WorldWideScience

Sample records for sensing-based surface energy

  1. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  2. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Bhattarai, Nishan; Wagle, Pradeep; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-11-01

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass (Panicum virgatum L.) has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI; 0 = extremely wet or no water stress condition and 1 = extremely dry or no transpiration) was utilized to estimate CWSI in rain-fed switchgrass using Landsat-derived evapotranspiration (ET) from five remote sensing based single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and Operational Simplified Surface Energy Balance (SSEBop). CWSI estimates from the five SEB models and a simple regression model that used normalized difference vegetation index (NDVI), near-surface temperature difference, and measured soil moisture (SM) as covariates were compared with those derived from eddy covariance measured ET (CWSIEC) for the 32 Landsat image acquisition dates during the 2011 (dry) and 2013 (wet) growing seasons. Results indicate that most SEB models can predict CWSI reasonably well. For example, the root mean square error (RMSE) ranged from 0.14 (SEBAL) to 0.29 (SSEBop) and the coefficient of determination (R2) ranged from 0.25 (SSEBop) to 0.72 (SEBAL), justifying the added complexity in CWSI modeling as compared to results from the simple regression model (R2 = 0.55, RMSE = 0.16). All SEB models underestimated CWSI in the dry year but the estimates from SEBAL and S-SEBI were within 7% of the mean CWSIEC and explained over 60% of variations in CWSIEC. In the wet year, S-SEBI mostly overestimated CWSI (around 28%), while estimates from METRIC, SEBAL, SEBS, and SSEBop were within 8% of the mean CWSIEC. Overall, SEBAL was the most robust model under all conditions followed by METRIC, whose performance was slightly worse and better than SEBAL in dry and wet years

  3. Monitoring arid-land groundwater abstraction through optimization of a land surface model with remote sensing-based evaporation

    Lopez Valencia, Oliver Miguel

    2018-02-01

    The increase in irrigated agriculture in Saudi Arabia is having a large impact on its limited groundwater resources. While large-scale water storage changes can be estimated using satellite data, monitoring groundwater abstraction rates is largely non-existent at either farm or regional level, so water management decisions remain ill-informed. Although determining water use from space at high spatiotemporal resolutions remains challenging, a number of approaches have shown promise, particularly in the retrieval of crop water use via evaporation. Apart from satellite-based estimates, land surface models offer a continuous spatial-temporal evolution of full land-atmosphere water and energy exchanges. In this study, we first examine recent trends in terrestrial water storage depletion within the Arabian Peninsula and explore its relation to increased agricultural activity in the region using satellite data. Next, we evaluate a number of large-scale remote sensing-based evaporation models, giving insight into the challenges of evaporation retrieval in arid environments. Finally, we present a novel method aimed to retrieve groundwater abstraction rates used in irrigated fields by constraining a land surface model with remote sensing-based evaporation observations. The approach is used to reproduce reported irrigation rates over 41 center-pivot irrigation fields presenting a range of crop dynamics over the course of one year. The results of this application are promising, with mean absolute errors below 3 mm:day-1, bias of -1.6 mm:day-1, and a first rough estimate of total annual abstractions of 65.8 Mm3 (close to the estimated value using reported farm data, 69.42 Mm3). However, further efforts to address the overestimation of bare soil evaporation in the model are required. The uneven coverage of satellite data within the study site allowed us to evaluate its impact on the optimization, with a better match between observed and obtained irrigation rates on fields with

  4. Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films

    Gazzola, Enrico; Cittadini, Michela; Brigo, Laura; Brusatin, Giovanna; Guglielmi, Massimo; Romanato, Filippo; Martucci, Alessandro

    2015-08-01

    Nanoporous TiO2 anatase film has been investigated as sensitive layer in Surface Plasmon Resonance sensors for the detection of hydrogen and Volatile Organic Compounds, specifically methanol and isopropanol. The sensors consist of a TiO2 nanoporous matrix deposited above a metallic plasmonic grating, which can support propagating Surface Plasmon Polaritons. The spectral position of the plasmonic resonance dip in the reflectance spectra was monitored and correlated to the interaction with the target gases. Reversible blue-shifts of the resonance frequency, up to more than 2 THz, were recorded in response to the exposure to 10000 ppm of H2 in N2 at 300°C. This shift cannot be explained by the mere refractive index variation due to the target gas filling the pores, that is negligible. Reversible red-shifts were instead recorded in response to the exposure to 3000 ppm of methanol or isopropanol at room temperature, of magnitudes up to 14 THz and 9 THz, respectively. In contrast, if the only sensing mechanism was the mere pores filling, the shifts should have been larger during the isopropanol detection. We therefore suggest that other mechanisms intervene in the analyte/matrix interaction, capable to produce an injection of electrons into the sensitive matrix, which in turn induces a decrease of the refractive index.

  5. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  6. Monitoring arid-land groundwater abstraction through optimization of a land surface model with remote sensing-based evaporation

    Lopez Valencia, Oliver Miguel

    2018-01-01

    in terrestrial water storage depletion within the Arabian Peninsula and explore its relation to increased agricultural activity in the region using satellite data. Next, we evaluate a number of large-scale remote sensing-based evaporation models, giving insight

  7. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    Kan Luo

    2018-01-01

    Full Text Available Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS- based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM, block sparse Bayesian learning (BSBL method, and discrete cosine transform (DCT basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  8. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  9. The influence of the surface roughness parameterization on remote sensing-based estimates of evapotranspiration from vineyards

    Alfieri, J. G.; Kustas, W. P.; Gao, F.; Nieto, H.; Prueger, J. H.; Hipps, L.

    2017-12-01

    Because the judicious application of water is key to ensuring berry quality, information regarding evapotranspiration (ET) is critical when making irrigation and other crop management decisions for vineyards. Increasingly, wine grape producers seek to use remote sensing-based models to monitor ET and inform management decisions. However, the parameterization schemes used by these models do not fully account for the effects of the highly-structured canopy architecture on either the roughness characteristics of the vineyard or the turbulent transport and exchange within and above the vines. To investigate the effects of vineyard structure on the roughness length (zo) and displacement height (do) of vineyards, data collected from 2013 to 2016 as a part of the Grape Remote Sensing Atmospheric Profiling and Evapotranspiration Experiment (GRAPEX), an ongoing multi-agency field campaign conducted in the Central Valley of California, was used. Specifically, vertical profiles (2.5 m, 3.75 m, 5 m, and 8 m, agl) of wind velocity collected under near-neutral conditions were used to estimate do and zo and characterize how these roughness parameters vary in response changing environmental conditions. The roughness length was found to vary as a function of wind direction. It increased sigmoidally from a minimum near 0.15 m when the wind direction was parallel to the vine rows to a maximum between 0.3 m and 0.4 m when the winds were perpendicularly to the rows. Similarly, do was found responds strongly to changes in vegetation density as measured via leaf area index (LAI). Although the maximum varied from year-to-year, do increased rapidly after bud break in all cases and then remained constant for the remainder of the growing season. A comparison of the model output from the remote sensing-based two-source energy balance (TSEB) model using the standard roughness parameterization scheme and the empirical relationships derived from observations indicates a that the modeled ET

  10. Surface plasmon resonance spectroscopic study of UV-addressable phenylalanine sensing based on a self-assembled spirooxazine derivative monolayer

    Suk, Shinae; Suh, Hee-Jung; Gun An, Won; Kim, Jae-Ho; Jin, Sung-Ho; Kim, Sung-Hoon; Gal, Yeong-Soon; Koh, Kwangnak

    2004-01-01

    Light-addressable compounds are very interesting due to the possibilities of their practical use such as optical switches and memories or variable transmission materials. For example, transportation of phenylalanine across liposomal bilayers mediated by a photoresponsive carrier like spirooxazine through electrostatic interaction between phenylalanine and spirooxazine derivative. Thus, the spirooxazine is expected to form a UV-addressable phenylalanine sensing interface. In this study, we prepared phenylalanine sensing interface of a spirooxazine derivative by self-assembly technique and evaluated interaction between a spirooxazine moiety and phenylalanine with a surface plasmon resonance (SPR). The refractive index change of monolayer caused by interaction between a spirooxazine derivative and phenylalanine led to the SPR angle shifts upon UV irradiation. The SPR angle shift increased with increasing the concentration of phenylalanine solution. These results indicated that the spirooxazine derivative self-assembled monolayer (SAM) has an application potential for UV-addressable phenylalanine sensing

  11. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  12. Studying Sensing-Based Systems

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  13. Concavity Theorems for Energy Surfaces

    Giraud, B. G.; Karataglidis, S.

    2011-01-01

    Concavity properties prevent the existence of significant landscapes in energy surfaces obtained by strict constrained energy minimizations. The inherent contradiction is due to fluctuations of collective coordinates. A solution to those fluctuations is given.

  14. Surface Meteorology and Solar Energy

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  15. The surface energy of metals

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  16. Symmetry energy in nuclear surface

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  17. Surface energy anisotropy of tungsten

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  18. Surface energy of explosive nanoparticles

    Pineau, Nicolas; Bidault, Xavier; Soulard, Laurent

    2017-06-01

    Recent experimental studies show that nanostructuration has a substantial impact on the detonation of high explosives: a nanostructured one leads to smaller nanodiamonds than a microstructured one. Whether it comes from a higher surface energy or from porosity, the origin of these different behaviors must be investigated. The surface energy of TATB nanoparticles with a radius from 2 nm upto 60 nm has been determined by means of ReaxFF-based simulations. Then, using the Rankine-Hugoniot relations and the equation of states of the bulk material, the contribution of this excess energy to the heating of a shock-compressed nanostructured (and porous) material is evaluated and compared to the thermal effect due to its porosity collapse. A maximum temperature increase of 50 K is found for 4-nm nanoparticles, which remains negligible when compared to the few hundred degrees induced by the compaction work.

  19. Surface meteorology and Solar Energy

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  20. Energy conservation potential of surface modification technologies

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  1. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  2. Surface Energy and Setting Process of Contacting Surfaces

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  3. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  4. Waves energy comes to surface

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  5. Solar energy converter using surface plasma waves

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  6. Surface energy of metal alloy nanoparticles

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  7. Sorption Energy Maps of Clay Mineral Surfaces

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  8. Effect of surface energy on powder compactibility.

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  9. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  10. Energy loss spectroscopy applied to surface studies

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  11. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    Guzinski, Radoslaw

    uxes, such as sensible heat ux, ground heat ux and net radiation, are also necessary. While it is possible to measure those uxes with ground-based instruments at local scales, at region scales they usually need to be modelled or estimated with the help of satellite remote sensing data. Even though...... to increase the spatial resolution of the reliable DTD-modelled fluxes from 1 km to 30 m. Furthermore, synergies between remote sensing based models and distributed hydrological models were studied with the aim of improving spatial performance of the hydrological models through incorporation of remote sensing...... of this study was to look at, and improve, various approaches for modelling the land-surface energy uxes at different spatial scales. The work was done using physically-based Two-Source Energy Balance (TSEB) approach as well as semi-empirical \\Triangle" approach. The TSEB-based approach was the main focus...

  12. Surface Plasmon-Assisted Solar Energy Conversion.

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  13. Energy loss spectroscopy applied to surface studies

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  14. Surface energy of very neutron rich nuclei

    Von Groote, H

    1976-01-01

    For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the ou...

  15. Potential energy surface of alanine polypeptide chains

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  16. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  17. Energy redistribution in diatomic molecules on surfaces

    Asscher, M.; Somorjai, G.A.

    1984-04-01

    Translational and internal degrees of freedom of a scattered beam of NO molecules from a Pt(111) single crystal surface were measured as a function of scattering angle and crystal temperature in the range 450 to 1250K. None of the three degrees of freedom were found to fully accommodate to the crystal temperature, the translational degree being the most accommodated and the rotational degree of freedom the least. A precursor state model is suggested to account for the incomplete accommodation of translational and vibrational degrees of freedom as a function of crystal temperature and incident beam energy. The vibrational accommodation is further discussed in terms of a competition between desorption and vibrational excitation processes, thus providing valuable information on the interaction between vibrationally excited molecules and surfaces. Energy transfer into rotational degrees of freedom is qualitatively discussed

  18. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum

    Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-06-01

    Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress

  19. Low Energy Nuclear Reaction Products at Surfaces

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  20. Theoretical studies of potential energy surfaces

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  1. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  2. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  3. Computed potential energy surfaces for chemical reactions

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  4. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  5. Comment on 'Modelling of surface energies of elemental crystals'

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  6. The energy balance of the earth's surface : a practical approach

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  7. Energy Accommodation from Surface Catalyzed Reactions in Air Plasmas

    National Aeronautics and Space Administration — Understanding energy transport at the gas-surface interface between catalytic/reacting surfaces exposed to highly dissociated plasmas remains a significant research...

  8. Surface free energy of alkali and transition metal nanoparticles

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  9. Analysis of energy flow during playground surface impacts.

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  10. Energy quantization for approximate H-surfaces and applications

    Shenzhou Zheng

    2013-07-01

    Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.

  11. Analysis of surface with low energy ions

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  12. Reflections on the surface energy imbalance problem

    Ray Leuning; Eva van Gorsela; William J. Massman; Peter R. Isaac

    2012-01-01

    The 'energy imbalance problem' in micrometeorology arises because at most flux measurement sites the sum of eddy fluxes of sensible and latent heat (H + λE) is less than the available energy (A). Either eddy fluxes are underestimated or A is overestimated. Reasons for the imbalance are: (1) a failure to satisfy the fundamental assumption of one-...

  13. Surface energy for electroluminescent polymers and indium-tin-oxide

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  14. A systematic first-principles study of surface energies, surface relaxation and Friedel oscillation of magnesium surfaces

    Tang, Jia-Jun; Yang, Xiao-Bao; Zhao, Yu-Jun; OuYang, LiuZhang; Zhu, Min

    2014-01-01

    We systematically study the surface energies and surface relaxations of various low-index and high-index Mg surfaces. It is found that low-index surfaces are not necessarily stable as Mg(1 0  1-bar  0) is the most unstable surface in the series of Mg(1 0  1-bar  n) (n = 0–9). A surface-energy predicting model based on the bond cutting is proposed to explain the relative surface stabilities. The local relaxations of the low-index surfaces could be explained by the Friedel oscillation. For the high-index surfaces, the combination of charge smoothing effect and dramatic charge depletion influences the relaxations, which show a big difference from the low-index ones. Our findings provide theoretical data for considerable insights into the surface energies of hexagonal close-packed metals. (paper)

  15. Kramers-Kronig transform for the surface energy loss function

    Tan, G.L.; DeNoyer, L.K.; French, R.H.; Guittet, M.J.; Gautier-Soyer, M.

    2005-01-01

    A new pair of Kramers-Kronig (KK) dispersion relationships for the transformation of surface energy loss function Im[-1/(ε + 1)] has been proposed. The validity of the new surface KK transform is confirmed, using both a Lorentz oscillator model and the surface energy loss functions determined from the experimental complex dielectric function of SrTiO 3 and tungsten metal. The interband transition strength spectra (J cv ) have been derived either directly from the original complex dielectric function or from the derived dielectric function obtained from the KK transform of the surface energy loss function. The original J cv trace and post-J cv trace overlapped together for the three modes, indicating that the new surface Kramers-Kronig dispersion relationship is valid for the surface energy loss function

  16. Model calculation for energy loss in ion-surface collisions

    Miraglia, J.E.; Gravielle, M.S.

    2003-01-01

    The so-called local plasma approximation is generalized to deal with projectiles colliding with surfaces of amorphous solids and with a specific crystalline structure (plannar channeling). Energy loss of protons grazingly colliding with aluminum, SnTe alloy, and LiF surfaces is investigated. The calculations agree quite well with previous theoretical results and explain the experimental findings of energy loss for aluminum and SnTe alloy, but they fall short to explain the data for LiF surfaces

  17. Critical assessment of Pt surface energy - An atomistic study

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  18. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  19. Valence bond model potential energy surface for H4

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  20. Surface sterilization by low energy electron beams

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  1. Surface free energy for systems with integrable boundary conditions

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  2. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  3. Cohesion and coordination effects on transition metal surface energies

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  4. Direct Measurement of the Surface Energy of Graphene.

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  5. Surface energy and work function of elemental metals

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  6. Calculation of the surface free energy of fcc copper nanoparticles

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  7. Energy exchange in thermal energy atom-surface scattering: impulsive models

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  8. Surface energy and crystallization phenomena of ammonium dinitramide

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Wettability and surface free energy of polarised ceramic biomaterials

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  10. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  11. Surface studies with high-energy ion beams

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  12. Ultralow energy ion beam surface modification of low density polyethylene.

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  13. Low energy quasi free scattering on nuclear surface

    Shiyuan, S.

    1983-05-01

    The result of RGM calculation of low energy /sup 3/He(n, n)/sup 3/ He total elastic cross section does not agree well with experimental data for E/sub n/<1 MeV. This discrepancy can be improved by assuming lwo energy quasi-free scattering of particles beyond the nuclear surface.

  14. Soil heat flux and day time surface energy balance closure

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  15. Atom-surface interaction: Zero-point energy formalism

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  16. Energy loss in grazing proton-surface collisions

    Juaristi, J I [Dept. Fisica de Materiales, Facultad de Quimicas, UPV/EHU, San Sebastian (Spain); Garcia de Abajo, F J [Dept. Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, San Sebastian (Spain)

    1994-05-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: (i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and (ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  17. Energy loss in grazing proton-surface collisions

    Juaristi, J.I.; Garcia de Abajo, F.J.

    1994-01-01

    The energy loss of fast protons, with energy E > 100 keV, specularly reflected on a solid surface with glancing angle of incidence of the order of a mrad is analysed on theoretical grounds. Two different contributions can be distinguished: i) energy losses originating from the interaction with the valence band, accounted for through an induced force, and ii) the excitation of electron bound states of the target atoms. The results are compared with available experimental data. (orig.)

  18. Potential energy surfaces for nucleon exchanging in dinuclear systems

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  19. Adsorption energy of iron-phthalocyanine on crystal surfaces

    Struzzi, C.; Scardamaglia, M.; Angelucci, M; Massimi, L.; Mariani, C.; Betti, G.

    2013-01-01

    The adsorption energy of iron-phthalocyanine (FePc) deposited on different crystal surfaces is studied by thermal desorption spectroscopy. A thin film of molecules has been absorbed on highly oriented pyrolytic graphite (HOPG), on graphene epitaxially grown on Ir(111), and on Au(110). Activation energies for the desorption of a molecular thin film and for the FePc single layer are determined at the three surfaces. The desorption temperature measured for the thin films is only slightly dependent on the substrate, since it is mostly dominated by molecule-molecule interactions. A definitely different desorption temperature is found at the single-layer coverage: we find an increasing desorption temperature going from HOPG, to graphene/Ir, to the Au(110) surface. The different adsorption energies of the first FePc layer in contact with the substrate surface are discussed taking into account the interaction and the growth morphology.

  20. A simulation of laser energy absorption by nanowired surface

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  1. A simulation of laser energy absorption by nanowired surface

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  2. Elastic layer under axisymmetric indentation and surface energy effects

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  3. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  4. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1 min) caused decrease in the surface hydrophilic character, while longer time (10 min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. - Highlights: • Surface of five Ti-6Al-4V alloy samples were smoothed and polished successively. • The

  6. Influence of the target surface contamination on UHV screening energies

    Targosz-Sleczka, N; Czerski, K; Kilic, A I [Institute of Physics, University of Szczecin, Szczecin (Poland); Huke, A; Martin, L; Heide, P [Institut fuer Atomare Physik und Optik, Technische Universitaet Berlin, Berlin (Germany); Blauth, D; Winter, H, E-mail: natalia.targosz@wmf.univ.szczecin.p [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany)

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 {+-} 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  7. Influence of the target surface contamination on UHV screening energies

    Targosz-Sleczka, N; Czerski, K; Kilic, A I; Huke, A; Martin, L; Heide, P; Blauth, D; Winter, H

    2010-01-01

    The d + d fusion reactions have been investigated in the Zirconium environment under ultra high vacuum (UHV) conditions for projectile energies below 30 keV. The experimentally determined screening energy value of 497 ± 7 eV is larger than the previous results by a factor of almost two. Despite the UHV conditions a small deviation between experimental data and the theoretical curve arising from the target surface contamination could be still observed at the lowest projectile energies. Calculations made under the assumption of formation of a Zirconium oxide contamination, show that every atomic monolayer reduces the estimated screening energy significantly.

  8. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  9. Surface relaxation and surface energy of face –centered Cubic ...

    DR. MIKE HORSFALL

    Surface relaxation and surface energy of face –centered Cubic metals. 1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O. 1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria. 2 Department of Physics, University of Benin, Benin City, Nigeria. 3 Department of Physics, University of Port Harcourt, PH, Nigeria.

  10. Surface energies of metals in both liquid and solid states

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  11. Surface free energy analysis of adsorbents used for radioiodine adsorption

    González-García, C.M.; Román, S.; González, J.F.; Sabio, E.; Ledesma, B.

    2013-01-01

    In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.

  12. Calculated surface-energy anomaly in the 3d metals

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  13. An adaptive interpolation scheme for molecular potential energy surfaces

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  14. Exchange energy of inhomogenous electron gas near a metal surface

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  15. Surface segregation energies in transition-metal alloys

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  16. Kinetic-energy functionals studied by surface calculations

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the lo...... density, high gradient limit may be subtantially improved by including locally a von Weizsacker term. Based on this, we propose a simple one-parameter Pade's approximation, which reproduces the exact Kohn-Sham surface kinetic energy over the entire range of metallic densities....

  17. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of

  18. Self-energies and the interactions of particles with surfaces

    Manson, J.R.; Ritchie, R.H.; Echenique, P.M.; Gras-Marti, A.

    1987-01-01

    We have in this paper reviewed the method of treating many-body problems by means of an effective interaction self-energy. We have developed an alternatvie approach to the self-energy which is simpler and more straight-forward than standard methods, and we have illustrated its use with two examples of a charge interacting with a metal surface. In each case the self-energy produces the classical image potential together with corrections due to quantum mechanical effects. This method has also been successfully applied to the problem of an atom interacting with a surface. Corrections to the Van der Waals dispersion force are obtained, and via the non-conservative imaginary parts to /summation//sub i/(z) we discuss transition rates and energy exchange. 14 refs., 1 fig

  19. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  20. Free energy surfaces in the superconducting mixed state

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  1. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  2. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  3. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  4. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  5. Evapotranspiration and Surface Energy Fluxes Estimation Using the Landsat-7 Enhanced Thematic Mapper Plus Image over a Semiarid Agrosystem in the North-West of Algeria

    Nehal Laounia

    Full Text Available Abstract Monitoring evapotranspiration and surface energy fluxes over a range of spatial and temporal scales is crucial for many agroenvironmental applications. Different remote sensing based energy balance models have been developed, to estimate evapotranspiration at both field and regional scales. In this contribution, METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration, has been applied for the estimation of actual evapotranspiration in the Ghriss plain in Mascara (western Algeria, a semiarid region with heterogeneous surface conditions. Four images acquired during 2001 and 2002 by the Landsat-7 satellite were used. The METRIC model followed an energy balance approach, where evapotranspiration is estimated as the residual term when net radiation, sensible and soil heat fluxes are known. Different moisture indicators derived from the evapotranspiration were then calculated: reference evapotranspiration fraction, Priestley-Taylor parameter and surface resistance to evaporation. The evaluation of evapotranspiration and surface energy fluxes are accurate enough for the spatial variations of evapotranspiration rather satisfactory than sophisticated models without having to introduce an important number of parameters in input with difficult accessibility in routine. In conclusion, the results suggest that METRIC can be considered as an operational approach to predict actual evapotranspiration from agricultural areas having limited amount of ground information.

  6. Development of a Remote-Sensing Based Framework for Mapping Drought over North America

    Hain, C.; Anderson, M. C.; Zhan, X.; Gao, F.; Svoboda, M.; Wardlow, B.; Mladenova, I. E.

    2012-12-01

    This presentation will address the development of a multi-scale drought monitoring tool for North America based on remotely sensed estimates of evapotranspiration. The North American continent represents a broad range in vegetation and climate conditions, from the boreal forests in Canada to the arid deserts in Mexico. This domain also encompasses a range in constraints limiting vegetation growth, with a gradient from radiation/energy limitation in the north to moisture limits in the south. This feasibility study over NA will provide a valuable test bed for future implementation world-wide in support of proposed global drought monitoring and early warning efforts. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET (fPET), generated with the thermal remote sensing based Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated disaggregation algorithm, DisALEXI demonstrated that ESI maps over the continental US (CONUS) show good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall, for example in areas where drought impacts are being mitigated by intense irrigation or shallow water tables. As such, the ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, this index provides an independent assessment of drought conditions and will have particular utility for real-time monitoring in regions with sparse rainfall data or significant delays in meteorological reporting. The North American ESI product will be quantitatively compared with spatiotemporal patterns in the NADM, and with

  7. Re-examination of the threshold energy surface in copper

    King, W.E.; Benedek, R.; Merkle, K.L.; Meshii, M.

    1981-01-01

    Radiation-induced defect production in copper has been studied using in-situ electrical resistivity damage-rate measurements in the HVEM and molecular dynamics simulations. Analysis of the results yields a threshold energy surface characterized by two isolated pockets of low threshold energy centered at and surrounded by regions of much higher threshold energy; the corresponding damage function exhibits a plateau at 0.65 Frenkel pairs. A Frenkel pair resistivity of (2.75/sub -0.2/ + 0 6 ) x 10 - 4 Ω-cm is proposed. A model damage function is constructed and compared to results from ion irradiation damage-rate measurements. 7 figures

  8. Energy utilization in surface mining project : with case study illustration

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  9. Inelastic surface vibrations versus energy-dependent nucleus ...

    Limitations of the static Woods–Saxon potential and the applicability of the energy dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface excitations of the fusing nuclei are found to be ...

  10. Inelastic surface vibrations versus energy-dependent nucleus ...

    Abstract. Limitations of the static Woods–Saxon potential and the applicability of the energy- dependent Woods–Saxon potential (EDWSP) model within the framework of one-dimensional. Wong formula to explore the sub-barrier fusion data are highlighted. The inelastic surface exci- tations of the fusing nuclei are found to ...

  11. The evaporative fraction as a measure of surface energy partitioning

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  12. The evaporative fraction as a measure of surface energy partitioning

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  13. Universal binding energy relation for cleaved and structurally relaxed surfaces

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  14. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  15. Modelling of low energy ion sputtering from oxide surfaces

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  16. Surface energy and radiation balance systems - General description and improvements

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  17. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  18. Urbanization Process and Variation of Energy Budget of Land Surfaces

    Ciro Gardi

    2007-06-01

    Full Text Available Urban areas are increasing at a rate much higher than human population growth in many part of the world; actually more than 73 towns in the world are larger than 1000 km2. The European Environmental Agency indicates an urban area average growth rate, over the last 20 years, of 20%. The urbanization process, and the consequent soil sealing, determines not only the losses of the ecological functions of the soil, but also a variation of the energy budget of land surfaces, that affect the microclimatic conditions (heat islands. The alteration of the energy budget are determined by the variations of albedo and roughness of surfaces, but especially by the net losses of evapotranspirating areas. In the present research we have assessed the variation of Parma territory energy budget, induced by the change in land use over the last 122 years. The urban area increase between 1881 and 2003 was 535%.

  19. Exploring the free energy surfaces of clusters using reconnaissance metadynamics

    Tribello, Gareth A.; Cuny, Jérôme; Eshet, Hagai; Parrinello, Michele

    2011-09-01

    A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010), 10.1073/pnas.1011511107] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface.

  20. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  1. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  2. Seasonal contrast in the surface energy balance of the Sahel

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  3. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  4. Surface energy of amorphous carbon films containing iron

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  5. Low energy pion detection by a silicon surface barrier telescope

    Sealock, R.M.; Caplan, H.S.; Leung, M.K.

    1978-01-01

    Four telescopes of three (2-ΔE, 1-E) silicon surface barrier detectors each, mounted in the focal plane of a magnetic spectrometer, have been used to detect positive pions in the energy range from 4.7-17.9 MeV and negative pions from 14.1-17.9 MeV. Positive pions from 4.7-12.7 MeV were stopped in the third detector while positive and negative pions from 14.1-17.9 MeV were detected in transmission. For energies greater than 7.4 MeV aluminum moderators were placed in front of the first detector to degrade the pion energy. Energy spectra show well resolved pion peaks with extremely low background. Double differential cross sections for the 12 C(e,π + ) 12 B,e' reaction have been measured. (Auth.)

  6. Harvesting electrostatic energy using super-hydrophobic surfaces

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  7. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  8. Surface wind energy trends near Taiwan in winter since 1871

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  9. Scaling of surface energy fluxes using remotely sensed data

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  10. Surface modifications of polypropylene by high energy carbon ions

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  11. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  12. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  13. The interaction of low energy ion beams with surfaces

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  14. A motion sensing-based framework for robotic manipulation.

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  15. Ab initio surface core-level shifts and surface segregation energies

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located in...

  16. Electronic structure, molecular bonding and potential energy surfaces

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  17. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  18. Constraining the Surface Energy Balance of Snow in Complex Terrain

    Lapo, Karl E.

    Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed

  19. The importance of surface finish to energy performance

    Smith Geoff B.

    2017-01-01

    Full Text Available Power generation in solar energy systems, thermal control in buildings and mitigation of the Urban Heat Island problem, are all sensitive to directional response to incoming radiation. The radiation absorption and emission profile also plays a crucial role in each system's response and depends strongly on surface finish. This important sensitivity needs wider recognition in materials data sheets, system modeling, plus in materials and environmental engineering. The impact of surface roughness on thermal response of natural and man-made external environments is examined. Important examples will be given of the role of surface finish within each class. Total emittance links to the way surface finish influences directional emittance E(θ. Smooth surface thermal emittance on PV module covers, many solar absorbers, some roof paints, polished concrete, and glass windows can be up to 15% different from insulator results based on fully diffuse models of the same material. Widespread evidence indicates smooth metals and low-E solar absorber surfaces cool faster, and smooth insulators slower than previously thought. Matt paint is cooler than low sheen paint under the same solar heating impacts and normal concrete cooler than polished. Emittance for water is the prime environmental example of oblique impacts as it reflects strongly at oblique incidence, which leads to a significant drop in E(θ. Ripples or waves however raise water's average emittance. A surprise in this work was the high sensitivity of total E and its angular components to roughness in the depth range of 0.1–0.8 μm, which are well under ambient thermal IR wavelengths of 3–30 μm but common in metal finishing. Parallel energy flows such as evaporation and convective cooling vary if emittance varies. Thermal image analysis can provide insights into angular radiative effects.

  20. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Mulero, A; Galan, C; Cuadros, F

    2003-01-01

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs

  1. Study on the energy performance of glazing surfaces

    Ligia MOGA

    2014-12-01

    Full Text Available A proper thermal design of the building envelope represents an important factor for the energy economics. Glazing surfaces represent one of the important elements in the hygrothermal design activity of a building envelope. The window’s thermal performance has also a strong influence on the thermal performance of the opaque area of the wall. This fact imposed the research of the real interaction, of cooperation and of mutual influences of the characteristics between the two components of the wall of the building envelope, respectively the opaque and the glazing area. Optimal constructive details for the opaque and glazing area of the wall need to be properly designed in order to achieve the required thermal and energy performances imposed for new types of buildings, e.g. passive houses, zero energy buildings.

  2. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  3. A dielectric matrix calculation of the surface-plasmon energy for the silicon (100) surface

    Forsyth, A.J.; Smith, A.E.; Josefsson, T.W.

    1996-01-01

    Full text: As an extension of previous work, we present preliminary calculations for the dielectric properties of the silicon (100) surface. In particular, the |q|→0 and |q|=2π/a(1,0,0) surface loss function, and corresponding surface plasmon energies have been calculated within a simple model for the silicon surface. The results have been obtained from the Adler and Wiser dielectric matrix (DM). The bandstructure used for the calculation was based on the highly successful empirical pseudopotential method of Cohen and Chelikovsky. We have used a 59 plane wave basis for the bandstructure, and have chosen a DM size of 59 x 59. Results are compared and contrasted with volume plasmon calculations, free electron calculations and experiment

  4. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  5. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  6. The surface-forming energy release rate versus the local energy release rate

    Xiao, Si; Wang, He-ling; Landis, Chad M; Hwang, Keh-Chih; Liu, Bin

    2016-01-01

    This paper identifies two ways to extract the energy (or power) flowing into a crack tip during propagation based on the power balance of areas enclosed by a stationary contour and a comoving contour. It is very interesting to find a contradiction that two corresponding energy release rates (ERRs), a surface-forming ERR and a local ERR, are different when stress singularity exists at a crack tip. Besides a rigorous mathematical interpretation, we deduce that the stress singularity leads to an...

  7. Surface energy and surface stress on vicinals by revisiting the Shuttleworth relation

    Hecquet, Pascal

    2018-04-01

    In 1998 [Surf. Sci. 412/413, 639 (1998)], we showed that the step stress on vicinals varies as 1/L, L being the distance between steps, while the inter-step interaction energy primarily follows the law as 1/L2 from the well-known Marchenko-Parshin model. In this paper, we give a better understanding of the interaction term of the step stress. The step stress is calculated with respect to the nominal surface stress. Consequently, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where b is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Zero' method, from the surface pressure forces and the second called the 'One' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the deformation. By using the 'One' method on the vicinal Cu(0 1 M), we find that the step deformations, due to the applied deformation, vary as 1/L by the same factor for the tensor directions bb and cb, and by twice the same factor for the parallel direction yy. Due to the vanishing of the surface stress normal to the vicinal, the variation of the step stress in the direction yy is better described by using only the step deformation in the same direction. We revisit the Shuttleworth formula, for while the variation of the step stress in the direction xx is the same between the two methods, the variation in the direction yy is higher by 76% for the 'Zero' method with respect to the 'One' method. In addition to the step energy, we confirm that the variation of the step stress must be taken into account for the understanding of the equilibrium of vicinals when they are not deformed.

  8. Treatment of surfaces with low-energy electrons

    Frank, L.; Mikmeková, E.; Lejeune, M.

    2017-06-01

    Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  9. Theoretical studies of potential energy surfaces and computational methods

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  10. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  11. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  12. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes

    Gutes, Albert; Carraro, Carlo; Maboudian, Roya

    2011-01-01

    Highlights: → New nonenzymatic glucose sensor material. → Modified epoxy-silver electrodes with palladium nanoparticles. → Simple electroless surface modification. → Wide linear response range. → Easy implementation. - Abstract: A new approach for nonenzymatic glucose sensing, based on a simple modification of epoxy-silver surfaces deposited on the tip of commercial copper electric wires, is presented. Palladium was galvanically displaced on the surface of the epoxy-silver surface in order to obtain metal nanoparticles that act as catalyst for the direct oxidation of glucose. Scanning electron microscopy revealed the formation of the metal nanoparticles. X-ray photoelectron spectroscopy confirmed the metallic nature of the formed nanostructures on the surface. Electrochemical characterization and calibration of the palladium-modified epoxy-silver electrode is reported, obtaining a linear range of 1-20 mM for the detection of glucose with low interference of ascorbic acid and uric acid. A simple 3-step coulometry was used as the detection technique. The developed sensing material is believed to be a great candidate for integration in small devices for clinical essays, due to the simplicity and cost effectiveness of the presented approach, compared to the state-of-the-art devices reported recently in the literature. Simplicity in the coulometry determinations makes these Pd-modified epoxy-silver sensors a good candidate for easy glucose determinations.

  13. Improvement of a land surface model for accurate prediction of surface energy and water balances

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  14. Treatment of surfaces with low-energy electrons

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Mikmeková, E. [Institute of Scientific Instruments of the CAS, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lejeune, M. [LPMC – Faculte des Sciences d’Amiens, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 2 (France)

    2017-06-15

    Highlights: • Using proper irradiation parameters, adsorbed hydrocarbons are released from surfaces. • Slow electrons remove hydrocarbons instead of depositing carbon. • Prolonged irradiation with very slow electrons does not create defects in graphene. - Abstract: Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.

  15. Treatment of surfaces with low-energy electrons

    Frank, Luděk; Mikmeková, Eliška; Lejeune, M.

    2017-01-01

    Roč. 407, JUN 15 (2017), s. 105-108 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Low- energy electrons * Electron beam induced release * Graphene * Ultimate cleaning of surfaces Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  16. Low-energy electron scattering from molecules, biomolecules and surfaces

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  17. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  18. Experimental survey of the potential energy surfaces associated with fission

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  19. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  20. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    Gripaios, Ben; Webber, Bryan

    2011-01-01

    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  1. Intermolecular potential energy surface and thermophysical properties of propane.

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  2. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Ismail, R.; Tauviqirrahman, M.; Jamari; Schipper, D. J.

    2009-01-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio‐degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser‐print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running‐in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  3. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  4. A topological screening heuristic for low-energy, high-index surfaces

    Sun, Wenhao; Ceder, Gerbrand

    2018-03-01

    Robust ab initio investigations of nanoparticle surface properties require a method to identify candidate low-energy surface facets a priori. By assuming that low-energy surfaces are planes with high atomic density, we devise an efficient algorithm to screen for low-energy surface orientations, even if they have high (hkl) miller indices. We successfully predict the observed low-energy, high-index { 10 12 bar } and { 10 1 bar 4 } surfaces of hematite α-Fe2O3, the {311} surfaces of cuprite Cu2O, and the {112} surfaces of anatase TiO2. We further tabulate candidate low-energy surface orientations for nine of the most common binary oxide structures. Screened surfaces are found to be generally applicable across isostructural compounds with varying chemistries, although relative surface energies between facets may vary based on the preferred coordination of the surface atoms.

  5. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  6. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  7. An Energy Conservation Approach to Adsorbate-Induced Surface Stress and the Extraction of Binding Energy Using Nanomechanics

    Pinnaduwage, Lal A [ORNL; Boiadjiev, Vassil I [ORNL; Fernando, G. W. [University of Connecticut, Storrs; Hawk, J. E. [Oak Ridge National Laboratory (ORNL); Wijewardhana, L.C. R. [University of Cincinnati; Gehl, Anthony C [ORNL

    2008-01-01

    Microcantilevers are ideally-suited for the study of surface phenomena due to their large surface-to-volume ratios, which amplify surface effects. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. When the excess energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such experiments were conducted for three binding processes in vapor phase experiments: physisorption, hydrogen bonding, and chemisorption. To our knowledge, such an energy conservation approach has not been taken into account in adsorbate-induced surface effect investigations. Furthermore, these experiments illustrate that detailed molecular-level information on binding energies can be extracted from this simple micromechanical sensor.

  8. Low-energy particle treatment of GaAs surface

    Pincik, E.; Ivanco, J.; Brunner, R.; Jergel, M.; Falcony, C.; Ortega, L.; Kucera, J. M.

    2002-01-01

    The paper presents results of a complex study of surface properties of high-doped (2x10 18 cm -3 ) and semi-insulating GaAs after an interaction with the particles coming from low-energy ion sources such as RF plasma and ion beams. The virgin samples were mechano-chemically polished liquid-encapsulated Czochralski-grown GaAs (100) oriented wafers. The crystals were mounted on the grounded electrode (holder). The mixture Ar+H 2 as well as O 2 and CF 4 were used as working gases: In addition, a combination of two different in-situ exposures was applied, such as e.g. hydrogen and oxygen. Structural, electrical and optical properties of the exposed surfaces were investigated using X-ray diffraction at grazing incidence, quasi-static and high-frequency C-V curve measurements, deep-level transient spectroscopy, photo-reflectance, and photoluminescence. Plasma and ion beam exposures were performed in a commercial RF capacitively coupled plasma equipment SECON XPL-200P and a commercial LPAI device, respectively. The evolution of surface properties as a function of the pressure of working gas and the duration of exposure was observed. (Authors)

  9. Regional Analysis of Remote Sensing Based Evapotranspiration Information

    Geli, H. M. E.; Hain, C.; Anderson, M. C.; Senay, G. B.

    2017-12-01

    Recent research findings on modeling actual evapotranspiration (ET) using remote sensing data and methods have proven the ability of these methods to address wide range of hydrological and water resources issues including river basin water balance for improved water resources management, drought monitoring, drought impact and socioeconomic responses, agricultural water management, optimization of land-use for water conservations, water allocation agreement among others. However, there is still a critical need to identify appropriate type of ET information that can address each of these issues. The current trend of increasing demand for water due to population growth coupled with variable and limited water supply due to drought especially in arid and semiarid regions with limited water supply have highlighted the need for such information. To properly address these issues different spatial and temporal resolutions of ET information will need to be used. For example, agricultural water management applications require ET information at field (30-m) and daily time scales while for river basin hydrologic analysis relatively coarser spatial and temporal scales can be adequate for such regional applications. The objective of this analysis is to evaluate the potential of using an integrated ET information that can be used to address some of these issues collectively. This analysis will highlight efforts to address some of the issues that are applicable to New Mexico including assessment of statewide water budget as well as drought impact and socioeconomic responses which all require ET information but at different spatial and temporal scales. This analysis will provide an evaluation of four remote sensing based ET models including ALEXI, DisALEXI, SSEBop, and SEBAL3.0. The models will be compared with ground-based observations from eddy covariance towers and water balance calculations. Remote sensing data from Landsat, MODIS, and VIIRS sensors will be used to provide ET

  10. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  11. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  12. Spatial pattern evaluation of a calibrated national hydrological model - a remote-sensing-based diagnostic approach

    Mendiguren, Gorka; Koch, Julian; Stisen, Simon

    2017-11-01

    Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two-source energy balance model (TSEB) driven mainly by satellite remote sensing data. Ideally, the hydrological model simulation and remote-sensing-based approach should present similar spatial patterns and driving mechanisms of ET. However, the spatial comparison showed that the differences are significant and indicate insufficient spatial pattern performance of the hydrological model.The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in six domains that are calibrated independently from each other, as it is often the case for large-scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of leaf area index (LAI), root depth (RD) and crop coefficient (Kc) for each land cover type. This zonal approach of model parameterization ignores the spatiotemporal complexity of the natural system. To overcome this limitation, this study features a modified version of the DK-model in which LAI, RD and Kc are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatiotemporal variability and spatial consistency between the six domains. The effects of these changes are analyzed by using empirical orthogonal function (EOF) analysis to evaluate spatial patterns. The EOF analysis shows that including remote-sensing-derived LAI, RD and Kc in the distributed hydrological model adds

  13. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  14. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  15. The calculation of surface free energy based on embedded atom method for solid nickel

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  16. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  17. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  18. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  19. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  20. The puckering free-energy surface of proline

    Di Wu

    2013-03-01

    Full Text Available Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1∼5 as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  1. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  2. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  3. Quasilocal energy and surface geometry of Kerr spacetime

    Yu, Chengjie; Liu, Jian-Liang

    2017-04-01

    We study the quasilocal energy (QLE) and the surface geometry for Kerr spacetime in the Boyer-Lindquist coordinates without taking the slow rotation approximation. We also consider in the region r ≤2 m , which is inside the ergosphere. For a certain region, r >rk(a ) , the Gaussian curvature of the surface with constant t , r is positive, and for r >√{3 }a the critical value of the QLE is positive. We found that the three curves: the outer horizon r =r+(a ), r =rk(a ) and r =√{3 }a intersect at the point a =√{3 }m /2 , which is the limit for the horizon to be isometrically embedded into R3. The numerical result indicates that the Kerr QLE is monotonically decreasing to the ADM m from the region inside the ergosphere to large r . Based on the second law of black hole dynamics, the QLE is increasing with respect to the irreducible mass Mir. From the results of Chen-Wang-Yau, we conclude that in a certain region, r >rh(a ), the critical value of the Kerr QLE is a global minimum.

  4. On analogy between surface fracture energy and activaiton energy of bonding in solid phase

    Shatinsky, V.F.; Kopylov, V.I.

    1976-01-01

    This article makes an attempt on the basis of experimental data to compare the processes of failure and formation of a bond by comparing the energy consumptions going in one case or another into initial plastic deformation of a certain volume and the further interatomic interaction at the boundary (separation, formation of the bond). Two values characterizing the different processes - the unit failure energy γ and the activation energy for the formation of a bond Q - are compared. It has been established that the energy consumed for plastic deformation and adhesion interaction of atoms on the surface of microprojections and providing the formation of a bond in the solid-phase condition is close to the specific failure energy. The equality of energies consumed for the formation of a bond and failure allows to make use of any of those characteristics to calculate parameters of processes of the formation of a bond and failure. It seems to be convenient in the analysis of the failure process at a temperature when the ductility is high and methodically, the crack propagation is hard to investigate, in particular to estimate the volume of the preliminary failure zone. Having determined γ from the contact interaction data, the strength characteristics can be evaluated. (author)

  5. Crystallization of glass-forming liquids: Specific surface energy

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  6. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  7. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  8. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  9. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Pinnaduwage, Lal A.; Boiadjiev, Vassil I.; Hawk, John E.; Gehl, Anthony C.; Fernando, Gayanath W.; Rohana Wijewardhana, L. C.

    2008-03-01

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  10. An energy conservation approach to adsorbate-induced surface stress and the extraction of binding energy using nanomechanics

    Pinnaduwage, Lal A; Boiadjiev, Vassil I; Hawk, John E; Gehl, Anthony C [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6122 (United States); Fernando, Gayanath W [Physics Department, University of Connecticut, Storrs, CT 06269 (United States); Wijewardhana, L C Rohana [Physics Department, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2008-03-12

    Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.

  11. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  12. On the measurement of the surface energy budget over a land ...

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  13. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  14. Remote Sensing-based Methodologies for Snow Model Adjustments in Operational Streamflow Prediction

    Bender, S.; Miller, