)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  16. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Directory of Open Access Journals (Sweden)

    Zeng Youjun

    2017-06-01

    Full Text Available Surface plasmon resonance (SPR biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  17. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    Science.gov (United States)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  18. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2017-07-15

    A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    KAUST Repository

    Loan, Phan Thi Kim

    2017-07-19

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1 pM – 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.

  20. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    Science.gov (United States)

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A molecular assay for sensitive detection of pathogen-specific T-cells.

    Directory of Open Access Journals (Sweden)

    Victoria O Kasprowicz

    Full Text Available Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-γ production using real time quantitative PCR (qPCR for two reporters--monokine-induced by IFN-γ (MIG and the IFN-γ inducible protein-10 (IP10. We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo RD1 (ESAT-6 and CFP-10-specific IFN-γ Elispot assay. We observed a clear quantitative correlation between the two assays (P<0.001. Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole blood samples of fingerprick (50 uL volumes, and was not affected by HIV-mediated immunosuppression. This assay platform is potentially of utility in diagnosis of infection in this and other clinical settings.

  2. A new sensitive method for detecting human endogenous (leukocyte) pyrogen.

    Science.gov (United States)

    Bodel, P; Miller, H

    1978-03-01

    Endogenous, or leukocyte pyrogen (EP), the mediator of fever, is currently detected by injection of pyrogen-containing supernatants into rabbits. This assay has been of little value in the study of human fever because it required injection of relatively large amounts of pyrogen. We now report that injection of medium containing human EP produces fever in mice. Supernatant from 1 c 10(5) granulocytes, stimulated by phagocytosis of staphylococci and incubated overnight, or 1 x 10(4) monocytes similarly treated, produce clear pyrogenic responses. This method for detecting EP is about 100-fold more sensitive than the rabbit assay, and it appears to be specific for EP. Preliminary studies of EP released by small samples of needle liver biopsies from febrile and afebrile patients suggests that this sensitive assay may be useful for investigations into the mechanisms of clinical fever.

  3. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    Science.gov (United States)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  4. Hazard detection in noise-related incidents - the role of driving experience with battery electric vehicles.

    Science.gov (United States)

    Cocron, Peter; Bachl, Veronika; Früh, Laura; Koch, Iris; Krems, Josef F

    2014-12-01

    The low noise emission of battery electric vehicles (BEVs) has led to discussions about how to address potential safety issues for other road users. Legislative actions have already been undertaken to implement artificial sounds. In previous research, BEV drivers reported that due to low noise emission they paid particular attention to pedestrians and bicyclists. For the current research, we developed a hazard detection task to test whether drivers with BEV experience respond faster to incidents, which arise due to the low noise emission, than inexperienced drivers. The first study (N=65) revealed that BEV experience only played a minor role in drivers' response to hazards resulting from low BEV noise. The tendency to respond, reaction times and hazard evaluations were similar among experienced and inexperienced BEV drivers; only small trends in the assumed direction were observed. Still, both groups clearly differentiated between critical and non-critical scenarios and responded accordingly. In the second study (N=58), we investigated additionally if sensitization to low noise emission of BEVs had an effect on hazard perception in incidents where the noise difference is crucial. Again, participants in all groups differentiated between critical and non-critical scenarios. Even though trends in response rates and latencies occurred, experience and sensitization to low noise seemed to only play a minor role in detecting hazards due to low BEV noise. An additional global evaluation of BEV noise further suggests that even after a short test drive, the lack of noise is perceived more as a comfort feature than a safety threat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recording membrane potential changes through photoacoustic voltage sensitive dye

    DEFF Research Database (Denmark)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping

    2017-01-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo...... systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching...... the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize...

  6. Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection

    Science.gov (United States)

    Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.

  7. Obstructive Sleep Apnea Screening Using a Piezo-Electric Sensor.

    Science.gov (United States)

    Erdenebayar, Urtnasan; Park, Jong Uk; Jeong, Pilsoo; Lee, Kyoung Joung

    2017-06-01

    In this study, we propose a novel method for obstructive sleep apnea (OSA) detection using a piezo-electric sensor. OSA is a relatively common sleep disorder. However, more than 80% of OSA patients remain undiagnosed. We investigated the feasibility of OSA assessment using a single-channel physiological signal to simplify the OSA screening. We detected both snoring and heartbeat information by using a piezo-electric sensor, and snoring index (SI) and features based on pulse rate variability (PRV) analysis were extracted from the filtered piezo-electric sensor signal. A support vector machine (SVM) was used as a classifier to detect OSA events. The performance of the proposed method was evaluated on 45 patients from mild, moderate, and severe OSA groups. The method achieved a mean sensitivity, specificity, and accuracy of 72.5%, 74.2%, and 71.5%; 85.8%, 80.5%, and 80.0%; and 70.3%, 77.1%, and 71.9% for the mild, moderate, and severe groups, respectively. Finally, these results not only show the feasibility of OSA detection using a piezo-electric sensor, but also illustrate its usefulness for monitoring sleep and diagnosing OSA. © 2017 The Korean Academy of Medical Sciences.

  8. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid.

    Science.gov (United States)

    Ahmed, Syed Rahin; Mogus, Jack; Chand, Rohit; Nagy, Eva; Neethirajan, Suresh

    2018-04-30

    An optoelectronic sensor is a rapid diagnostic tool that allows for an accurate, reliable, field-portable, low-cost device for practical applications. In this study, template-free In situ gold nanobundles (Au NBs) were fabricated on an electrode for optoelectronic sensing of fowl adenoviruses (FAdVs). Au NB film was fabricated on carbon electrodes working area using L(+) ascorbic acid, gold chroloauric acid and poly-l-lysine (PLL) through modified layer-by-layer (LbL) method. A scanning electron microscopic (SEM) image of the Au NBs revealed a NB-shaped Au structure with many kinks on its surface, which allow local electric field enhancement through light-matter interaction with graphene quantum dots (GQDs). Here, GQDs were synthesized through an autoclave-assisted method. Characterization experiments revealed blue-emissive, well-dispersed GQDs that were 2-3nm in size with the fluorescence emission peak of GQDs located at 405nm. Both Au NBs and GQDs were conjugated with target FAdVs specific antibodies that bring them close to each other with the addition of target FAdVs through antibody-antigen interaction. At close proximity, light-matter interaction between Au NBs and QDs produces a local electric signal enhancement under Ultraviolet-visible (UV-visible) light irradiation that allows the detection of very low concentrations of target virus even in complex biological media. A proposed optoelectronic sensor showed a linear relationship between the target FAdVs and the electric signal up to 10 Plaque forming unit (PFU)/mL with a limit of detection (LOD) of 8.75 PFU/mL. The proposed sensing strategy was 100 times more sensitive than conventional ELISA method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood.

    Science.gov (United States)

    Sergueev, Kirill V; Filippov, Andrey A; Nikolich, Mikeljon P

    2017-06-10

    For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B . abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis . The addition of a simple short sample preparation step enabled the indirect phage-based detection of B . abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B . abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.

  10. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood

    Science.gov (United States)

    Sergueev, Kirill V.; Filippov, Andrey A.; Nikolich, Mikeljon P.

    2017-01-01

    For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types. PMID:28604602

  11. The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells.

    Science.gov (United States)

    Cappel, Ute B; Feldt, Sandra M; Schöneboom, Jan; Hagfeldt, Anders; Boschloo, Gerrit

    2010-07-07

    The dye-sensitized solar cell (DSC) challenges conventional photovoltaics with its potential for low-cost production and its flexibility in terms of color and design. Transient absorption spectroscopy is widely used to unravel the working mechanism of DSCs. A surprising, unexplained feature observed in these studies is an apparent bleach of the ground-state absorption of the dye, under conditions where the dye is in the ground state. Here, we demonstrate that this feature can be attributed to a change of the local electric field affecting the absorption spectrum of the dye, an effect related to the Stark effect first reported in 1913. We present a method for measuring the effect of an externally applied electric field on the absorption of dye monolayers adsorbed on flat TiO(2) substrates. The measured signal has the shape of the first derivative of the absorption spectra of the dyes and reverses sign along with the reversion of the direction of the change in dipole moment upon excitation relative to the TiO(2) surface. A very similar signal is observed in photoinduced absorption spectra of dye-sensitized TiO(2) electrodes under solar cell conditions, demonstrating that the electric field across the dye molecules changes upon illumination. This result has important implications for the analysis of transient absorption spectra of DSCs and other molecular optoelectronic devices and challenges the interpretation of many previously published results.

  12. Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Kenzo Maehashi

    2009-07-01

    Full Text Available Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs. In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs. Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  13. Online slug detection in multi-phase transportation pipelines using electrical tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  14. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  15. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection

    Science.gov (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.

    2017-02-01

    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  16. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  17. Sensitive triplet exciton detection in polyfluorene using Pd-coordinated porphyrin

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Blom, P.W.M.; Loi, M.A.

    2011-01-01

    We developed a sensitive spectroscopic method to probe triplet concentration in thin films of polyfluorene (PF) at room temperature. The energy of photoexcited triplet excitons is transferred to the guest metal-organic complex, meso-tetratolylporphyrin-Pd (PdTPP), and detected as phosphorescent

  18. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: 1 1 Final Progress Report Project title: Depleted Nanocrystal- Oxide Heterojunctions for High

  19. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Science.gov (United States)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  20. Sensitive detection of C-reactive protein using optical fiber Bragg gratings.

    Science.gov (United States)

    Sridevi, S; Vasu, K S; Asokan, S; Sood, A K

    2015-03-15

    An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (ΔλB) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01mg/L has been achieved with a linear range of detection from 0.01mg/L to 100mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of ∼1.1×10(10)M(-1) has been extracted from the data of normalized shift (ΔλB/λB) as a function of CRP concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Method and system for early detection of incipient faults in electric motors

    Science.gov (United States)

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  2. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes.

    Science.gov (United States)

    Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy

    2017-03-15

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Barium enema and endoscopy for the detection of colorectal neoplasia: Sensitivity, specificity, complications and its determinants

    International Nuclear Information System (INIS)

    Zwart, Ingrid M. de; Griffioen, Gerrit; Shaw, M. Pertaap Chandie; Lamers, Cornelis B.H.W.; Roos, Albert de

    2001-01-01

    AIM: To analyse sensitivity, specificity and complication rate of endoscopy, and barium enema for the detection of colorectal neoplasia. MATERIALS AND METHODS: A MEDLINE search was performed (1980-2000) directed at the endoscopic and radiologic literature on barium enema. Articles were selected based on the type of study, availability of sensitivity and specificity values in sizeable patient groups, and reports on complications. Sixty articles were included in the analysis. RESULTS: Endoscopy proved to have superior sensitivity for polyps in patients at high-risk for colorectal neoplasia. The role of endoscopy and radiology in average-risk screening populations is not known. Sensitivity and specificity rates ranged widely, probably due to bias. For the detection of small polyps endoscopy has superior performance, whereas sensitivity is similar for endoscopy and barium enema for the detection of larger (>1 cm) polyps and tumours. Overall, endoscopy is associated with a higher complication rate. CONCLUSION: Endoscopy is the preferred detection method in high-risk patients. The role of endoscopy and radiology in a screening setting requires evaluation. This review provides the test characteristics of endoscopy and radiology which are relevant for a cost-effectiveness analysis. Double-contrast barium enema may play an important role for screening purposes, owing to its good sensitivity for detecting larger (>1 cm) polyps and its lack of major complications. Zwart, I.M. de et al. (2001)

  4. A baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness

    International Nuclear Information System (INIS)

    Zhu Wenrui; Yang Haigang; Gao Tongqiang; Liu Fei; Cheng Xiaoyan; Zhang Dandan

    2013-01-01

    This paper proposes a baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness for use in the electronic toll collection system. A double-mode detection method, including amplitude detection and frequency detection, is proposed to reject interference and reduce false wake-ups. An improved closed-loop band-pass filter and a DC offset cancellation technique are also newly introduced to enhance the sensitivity robustness. The circuit is fabricated in TSMC 0.18 μm 3.3 V CMOS technology with an area of 0.12 mm 2 . Measurement results show that the sensitivity is −54.5 dBm with only a ±0.95 dBm variation from the 1.8 to 3.3 V power supply, and that the temperature variation of the sensitivity is ±1.4 dBm from −50 to 100°C. The current consumption is 1.4 to 1.7 μA under a 1.8 to 3.3 V power supply. (semiconductor integrated circuits)

  5. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    Science.gov (United States)

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A rapid detection method for policy-sensitive amines real-time supervision.

    Science.gov (United States)

    Zhang, Haixu; Shu, Jinian; Yang, Bo; Zhang, Peng; Ma, Pengkun

    2018-02-01

    Many organic amines that comprise a benzene ring are policy-sensitive because of their toxicity and links to social harm. However, to date, detection of such compounds mainly relies on offline methods. This study proposes an online pptv (parts per trillion by volume) level of detection method for amines, using the recently-built vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) combined with a new doping technique. Thus, the dichloromethane doping-assisted photoionization mass spectra of aniline, benzylamine, phenethylamine, amphetamine, and their structural isomers were recorded. The dominant characteristic mass peaks for all amines are those afforded by protonated amines and the amino radical-loss. The signal intensities of the amines were enhanced by 60-130 times compared to those recorded without doping assistance. Under 10s detection time, the sensitivities of aniline and benzylamine in the gas phase were determined as 4.0 and 2.7 countspptv -1 , with limits of detection (LODs) of 36 and 22 pptv, respectively. Notably, the detection efficiency of this method can be tenfold better in future applications since the ion transmission efficiency of the mass spectrometer was intentionally reduced to ~ 10% in this study. Therefore, dichloromethane doping-assisted photoionization mass spectrometry has proven to be a highly promising on-line approach to amine detection in environmental and judicial supervision and shows great potential for application in the biological field. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood

    Directory of Open Access Journals (Sweden)

    Kirill V. Sergueev

    2017-06-01

    Full Text Available For decades, bacteriophages (phages have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.

  8. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods.

    Directory of Open Access Journals (Sweden)

    Margaret M Billingsley

    Full Text Available Accurate antigen detection is imperative for clinicians to diagnose disease, assess treatment success, and predict patient prognosis. The most common technique used for the detection of disease-associated biomarkers is the enzyme linked immunosorbent assay (ELISA. In an ELISA, primary antibodies are incubated with biological samples containing the biomarker of interest. Then, detectible secondary antibodies conjugated with horseradish peroxidase (HRP bind the primary antibodies. Upon addition of a color-changing substrate, the samples provide a colorimetric signal that directly correlates to the targeted biomarker concentration. While ELISAs are effective for analyzing samples with high biomarker content, they lack the sensitivity required to analyze samples with low antigen levels. We hypothesized that the sensitivity of ELISAs could be enhanced by replacing freely delivered primary antibodies with antibody-nanoparticle conjugates that provide excess binding sites for detectible secondary antibodies, ultimately leading to increased signal. Here, we investigated the use of nanoshells (NS decorated with antibodies specific to epidermal growth factor receptor (EGFR as a model system (EGFR-NS. We incubated one healthy and two breast cancer cell lines, each expressing different levels of EGFR, with EGFR-NS, untargeted NS, or unconjugated EGFR antibodies, as well as detectable secondary antibodies. We found that EGFR-NS consistently increased signal intensity relative to unconjugated EGFR antibodies, with a substantial 13-fold enhancement from cells expressing high levels of EGFR. Additionally, 40x more unconjugated antibodies were required to detect EGFR compared to those conjugated to NS. Our results demonstrate that antibody-nanoparticle conjugates lower the detection limit of traditional ELISAs and support further investigation of this strategy with other antibodies and nanoparticles. Owing to their enhanced sensitivity, we anticipate that

  9. Sensitivity Analysis Based SVM Application on Automatic Incident Detection of Rural Road in China

    Directory of Open Access Journals (Sweden)

    Xingliang Liu

    2018-01-01

    Full Text Available Traditional automatic incident detection methods such as artificial neural networks, backpropagation neural network, and Markov chains are not suitable for addressing the incident detection problem of rural roads in China which have a relatively high accident rate and a low reaction speed caused by the character of small traffic volume. This study applies the support vector machine (SVM and parameter sensitivity analysis methods to build an accident detection algorithm in a rural road condition, based on real-time data collected in a field experiment. The sensitivity of four parameters (speed, front distance, vehicle group time interval, and free driving ratio is analyzed, and the data sets of two parameters with a significant sensitivity are chosen to form the traffic state feature vector. The SVM and k-fold cross validation (K-CV methods are used to build the accident detection algorithm, which shows an excellent performance in detection accuracy (98.15% of the training data set and 87.5% of the testing data set. Therefore, the problem of low incident reaction speed of rural roads in China could be solved to some extent.

  10. Automatic Detection of Electric Power Troubles (ADEPT)

    Science.gov (United States)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  11. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  12. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  13. Highly sensitive optical chemosensor for the detection of Cu using a ...

    Indian Academy of Sciences (India)

    Administrator

    Highly sensitive colorimetric chemosensor molecule RHN for selective detection of Cu. 2+ in ... colour development against the colourless blank during the sensing event, a feature that would facilitate ... ever reported, much attention has been.

  14. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure

  15. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  16. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  17. Highly sensitive detection of urinary cadmium to assess personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Avni A.; Banks, Ashley M.; Merlen, Gwendolynne; Tempelman, Linda A. [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States); Becker, Michael F.; Schuelke, Thomas [Fraunhofer USA – CCL, 1449 Engineering Research Ct., East Lansing 48824, MI (United States); Dweik, Badawi M., E-mail: bdweik@ginerinc.com [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States)

    2013-04-22

    Highlights: ► An electrochemical sensor capable of detecting cadmium at parts-per-billion levels in urine. ► A novel fabrication method for Boron-Doped Diamond (BDD) ultramicroelectrode (UME) arrays. ► Unique combination of BDD UME arrays and a differential pulse voltammetry algorithm. ► High sensitivity, high reproducibility, and very low noise levels. ► Opportunity for portable operation to assess on-site personal exposure. -- Abstract: A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA ppb{sup −1} cm{sup −2}) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the U.S. National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium.

  18. Detection of Alkylating Agents using Electrical and Mechanical Means

    Science.gov (United States)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  19. Detection of Alkylating Agents using Electrical and Mechanical Means

    International Nuclear Information System (INIS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir

    2011-01-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  20. Detection of Alkylating Agents using Electrical and Mechanical Means

    Energy Technology Data Exchange (ETDEWEB)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav [Schulich Department of Chemistry, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel) (Israel); Tal, Shay [Present address: Systems Biology Department, Harvard Medical School, Boston, MA 02115 (United States); Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir, E-mail: chryoav@tx.technion.ac.il [Department of Electrical Engineering, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel)

    2011-08-17

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  1. Mechano-sensitive nociceptors are required to detect heat pain thresholds and cowhage itch in human skin.

    Science.gov (United States)

    Weinkauf, B; Dusch, M; van der Ham, J; Benrath, J; Ringkamp, M; Schmelz, M; Rukwied, R

    2016-02-01

    Mechano-sensitive and mechano-insensitive C-nociceptors in human skin differ in receptive field sizes and electrical excitation thresholds, but their distinct functional roles are yet unclear. After blocking the lateral femoral cutaneous nerve (NCFL) in eight healthy male subjects (3-mL Naropin(®) 1%), we mapped the skin innervation territory being anaesthetic to mechanical pin prick but sensitive to painful transcutaneous electrical stimuli. Such 'differentially anaesthetic zones' indicated that the functional innervation with mechano-sensitive nociceptors was absent but the innervation with mechano-insensitive nociceptors remained intact. In these areas, we explored heat pain thresholds, low pH-induced pain, cowhage- and histamine-induced itch, and axon reflex flare. In differentially anaesthetic skin, heat pain thresholds were above the cut-off of 50°C (non-anaesthetized skin 47 ± 0.4°C). Pain ratings to 30 μL pH 4 injections were reduced compared to non-anaesthetized skin (48 ± 9 vs. 79 ± 6 VAS; p pain. The mechano-sensitive nociceptors are crucial for cowhage-induced itch and for the assessment of heat pain thresholds. © 2015 European Pain Federation - EFIC®

  2. Sensitivity of thallium scintigraphy in the detection of individual coronary artery disease

    International Nuclear Information System (INIS)

    Khan, A.; Rehman, A.; Wiqar, M.A.; Khan, Z.A.; Ahmad, S.A.

    1988-01-01

    In this study we randomly selected 45 patients whose coronary angiograms were abnormals i.e. showing triple, double and single vessel disease. Out of 80 patients who had undergone stress thallium imaging and coronary angiography during the one year. Majority of these patients were males and their ages ranged between 34-54 years. Fifteen patients had suffered inferior myocardial infraction and 5 had sustained anterior myocardial infraction in the fast. We analysed their coronary angiograms and compared them with the scintigraphic findings. It is concluded that although thallium scanning has high sensitivity for detection of coronary artery disease in general, it has only moderate sensitivity for detection of stenosis in individual coronary arteries. In this study thallium scan identified 75% of RCA lesions, 66% of LAD lesions and 38% circumflex lesions. Thallium scan sometimes fails to identify the less serve lesions in presence of more severe coronary lesions in the some patients. The sensitivity is much higher in single vessel coronary artery disease. (author)

  3. Evaluation of Crack and Corrosion Detection Sensitivity Using Piezoelectric Sensor Arrays (Preprint)

    National Research Council Canada - National Science Library

    Blackshire, James L; Martin, Steve; Cooney, Adam

    2006-01-01

    .... In this research effort, a systematic evaluation of the detection sensitivity levels of surface-bonded piezoelectric sensor arrays has been undertaken using experimental studies and analytic modeling...

  4. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  5. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  6. X ray sensitive area detection device

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  7. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    Science.gov (United States)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  8. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    KAUST Repository

    Alquaity, Awad

    2015-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) is used to develop a novel, ultra-fast, high-sensitivity diagnostic for measuring species concentrations in shock tube experiments. The diagnostic is demonstrated by monitoring trace concentrations of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which enables detection of 15 ppm ethylene at fuel pyrolysis conditions (1845 K and 2 bar) and 294 ppb ethylene under ambient conditions (297 K and 1 bar). To our knowledge, this is the first successful application of the cavity ringdown method to the measurement of species time-histories in a shock tube. © 2015 OSA.

  9. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  10. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    Science.gov (United States)

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  11. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Aluminum

    Science.gov (United States)

    Parker, Bradford, H.

    2009-01-01

    Historically both sensitivity level 3 and sensitivity level 4 fluorescent penetrants have been used to perform NASA Standard Level inspections of aerospace hardware. In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants were acceptable for inspections of NASA hardware. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections

  12. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  13. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Use of Monoclonal Antibodies in the Sensitive Detection and Neutralization of Botulinum Neurotoxin Serotype B

    Directory of Open Access Journals (Sweden)

    Luisa W. Cheng

    2015-11-01

    Full Text Available Botulinum neurotoxins (BoNT are some of nature’s most potent toxins. Due to potential food contamination, and bioterrorism concerns, the development of detection reagents, therapeutics and countermeasures are of urgent interest. Recently, we have developed a sensitive electrochemiluminescent (ECL immunoassay for BoNT/B, using monoclonal antibodies (mAbs MCS6-27 and anti-BoNT/B rabbit polyclonal antibodies as the capture and detector. The ECL assay detected as little as 1 pg/mL BoNT/B in the buffer matrix, surpassing the detection sensitivities of the gold standard mouse bioassays. The ECL assay also allowed detection of BoNT/B in sera matrices of up to 100% sera with negligible matrix effects. This highly-sensitive assay allowed the determination of the biological half-lives of BoNT/B holotoxin in vivo. We further tested the toxin neutralization potential of our monoclonal antibodies using the mouse systemic and oral intoxication models. A combination of mAbs protected mice in both pre- and post-exposure models to lethal doses of BoNT/B. MAbs were capable of increasing survival of animals when administered even 10 h post-intoxication in an oral model, suggesting a likely time for BoNT/B complexes to reach the blood stream. More sensitive detection assays and treatments against BoNT intoxication will greatly enhance efforts to combat botulism.

  15. Detecting a heavy neutrino electric dipole moment at the LHC

    Directory of Open Access Journals (Sweden)

    Marc Sher

    2018-02-01

    Full Text Available The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM, then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10−17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10−17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5–1000 GeV for integrated luminosities of 300 and 3000 fb−1 at the LHC.

  16. Detecting a heavy neutrino electric dipole moment at the LHC

    Science.gov (United States)

    Sher, Marc; Stevens, Justin R.

    2018-02-01

    The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.

  17. Right Hemisphere Sensitivity to Novel Metaphoric Relations: Application of the Signal Detection Theory

    Science.gov (United States)

    Mashal, N.; Faust, M.

    2008-01-01

    The present study used the signal detection theory to test the hypothesis that the right hemisphere (RH) is more sensitive than the left hemisphere (LH) to the distant semantic relations in novel metaphoric expressions. In two divided visual field experiments, sensitivity (d') and criterion ([beta]) were calculated for responses to different types…

  18. Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Wed Al-Graiti

    2017-04-01

    Full Text Available The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the MWNT/Nafion yarn-based probe sensors have been assembled and assessed for high-performance dopamine sensing, showing a significant improvement in both sensitivity and selectivity in dopamine detection in presence of ascorbic acid and uric acid. It offers the potential to be further developed as implantable probe sensors.

  19. Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities

    Science.gov (United States)

    Ali, Amir R.; Kamel, Mohamed A.

    2018-04-01

    This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.

  20. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  1. The Sensitivity of Residential Electricity Demand in Indonesia

    Directory of Open Access Journals (Sweden)

    Stranti Nastiti Kusumaningrum

    2018-03-01

    Full Text Available Since 2013, the residential electricity price for High VA (Volt-Ampere households has changed due to changes in pricing policies. This paper analyzes the responsiveness of residential electricity demand to the change in electricity prices and income among two different household groups (Low VA and High VA in 2011 and 2014. Using an electricity consumption model and the Quantile Regression method, the results show that residential electricity demand is price and income inelastic. Income elasticity is lower than price elasticity. Furthermore, the effects on price elasticity also found in the Low VA group, whose rate remained stable. At the same time, evidence proves the impact of the change in pricing policy on income elasticity remains unclear. This result implies that the government has to be more careful in regulating electricity prices for the low VA group, while maintaining economic stability.DOI: 10.15408/sjie.v7i2.6048

  2. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  3. Analysis on learning curves of end-use appliances for the establishment of price-sensitivity load model in competitive electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Kim, Jung Hoon [Hongik University (Korea); Song, Kyung Bin [Keimyung University (Korea); Choi, Joon Young [Jeonju University (Korea)

    2001-07-01

    The change of the electricity charge from cost base to price base due to the introduction to the electricity market competition causes consumer to choose a variety of charge schemes and a portion of loads to be affected by this change. Besides, it is required the index that consolidate the price volatility experienced on the power exchange with gaming and strategic bidding by suppliers to increase profits. Therefore, in order to find a mathematical model of the sensitively-responding to-price loads, the price-sensitive load model is needed. And the development of state-of- the-art technologies affects the electricity price, so the diffusion of high-efficient end-uses and these price affect load patterns. This paper shows the analysis on learning curves algorithms which is used to investigate the correlation of the end-uses' price and load patterns. (author). 6 refs., 4 figs., 4 tabs.

  4. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  5. Analytical sensitivity of Tc99m radionuclide 'milk' scanning in the detection of gastro-oesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Paton, J.Y.; Nanayakkara, C.S.; Cosgriff, P.S.

    1985-09-01

    The analytical sensitivity of radionuclide ''milk'' scans for detecting gastro-oesophageal reflux (GOR) has been assessed using an in vitro simulation test. Five factors were found to affect the ability to detect simulated reflux: isotope concentration, absolute gamma camera sensitivity, absorber thickness overlying the ''oesophagus'' and volume and duration of reflux. We found that a critical volume-duration product must be exceeded for reflux to be detected. Radionuclide milk scanning appears to be much less sensitive in detecting transient events like GOR than might be expected from previously reported static simulation studies.

  6. Ultra-sensitive detection of nuclear signatures in support of IAEA safeguards

    International Nuclear Information System (INIS)

    Hotchkis, M.; Child, D.; Tuniz, C.; Williams, M.

    2003-01-01

    The International Atomic Energy Agency (IAEA) applies a range of ultra-sensitive detection techniques to provide assurance that Member States are in compliance with their safeguards agreements. Environmental samples are collected which can contain minute traces of nuclear material or other evidence. Careful analysis of these samples reveals the nature of the activities undertaken in the vicinity of the sampling point. This paper reviews the analytical techniques that are being applied. To ensure that the IAEA has access to the best available methods, samples are distributed to a group of qualified laboratories around the world for analysis. The Accelerator Mass Spectrometry facility at the Australian Nuclear Science and Technology Organisation (ANSTO) is part of this select group of laboratories, and is the only AMS facility currently accredited with the IAEA. AMS provides the highest sensitivity available for detection of particularly useful signature radioisotopes, including 129 I, 236 U and plutonium isotopes

  7. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  8. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    Science.gov (United States)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  9. Design of a fiber optical sensor for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Baghdasaryan, H.V.; Knyazyan, T.M.; Daryan, A.V.

    2016-01-01

    All-optical sensor for atmospheric electric field detection and measurement is suggested and numerically modelled. Thin electro- optical crystal sandwiched between two distributed Bragg reflectors (DBRs) forming multilayer Gires-Tournois (G-T) microresonator is used as a sensitive part of the electric field sensor. In the sensor device, an optical fiber delivers the wideband light spectrum to the sensing multilayer structure of G-T microresonator. The reflectance spectrum of the sensor contains information on the electric field strength and direction. The relevant reflectance peaks’ shift in the reflected spectrum can be observed by an optical spectrum analyzer (OSA). Numerical modelling has been done by the method of single expression that is a suitable tool for multi-boundary problems solution. The obtained results of modelling will be useful in a new type of non-distorting sensor’s elaboration for atmospheric electric field detection and measurement. (author)

  10. A Florescence Detection Module for Photodynamic Therapy Optimization by Measuring the Concentration of Photo sensitizer

    International Nuclear Information System (INIS)

    Serrano Navarro, Joel; Stolik Isakina, Suren; La Rosa Vazquez, Jose M. de; Valor Reed, Alma

    2016-01-01

    In the present work, a portable fluorescence detection system designed and built for dosimetry control applications in Photodynamic Therapy is presented. The system excites the used photo sensitizer drug with a modulated laser light source and subsequently measures the radiance of the emitted fluorescent light. Since the fluorescent radiance is directly related to the photosensitizers concentration, this measurement allows for real-time monitoring of the photo sensitizer concentration in the treated tissue. The system is thought to permit adjusting the therapeutic regime in order to optimize the expected therapy results. In the developed system, a synchronous detection technique is employed to recover the fluorescence signals embedded in noisy backgrounds and lit environments. A scanning probe with a 405 nm diode laser is used to excite the photo sensitizer, while a detection wavelength range from 590 nm to 700 nm has been implemented. (Author)

  11. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences.

    Science.gov (United States)

    Finkenstaedt, Tim; Del Grande, Filippo; Bolog, Nicolae; Ulrich, Nils; Tok, Sina; Kolokythas, Orpheus; Steurer, Johann; Andreisek, Gustav; Winklhofer, Sebastian

    2018-02-01

     To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI.  Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i. e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test).  Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p definition of Modic I changes is not fully applicable anymore.. · Fat-suppressed fluid-sensitive MRI sequences revealed more/greater extent of Modic I changes.. · Finkenstaedt T, Del Grande F, Bolog N et al. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences. Fortschr Röntgenstr 2018; 190: 152 - 160. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Fast electric field waveforms and near-surface electric field images of lightning discharges detected on Mt. Aragats in Armenia

    International Nuclear Information System (INIS)

    Chilingarian, A.; Khanikyants, Y.; Kozliner, L.; Soghomonyan, S.

    2016-01-01

    We present the observational data on fast electric waveforms that are detected at 3200 m altitudes above sea level on Mt. Aragats in Armenia during thunderstorms. We analyse the relations of these forms with count rates of particle flux (during Thunderstorm Ground Enhancements -TGEs); to the slow disturbance of the near-surface electrostatic field; and to the lightning location data from the World Wide Lightning Location Network (WWLLN). An observed negative lightning that decreases a negative charge overhead often abruptly terminates TGEs. By analysing the recorded fast electric field waveforms and comparing them with similar classified waveforms reported previously, we could identify the type and polarity of the observed lightnings. (author)

  13. System for detecting and limiting electrical ground faults within electrical devices

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1990-01-01

    This paper discusses, in a nuclear power plant of a variety wherein a reactor is provided including a reactor vessel retaining a liquid metal coolant, a reactor core and an electromagnetic pump having inductive windings insulatively retained within the electrically conductive wall of an enclosure, the method for controlling electrical ground fault current between a the inductive winding and the walls. It comprises providing an electrically isolated power source by inductive coupling with the plant power supply; rectifying the power source to provide an isolated d.c. power source; providing an inverter powered from the isolated d.c. power source under the control of the plant control system for selectively energizing the inductive windings; providing a fault control conductor electrically connected with the pump enclosure wall and extending as an electrical return for ground fault current to the inverter; and providing an electrical resistance between the conductor and the isolated inverter having an impedance selected to limit the fault current below a predetermined value limiting arc damage at any the electrical ground fault location

  14. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  15. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  16. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  17. A new fire alarm system for electrical installations

    CERN Document Server

    Pietersen, A H

    1978-01-01

    Fires in electrical installations are considered to develop in four phases - initiation, smouldering, flame formation and heat development. Cables are among the more sensitive components, with working temperatures around 50 degrees C and fire detection at 70 degrees C. Conventional alarms include smoke detectors. The new technique described uses microcapsules containing powder forming a gas of the Freon type after diffusion. A typical microcapsule loses 4% per year and has a natural life of 10 years. Fabrication methods are described. Detection is by gas concentration, with a sensitivity of 1 to 10 ppm, or by acoustic methods with microphones to pick up the sound of fractures. Pressure/temperature characteristics of various types of Freon mixtures commercially available are given in graphical form.

  18. Electrical impedance scanning as a new imaging modality in breast cancer detection - a short review of clinical value on breast application, limitations and perspectives

    International Nuclear Information System (INIS)

    Malich, A.; Boehm, T.; Facius, M.; Kleinteich, I.; Fleck, M.; Sauner, D.; Anderson, R.; Kaiser, W.A.

    2003-01-01

    Objective. Cancer cells exhibit altered local dielectric properties compared to normal cells, measurable as different electrical conductance and capacitance using electrical impedance scanning (EIS). Therefore, active biocompatible current is applied to the patient for calculation of both parameters taking into account frequency, voltage and current flow. Subjects and methods. 240 women with 280 sonographically and/or mammographically suspicious findings were examined using EIS. All lesions were histologically proven. A lesion was scored as positive, when a focal increased conductance and/or capacitance was measurable using EIS. The lesion was visible as a bright area in a 256 grey-scale computer output. Due to system limitations patients having a pacemaker or pregnant had to be excluded from the study. Results. 91/113 malignant and 108/167 benign lesions were correctly identified using EIS (80.5% sensitivity, 64.7% specificity). NPV and PPV of 83.1% and 60.7% were observed, respectively. Accuracy was 0.73. A wide range of factors can induce false positive results, although by an experienced observer a number of these findings can be detected such as scars, skin alterations, contact artefacts, air bubbles and naevi, hairs and interfering bone. Based upon visibility on ultrasound (194 lesions visible, 86 not visible) significant differences in the detection rate occurred. Histology-dependent detectability rate varied significantly with lowest rate in CIS-cases (50%). Specificity values varied histology-depending, too; probably depending on the rate of proliferation between 75% (inflammatory lesions) and papillomata (50%). Best detectability was observed in malignant lesions with a size between 20 and 30 mm. Further possible applications will be discussed regarding the currently available literature (lymph nodes, salivary glands, mathematical and animal based models). Conclusion. EIS appears to be a promising new additional technology providing a rather high

  19. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  20. Sensitivity analysis of magnetic field measurements for magnetic resonance electrical impedance tomography (MREIT)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Scheffler, Klaus; Ehses, Philipp

    2017-01-01

    Purpose: Clinical use of magnetic resonance electrical impedance tomography (MREIT) still requires significant sensitivity improvements. Here, the measurement of the current-induced magnetic field (DBz,c) is improved using systematic efficiency analyses and optimization of multi-echo spin echo...... (MESE) and steady-state free precession free induction decay (SSFP-FID) sequences. Theory and Methods: Considering T1, T2, and T 2 relaxation in the signal-to-noise ratios (SNRs) of the MR magnitude images, the efficiency of MESE and SSFP-FID MREIT experiments, and its dependence on the sequence...

  1. Doppler method leak detection for LMFBR steam generators. Pt. 3. Investigation of detection sensitivity and method

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Kinoshita, Izumi

    2001-01-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately any leakage of water from heat transfer tubes. Therefore, the Doppler method was developed. Previous studies have revealed that, in the SG full-sector model that simulates actual SGs, the Doppler method can detect bubbles of 0.4 l/s within a few seconds. However in consideration of the dissolution rate of hydrogen generated by a sodium-water reaction even from a small water leak, it is necessary to detect smaller leakages of water from the heat transfer tubes. The detection sensitivity of the Doppler method and the influence of background noise were experimentally investigated. In-water experiments were performed using the SG model. The results show that the Doppler method can detect bubbles of 0.01 l/s (equivalent to a water leak rate of about 0.01 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  2. Sensitive detection of Myobacterium avium subsp paratuberculosis in bovine semen by real-time PCR

    NARCIS (Netherlands)

    Herthnek, D.; Englund, S.; Willemsen, P.T.J.; Bolske, G.

    2006-01-01

    Aims: To develop a fast and sensitive protocol for detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine semen and to make a critical evaluation of the analytical sensitivity. Methods and Results: Processed semen was spiked with known amounts of MAP. Semen from different bulls as

  3. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.

    Science.gov (United States)

    Li, Long; Ji, Yuzhuo; Tang, Xinjing

    2014-10-21

    Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.

  4. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  5. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  6. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  7. On the possibility of improving the sensitivity of dark-matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, E.A.; Pilaftsis, A. (Dortmund Univ. (Germany, F.R.). Inst. fuer Physik); Zioutas, K. (Thessaloniki Univ. (Greece). Nuclear and Elementary Particle Physics Section)

    1990-02-22

    First we investigate the detectability of nuclear magnetic transitions produced by dark-matter particles. The M1 transitions are mediated by spin-dependent interactions between dark matter and nuclei. We assume that the dark matter consists mainly of photinos, and show that the expected rate is of the order of 1 event/kg/d for the excitation of nuclear magnetic states accompanied also by a recoiling nucleus. The de-excitation decay that follows, {approx equal} (ms-{mu}s), might later be observed as electromagnetic radiation in the GHz region in future, more sensitive, microwave devices. Secondly, we propose to utilize liquid-xenon detectors for measuring the energy of the recoiling nucleus, either through the Xe odd-isotopes or through other mixed atoms, such as hydrogen, with lowest masses. Furthermore the mass scale of these calorimeters (1-100 t) gives a greatly improved sensitivity for darkmatter detection compared with other conventional systems. (orig.).

  8. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  9. Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utili......To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which...... are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we...... of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate...

  10. Preterm labour detection by use of a biophysical marker: the uterine electrical activity.

    Science.gov (United States)

    Marque, Catherine K; Terrien, Jérémy; Rihana, Sandy; Germain, Guy

    2007-06-01

    The electrical activity of the uterine muscle is representative of uterine contractility. Its characterization may be used to detect a potential risk of preterm delivery in women, even at an early gestational stage. We have investigated the effect of the recording electrode position on the spectral content of the signal by using a mathematical model of the women's abdomen. We have then compared the simulated results to actual recordings. On signals with noise reduced with a dedicated algorithm, we have characterized the main frequency components of the signal spectrum in order to compute parameters indicative of different situations: preterm contractions resulting nonetheless in term delivery (i.e. normal contractions) and preterm contractions leading to preterm delivery (i.e. high-risk contractions). A diagnosis system permitted us to discriminate between these different categories of contractions. As the position of the placenta seems to affect the frequency content of electrical activity, we have also investigated in monkeys, with internal electrodes attached on the uterus, the effect of the placenta on the spectral content of the electrical signals. In women, the best electrode position was the median vertical axis of the abdomen. The discrimination between high risk and normal contractions showed that it was possible to detect a risk of preterm labour as early as at the 27th week of pregnancy (Misclassification Rate range: 11-19.5%). Placental influence on electrical signals was evidenced in animal recordings, with higher energy content in high frequency bands, for signals recorded away from the placenta when compared to signals recorded above the placental insertion. However, we noticed, from pregnancy to labour, a similar evolution of the frequency content of the signal towards high frequencies, whatever the relative position of electrodes and placenta. On human recordings, this study has proved that it is possible to detect, by non-invasive abdominal

  11. Preterm labour detection by use of a biophysical marker: the uterine electrical activity

    Directory of Open Access Journals (Sweden)

    Germain Guy

    2007-06-01

    Full Text Available Abstract Background The electrical activity of the uterine muscle is representative of uterine contractility. Its characterization may be used to detect a potential risk of preterm delivery in women, even at an early gestational stage. Methods We have investigated the effect of the recording electrode position on the spectral content of the signal by using a mathematical model of the women's abdomen. We have then compared the simulated results to actual recordings. On signals with noise reduced with a dedicated algorithm, we have characterized the main frequency components of the signal spectrum in order to compute parameters indicative of different situations: preterm contractions resulting nonetheless in term delivery (i.e. normal contractions and preterm contractions leading to preterm delivery (i.e. high-risk contractions. A diagnosis system permitted us to discriminate between these different categories of contractions. As the position of the placenta seems to affect the frequency content of electrical activity, we have also investigated in monkeys, with internal electrodes attached on the uterus, the effect of the placenta on the spectral content of the electrical signals. Results In women, the best electrode position was the median vertical axis of the abdomen. The discrimination between high risk and normal contractions showed that it was possible to detect a risk of preterm labour as early as at the 27th week of pregnancy (Misclassification Rate range: 11–19.5%. Placental influence on electrical signals was evidenced in animal recordings, with higher energy content in high frequency bands, for signals recorded away from the placenta when compared to signals recorded above the placental insertion. However, we noticed, from pregnancy to labour, a similar evolution of the frequency content of the signal towards high frequencies, whatever the relative position of electrodes and placenta. Conclusion On human recordings, this study has

  12. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  13. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    Science.gov (United States)

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  16. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    Directory of Open Access Journals (Sweden)

    Xiaodong Xie

    2014-05-01

    Full Text Available We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  17. Highly sensitive polymer-based cantilever-sensors for DNA detection

    International Nuclear Information System (INIS)

    Calleja, M.; Nordstroem, M.; Alvarez, M.; Tamayo, J.; Lechuga, L.M.; Boisen, A.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers

  18. Histidine–dialkoxyanthracene dyad for selective and sensitive detection of mercury ions

    KAUST Repository

    Patil, Sachin

    2017-12-18

    Histidine-dialkoxyanthracene (HDA) was synthesised as a turn off type fluorescent sensor for fast and sensitive detection of mercury ions (Hg2+) in aqueous media. The two histidine moieties act as ‘claws’ to selectively complex Hg2+. The binding ratio of HDA to Hg2+ was 1:1 (metal-to-ligand ratio). The association constant for Hg2+ towards the receptor HDA obtained from Benesi–Hildebrand plot was found to be 3.22 × 104 M−1 with detection limit as low as 4.7 nM (0.94 μg/L).

  19. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  20. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    Science.gov (United States)

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.

  1. An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses

    International Nuclear Information System (INIS)

    Tang Yabing; Xing Da; Zhu Debin; Liu Jinfeng

    2007-01-01

    Recently, we have reported an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection of genetically modified organisms. The ECL-PCR method was further improved in the current study by introducing a multi-purpose nucleic acid sequence that was specific to the tris(bipyridine) ruthenium (TBR) labeled probe, into the 5' terminal of the primers. The method was applied to detect plant viruses. Conserved sequence of the plant viruses was amplified by PCR. The product was hybridized with a biotin labeled probe and a TBR labeled probe. The hybridization product was separated by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Under the optimized conditions, the experiment results show that the detection limit is 50 fmol of PCR products, and the signal-to-noise ratio is in excess of 14.6. The method was used to detect banana streak virus, banana bunchy top virus, and papaya leaf curl virus. The experiment results show that this method could reliably identity viruses infected plant samples. The improved ECL-PCR approach has higher sensitivity and lower cost than previous approach. It can effectively detect the plant viruses with simplicity, stability, and high sensitivity

  2. Comparative sensitivity of 125I-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins

    International Nuclear Information System (INIS)

    Bernstein, J.M.; Stokes, C.E.; Fernie, B.

    1987-01-01

    Immunoblotting is a powerful technique for the detection of small amounts of immunologically interesting proteins in unpurified preparations. Iodinated protein A (PA) has been widely used as a second antibody for detection of proteins; however, it does not bind equally well to immunoglobulins from different species nor does it bind to all subclasses of immunoglobulin G (IgG). We compared the sensitivity of [ 125 I]PA with those of both horseradish peroxidase-conjugated second antibodies (HRP) and glucose oxidase-anti-glucose oxidase (GAG) soluble complexes for visualizing bovine serum albumin, human IgG, or human C3 which was either dot blotted or electroblotted to nitrocellulose. [ 125 I]PA was uniformly 10- to 100-fold less sensitive than either HRP or GAG. GAG was more sensitive than HRP except for C3 (electroblotting) and bovine serum albumin and IgG (dot blotting), in which they were equivalent. In general, dot blotting was 10- to 1000-fold more sensitive than electroblotting. Although relative sensitivities varied depending on the proteins analyzed and the antisera used, GAG appeared to be superior to [ 125 I]PA and HRP for detection of immunoblotted proteins

  3. Electrically detected displacement assay (EDDA): a practical approach to nucleic acid testing in clinical or medical diagnosis.

    Science.gov (United States)

    Liepold, P; Kratzmüller, T; Persike, N; Bandilla, M; Hinz, M; Wieder, H; Hillebrandt, H; Ferrer, E; Hartwich, G

    2008-07-01

    This paper introduces the electrically detected displacement assay (EDDA), a electrical biosensor detection principle for applications in medical and clinical diagnosis, and compares the method to currently available microarray technologies in this field. The sensor can be integrated into automated systems of routine diagnosis, but may also be used as a sensor that is directly applied to the polymerase chain reaction (PCR) reaction vessel to detect unlabeled target amplicons within a few minutes. Major aspects of sensor assembly like immobilization procedure, accessibility of the capture probes, and prevention from nonspecific target adsorption, that are a prerequisite for a robust and reliable performance of the sensor, are demonstrated. Additionally, exemplary results from a human papillomavirus assay are presented.

  4. A sensitive radioimmunoassay for the detection of monoclonal anti-idiotype antibodies

    International Nuclear Information System (INIS)

    Morahan, G.

    1983-01-01

    A radioimmunoassay was developed in order to detect anti-idiotypic antibodies in the supernatants of hybrid cells. This assay is both sensitive and specific for anti-idiotypic (but not anti-allotypic) antibodies. Monoclonal antibodies present in test supernatants are bound by an anti-immunoglobulin coated solid phase. Subsequent incubation with a source of mouse immunoglobulin 'blocks' unreacted anti-immunoglobulin antibodies on the solid phase. Anti-idiotypic antibodies are then detected by their ability to bind 125 I-labelled idiotype-bearing antibody. This paper describes the use of this assay to detect monoclonal anti-idiotypic antibodies in 2 systems; the cross-reactive idiotype of A/J anti-ABA antibodies, and the idiotype expressed by the myeloma protein HOPC 8. Similarly, 125 I-labelled anti-idiotype antibodies may be used in this assay to detect monoclonal idiotype-bearing antibodies. Further modifications are described which would allow the detection of monoclonal anti-allotype antibodies. (Auth.)

  5. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Tong, Cuiyan, E-mail: tongcy959@nenu.edu.cn [Chemisty Department, Northeast Normal University, Changchun 130024 (China); Zhang, Xing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  6. Detonation velocities and pressures, and their relationships with electric spark sensitivities for nitramines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gui-Xiang; Xiao, He-Ming; Xu, Xiao-Juan; Ju, Xue-Hai [Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-04-15

    The DFT-B3LYP method, with basis set 6-31G*, is employed to optimize molecular geometries and electronic structures of eighteen nitramines. The averaged molar volume (V) and theoretical density ({rho}) are estimated using the Monte-Carlo method based on 0.001 electrons/bohr{sup 3} density space. Subsequently, the detonation velocity (D) and pressure (P) of the explosives are estimated by using the Kamlet-Jacobs equation on the basis of the theoretical density and heat of formation ({delta}{sub f}H), which is calculated using the PM3 method. The reliability of this theoretical method and results are tested by comparing the theoretical values of {rho} and D with the experimental or referenced values. The theoretical values of D and P are compared with the experimental values of electric spark sensitivity (E{sub ES}). It is found that for the compounds with metylenenitramine units (-CH{sub 2}N(NO{sub 2})-) in their molecules (such as ORDX, AcAn and HMX) or with the better symmetrical cyclic nitramines but excluding metylenenitramine units (such as DNDC and TNAD), there is a excellent linear relationship between the square of detonation velocity (D{sup 2}) or the logarithm of detonation pressure (lg P) and electric spark sensitivity (E{sub ES}). This suggests that in the molecular design of energetic materials, such a theoretical approach can be used to predict their E{sub ES} values, which have been proven to be difficult to predict quantitatively or to synthesize. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Electrical detection of cellular penetration during microinjection with carbon nanopipettes

    Science.gov (United States)

    Anderson, Sean E.; Bau, Haim H.

    2014-06-01

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection.

  8. Electrical detection of cellular penetration during microinjection with carbon nanopipettes

    International Nuclear Information System (INIS)

    Anderson, Sean E; Bau, Haim H

    2014-01-01

    The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection. (papers)

  9. The tradeoff between signal detection and recognition rules auditory sensitivity under variable background noise conditions.

    Science.gov (United States)

    Lugli, Marco

    2015-12-07

    Animal acoustic communication commonly takes place under masked conditions. For instance, sound signals relevant for mating and survival are very often masked by background noise, which makes their detection and recognition by organisms difficult. Ambient noise (AN) varies in level and shape among different habitats, but also remarkable variations in time and space occurs within the same habitat. Variable AN conditions mask hearing thresholds of the receiver in complex and unpredictable ways, thereby causing distortions in sound perception. When communication takes place in a noisy environment, a highly sensitive system might confer no advantage to the receiver compared to a less sensitive one. The effects of noise masking on auditory thresholds and hearing-related functions are well known, and the potential role of AN in the evolution of the species' auditory sensitivity has been recognized by few authors. The mechanism of the underlying selection process has never been explored, however. Here I present a simple fitness model that seeks for the best sensitivity of a hearing system performing the detection and recognition of the sound under variable AN conditions. The model predicts higher sensitivity (i.e. lower hearing thresholds) as best strategy for species living in quiet habitats and lower sensitivity (i.e. higher hearing thresholds) as best strategy for those living in noisy habitats provided the cost of incorrect recognition is not low. The tradeoff between detection and recognition of acoustic signals appears to be a key factor determining the best level of hearing sensitivity of a species when acoustic communication is corrupted by noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Optical Remote Sensing of Electric Fields Above Thunderstorms

    Science.gov (United States)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  11. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    KAUST Repository

    Alquaity, Awad; Es-sebbar, Et-touhami; Farooq, Aamir

    2015-01-01

    of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which

  12. Sensitivity of the improved Dutch tube diffusion test for detection of ...

    African Journals Online (AJOL)

    The sensitivity of the improved two-tube test for detection of antimicrobial residues in Kenyan milk was investigated by comparison with the commercial Delvo test SP. Suspect positive milk samples (n =244) from five milk collection centers, were analyzed with the improved two-tube and the commercial Delvo SP test as per ...

  13. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    Directory of Open Access Journals (Sweden)

    Yu Tan

    2014-04-01

    Full Text Available The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW in the metal–semiconductor–metal (M–S–M nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  14. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    Science.gov (United States)

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  15. Highly sensitive polymer-based cantilever-sensors for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain) and Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)]. E-mail: mcalleja@imm.cnm.csic.es; Nordstroem, M. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark); Alvarez, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Tamayo, J. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Lechuga, L.M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Boisen, A. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)

    2005-11-15

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers.

  16. Sensitivity of enhanced MRI for the detection of breast cancer: new, multicentric, residual, and recurrent

    International Nuclear Information System (INIS)

    Davis, P.L.; McCarty, K.S. Jr.

    1997-01-01

    Magnetic resonance imaging (MRI) of the breast brings the advantages of high resolution cross-sectional imaging to breast cancer diagnosis, treatment and research: improved cancer detection, staging, selection of therapy, evaluation of therapeutic response in vivo, detection of recurrence, and even the development of new therapies. Until now breast cancer treatment and research has been impeded by the limited means of evaluating the breast cancer in vivo: primarily clinical palpation and mammography of the breast tumor. A review of the initial studies shows that with the use of paramagnetic contrast agents, MRI has a sensitivity of 96 % for detecting breast cancers. MRI detects multicentric disease with a sensitivity of 98 %, superior to any other modality. The ability of MRI to detect recurrent local breast cancer in the conservatively treated breast is nearly 100 %. MRI is capable of monitoring tumor response to chemotherapy and actually guiding therapeutic interventions such as interstitial laser photocoagulation. (orig.)

  17. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Steers, Jennifer M. [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095 (United States); Fraass, Benedick A., E-mail: benedick.fraass@cshs.org [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States)

    2016-04-15

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose

  18. Sensitivity of different MRI sequences in the early detection of melanoma brain metastases

    Science.gov (United States)

    Breckwoldt, Michael O.; Schwarz, Daniel; Radbruch, Alexander; Enk, Alexander; Bendszus, Martin; Hassel, Jessica; Schlemmer, Heinz-Peter

    2018-01-01

    Background After the emergence of new MRI techniques such as susceptibility- and diffusion-weighted imaging (SWI and DWI) and because of specific imaging characteristics of melanoma brain metastases (MBM), it is unclear which MRI sequences are most beneficial for detection of MBM. This study was performed to investigate the sensitivity of six clinical MRI sequences in the early detection of MBM. Methods Medical records of all melanoma patients referred to our center between November 2005 and December 2016 were reviewed for presence of MBM. Analysis encompassed six MRI sequences at the time of initial diagnosis of first or new MBM, including non-enhanced T1-weighted (T1w), contrast-enhanced T1w (ceT1w), T2-weighted (T2w), T2w-FLAIR, susceptibility-weighted (SWI) and diffusion-weighted (DWI) MRI. Each lesion was rated with respect to its conspicuity (score from 0—not detectable to 3—clearly visible). Results Of 1210 patients, 217 with MBM were included in the analysis and up to 5 lesions per patient were evaluated. A total of 720 metastases were assessed and all six sequences were available for 425 MBM. Sensitivity (conspicuity ≥2) was 99.7% for ceT1w, 77.0% for FLAIR, 64.7% for SWI, 61.0% for T2w, 56.7% for T1w, and 48.4% for DWI. Thirty-one (7.3%) of 425 lesions were only detectable by ceT1w but no other sequence. Conclusions Contrast-enhanced T1-weighting is more sensitive than all other sequences for detection of MBM. Disruption of the blood-brain-barrier is consistently an earlier sign in MBM than perifocal edema, signal loss on SWI or diffusion restriction. PMID:29596475

  19. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  20. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tu, Lung-Chen; Chang, Chia-Ching; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang

    2013-01-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics. (paper)

  1. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    Science.gov (United States)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  2. Sensitive PCR Detection of Meloidogyne arenaria, M. incognita, and M. javanica Extracted from Soil

    Science.gov (United States)

    Qiu, Jinya Jack; Westerdahl, Becky B.; Anderson, Cindy; Williamson, Valerie M.

    2006-01-01

    We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination. PMID:19259460

  3. Sensitive technique for detecting outer defect on tube with remote field eddy current testing

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Nagai, Satoshi; Ochiai, Makoto; Jimbo, Noboru; Komai, Masafumi

    2008-01-01

    In the remote field eddy current testing, we proposed the method of enhancing the magnetic flux density in the vicinity of an exciter coil by controlling the magnetic flux direction for increasing the sensitivity of detecting outer defects on a tube and used the flux guide made of a magnetic material for the method. The optimum structural shape of the flux guide was designed by the magnetic field analysis. On the experiment with the application of the flux guide, the magnetic flux density increased by 59% and the artificial defect detection signal became clear. We confirmed the proposed method was effective in a high sensitivity. (author)

  4. Peptide separation by capillary electrophoresis with ultraviolet detection: Some simple approaches to enhance detection sensitivity and resolution

    International Nuclear Information System (INIS)

    Surugau, Noumie L.

    2011-01-01

    Capillary electrophoresis (CE) is one of the leading separation technologies for analysis of water-soluble analytes. CE has many advantages over the more established methods such as liquid chromatography and gel electrophoresis particularly in rapid analysis, require very little sample, use less or no toxic organic solvent, high peak efficiency and ease of automation. Despite the many attractive advantages of CE, CE users continue to seek improvements particularly on detection sensitivity, resolution and selectivity. This paper presented several simple approaches to improve detection sensitivity using simple sample pre-concentration called field-enhanced sample injection (FESI) and chromatographic-based ZipTip C 18 pre-concentrator. Also, some improvements in the resolution of complex peptides mixture when using two strategies namely, capillary coating and manipulation of the hydrophobicity of peptides using perfluorinated acids as background electrolyte (BGE), which have anionic conjugate base forms with hydrophobic character. As test compounds, standard peptide mixture and proteins digests were used for these studies. The results showed that FESI has significantly enhanced the detection signal of peptide standards and bovine serum albumin (BSA) tryptic digests. As for the use of ZipTip C 18 pre-concentrator, selective enhancement in detection signal was particularly notable on the late migrating peptides. Coating the capillary proved to have little changes on the CE of peptides when used in conjunction with acidic BGE. Electropherograms of BSA tryptic peptides in pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA) showed interesting profile, with notable resolution improvement for peptides with close similarity in electrophoretic mobilities. (author)

  5. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  6. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  7. A surface plasmon resonance-based immunosensors for sensitive detection of heroin

    International Nuclear Information System (INIS)

    Wu Zhongcheng; Wang Lianchao; Ge Yu; Yu Chengduan; Fang Tingjian; Chen Wenge

    2000-01-01

    A simple technique for sensitive detection of heroine based on surface-plasmon resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis

  8. Sensitivity of scintigraphy with 111In-lymphocytes for detection of cardiac allograft rejection

    International Nuclear Information System (INIS)

    Eisenberg, S.B.; Eisen, H.J.; Sobel, B.E.; Bergmann, S.R.; Bolman, R.M. III

    1988-01-01

    We recently demonstrated the feasibility of noninvasive detection of cardiac allograft rejection after administration of indium-111-labeled lymphocytes. To determine the sensitivity and specificity of the technique, as well as its value for delineating the severity of rejection, we studied 16 dogs with heterotopic thoracic cardiac allografts. Five animals were evaluated while exposed to immunosuppressive agents. Animals were scanned sequentially after administration of 100-400 microCi of indium-111-labeled autologous lymphocytes. Myocardial lymphocyte infiltration was expressed as the indium excess (IE), defined as the ratio of indium activity of the transplant or native heart compared with that in blood. Scintigraphic results were compared with characteristics of simultaneously obtained endomyocardial biopsies. Among 17 biopsy documented episodes of rejection, 16 were detected scintigraphically. Among 18 biopsies with no evidence of rejection, scintigraphy was uniformly negative. Thus, the sensitivity and specificity of scintigraphy were 94 and 100%, respectively. Biopsies graded as showing no rejection were associated with an IE of 0.3 +/- 0.5 (+/- SD); those graded as mild, 2.8 +/- 1.7; those as moderate, 10.7 +/- 7.2; and those graded as indicative of severe rejection, 14.2 +/- 4.5. Thus, scintigraphy with indium-111-labeled lymphocytes sensitively and specifically detects cardiac allograft rejection and delineates the intensity of the rejection process. It should be useful clinically for assessing potential allograft rejection noninvasively

  9. Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies.

    Science.gov (United States)

    Johnston, Elecia B; Kamath, Sandip D; Lopata, Andreas L; Schaeffer, Patrick M

    2014-02-01

    The increasing prevalence of food allergies requires development of specific and sensitive tests capable of identifying the allergen responsible for the disease. The development of serologic tests that can detect specific IgE antibodies to allergenic proteins would, therefore, be highly received. Here we present two new quantitative immuno-PCR assays for the sensitive detection of antibodies specific to the shrimp allergen tropomyosin. Both assays are based on the self-assembling Tus-Ter-lock protein-DNA conjugation system. Significantly elevated levels of tropomyosin-specific IgE were detected in sera from patients allergic to shrimp. This is the first time an allergenic protein has been fused with Tus to enable specific IgE antibody detection in human sera by quantitative immuno-PCR.

  10. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    Energy Technology Data Exchange (ETDEWEB)

    Garza, J. [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States); Millwater, H., E-mail: harry.millwater@utsa.edu [University of Texas at San Antonio, Mechanical Engineering, 1 UTSA circle, EB 3.04.50, San Antonio, TX 78249 (United States)

    2012-04-15

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: Black-Right-Pointing-Pointer Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. Black-Right-Pointing-Pointer The sensitivities are computed with negligible cost using Monte Carlo sampling. Black-Right-Pointing-Pointer The change in the POF due to a change in the POD curve parameters can be easily estimated.

  12. Sensitivity of probability-of-failure estimates with respect to probability of detection curve parameters

    International Nuclear Information System (INIS)

    Garza, J.; Millwater, H.

    2012-01-01

    A methodology has been developed and demonstrated that can be used to compute the sensitivity of the probability-of-failure (POF) with respect to the parameters of inspection processes that are simulated using probability of detection (POD) curves. The formulation is such that the probabilistic sensitivities can be obtained at negligible cost using sampling methods by reusing the samples used to compute the POF. As a result, the methodology can be implemented for negligible cost in a post-processing non-intrusive manner thereby facilitating implementation with existing or commercial codes. The formulation is generic and not limited to any specific random variables, fracture mechanics formulation, or any specific POD curve as long as the POD is modeled parametrically. Sensitivity estimates for the cases of different POD curves at multiple inspections, and the same POD curves at multiple inspections have been derived. Several numerical examples are presented and show excellent agreement with finite difference estimates with significant computational savings. - Highlights: ► Sensitivity of the probability-of-failure with respect to the probability-of-detection curve. ►The sensitivities are computed with negligible cost using Monte Carlo sampling. ► The change in the POF due to a change in the POD curve parameters can be easily estimated.

  13. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  14. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    Science.gov (United States)

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  15. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-01-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  16. A Fast, Sensitive and Label Free Electrochemical DNA Sensor

    International Nuclear Information System (INIS)

    Chen Yu; Elling; Lee Yokeling; Chong Serchoong

    2006-01-01

    A label free and sensitive DNA/RNA silicon based electrochemical microsensor array was developed by using thin film of the conducting polymer polypyrrole doped with an oligonucleotide probe. The electrochemical potential pulse amperometry technique was used for a biowarfare pathogen target DNA detection. The electrical potential assistanted DNA hybridisation method was applied. The sensor signal was increased by increasing the electrical potential assistanted DNA hybridisation time. It was possible to detect 0.34pmol and 0.072fmol of complementary oligonucleotide target in 0.1ml in seconds by using unpolished and polished gold electrode respectively. The probe preparation was also in seconds time, comparing indirect electrochemical DNA sensor, it has a fast sensor preparation as well as sensor response and label free advantages. The silicon microfabrication technique was used for this sensor array fabrication, which holds the potential to integrate with sensor electrical circuits. The conducting polymer polypyrrole was electrochemically deposited on each electrode respectively which has a possibility to dope the different DNA probe into the individual electrode to form a sensor array

  17. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    Science.gov (United States)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  18. Estimation of the sensitivity of various environmental sampling methods for detection of Salmonella in duck flocks.

    Science.gov (United States)

    Arnold, Mark E; Mueller-Doblies, Doris; Gosling, Rebecca J; Martelli, Francesca; Davies, Robert H

    2015-01-01

    Reports of Salmonella in ducks in the UK currently rely upon voluntary submissions from the industry, and as there is no harmonized statutory monitoring and control programme, it is difficult to compare data from different years in order to evaluate any trends in Salmonella prevalence in relation to sampling methodology. Therefore, the aim of this project was to assess the sensitivity of a selection of environmental sampling methods, including the sampling of faeces, dust and water troughs or bowls for the detection of Salmonella in duck flocks, and a range of sampling methods were applied to 67 duck flocks. Bayesian methods in the absence of a gold standard were used to provide estimates of the sensitivity of each of the sampling methods relative to the within-flock prevalence. There was a large influence of the within-flock prevalence on the sensitivity of all sample types, with sensitivity reducing as the within-flock prevalence reduced. Boot swabs (individual and pool of four), swabs of faecally contaminated areas and whole house hand-held fabric swabs showed the overall highest sensitivity for low-prevalence flocks and are recommended for use to detect Salmonella in duck flocks. The sample type with the highest proportion positive was a pool of four hair nets used as boot swabs, but this was not the most sensitive sample for low-prevalence flocks. All the environmental sampling types (faeces swabs, litter pinches, drag swabs, water trough samples and dust) had higher sensitivity than individual faeces sampling. None of the methods consistently identified all the positive flocks, and at least 10 samples would be required for even the most sensitive method (pool of four boot swabs) to detect a 5% prevalence. The sampling of dust had a low sensitivity and is not recommended for ducks.

  19. A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds

    International Nuclear Information System (INIS)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A.; Zuchner, Thole

    2014-01-01

    Highlights: • We describe a novel probe for the sensitive detection of H 2 O 2 . • H 2 O 2 quenches the luminescence of a complex consisting of phthalic acid and terbium ions. • A stable fluorescence signal is generated immediately after mixing probe and sample. • The PATb probe detects H 2 O 2 over four orders of magnitude. - Abstract: Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb 3+ ) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H 2 O 2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L −1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L −1 to 2.56 mmol L −1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H 2 O 2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H 2 O 2 with high sensitivity and precision

  20. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.

    Science.gov (United States)

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-29

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

  1. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    Science.gov (United States)

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  2. Highly Sensitive Polymer-based Cantilever-sensors for DNA Detection

    DEFF Research Database (Denmark)

    Gomez, Montserrat; Nordström, Maria; Alvarez, M.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel...... polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized...

  3. Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2017-02-01

    Full Text Available In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fabrication process. Furthermore, reuse of the fabricated electrode also requires an intensive and tedious cleaning process. Due to that, we present a microfluidic device with integrated microneedles. The two microneedles are placed at the half height of the microchannel for cell detection and electrical measurement. A commercially-available Tungsten needle was utilized for the microneedles. The microneedles are easily removed from the disposable PDMS (Polydimethylsiloxane microchannel and can be reused with a simple cleaning process, such as washing by ultrasonic cleaning. Although this device was low cost, it preserves the core functionality of the sensor, which is capable of detecting passing cells at the sensing area. Therefore, this device is suitable for low-cost medical and food safety screening and testing process in developing countries.

  4. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    Science.gov (United States)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  5. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Listening to membrane potential: photoacoustic voltage-sensitive dye recording

    Science.gov (United States)

    Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.

    2017-04-01

    Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.

  7. Out-of-pile experiments with an electrical boiler for Acoustic Boiling Detection

    International Nuclear Information System (INIS)

    Aberle, J.; Bartholomay, R.; Reimann, G.; Rohrbacher, H.A.; Schleisiek, K.

    1978-03-01

    This report contains the experimental results of boiling tests obtained during the first testing phase in spring 1977 with an electrically heated 18-rod boiling generator installed in the sodium tank facility (NABEA) of IRE. The layout and performance of the boiling facility together with its instrumentation and criteria of selection of acoustic sensors for the detection of sodium boiling are described and discussed. The report provides information about the thermodynamics, blockage design and thermal conduction within the range of installation of the electric connecting head. The evaluation of the acoustic signals shows that boiling is indicated promptly and with a sufficiently high signal-to-noise ratio both by solid-born sensors and by high temperature microphones placed in the sodium

  8. Sensitive microplate assay for the detection of proteolytic enzymes using radiolabeled gelatin

    International Nuclear Information System (INIS)

    Robertson, B.D.; Kwan-Lim, G.E.; Maizels, R.M.

    1988-01-01

    A sensitive, microplate assay is described for the detection of a wide range of proteolytic enzymes, using radio-iodine-labeled gelatin as substrate. The technique uses the Bolton-Hunter reagent to label the substrate, which is then coated onto the wells of polyvinyl chloride microtiter plates. By measuring the radioactivity released the assay is able to detect elastase, trypsin, and collagenase in concentrations of 1 ng/ml or less, while the microtiter format permits multiple sample handling and minimizes sample volumes required for analysis

  9. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  10. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew Robert Tomkins

    2015-01-01

    Full Text Available A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  11. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.

    Science.gov (United States)

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-08

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  12. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  13. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  14. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.

    Science.gov (United States)

    Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U

    2014-12-07

    A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.

  15. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    Science.gov (United States)

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  16. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-01-01

    Detection of 15 N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15 N nuclei (TROSY 15 N H ) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow 15 N transverse relaxation and compensating for the inherently low 15 N sensitivity. The 15 N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY 15 N H component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a 15 N-detected 2D 1 H– 15 N TROSY-HSQC ( 15 N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ c  ∼ 40 ns). Unlike for 1 H detected TROSY, deuteration is not mandatory to benefit 15 N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording 15 N TROSY of proteins expressed in H 2 O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D 2 O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of 15 N H -detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz

  17. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices (Postprint)

    Science.gov (United States)

    2015-11-10

    Albumin to saturate the non-specific binding sites on the paper substrate prior to troponin exposure. For testing the biosensor, troponin of various...AFRL-RX-WP-JA-2016-0191 PEPTIDE FUNCTIONALIZED GOLD NANORODS FOR THE SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER ...SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER DEVICES (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c

  18. Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise

    OpenAIRE

    Zhang, Mingji; Or, Siu Wing

    2017-01-01

    We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...

  19. Sensitivity improvement of an immuno-detection method for azaspiracids based on the use of microspheres coupled to a flow-fluorimetry system

    Directory of Open Access Journals (Sweden)

    María Fraga Corral

    2014-06-01

    These results demonstrate the high capability in terms of sensitivity of the microsphere-based immuno-detection assay for AZAs. The immobilization of AZA-1 instead of the synthetic AZA-2 used in Rodríguez et al (Rodriguez et al., 2014, combined with a lower mAb 8F4 concentration provided a remarkable improvement of sensitivity. The ON protocol used in Rodríguez et al. (Rodriguez et al., 2014 displayed a similar IC50 than the new short assay (around 1 nM while the new ON protocol provided an IC50 5-fold more sensitive (0.3 nM. Therefore, the new short assay allows a reduction of the experimental time. Additionally, the increase of sensitivity could help to avoid shellfish matrix interferences. Previously published works using immunoassays for the detection of phycotoxins present in shellfish avoided matrix interference by further extract dilution in combination with an increase of assay sensitivity (Fraga et al., 2012;Fraga et al., 2013. The extraction protocol described by Rodríguez et al. (Rodriguez et al., 2014 will probably be suitable for this newly optimized AZA-detection method since many reagents are the same and the higher sensitivity will allow higher extract dilution. Considering the extraction protocol recovery, sensitivity of the current assay and the regulated limit, shellfish extracts could be diluted up to 1:30 or 1:150 (v/v for detection with the short or long protocols, respectively. Additionally, mAb 8F4 was demonstrated to recognize AZA-2 and AZA-3 with cross-reactivities of 42 and 138 %, respectively. Presumably, this optimized assay will detect these analogs with similar cross-reactivity. The sensitivity of the microsphere-based assay for AZAs is enough to detect these compounds at the regulated levels in shellfish. This microsphere-based multi-detection method provides an easy-to-perform, highly sensitive and rapid method for the detection of AZAs. It could be included in a multi-detection method, which would allow time and sample volume

  20. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs.

    Science.gov (United States)

    Lin, Xiaodong; Liu, Yaqing; Tao, Zhanhui; Gao, Jinting; Deng, Jiankang; Yin, Jinjin; Wang, Shuo

    2017-08-15

    Since HCV and HIV share a common transmission path, high sensitive detection of HIV and HCV gene is of significant importance to improve diagnosis accuracy and cure rate at early stage for HIV virus-infected patients. In our investigation, a novel nanozyme-based bio-barcode fluorescence amplified assay is successfully developed for simultaneous detection of HIV and HCV DNAs with excellent sensitivity in an enzyme-free and label-free condition. Here, bimetallic nanoparticles, PtAu NPs , present outstanding peroxidase-like activity and act as barcode to catalyze oxidation of nonfluorescent substrate of amplex red (AR) into fluorescent resorufin generating stable and sensitive "Turn On" fluorescent output signal, which is for the first time to be integrated with bio-barcode strategy for fluorescence detection DNA. Furthermore, the provided strategy presents excellent specificity and can distinguish single-base mismatched mutant from target DNA. What interesting is that cascaded INHIBIT-OR logic gate is integrated with biosensors for the first time to distinguish individual target DNA from each other under logic function control, which presents great application in development of rapid and intelligent detection. Copyright © 2017. Published by Elsevier B.V.

  1. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor

    Science.gov (United States)

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-01

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057

  2. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    Science.gov (United States)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  3. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    Science.gov (United States)

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  4. Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives.

    Science.gov (United States)

    Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai

    2018-04-03

    In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.

  5. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  6. Polypyrrole–gold nanoparticle composites for highly sensitive DNA detection

    International Nuclear Information System (INIS)

    Spain, Elaine; Keyes, Tia E.; Forster, Robert J.

    2013-01-01

    DNA capture surfaces represent a powerful approach to developing highly sensitive sensors for identifying the cause of infection. Electrochemically deposited polypyrrole, PPy, films have been functionalized with electrodeposited gold nanoparticles to give a nanocomposite material, PPy–AuNP. Thiolated capture strand DNA, that is complementary to the sequence from the pathogen Staphylococcus aureus that causes mammary gland inflammation, was then immobilized onto the gold nanoparticles and any of the underlying gold electrode that is exposed. A probe strand, labelled with horse radish peroxidase, HRP, was then hybridized to the target. The concentration of the target was determined by measuring the current generated by reducing benzoquinone produced by the HRP label. Semi-log plots of the pathogen DNA concentration vs. faradaic current are linear from 150 pM to 1 μM and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification. The nanocomposite also exhibits excellent selectivity and single base mismatches in a 30 mer sequence can be detected

  7. Competitive horseradish peroxidase-linked aptamer assay for sensitive detection of Aflatoxin B1.

    Science.gov (United States)

    Sun, Linlin; Zhao, Qiang

    2018-03-01

    Aflatoxin B1 (AFB1) is one of highly toxic mycotoxins and a known human carcinogen. The frequent contamination of AFB1 in food products and large health risk of AFB1 have raised global concerns. Sensitive detection of AFB1 is of vital importance and highly demanded. Herein, we reported a competitive horseradish peroxidase (HRP)-linked aptamer assay for AFB1, combining the advantages of aptamer for affinity binding and enzyme label for signal amplification. In this assay, free AFB1 in solution competed with a covalent conjugate of bovine serum albumin-AFB1 (BSA-AFB1) coated on the wells of microplate in binding to the HRP-labeled aptamer probe. HRP attached on BSA-AFB1 in the wells catalyzed the conversion of substrates into products, allowing the final detection of AFB1 through measurement of the generated products. When TMB (3,3',5,5'-tetramethylbenzidine dihydrochloride) was used as substrate, absorbance analysis of the product of enzyme reaction enabled the detection of AFB1 at 0.2nM. We further lowered the detection limit of AFB1 to 0.01nM through chemiluminescence analysis by using chemiluminescence substrate of HRP. This assay enabled the detection of AFB1 in complex sample matrix, such as diluted white wine and maize flour. This assay provides a simple, sensitive and rapid method for AFB1 determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Online fouling detection in electrical circulation heaters using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D

    2003-06-01

    Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)

  9. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiewu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China); Adeloju, Samuel B., E-mail: sam.adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China)

    2014-01-27

    Graphical abstract: -- Highlights: •Successfully synthesised highly-ordered gold nanowires array with an AAO template. •Fabricated an ultra-sensitive glucose nanobiosensor with the gold nanowires array. •Achieved sensitivity as high as 379.0 μA cm{sup −2} mM{sup −1} and detection limit as low as 50 nM. •Achieved excellent anti-interference with aid of Nafion membrane towards UA and AA. •Enabled successful detection and quantification of glucose in human blood serum. -- Abstract: A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO{sub x}) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GO{sub x} nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm{sup −2} mM{sup −1} for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.

  10. Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR.

    Science.gov (United States)

    Karczmarczyk, Aleksandra; Reiner-Rozman, Ciril; Hageneder, Simone; Dubiak-Szepietowska, Monika; Dostálek, Jakub; Feller, Karl-Heinz

    2016-09-21

    Herein, we present a fast and sensitive biosensor for detection of Ochratoxin A (OTA) in a red wine that utilizes gold nanoparticle-enhanced surface plasmon resonance (SPR). By combining an indirect competitive inhibition immunoassay and signal enhancement by secondary antibodies conjugated with gold nanoparticles (AuNPs), highly sensitive detection of low molecular weight compounds (such as OTA) was achieved. The reported biosensor allowed for OTA detection at concentrations as low as 0.75 ng mL(-1) and its limit of detection was improved by more than one order of magnitude to 0.068 ng mL(-1) by applying AuNPs as a signal enhancer. The study investigates the interplay of size of AuNPs and affinity of recognition elements affecting the efficiency of the signal amplification strategy based on AuNP. Furthermore, we observed that the presence of polyphenolic compounds in wine samples strongly interferes with the affinity binding on the surface. To overcome this limitation, a simple pre-treatment of the wine sample with the binding agent poly(vinylpyrrolidone) (PVP) was successfully applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pulsed amperometric detection at glassy carbon electrodes: A new waveform for sensitive and reproducible determination of electroactive compounds.

    Science.gov (United States)

    Nardiello, Donatella; Palermo, Carmen; Natale, Anna; Quinto, Maurizio; Centonze, Diego

    2015-09-24

    In this work, the application of a new pulsed amperometric detection (PAD) waveform at a glassy carbon electrode, operating in typical chromatographic mobile phases, is proposed for the sensitive and reproducible determination of arylethanolaminic and phenolic moiety based compounds (e.g. beta-agonists and polyphenols). Preliminary experiments by cyclic voltammetry were carried out to investigate the electrochemical behaviour and to select the detection and cleaning electrode potentials. The proposed potential-time profile was designed to prevent the carbon electrode fouling under repeated analyses, thus ensuring a reproducible and sensitive quantitative determination, without the need of any mechanical or chemical electrode cleaning procedure. The waveform electrochemical parameters, including detection and delay times, were optimized in terms of sensitivity, limit of detection and response stability. The optimized waveform allowed the sensitive and stable detection of model compounds, such as clenbuterol and caffeic acid, that showed detection limits of 0.1 μg L(-1) and 14 μg L(-1), quantification limits of 0.4 μg L(-1) and 46 μg L(-1), and linearity up to 100 μg L(-1) (r = 0.9993) and 10 mg L(-1) (r = 0.9998), respectively. Similar results were obtained for other compounds of the same classes, with precision values under repeatability conditions ranging from 3.0 to 5.9%. The proposed method can be then considered as an excellent alternative to the post-column detection of beta-agonists, phenols and polyphenols. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    Science.gov (United States)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  13. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI). Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  14. A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen

    Science.gov (United States)

    Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.

    2015-10-01

    Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor

  15. Geo electrical Resistivity Survey for Ancient Tunnel Detection at Bukit Tenggek, Setiu, Terengganu

    International Nuclear Information System (INIS)

    Siti Nazira Masrom; Mohd Hariri Arifin; Abd Rahim Harun; Abdul Rahim Samsudin

    2011-01-01

    Geo electrical resistivity survey was conducted in the Bukit Tenggek, Setiu, Terengganu to detect the possible existence of an ancient tunnel which is believed to be in the area. Geo electrical resistivity method was found very effective in searching for archaeological exploration and underground structures (tunnels and artifacts). Geo electrical resistivity survey was carried out using Terrameter ABEM SAS1000 and Wenner array electrode configuration. The survey area is located in a damp valley with a stream across the region. 2-D resistivity image showed the existence of anomalies in several areas that can be associated with the structure. Low resistivity value represents the estimated existence of the old tunnel, while isolated rounded anomalies are believed to be associated with barrels/artifacts. 3-D resistivity profiles, shows anomalies that may be caused by the existence of a horizontal and two vertical tunnels (shaft). However, the drillings work need to be done to figure out the exact cause of these anomalies. (author)

  16. Diode Laser Detection of Greenhouse Gases in the Near-Infrared Region by Wavelength Modulation Spectroscopy: Pressure Dependence of the Detection Sensitivity

    Directory of Open Access Journals (Sweden)

    Takashi Asakawa

    2010-05-01

    Full Text Available We have investigated the pressure dependence of the detection sensitivity of CO2, N2O and CH4 using wavelength modulation spectroscopy (WMS with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO2, N2O and CH4, by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO2, N2O and CH4, the limits of detection in the present system were determined.

  17. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells.

    Science.gov (United States)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-07-02

    Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.

  18. Detection of weak electric fields by sharks, rays, and skates.

    Science.gov (United States)

    Adair, Robert K.; Astumian, R. Dean; Weaver, James C.

    1998-09-01

    The elasmobranchs-sharks, rays, and skates-can detect very weak electric fields in their aqueous environment through a complex sensory system, the ampullae of Lorenzini. The ampullae are conducting tubes that connect the surface of the animal to its interior. In the presence of an electric field, the potential of the surface of the animal will differ from that of the interior and that potential is applied across the apical membrane of the special sensory cells that line the ampullae. The firing rate of the afferent neurons that transmit signals from the ampullae has been shown to vary with that potential. We show that those firing rates can be described quantitatively in terms of synchronous firing of the sensory cells that feed the neurons. We demonstrate that such synchronism follows naturally from a hypothetical weak cell-to-cell interaction that results in a self-organization of the sensory cells. Moreover, the pulse rates of those cells-and the neurons that service the cells-can be expected to vary with the imposed electric fields in accord with measured values through actions of voltage gated transmembrane proteins in the apical sector of the cell membranes that admit Ca(++) ions. We also present a more conjectural model of signal processing at the neuron level that could exploit small differences in firing rates of nerve fibers servicing different ampullae to send an unambiguous signal to the central nervous system of the animal. (c) 1998 American Institute of Physics.

  19. Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole

    Directory of Open Access Journals (Sweden)

    Aditya Rianjanu

    2018-04-01

    Full Text Available Safrole is the main precursor for producing the amphetamine-type stimulant (ATS drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA, also known as ecstasy. We devise a polyacrylonitrile (PAN nanofiber-based quartz crystal microbalance (QCM for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds.

  20. Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement

    Directory of Open Access Journals (Sweden)

    Maximilian Gahr

    2017-01-01

    Full Text Available Pharmacological neuroenhancement (PNE is a form of abuse and has not yet been addressed by methods of pharmacovigilance. In the present study, we tested if quantitative signal detection may be sensitive in regards to PNE. We evaluated the risk of drug abuse and dependence (DAAD related to substances that are known to be used for PNE and divided this group into agents with (methylphenidate and without a known abuse potential outside the field of PNE (atomoxetine, modafinil, acetylcholine esterase inhibitors, and memantine. Reporting odds ratios (RORs were calculated using a case/non-case approach based on global and country-specific drug safety data from the Uppsala Monitoring Centre (UMC. Both control substances (diazepam and lorazepam and methylphenidate were statistically associated with DAAD in all datasets (except methylphenidate in Italy. Modafinil was associated with DAAD in the total dataset (ROR, 2.7 (95% confidence interval (CI, 2.2–3.3, Germany (ROR, 4.6 (95% CI, 1.8–11.5, and the USA (ROR, 2.0 (95% CI, 1.6–2.5. Atomoxetine was associated with DAAD in the total dataset (ROR, 1.3 (95% CI, 1.2–1.5 and in the UK (ROR, 3.3 (95% CI, 1.8–6.1. Apart from memantine, which was associated with DAAD in Germany (ROR, 1.8 (95% CI, 1.0–3.2, no other antidementia drug was associated with DAAD. Quantitative signal detection is suitable to detect agents with a risk for DAAD. Its sensitivity regarding PNE is limited, although atomoxetine and modafinil, which do not have a known abuse potential outside PNE, and no antidementia drugs, whose use in PNE is presumably low, were associated with DAAD in our analysis.

  1. Testing the sensitivity of Nested PCR method to detect Aspergillus fumigates in experimentally infected Sputum samples

    International Nuclear Information System (INIS)

    Ramadan, A.; Soukkaria, S.

    2013-01-01

    Fungal infections caused by Aspergillus species generally are occupying a second place among invasive fungal infections in the world, especially A. fumigatus, which is considered the main cause of invasive Aspergillosis (IA). Although IA rarely infects immunocompetent individuals, however, it can lead to death in immunocompromised patients. Therefore, it is necessary to diagnose the infection early in order to treat the disease efficiently. However, the conventional diagnostic tools, currently used to detect infections, has low sensitivity and reliability. Polymerase chain reaction (PCR) technology distribution as a molecular and high sensitive technology has allowed us to make comparative study between sensitivity of traditional currently used diagnostic method and Nested-PCR, the result of the study of sputum samples that experimentally infected with different concentrations of A.fumigatus spores ramping from 10 to10 6 spore/ml, have high sensitivity and specificity of Nested-PCR in detecting the lower concentrations, comparing with traditional diagnostic method (culture on Sabouraud media) that were negative in all concetrations. (author)

  2. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    Science.gov (United States)

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  3. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose

    Directory of Open Access Journals (Sweden)

    Hanqing Zhang

    2017-06-01

    Full Text Available The ordered bifacial copper nanowire array (Cu BNWA was synthesized by a template assisted electrochemical deposition method. The morphology and structure of the as-prepared samples were investigated by field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. The results show that the ordered Cu nanowire array with uniform geometrical dimensions covered both side of the Cu substrate. When used as the electrode for glucose detection, the minimum detectable concentration of glucose can be reached as low as 0.2 mM. Impressively, the sample still showed high sensitivity and stability for glucose detection after two months placement in ambient environment. These excellent performances of the Cu BNWA make it a promising non-enzyme glucose detection sensor for various applications.

  4. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    Science.gov (United States)

    Ivan, Marius G.; Vivet, Frédéric; Meinders, Erwin R.

    2010-06-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, and a functional device was successfully tested. Optical lithography was employed for manufacturing templates, which were subsequently used for imprinting liquid PDMS by thermal curing. Gold electrodes having various widths and distances among them were patterned with optical lithography on the top part which sealed the microchannels, and the devices were employed for detection of ionic species in aqueous salt solutions as well as micro-electrolysis cells. Due to the transparency of PDMS in UV-Vis the microfluidics were also used as photoreactors, and the in-situ formed charged species were monitored by applying a voltage between electrodes. Upon addition of a colorimetric pH sensor, acid was detected with absorption spectroscopy.

  5. Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors

    Science.gov (United States)

    Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong

    2018-04-01

    In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

  6. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  7. Objective measures for detecting the auditory brainstem response: comparisons of specificity, sensitivity and detection time

    DEFF Research Database (Denmark)

    Chesnaye, M. A.; Bell, S. L.; Harte, J. M.

    2018-01-01

    of the Hotelling's T-2 test (applied in either time or frequency domain), two versions of the modified q-sample uniform scores test and both the Fsp and Fmp, which were evaluated using both conventional F-distributions with assumed degrees of freedom and a bootstrap approach. Study sample: Data consisted of click......-level when evaluating statistical significance using the bootstrap approach, as opposed to using conventional F-distributions. The FPRs of the remaining methods were slightly higher than expected. Conclusions: In this work, Hotelling's T-2 outperformed the alternative methods for automatically detecting ABRs......-evoked ABRs and recordings of EEG background activity from 12 to 17 normal hearing adults, respectively. Results: An overall advantage in sensitivity and detection time was demonstrated for the Hotelling's T-2 test. The false-positive rates (FPRs) of the Fsp and Fmp were also closer to the nominal alpha...

  8. Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe

    2016-04-01

    A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.

  9. Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect

    Science.gov (United States)

    Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao

    2018-03-01

    This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.

  10. Is heat pain detection threshold associated with the area of secondary hyperalgesia following brief thermal sensitization?

    DEFF Research Database (Denmark)

    Hansen, Morten Sejer; Wetterslev, Jørn; Pipper, Christian Bressen

    2016-01-01

    role in the development of secondary hyperalgesia; however, a possible association of secondary hyperalgesia following brief thermal sensitization and other heat pain models remains unknown. Our aim with this study is to investigate how close the heat pain detection threshold is associated...... with the size of the area of secondary hyperalgesia induced by the clinical heat pain model: Brief thermal sensitization. METHODS AND DESIGN: We aim to include 120 healthy participants. The participants will be tested on two separate study days with the following procedures: i) Brief thermal sensitization, ii......) heat pain detection threshold and iii) pain during thermal stimulation. Additionally, the participants will be tested with the Pain Catastrophizing Scale and Hospital Anxiety and Depression Scale questionnaires. We conducted statistical simulations based on data from our previous study, to estimate...

  11. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

    Science.gov (United States)

    Boriskina, Svetlana V.; Tsurimaki, Yoichiro

    2018-06-01

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  12. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    Science.gov (United States)

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  13. A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks.

    Science.gov (United States)

    Yang, Huan; Ran, Guihua; Yan, Jingjing; Zhang, Hui; Hu, Xiaoli

    2018-03-01

    In this work, a simple, rapid, sensitive, selective spectrofluorimetric method was applied to detect tartrazine. The fluorescence of acriflavine could be efficiently quenched by tartrazine. The method manifested real time response as well as presented satisfied linear relationship to tartrazine. The linear response range of tartrazine (R 2 = 0.9995) was from 0.056 to 5 μmol L -1 . The detection limit (3σ/k) was 0.017 μmol L -1 , indicating that this method could be applied to detect traces of tartrazine. The accuracy and precision of the method was further assured by recovery studies via a standard addition method, with percentage recoveries in the range of 96.0% to 103.0%. Moreover, a quenching mechanism was investigated systematically by the linear plots at varying temperatures based on the Stern-Volmer equation, fluorescence lifetime and UV-visible absorption spectra, all of which proved to be static quenching. This sensitive, selective assay possessed a great application prospect for the food industry owing to its simplicity and rapidity for the detection of tartrazine. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    Science.gov (United States)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  15. Carbon nanotube-based sensing devices for human Arginase-1 detection

    Directory of Open Access Journals (Sweden)

    S. Baldo

    2016-03-01

    Full Text Available A new carbon nanotube-based device for detection of Arginase 1 (ARG-1 was produced. Multi-walled carbon nanotubes (MWCNTs were deposited between electrodes by dielectrophoresis (DEP in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics allowing for large scale production of chemical or biological sensors. Scanning electrical microscope (SEM and electrical characterization have been performed on the biosensors before and after protein exposure. The devices were tested in the present work for the detection of ARG-1. They show high sensitivity and reproducibility, and can be easily and suitably modified to detect other proteins. Keywords: Carbon nanotube, Biosensor, Arginase, Dielectrophoresis, Biomarker, Protein

  16. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  17. Machine Vision System for Characterizing the Electric Field for the 225 Ra EDM Experiment

    Science.gov (United States)

    Sanchez, Andrew

    2017-09-01

    If an atom or fundamental particle possesses an electric dipole moment (EDM), that would imply time-reversal violation. At our current capability, if an EDM is detected in such a particle, that would suggest the discovery of beyond the standard model (BSM) physics. The unique structure of 225 Ra makes its atomic EDM favorable in the BSM search. An upgraded Ra-EDM apparatus will increase experimental sensitivity and the target electric field of 150 kV/cm will more than double the electric field used in previous experiments. To determine the electric field, the potential difference and electrode separation distance must be known. The optical method I have developed is a high-precision, non-invasive technique to measure electrode separation without making contact with the sensitive electrode surfaces. A digital camera utilizes a bi-telecentric lens to reduce parallax error and produce constant magnification throughout the optical system, regardless of object distance. A monochrome LED backlight enhances sharpness of the electrode profile, reducing uncertainty in edge determination and gap width. A program utilizing an edge detection algorithm allows precise, repeatable measurement of the gap width to within 1% and measurement of the relative angle of the electrodes. This work (SAM, Ra EDM) is supported by Michigan State University. This work (REU Program) is supported by U.S. National Science Foundation under Grant Number #1559866.

  18. Sensitivity of the Dengue Surveillance System in Brazil for Detecting Hospitalized Cases

    Science.gov (United States)

    2016-01-01

    We evaluated the sensitivity of the dengue surveillance system in detecting hospitalized cases in ten capital cities in Brazil from 2008 to 2013 using a probabilistic record linkage of two independent information systems hospitalization (SIH-SUS) adopted as the gold standard and surveillance (SINAN). Sensitivity was defined as the proportion of cases reported to the surveillance system amid the suspected hospitalized cases registered in SIH-SUS. Of the 48,174 hospitalizations registered in SIH-SUS, 24,469 (50.7%) were reported and registered in SINAN, indicating an overall sensitivity of 50.8% (95%CI 50.3–51.2). The observed sensitivity for each of the municipalities included in the study ranged from 22.0% to 99.1%. The combination of the two data sources identified 71,161 hospitalizations, an increase of 97.0% over SINAN itself. Our results allowed establishing the proportion of underreported dengue hospitalizations in the public health system in Brazil, highlighting the use of probabilistic record linkage as a valuable tool for evaluating surveillance systems. PMID:27192405

  19. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  20. Development of a Tandem Repeat-Based Polymerase Chain Displacement Reaction Method for Highly Sensitive Detection of 'Candidatus Liberibacter asiaticus'.

    Science.gov (United States)

    Lou, Binghai; Song, Yaqin; RoyChowdhury, Moytri; Deng, Chongling; Niu, Ying; Fan, Qijun; Tang, Yan; Zhou, Changyong

    2018-02-01

    Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.

  1. Non-foster impedance matching sensitivity of electrically small electric and magnetic spherical dipole antennas

    DEFF Research Database (Denmark)

    Yoon, Ick-Jae; Christensen, S.; Zhurbenko, Vitaliy

    2016-01-01

    The impedance bandwidth (BW) improvement property of a self-resonant folded spherical helix electric dipole and a spherical split ring (SSR) magnetic dipole is compared when a negative reactance element is loaded on the parasitic resonator of the antennas. They have the same electrical size of ka...

  2. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  3. Developments of sensitive immunoassays for detection of antibodies against hepatitis B surface antigen

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu-Matiu, I; Sanchez, Y; Dreesman, G R [Baylor Univ., Houston, TX (USA). Coll. of Medicine; Fields, H A [Centers for Disease Control, Public Health Service, Department of Health and Human Services, Phoenix, AZ (USA)

    1983-01-01

    Three micro solid phase immunoassays (a micro-SPRIA and two ELISA techniques) were developed and tested for the detection of anti-HBs antibodies. Two different crosslinkers (glutaraldehyde and N-succinimidyl 3-(2-pyridyldithio) propionate) were used to couple a goat anti-mouse IgG reagent to alkaline phosphatase for use as enzyme-labeled probes in the two ELISA tests. With the latter cross-linker, a defined conjugate with a 1 : 1 antibody-enzyme molar ratio was obtained. The sensitivities of micro-SPRIA and the two types of ELISA were compared to that of the commercial solid phase radioimmunoassay AUSAB test. All three microtests were significantly more sensitive than the AUSAB test. The ELISA using the glutaraldehyde cross-linked conjugate was 3-5 times less sensitive than micro-SPRIA, while the ELISA using the disulfide-linked conjugate was 2.6-4.0 times more sensitive than micro-SPRIA.

  4. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    Science.gov (United States)

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of nanobody-based flow injection chemiluminescence immunoassay for sensitive detection of human prealbumin.

    Science.gov (United States)

    Ma, Lei; Sun, Yanyan; Kang, Xuejun; Wan, Yakun

    2014-11-15

    Nanobodies, derived from camelid heavy-chain antibodies, have novel and impactful applications in clinical diagnostics. Our objective is to develop a nanobody-based chemiluminescence immunoassay for sensitive detection of human prealbumin (PA). In this context, a phage display nanobody library is constructed via immunizing dromedary camel with human prealbumin. Three nanobodies have been identified by five successive bio-panning steps. Based on their high expression level and good affinity, two out of three are chosen for further study. Magnetic beads (MBs) were functionalized with PEI by acylamide bond formed between the carboxyl group on the surface of the MB. Then, an anti-PA nanobody (Nb1) can be effectively immobilized onto the surface of the functionalized MB using glutaradehyde as the link. The modified MBs with Nb1 can specifically capture the target PA and reacted with silica nanoparticles with co-immobilized HRP and anti-PA nanobody (Nb2). The concentration of PA was detected by flow injection chemiluminescence. When using MB/PEI as the carrier of anti-PA Nb1, the CL signal significantly increased to 4-fold compared with the signal using MB without PEI modification. The CL signal was further amplified to 5-fold when Si/Nb2 was used as the signal probe. Under optimized conditions, the present immunoassay exhibited a wide quantitative range from 0.05 to 1000 μg L(-1) with a detection limit of 0.01 μg L(-1). The sensitivity of the proposed immunoassay offers great promises in providing a sensitive, specific, time saving, and potential method for detecting PA in clinical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Highly sensitive ratiometric detection of heparin and its oversulfated chondroitin sulfate contaminant by fluorescent peptidyl probe.

    Science.gov (United States)

    Mehta, Pramod Kumar; Lee, Hyeri; Lee, Keun-Hyeung

    2017-05-15

    The selective and sensitive detection of heparin, an anticoagulant in clinics as well as its contaminant oversulfated chondroitin sulfate (OSCS) is of great importance. We first reported a ratiometric sensing method for heparin as well as OSCS contaminants in heparin using a fluorescent peptidyl probe (Pep1, pyrene-GSRKR) and heparin-digestive enzyme. Pep1 exhibited a highly sensitive ratiometric response to nanomolar concentration of heparin in aqueous solution over a wide pH range (2~11) and showed highly selective ratiometric response to heparin among biological competitors such as hyaluronic acid and chondroitin sulfate. Pep1 showed a linear ratiometric response to nanomolar concentrations of heparin in aqueous solutions and in human serum samples. The detection limit for heparin was calculated to be 2.46nM (R 2 =0.99) in aqueous solutions, 2.98nM (R 2 =0.98) in 1% serum samples, and 3.43nM (R 2 =0.99) in 5% serum samples. Pep1 was applied to detect the contaminated OSCS in heparin with heparinase I, II, and III, respectively. The ratiometric sensing method using Pep1 and heparinase II was highly sensitive, fast, and efficient for the detection of OSCS contaminant in heparin. Pep1 with heparinase II could detect as low as 0.0001% (w/w) of OSCS in heparin by a ratiometric response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77.

    Science.gov (United States)

    Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua

    2018-01-05

    A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Keratosis reduces sensitivity of anal cytology in detecting anal intraepithelial neoplasia.

    Science.gov (United States)

    ElNaggar, Adam C; Santoso, Joseph T; Xie, Huiwen Bill

    2012-02-01

    To identify factors that may contribute to poor sensitivity of anal cytology in contrast to the sensitivity of anoscopy in heterosexual women. We analyzed 324 patients with biopsy confirmed diagnosis of genital intraepithelial neoplasia (either vulva, vaginal, or cervical) from 2006 to 2011 who underwent both anal cytology and anoscopy. Cytology, anoscopy, and biopsy results were recorded. Biopsy specimens underwent independent analysis for quality of specimen. Also, biopsy specimens were analyzed for characteristics that may contribute to correlation, or lack thereof, between anal cytology and anoscopic directed biopsy. 133 (41%) patients had abnormal anoscopy and underwent directed biopsy. 120 patients with normal anal cytology had anoscopy directed biopsies, resulting in 58 cases of AIN (sensitivity 9.4%; 0.039-0.199). This cohort was noted to have extensive keratosis covering the entire dysplastic anal lesion. 18 patients yielded abnormal anal cytology. Of these patients, 13 had anoscopic directed biopsies revealing 6 with AIN and absent keratosis (specificity 88.6%; 0.78-0.95). The κ statistic for anal cytology and anoscopy was -0.0213 (95% CI=-0.128-0.086). Keratosis reduces the sensitivity of anal cytology. Furthermore, anal cytology poorly correlates with anoscopy in the detection of AIN (κ statistic=-0.0213). Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Multi-layer hierarchical array fabricated with diatom frustules for highly sensitive bio-detection applications

    International Nuclear Information System (INIS)

    Li, Aobo; Cai, Jun; Pan, Junfeng; Wang, Yu; Yue, Yue; Zhang, Deyuan

    2014-01-01

    Diatoms have delicate porous structures which are very beneficial in improving the absorbing ability in the bio-detection field. In this study, multi-layered hierarchical arrays were fabricated by packing Nitzschia soratensis (N. soratensis) frustules into Cosinodiscus argus (C. argus) frustules to achieve advanced sensitivity in bio-detection chips. Photolithographic patterning was used to obtain N. soratensis frustule arrays, and the floating behavior of C. argus frustules was employed to control their postures for packing N. soratensis frustule array spots. The morphology of the multi-layer C. argus–N. soratensis package array was investigated by scanning electron microscopy, demonstrating that the overall and sub-structures of the diatom frustules were retained. The signal enhancing effect of multi-layer C. argus–N. soratensis packages was demonstrated by fluorescent antibody test results. The mechanism of the enhancement was also analyzed, indicating that both complex hierarchical frustule structures and optimized posture of C. argus frustules were important for improving bio-detection sensitivities. The technique for fabricating multi-layer diatom frustules arrays is also useful for making multi-functional biochips and controllable drug delivery systems. (paper)

  10. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  11. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  12. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  13. Kinase detection with gallium nitride based high electron mobility transistors.

    Science.gov (United States)

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  14. Electrical Detection of Spin-to-Charge Conversion in a Topological Insulator Bi2Te3

    Science.gov (United States)

    Li, Connie H.; van't Erve, Olaf M. J.; Li, Yaoyi; Li, Lian; Jonker, Berry T.

    Spin-momentum locking in topological insulators (TIs) dictates that an unpolarized charge current creates a net spin polarization. We recently demonstrated the first electrical detection of this spontaneous polarization in a transport geometry, using a ferromagnetic (FM) / tunnel barrier contact, where the projection of the TI surface state spin on the magnetization of detector is measured as a voltage [1]. Alternatively, if spins are injected into the TI surface state system, it is distinctively associated with a unique carrier momentum, and hence should generated a charge accumulation, similar to that of inverse spin Hall effect. Here we experimentally demonstrate both effects in the same device fabricated in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface states system. This reverse measurement is an independent confirmation of spin-momentum locking in the TI surface states, and offers additional avenue for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the TI surface state spin system, an important step towards its utilization in TI-based spintronics devices. C.H. Li et al., Nat. Nanotech. 9, 218 (2014). Supported by NRL core funds and Nanoscience Institute.

  15. Enabling Junction Temperature Estimation via Collector-Side Thermo-Sensitive Electrical Parameters through Emitter Stray Inductance in High-Power IGBT Modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Li, Wuhua; Iannuzzo, Francesco

    2018-01-01

    This paper proposes the adoption of the inherent emitter stray inductance LeE in high-power insulated gate bipolar transistor (IGBT) modules as a new dynamic thermo-sensitive electrical parameter (d-TSEP). Furthermore, a family of 14 derived dynamic TSEP candidates has been extracted and classified...

  16. Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection

    International Nuclear Information System (INIS)

    Vries, H.S.M. de; Harren, F.J.M.; Wyers, G.P.; Otjes, R.P.; Slanina, J.; Reuss, J.

    1995-01-01

    A recently developed non-intrusive photothermal deflection (PTD) instrument allows sensitive, rapid and quantitative detection of local ammonia concentrations in the air. Ammonia is vibrationally excited by an infrared CO 2 laser in an intracavity configuration. A HeNe beam passing over the CO 2 laser beam (multipass arrangement) is deflected by the induced refractive index gradient. The detection limit for ammonia in ambient air is 0.5 ppbv with a spatial resolution of a few mm 3 . The time resolution is 0.1 s (single line) or 15 s (multi line). The system is fully automated and suited for non-stop measuring periods of at least one week. Results were compared to those obtained with a continuous-flow denuder (CFD). (author)

  17. Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA

    Science.gov (United States)

    Henderson, Rory; Day-Lewis, Frederick D.; Abarca, Elena; Harvey, Charles F.; Karam, Hanan N.; Liu, Lanbo; Lane, John W.

    2010-01-01

    Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.

  18. Ageing of insulation and diagnosis of electrical equipment through detection of partial discharge

    International Nuclear Information System (INIS)

    Lopez Vergara, T.; Velasco Bernal, C.

    1994-01-01

    Ageing in electrical equipment affects mainly its insulation system. Such ageing in the insulation system is determined by its organic nature, basically constituted by three families of materials: cellulose, resin and hydrocarbon. All of these are affected by high temperatures, which tend to produce a break in the molecular chains (if the temperatures are not too high) or carbonization and gasification of the material (if they are). The radiation absorbed by the insulating materials also destroys molecular chains, causing degradation of the material. The break of the molecular chains, especially in the polymer-based materials, fragments the material, mainly in areas subjected to mechanical forces and stresses. From the electrical point of view, fissures occurring the insulating material lead to a much lower dielectric strength in certain parts of the materials, which could produce partial discharge conditions. Therefore, the growth of partial discharges in electrical equipment items is frequently the consequences of ageing, and be used to evaluate their residual life. Empresarios Agrupados has developed a system to detect partial discharges which can be used while equipment is still in operation. The measurements taken with this system are sufficiently accurate and repetitive to be used in evaluating the condition of medium-voltage electrical equipment insulation. (Author)

  19. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    , the prices at which the electric drive vehicles become of interest to the power system are found. Smart charge, including the opportunity to discharge (vehicle-to-grid) is used in all scenarios. Analyses show that the marginal benefits decrease the larger the battery. For very high battery prices, large......The increase in fluctuating power production requires an increase in flexibility in the system as well. Flexibility can be found in generation technologies with fast response times or in storage options. In the transport sector, the proportion of electric drive vehicles is expected to increase over...... the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...

  20. Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells.

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-08-02

    In this work, we clearly demonstrate for the first time the use of transition-metal phosphides to set up a new cathodic analysis platform for sensitive and selective electrochemical nonenzymatic detection of H2O2. With the help of a facile topotactic conversion method, the noble metal-free electrocatalyst of copper(I) phosphide nanowires on three-dimensional porous copper foam (Cu3P NWs/CF) is fabricated with electrochemical anodized Cu(OH)2 NWs as precursor. The Cu3P NWs/CF-based sensor presents excellent electrocatalytic activity for H2O2 reduction with a detection limit of 2 nM, the lowest detection limit achieved by noble-metal free electrocatalyst, which guarantees the possibility of sensitive and reliable detection of H2O2 release from living tumorigenic cells, thus showing the potential application as a sensitive cancer cell detection probe.

  1. Sensitivity analysis in electric system expansion planning study using DECADES

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    1998-01-01

    To cover the increasing electricity demand as a key economic and social factor of development, it is necessary to have adequate expansion police. The delay in installation of certain capabilities produces electricity deficit. In other hand, construction of oversized capacities generates excessive costs. Therefore it is important to acquire or develop adequate methodologies according to the country specific conditions to carry out electric expansion planning studies. The goal is to chose optimal solutions in order to reach sustainable development using owns energy resources and preserving the environment. In the paper the Decades methodology is used for electricity system expansion planning. Premises and main assumptions for the calculations are presented. Some electric system expansion cases are evaluated. We also present the results of a sensibility study varying the discount rate, loss of load probability energy not served cost, fuel availability and fuel and investment costs. The reliability criteria currently not used in Cuban electric system are evaluated. We discuss the results and display the conclusions and recommendations

  2. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  3. A sensitive radioimmunosorbent assay for the detection of plant viruses

    International Nuclear Information System (INIS)

    Ghabrial, S.A.; Shepherd, R.J.

    1980-01-01

    A simple and highly sensitive radioimmunosorbent assay (RISA) for the detection of plant viruses is described. The RISA procedure is a microplate method based on the principle of 'double-antibody sandwich' and follows essentially the protocol of the enzyme-linked immunosorbent assay (ELISA) (Clark and Adams, 1977), with the exception that 125 I-labelled γ-globulin is substituted for the γ-globulin enzyme conjugate; the bound 125 I-γ-globulin is dissociated by acidification from the double-antibody sandwich. The radioactivity is proportional to virus concentration, and cauliflower mosaic virus (CaMV) and lettuce mosaic virus (LMV) could be detected at concentrations as low as 5 and 2 ng/ml, respectively. Direct evidence of the adverse effects of conjugation with enzyme on the binding abilities of antibodies is presented. The RISA procedure should prove valuable with viruses for which the ELISA values are too low to be dependable. (author)

  4. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  5. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    Science.gov (United States)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  6. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.

    Science.gov (United States)

    Sun, Liping; Zhong, Yong; Gui, Jie; Wang, Xianwu; Zhuang, Xiaorong; Weng, Jian

    2018-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrP C ) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. The specific binding between AβO and PrP C probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.

  7. Industrial and residential electricity demand dynamics in Japan: How did price and income elasticities evolve from 1989 to 2014?

    International Nuclear Information System (INIS)

    Wang, Nan; Mogi, Gento

    2017-01-01

    This study estimates the price and income elasticities of industrial and residential electricity demand in Japan with the annual data from 1989 to 2014. A time varying parameter (TVP) model with the Kalman filter is applied to monitor the evolution of consumer behaviors in the “post-bubble” period given the exogenous shock (financial crisis in 2008) and the structural breaks (electricity deregulation and Fukushima Daiichi crisis). The TVP model can provide a robust estimation of elasticities and can detect the outliers and the structural breaks. The results suggest that both industrial and residential consumers become less sensitive to price after the electricity deregulation and the financial crisis, and more sensitive to price after the Fukushima Daiichi crisis. Especially the industrial sector is less sensitive to price after the retail deregulation. By contrast, the income elasticities of industrial and residential sector consumers are stable during the examined period. Results also indicate that a negative relationship exists between the price elasticity of electricity demand and the price level of electricity after the electric sector deregulation. Some insights on the further electric sector reform and the environmental taxation in Japan are also provided. - Highlights: • A time varying parameter model is calculated with the Kalman filter. • Income elasticities are stable while price elasticities are time-varying. • Industrial sector is less sensitive to price change than residential sector. • Negative relationship between price elasticity and price level is found.

  8. Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus.

    Science.gov (United States)

    Yu, Cui; Yang, Cuiyun; Song, Shaoyi; Yu, Zixiang; Zhou, Xueping; Wu, Jianxiang

    2018-04-04

    Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.

  9. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    Science.gov (United States)

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  10. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi

    Directory of Open Access Journals (Sweden)

    Zhou Liqing

    2010-04-01

    Full Text Available Abstract Background Salmonella Typhi causes an estimated 21 million new cases of typhoid fever and 216,000 deaths every year. Blood culture is currently the gold standard for diagnosis of typhoid fever, but it is time-consuming and takes several days for isolation and identification of causative organisms. It is then too late to initiate proper antibiotic therapy. Serological tests have very low sensitivity and specificity, and no practical value in endemic areas. As early diagnosis of the disease and prompt treatment are essential for optimal management, especially in children, a rapid sensitive detection method for typhoid fever is urgently needed. Although PCR is sensitive and rapid, initial research indicated similar sensitivity to blood culture and lower specificity. We developed a fast and highly sensitive blood culture PCR method for detection of Salmonella Typhi, allowing same-day initiation of treatment after accurate diagnosis of typhoid. Methods An ox bile tryptone soy broth was optimized for blood culture, which allows the complete lysis of blood cells to release intracellular bacteria without inhibiting the growth of Salmonella Typhi. Using the optimised broth Salmonella Typhi bacteria in artificial blood samples were enriched in blood culture and then detected by a PCR targeting the fliC-d gene of Salmonella Typhi. Results Tests demonstrated that 2.4% ox bile in blood culture not only lyzes blood cells completely within 1.5 hours so that the intracellular bacteria could be released, but also has no inhibiting effect on the growth of Salmonella Typhi. Three hour enrichment of Salmonella Typhi in tryptone soya broth containing 2.4% ox bile could increase the bacterial number from 0.75 CFU per millilitre of blood which is similar to clinical typhoid samples to the level which regular PCR can detect. The whole blood culture PCR assay takes less than 8 hours to complete rather than several days for conventional blood culture

  11. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  12. Electrical signature in polar night cloud base variations

    International Nuclear Information System (INIS)

    Harrison, R Giles; Ambaum, Maarten H P

    2013-01-01

    Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankylä (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Niño Southern Oscillation, is linked with layer cloud properties. (letter)

  13. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  14. Fast and sensitive detection of enteropathogenic Yersinia by immunoassays.

    Science.gov (United States)

    Laporte, Jérôme; Savin, Cyril; Lamourette, Patricia; Devilliers, Karine; Volland, Hervé; Carniel, Elisabeth; Créminon, Christophe; Simon, Stéphanie

    2015-01-01

    Yersinia enterocolitica and Yersinia pseudotuberculosis, the two Yersinia species that are enteropathogenic for humans, are distributed worldwide and frequently cause diarrhea in inhabitants of temperate and cold countries. Y. enterocolitica is a major cause of foodborne disease resulting from consumption of contaminated pork meat and is further associated with substantial economic cost. However, investigation of enteropathogenic Yersinia species is infrequently performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stool samples. Moreover, current isolation procedures are time-consuming and expensive, thus leading to underestimates of the incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments, and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific, and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (MAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of MAbs were selected by testing their specificity and affinity for enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of MAbs were selected to develop highly sensitive enzyme immunoassays (EIAs) and lateral flow immunoassays (LFIs or dipsticks) convenient for the purpose of rapid diagnosis. The limit of detection of the EIAs ranged from 3.2 × 10(3) CFU/ml to 8.8 × 10(4) CFU/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and for the LFIs ranged from 10(5) CFU/ml to 10(6) CFU/ml. A similar limit of detection was observed for artificially contaminated human feces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  16. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    Science.gov (United States)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  17. Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide.

    Science.gov (United States)

    Sayed, Sameh El; Licchelli, Maurizio; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-10-18

    The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy) 3 ] 2+ , functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detection and observation of deep vein thromboses by physical, radiological and electrical methods

    International Nuclear Information System (INIS)

    Bonafous, J.; Constantinesco, A.; Meyer, P.; Bidet, R.; Healy, J.C.; Chambron, J.; Lobera, A.; Chopin, J.

    1975-01-01

    The method of thrombosis detection by iodine 131-labelled exogenous fibrinogen was evaluated by comparison with three physical methods: an isotopic method using selenomethionine-labelled endogenous fibrinogen, phlebography, phletysmography by electrical impedance. The results confirm the superiority of the isotopic method with regard to efficiency and comfort for the patient. Under certain conditions the frequency of positive tests was the same with selenomethionine as with exogenous fibrinogen [fr

  19. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    Science.gov (United States)

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.

  20. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    Science.gov (United States)

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A simple and sensitive method for determination of Norfloxacin in pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Zhuo Ye

    2015-06-01

    Full Text Available In this approach, a new voltammetric method for determination of norfloxacin was proposed with high sensitivity and wider detection linear range. The used voltammetric sensor was fabricated simply by coating a layer of graphene oxide (GO and Nafion composited film on glassy carbon electrode. The advantage of proposed method was sensitive electrochemical response for norfloxacin, which was attributed to the excellent electrical conductivity of GO and the accumulating function of Nafion under optimum experimental conditions, the present method revealed a good linear response for determination of norfloxacin in the range of 1×10-8mol/L-7×10-6 mol/L with a detection limit of 5×10-9 mol/L. The proposed method was successfully applied in the determination of norfloxacin in capsules with satisfactory results.

  2. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    Science.gov (United States)

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  3. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Directory of Open Access Journals (Sweden)

    St-Pierre Tim G

    2009-05-01

    Full Text Available Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR methods. Methods Gametocyte detection in six series of dilutions of cultured P. falciparum parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques. Results The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR. Conclusion Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.

  4. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    International Nuclear Information System (INIS)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-01-01

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10 6 cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10 6 cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells

  6. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianshu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Liu, Jiyang; Gu, Xiaoxiao; Li, Dan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Wang, Erkang, E-mail: ekwang@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-07-02

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10{sup 6} cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10{sup 6} cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells.

  7. New sensitive high-performance liquid chromatography-tandem mass spectrometry method for the detection of horse and pork in halal beef.

    Science.gov (United States)

    von Bargen, Christoph; Dojahn, Jörg; Waidelich, Dietmar; Humpf, Hans-Ulrich; Brockmeyer, Jens

    2013-12-11

    The accidental or fraudulent blending of meat from different species is a highly relevant aspect for food product quality control, especially for consumers with ethical concerns against species, such as horse or pork. In this study, we present a sensitive mass spectrometrical approach for the detection of trace contaminations of horse meat and pork and demonstrate the specificity of the identified biomarker peptides against chicken, lamb, and beef. Biomarker peptides were identified by a shotgun proteomic approach using tryptic digests of protein extracts and were verified by the analysis of 21 different meat samples from the 5 species included in this study. For the most sensitive peptides, a multiple reaction monitoring (MRM) method was developed that allows for the detection of 0.55% horse or pork in a beef matrix. To enhance sensitivity, we applied MRM(3) experiments and were able to detect down to 0.13% pork contamination in beef. To the best of our knowledge, we present here the first rapid and sensitive mass spectrometrical method for the detection of horse and pork by use of MRM and MRM(3).

  8. Improvements of the sensitivity of burst cartridge detection; Amelioration du seuil de detection des ruptures de gaine

    Energy Technology Data Exchange (ETDEWEB)

    Vasnier, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    I - Special tests for improving the sensitivity of burst cartridge detection equipment in power reactors II - Scintillator purge-flow tests using aged gas in the B.C.D. /E.D.F. 2 Summary. - The first part of this report describes the tests carried out on fission product detectors by a process in which gas is continuously injected in front of the scintillator. Using this system, the background is reduced and perturbations caused by pneumatic switches on the prospecting circuits are eliminated. The quality of the signals thus obtained permits better processing of the data and thus leads to a possible improvement in the sensitivity of burst cartridge detection. The second part gives results of tests carried out with both fresh and aged gases, the economic advantage of the latter being that it permits recycling through the reactor. Reduction of the background is less pronounced but the advantage of the stable signals is conserved. (author) [French] I - Essais speciaux pour ameliorer le seuil de detection des installations de D.R.G. des reacteurs de puissance II- Essais de balayage sous scintillateur avec gaz vieilli a la D.R.G. /E.D.F. 2 Sommaire. - La premiere partie de ce rapport decrit les essais effectues sur les detecteurs de produits de fission par un procede d'injection continue de gaz sous le scintillateur. Grace a ce systeme on obtient une reduction du bruit de fond et l'elimination des perturbations causees par les commutations pneumatiques des circuits de prospection. La qualite des signaux obtenus ainsi permet un meilleur traitement des informations d'ou une amelioration possible du seuil de detection des ruptures de gaines. La seconde partie donne les resultats d'essais effectues avec du gaz propre et vieilli, l'utilisation de ce dernier presentant l'avantage economique d'etre recycle du reacteur. La reduction du bruit de fond est moins importante mais on conserve l'avantage de la stabilisation des signaux. (auteur)

  9. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  10. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  11. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  12. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    Science.gov (United States)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  13. Measurement of radon in air by α track method enhancement detection sensitivity using a lamp

    International Nuclear Information System (INIS)

    Maki, Y.; Tanaka, F.

    1983-01-01

    A new α track method is proposed for the measurement of 222 Rn concentration in environmental levels. This involves collecting radon daughters on the surface of pilot lamp and detecting α-particles emitted from the nuclides ( 218 Po and 214 Po) by a detector (LR 115). The detection sensitivity of this method is 6 times greater than that of the conventional α track method. (author)

  14. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-10-30

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.

  15. Electrical resistivity for detecting subsurface non-aqueous phase liquids: A progress report

    International Nuclear Information System (INIS)

    Lee, K.H.; Shan, C.; Javandel, I.

    1995-06-01

    Soils and groundwater have been contaminated by hazardous substances at many places in the United States and many other countries. The contaminants are commonly either petroleum products or industrial solvents with very low solubility in water. These contaminants are usually called non-aqueous phase liquids (NAPLs). The cost of cleaning up the affected sites in the United States is estimated to be of the order of 100 billion dollars. In spite of the expenditure of several billion dollars during the last 15 years, to date, very few, if any major contaminated site has been restored. The presence of NAPL pools in the subsurface is believed to be the main cause for the failure of previous cleanup activities. Due to their relatively low water solubility, and depending on their volume, it takes tens or even hundreds of years to deplete the NAPL sources if they are not removed from the subsurface. The intrinsic electrical resistivity of most NAPLs is typically in the range of 10 7 to 10 12 Ω-m, which is several orders of magnitude higher than that of groundwater containing dissolved solids (usually in the range of a few Ω-m to a few thousand Ω-m). Although a dry soil is very resistive, the electrical resistivity of a wet soil is on the order of 100 Ω-m and is dependent on the extent of water saturation. For a given soil, the electrical resistivity increases with decrease of water saturation. Therefore, if part of the pore water is replaced by a NAPL, the electrical resistivity will increase. At many NAPL sites, both the vadose and phreatic zones can be partially occupied by NAPL pools. It is the great contrast in electrical resistivity between the NAPLs and groundwater that may render the method to be effective in detecting subsurface NAPLs at contaminated sites. The following experiments were conducted to investigate the change of the electrical resistivity of porous media when diesel fuel (NAPL) replaces part of the water

  16. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection

    Science.gov (United States)

    Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao

    2017-12-01

    In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.

  17. Sensitivity of radiation monitoring systems in Manila Ports in detecting contamination in foodstuff shipments

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie D.; Caseria, Estrella S.; Piquero, Ronald E.; Agustin, Jan Aldrich A.

    2011-01-01

    During the Fukushima Nuclear Power Plant accident in Japan, one of the Philippines' measures to protect the public from radiological hazards of the accident is by monitoring agricultural and food imports for radioactive contamination. In this study, the sensitivity of the mobile Radiation Monitoring System (RM) in Manila Ports in detecting contamination in incoming foodstuff shipments was determined. Large volume synthetic 137 Cs reference sources were used to determine the minimum detectable concentration (MDC) of the RMS. The reference sources have radioactivity concentrations that are comparable to the PNRI guidance level of 1000 Bg/kg for 137 Cs that is destined for general consumption. Results of the MDC measurements show that the RMS units are sensitive enough to detect radioactivity levels that are within the guidance levels provided that a) the minimum package lot is approximately 200 kg, b) the package is positioned at the detector side, and c) the alarm setting of RMS is as calibrated. It was therefore established that the RMS can be used to initially screen incoming foodstuff shipments of possible contamination and thereby help minimize potential radiation exposures to the public. (author)

  18. Micro solid-phase radioimmunoassay for detection of herpesvirus type-specific antibody: specificity and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Storthz, K.; Matson, D.O.; Adam, E.; Dreesman, G.R. (Baylor Univ., Houston, TX (USA). Coll. of Medicine)

    1983-02-01

    The specificity and sensitivity of a micro solid-phase radioimmunoassay (micro-SPRIA) that detects type-specific IgG antibody to herpes simplex virus types 1 and 2 (HSV1 and HSV2) were evaluated. Glycoproteins VP123 (molecular weight, 123,000) of HSV1 and VP119 (molecular weight, 119,000) of HSV2 were found to display the greatest degree of antigenic type-specificity of several HSV antigens tested with the micro-SPRIA technique. When testing a group of sera, negative for anti-HSV antibodies by microneutralization, in the micro-SPRIA, a range of negative reactivities was noted, suggesting that cut-points should be determined for each antigen preparation. The micro-SPRIA detected appropriate antibody activity in patients with recurrent infection and a marked agreement was noted in comparison to detection of anti-HSV antibodies measured with the microneutralization test. The type-specificity of the micro-SPRIA was substantiated by the independence of test results using VP119 and VP123 antigens for a random group of positive sera. The assay is rapid, specific, and sensitive and allows the testing of multiple serum samples with a standardized set of reagents.

  19. Sinkhole detection using electrical resistivity tomography in Saudi Arabia

    International Nuclear Information System (INIS)

    Youssef, Ahmed M; Zabramawi, Yasser A; El-Kaliouby, Hesham

    2012-01-01

    Karst phenomena exist in different areas in the Kingdom of Saudi Arabia, causing serious environmental problems that affect urban development and infrastructure (buildings, roads and highways). One of the most important problems are sinkholes, which most of the time consist of unfilled voids. These sinkholes are formed as a result of the chemical leaching of carbonate and evaporite formations by percolating water. Field investigations show that there are many surface expressions of sinkholes in the area; some appear on the ground surface and others are hidden in the subsurface. Geophysical data were collected at the study area using two-dimensional electrical resistivity tomography (ERT) with different electrode spacings to delineate buried sinkholes and associated subsurface cavities. Our findings indicated that the dipole–dipole method using an electrode spacing of 1 m was successful in detecting a known subsurface sinkhole. According to the ERT method the detected sinkhole depth ranges from 2 to 4 m, its height ranges from 2 to 4 m, and its width ranges from 5 to 7 m. Field observation has verified the geophysical data, especially along the profile A-A. Finally, closely spaced ERT profiles were successful in determining the three-dimensional volume of the subsurface sinkhole. (paper)

  20. A Highly Sensitive Chemiluminometric Assay for Real-Time Detection of Biological Hydrogen Peroxide Formation.

    Science.gov (United States)

    Zhu, Hong; Jia, Zhenquan; Trush, Michael A; Li, Y Robert

    2016-05-01

    Hydrogen peroxide (H 2 O 2 ) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H 2 O 2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H 2 O 2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H 2 O 2 formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H 2 O 2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H 2 O 2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H 2 O 2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.

  1. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    Science.gov (United States)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  2. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  3. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    Science.gov (United States)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  4. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    Science.gov (United States)

    Zemtsova, Galina E; Montgomery, Merrill; Levin, Michael L

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  5. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  6. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  7. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.

    Science.gov (United States)

    Huang, Sheng Tian; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2012-01-18

    We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO provides a quantitative readout for tartrazine, giving a detection limit of 0.53 ng mL(-1).

  8. The development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of abalone herpesvirus DNA.

    Science.gov (United States)

    Chen, M H; Kuo, S T; Renault, T; Chang, P H

    2014-02-01

    A loop-mediated isothermal amplification (LAMP) assay was developed for the detection of abalone herpesvirus DNA. Two pairs of primers were designed, based on the sequence of the DNA polymerase gene of abalone herpesvirus. The reaction temperature and time were optimized to 63°C and 60min, respectively. LAMP amplicons were analyzed by 2% agarose gel electrophoresis or by visual inspection of a colour change emitted by fluorescent dye. The method developed was specific for the detection of abalone herpesvirus, without cross-reactions with other tested herpesviruses including ostreid herpesvirus 1 (OsHV-1), European eel herpesvirus, koi herpesvirus (KHV) and an avian herpesvirus. The LAMP assay was 100 folds more sensitive than a conventional PCR and 10 folds less sensitive than a SYBR Green PCR. These results indicate that the developed LAMP assay is a simple, rapid, sensitive, specific and reliable technique for the detection of abalone herpesvirus. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    Science.gov (United States)

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Contrast-enhanced swallow study sensitivity for anastomotic leak detection in post-esophagectomy patients.

    Science.gov (United States)

    Mejía-Rivera, S; Pérez-Marroquín, S A; Cortés-González, R; Medina-Franco, H

    2018-03-07

    Esophagectomy is a highly invasive surgery and one of its postoperative complications is anastomotic leakage, occurring in 53% of cases. The aim of the present study was to determine the sensitivity of the contrast-enhanced swallow study as a method for diagnosing anastomotic leak in patients that underwent esophagectomy. The present retrospective study included the case records of patients that underwent esophagectomy with reconstruction and cervical anastomosis at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán within the time frame of January 1, 2000 and May 31, 2006. Demographic, clinical, and laboratory data emphasizing clinical and radiographic anastomotic leak detection were identified. Descriptive statistics were carried out and contrast-enhanced swallow study sensitivity for diagnosing leakage was calculated. Seventy patients were included in the analysis. The mean age of the patients was 50.6 years, 51 of the patients were men (72.86%), and 19 were women (27.14%). Indications for surgery were benign lesion in 29 patients (41.4%) and malignant lesion in 41 (58.6%). A total of 44.3% of the patients presented with a comorbidity, with diabetes mellitus and high blood pressure standing out. Thirty patients (42.85%) presented with anastomotic leak. Contrast-enhanced swallow study sensitivity for leak detection was 43.33%. The diagnostic sensitivity of the contrast-enhanced swallow study was very low. Therefore, we recommend the discontinuation of its routine use as a method for diagnosing anastomotic leaks. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  11. Sensitivity and specificity of fluorescence microlymphography for detecting lymphedema of the lower extremity.

    Science.gov (United States)

    Keo, Hong H; Schilling, Marianne; Büchel, Roland; Gröchenig, Ernst; Engelberger, Rolf P; Willenberg, Torsten; Baumgartner, Iris; Gretener, Silvia B

    2013-06-01

    Fluorescence microlymphography (FML) is used to visualize the lymphatic capillaries. A maximum spread of the fluorescence dye of ≥ 12 mm has been suggested for the diagnosis of lymphedema. However, data on sensitivity and specificity are lacking. The aim of this study was to investigate the accuracy of FML for diagnosing lymphedema in patients with leg swelling. Patients with lower extremity swelling were clinically assessed and separated into lymphedema and non-lymphatic edema groups. FML was studied in all affected legs and the maximum spread of lymphatic capillaries was measured. Test accuracy and receiver operator characteristic (ROC) analysis was performed to assess possible threshold values that predict lymphedema. Between March 2008 and August 2011 a total of 171 patients (184 legs) with a median age of 43.5 (IQR 24, 54) years were assessed. Of those, 94 (51.1%) legs were diagnosed with lymphedema. The sensitivity, specificity, positive and negative likelihood ratio and positive and negative predictive value were 87%, 64%, 2.45, 0.20, 72% and 83% for the 12-mm cut-off level and 79%, 83%, 4.72, 0.26, 83% and 79% for the 14-mm cut-off level, respectively. The area under the ROC curve was 0.82 (95% CI: 0.76, 0.88). Sensitivity was higher in the secondary versus primary lymphedema (95.0% vs 74.3%, p = 0.045). No major adverse events were observed. In conclusion, FML is a simple and safe technique for detecting lymphedema in patients with leg swelling. A cut-off level of ≥ 14-mm maximum spread has a high sensitivity and high specificity of detecting lymphedema and should be chosen.

  12. Aging Detection of Electrical Point Machines Based on Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Jaewon Sa

    2017-11-01

    Full Text Available Electrical point machines (EPM must be replaced at an appropriate time to prevent the occurrence of operational safety or stability problems in trains resulting from aging or budget constraints. However, it is difficult to replace EPMs effectively because the aging conditions of EPMs depend on the operating environments, and thus, a guideline is typically not be suitable for replacing EPMs at the most timely moment. In this study, we propose a method of classification for the detection of an aging effect to facilitate the timely replacement of EPMs. We employ support vector data description to segregate data of “aged” and “not-yet-aged” equipment by analyzing the subtle differences in normalized electrical signals resulting from aging. Based on the before and after-replacement data that was obtained from experimental studies that were conducted on EPMs, we confirmed that the proposed method was capable of classifying machines based on exhibited aging effects with adequate accuracy.

  13. Sensitive Leptospira DNA detection using tapered optical fiber sensor.

    Science.gov (United States)

    Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H

    2018-03-23

    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of relationship between MUF correlation and detection sensitivity of statistical analysis

    International Nuclear Information System (INIS)

    Tamura, Toshiaki; Ihara, Hitoshi; Yamamoto, Yoichi; Ikawa, Koji

    1989-11-01

    Various kinds of statistical analysis are proposed to NRTA (Near Real Time Materials Accountancy) which was devised to satisfy the timeliness goal of one of the detection goals of IAEA. It will be presumed that different statistical analysis results will occur between the case of considered rigorous error propagation (with MUF correlation) and the case of simplified error propagation (without MUF correlation). Therefore, measurement simulation and decision analysis were done using flow simulation of 800 MTHM/Y model reprocessing plant, and relationship between MUF correlation and detection sensitivity and false alarm of statistical analysis was studied. Specific character of material accountancy for 800 MTHM/Y model reprocessing plant was grasped by this simulation. It also became clear that MUF correlation decreases not only false alarm but also detection probability for protracted loss in case of CUMUF test and Page's test applied to NRTA. (author)

  15. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  16. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  17. Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM

    Science.gov (United States)

    Can, Nursel; Aǧar, Meltem; Altındal, Ahmet

    2016-03-01

    Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.

  18. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Hiraiwa, Morgan; Lee, Hyun-Boo; Inoue, Shinnosuke; Chung, Jae-Hyun; Kim, Jong-Hoon; Becker, Annie L; Weigel, Kris M; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2015-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL −1 , comparable to a more labor-intensive fluorescence detection method reported previously. (paper)

  19. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  20. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    Science.gov (United States)

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation

    Directory of Open Access Journals (Sweden)

    Tierling Sascha

    2010-06-01

    Full Text Available Abstract Background DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. Results This combined method allows detection of 14 pg (that is, four to five genomic copies of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2 and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. Conclusion The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.

  2. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  3. A diagnostic model for the detection of sensitization to wheat allergens was developed and validated in bakery workers

    NARCIS (Netherlands)

    Suarthana, Eva; Vergouwe, Yvonne; Moons, Karel G.; de Monchy, Jan; Grobbee, Diederick; Heederik, Dick; Meijer, Evert

    Objectives: To develop and validate a prediction model to detect sensitization to wheat allergens in bakery workers. Study Design and Setting: The prediction model was developed in 867 Dutch bakery workers (development set, prevalence of sensitization 13%) and included questionnaire items (candidate

  4. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  5. Ultra-sensitive "turn-on" detection method for Hg(2+) based on mispairing biosensor and emulsion PCR.

    Science.gov (United States)

    Zhu, Pengyu; Tian, Wenying; Cheng, Nan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-08-01

    Sensor-based detection methods have inspired the idea that chemical or physical signals could be converted to nucleic acid signals to be quantitatively detected using a combination of appropriate detection tools. To achieve ultra-sensitive and absolute quantitative detection of mercury ion (Hg(2+)), we have combined a mispairing biosensor for Hg(2+) and emulsion PCR. The parameters that might influence the biosensor step, such as the duration of isothermal amplification and the concentration of the sensor oligonucleotide, have been firstly optimized in our study to achieve the most efficient biosensor detection. The evaluation results of secondary structures between the biosensors with different number of T-Hg-T structures achieved by Circular Dichroism have indicated that the secondary hairpin structure would be varied according to the change of number of T-Hg-T structures, which could influence the quantitative detection results. Further optimization of number of T-Hg-T within the biosensor sequences showed that 5 T-Hg-T structures could generate the most efficient amplification. After the above optimizations, the emulsion PCR has been employed to achieve the absolute quantitation of nucleic acid signals. The final results have shown that the limit of quantitation (LOQ) in our study was as low as 40fmol, and the limit of detection (LOD) was 10fmol. The practical detection tests showed that the quantitative results were stable and accurate for all substrates. In conclusion, by combining a mispairing biosensor with emulsion PCR, we developed a flexible and stable quantitative "turn-on" detection method with ultra-sensitivity that can detect trace amounts Hg(2+) within different substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. ISM (Industrial Scientific and Medical standard) band flex fuel sensor using electrical metamaterial device

    Science.gov (United States)

    Rawat, Vaishali; Nadkarni, Vihang; Kale, S. N.

    2017-01-01

    A stand-alone device working on the electrical metamaterial concept, operating at 2.47 GHz (ISM band), using merely 10 μL sample is proposed to detect petrol/ethanol ratio in given hybrid fuel. Systematic shifts in the transmission frequency as well as magnitude are observed, up to a maximum of 160 MHz and 12 dBm with the hybrid fuels. The sensing was fast with an instantaneous recovery, promising an accurate and sensitive device of detection of flex fuel.

  7. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  8. Sensitivity of single and double contrast barium enema in the detection of colorectal carcinoma

    International Nuclear Information System (INIS)

    Myllylae, V.; Paeivansalo, M.; Laitinen, S.; Oulu Univ.

    1984-01-01

    The preoperative barium enema of the 188 colorectal carcinoma patients operated at the Oulu University Central Hospital (Finland) during 1977-1982 were examined retrospectively. Altogether 112 single contrast studies and 87 double contrast studies had been made on these patients. The single contrast barium enemas had resulted in a correct diagnosis of colorectal carcinoma in 93 cases (sensitivity 83%). The correct diagnosis in the double contrast studies numbered 71 (sensitivity 82%). Most of the overlooked carcinomas were located in the caecum, in the sigmoid or the rectum. Most of the errors made in the single contrast studies were due to detection errors and poor evacuation. The most common failures in double contrast enemas were detection errors and nonvisualisation of the sigmoid. The authors recommend use of the double contrast technique and suggest that the two methods of barium enema be used to complement each other. A false negative diagnosis delayed the operation of the colorectal carcinoma patients by 2.2 months (median). (orig.) [de

  9. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    Science.gov (United States)

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  10. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    KAUST Repository

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2017-01-01

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a

  11. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao, E-mail: htyu@tju.edu.cn [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Lu, Meili [School of Informational Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China); Che, Yanqiu [School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222 (China)

    2015-01-15

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  12. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population.

    Science.gov (United States)

    Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  13. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    International Nuclear Information System (INIS)

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance

  14. Rapid and sensitive approach to simultaneous detection of genomes of hepatitis A, B, C, D and E viruses.

    Science.gov (United States)

    Kodani, Maja; Mixson-Hayden, Tonya; Drobeniuc, Jan; Kamili, Saleem

    2014-10-01

    Five viruses have been etiologically associated with viral hepatitis. Nucleic acid testing (NAT) remains the gold standard for diagnosis of viremic stages of infection. NAT methodologies have been developed for all hepatitis viruses; however, a NAT-based assay that can simultaneously detect all five viruses is not available. We designed TaqMan card-based assays for detection of HAV RNA, HBV DNA, HCV RNA, HDV RNA and HEV RNA. The performances of individual assays were evaluated on TaqMan Array Cards (TAC) for detecting five viral genomes simultaneously. Sensitivity and specificity were determined by testing 329 NAT-tested clinical specimens. All NAT-positive samples for HCV (n = 32), HDV (n = 28) and HEV (n = 14) were also found positive in TAC (sensitivity, 100%). Forty-three of 46 HAV-NAT positive samples were also positive in TAC (sensitivity, 94%), while 36 of 39 HBV-NAT positive samples were positive (sensitivity, 92%). No false-positives were detected for HBV (n = 32), HCV (n = 36), HDV (n = 30), and HEV (n = 31) NAT-negative samples (specificity 100%), while 38 of 41 HAV-NAT negative samples were negative by TAC (specificity 93%). TAC assay was concordant with corresponding individual NATs for hepatitis A-E viral genomes and can be used for their detection simultaneously. The TAC assay has potential for use in hepatitis surveillance, for screening of donor specimens and in outbreak situations. Wider availability of TAC-ready assays may allow for customized assays, for improving acute jaundice surveillance and for other purposes for which there is need to identify multiple pathogens rapidly. Published by Elsevier B.V.

  15. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    Science.gov (United States)

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  16. Quantum dot bio-conjugate: as a western blot probe for highly sensitive detection of cellular proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Sonia [Agharkar Research Institute (India); Kale, Anup [University of Alabama, Center for Materials for Information Technology (United States); Gholap, Haribhau; Rana, Abhimanyu [National Chemical Laboratory, Physical and Materials Chemistry Division (India); Desai, Rama [National Centre for Cell Science (India); Banpurkar, Arun [University of Pune, Department of Physics (India); Ogale, Satishchandra, E-mail: sb.ogale@ncl.res.in [National Chemical Laboratory, Physical and Materials Chemistry Division (India); Shastry, Padma, E-mail: padma@nccs.res.in [National Centre for Cell Science (India)

    2012-03-15

    In the present study, we report a quantum dot (QD)-tailored western blot analysis for a sensitive, rapid and flexible detection of the nuclear and cytoplasmic proteins. Highly luminescent CdTe and (CdTe)ZnS QDs are synthesized by aqueous method. High resolution transmission electron microscopy, Raman spectroscopy, fourier transform infrared spectroscopy, fluorescence spectroscopy and X-ray diffraction are used to characterize the properties of the quantum dots. The QDs are functionalized with antibodies of prostate apoptosis response-4 (Par-4), poly(ADP-ribose) polymerases and {beta} actin to specifically bind with the proteins localized in the nucleus and cytoplasm of the cells, respectively. The QD-conjugated antibodies are used to overcome the limitations of conventional western blot technique. The sensitivity and rapidity of protein detection in QD-based approach is very high, with detection limits up to 10 pg of protein. In addition, these labels provide the capability of enhanced identification and localization of marker proteins in intact cells by confocal laser scanning microscopy.

  17. Investigation of the Sensitivity of Transmission Raman Spectroscopy for Polymorph Detection in Pharmaceutical Tablets.

    Science.gov (United States)

    Feng, Hanzhou; Bondi, Robert W; Anderson, Carl A; Drennen, James K; Igne, Benoît

    2017-08-01

    Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The

  18. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  19. Dynamics of a magnetic monopole in matter, Maxwell equations in dyonic matter and detection of electric dipole moments

    International Nuclear Information System (INIS)

    Artru, X.; Fayolle, D.

    2001-01-01

    For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed

  20. A highly sensitive, selective and turn-off fluorescent sensor based on phenylamine-oligothiophene derivative for rapid detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xingxing; Niu, Qingfen, E-mail: qf_niu1216@qlu.edu.cn; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan

    2016-07-15

    A fluorescent sensor based on phenylamine-oligothiophene derivative 3TEA was reported. This sensor showed highly selective and sensitive detection of Hg{sup 2+} ion in THF/H{sub 2}O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by other competitive metal ions. The detection limit was found to be as low as 3.952×10{sup −7} M estimated by the titration method. The recognition process is reversible and confirmed by EDTA experiment. The turn-off fluorescence behavior of mercury interaction with 3TEA has been found to be so fast that it can be used for its qualitative as well as quantitative estimation. - Highlights: • A highly sensitive and selective fluorescence chemosensor 3TEA was reported. • 3TEA features high sensitive with the detection limit for Hg{sup 2+} ions was as low as 3.952×10{sup −7} M. • 3TEA can detect Hg{sup 2+} ion on-line and in real time.

  1. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    Science.gov (United States)

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    Directory of Open Access Journals (Sweden)

    Galina E Zemtsova

    Full Text Available Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87. The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  3. Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by loop-mediated isothermal amplification (LAMP.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    2011-08-01

    Full Text Available The loop-mediated isothermal amplification (LAMP assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3 per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay.For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite. The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3 parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.

  4. Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Grab, Dennis J; Nikolskaia, Olga V; Inoue, Noboru; Thekisoe, Oriel M M; Morrison, Liam J; Gibson, Wendy; Dumler, J Stephen

    2011-08-01

    The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 10(3) per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay. For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 10(3) parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards. This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.

  5. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  6. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  7. Electrical characterization and simulation of SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Scheuch, Florian, E-mail: scheuch@physik.rwth-aachen.de; Führen, Daniel; Hebbeker, Thomas; Heidemann, Carsten; Merschmeyer, Markus

    2015-07-01

    Silicon Photomultipliers (SiPMs) are versatile and sensitive photon detectors that experience a fast growing variety of use in particle physics and related fields of application. These photo detectors have a very promising photon detection efficiency and are therefore interesting for very low light flux applications such as scintillation and fluorescence light detection. As a semiconductor device the SiPM's gain and time response strongly depend on the operating temperature and voltage. Thus they have to be understood for a proper use of the SiPM. Therefore, accurate electrical simulations of the SiPM's behavior involving electrical readout and front-end electronics help to improve the design of experimental setups, since several different designs can be tested and simulated with a manageable amount of effort. To perform these simulations, a detailed equivalent circuit of the SiPM has to be used containing a set of well-defined parameters. For this purpose, SPICE simulations of SiPMs and readout electronics have been performed. These simulations utilize an improved SiPM model consisting of resistors, capacitances and inductances. The SiPM parameters for these simulations have been determined by measuring the impedance over a wide frequency range while applying a DC voltage in forward direction and various DC voltages from zero up to the SiPM breakdown voltage in order to determine the behavior under operating conditions. The impedance measurements, the electrical model and the resulting simulations are presented. The impact of different setups and the electrical properties of the SiPM is discussed.

  8. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path.

    Science.gov (United States)

    Katis, Ioannis N; He, Peijun J W; Eason, Robert W; Sones, Collin L

    2018-05-03

    We report on the use of a laser-direct write (LDW) technique that allows the fabrication of lateral flow devices with enhanced sensitivity and limit of detection. This manufacturing technique comprises the dispensing of a liquid photopolymer at specific regions of a nitrocellulose membrane and its subsequent photopolymerisation to create impermeable walls inside the volume of the membrane. These polymerised structures are intentionally designed to create fluidic channels which are constricted over a specific length that spans the test zone within which the sample interacts with pre-deposited reagents. Experiments were conducted to show how these constrictions alter the fluid flow rate and the test zone area within the constricted channel geometries. The slower flow rate and smaller test zone area result in the increased sensitivity and lowered limit of detection for these devices. We have quantified these via the improved performance of a C-Reactive Protein (CRP) sandwich assay on our lateral flow devices with constricted flow paths which demonstrate an improvement in its sensitivity by 62x and in its limit of detection by 30x when compared to a standard lateral flow CRP device. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.

    Science.gov (United States)

    Li, Peng; Zhang, Dongzhi; Jiang, Chuanxing; Zong, Xiaoqi; Cao, Yuhua

    2017-12-15

    The extraordinary properties of black phosphorus (BP) make it a promising candidate for next-generation transistor chemical sensors. However, BP films reported so far are supported on substrate, and substrate scattering drastically deteriorates its electrical properties. Consequentially, the potential sensing capability of intrinsic BP is highly underestimated and its sensing mechanism is masked. Additionally, the optimum sensing regime of BP remains unexplored. This article is the first demonstration of suspended BP sensor operated in subthreshold regime. BP exhibited significant enhancement of sensitivity for ultra-low-concentration mercury detection in the absence of substrate, and the sensitivity reached maximum in subthreshold regime. Without substrate scattering, the suspended BP device demonstrated 10 times lower 1/f noise which contributed to better signal-to-noise ratio. Therefore, rapid label-free trace detection of Hg 2+ was achieved with detection limit of 0.01 ppb, lower than the world health organization (WHO) tolerance level (1 ppb). The time constant for ion detection extracted was 3s. Additionally, experimental results revealed that good stability, repeatability, and selectivity were achieved. BP sensors also demonstrated the ability of detecting mercury ions in environment water samples. The underling sensing mechanism of intrinsic BP was ascribed to the carrier density variation resulted from surface charge gating effect, so suspended BP in subthreshold regime with optimum gating effect demonstrated the best sensitivity. Our results show the prominent advantages of intrinsic BP as a sensing material. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.

    Science.gov (United States)

    Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu

    2018-01-15

    Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  12. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  13. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  14. Evaluation of reconstruction parameters of electrical impedance tomography on aorta detection during saline bolus injection

    Directory of Open Access Journals (Sweden)

    Thürk Florian

    2016-09-01

    Full Text Available An accurate detection of anatomical structures in electrical impedance tomography (EIT is still at an early stage. Aorta detection in EIT is of special interest, since it would favor non-invasive assessment of hemodynamic processes in the body. Here, diverse EIT reconstruction parameters of the GREIT algorithm were systematically evaluated to detect the aorta after saline bolus injection in apnea. True aorta position and size were taken from computed tomography (CT. A comparison with CT showed that the smallest error for aorta displacement was attained for noise figure nf = 0.7, weighting radius rw = 0.15, and target size ts = 0.01. The spatial extension of the aorta was most precise for nf = 0.7, rw = 0.25, and ts = 0.07. Detection accuracy (F1-score was highest with nf = 0.6, rw = 0.15, and ts = 0.04. This work provides algorithm-related evidence for potentially accurate aorta detection in EIT after injection of a saline bolus.

  15. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Paglis

    2013-01-01

    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  16. Chromatographic air analyser microsystem for the selective and sensitive detection of atmospheric pollutants

    International Nuclear Information System (INIS)

    Sanchez, Jean-Baptiste; Lahlou, Houda; Mohsen, Yehya; Berger, Franck; Vilanova, Xavier; Correig, Xavier

    2011-01-01

    The development of industry and automotive trafic produces Volatile Organic Compounds (VOCs) whose toxicity can affect seriously human health and environment. The level of those contaminants in air must be as low as possible. In this context, there is a need for in situ systems that could monitor selectively the concentration of these compounds. The aim of this study is to demonstrate the efficiency of a system build with a pre-concentrator, a chromatographic micro-column and a tin oxide-based gas sensor for the selective and sensitive detection of atmospheric pollutants. In particular, this study is focused on the selective detection of benzene and 1,3 butadiene.

  17. Use of real-time PCR on faecal samples for detection of sub-clinical Salmonella infection in cattle did not improve the detection sensitivity compared to conventional bacteriology

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Nielsen, L.R.; Baggesen, Dorte Lau

    2013-01-01

    bacteriological culture-reference method (BCRM) on cattle faecal samples for detection of sub-clinical Salmonella infections in cattle. Thirty faecal samples were artificially contaminated with either 10 or 50CFU of one of five strains of S. Dublin (SD) and S. Typhimurium (ST). The overall detection sensitivity...... of both rt-PCR and BCRM was 100% for ST and 78% for SD. Furthermore, 163 faecal samples from cattle herds with suspected Salmonella infection were tested to compare the relative performance of rt-PCR to BCRM on samples from naturally infected herds. The relative sensitivity of rt-PCR was 20% (3/15 BCRM...... positive samples) while the relative specificity and accuracy was 99% and 92%, respectively. Both methods had limitations for detecting low levels of SD (...

  18. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    Science.gov (United States)

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  20. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained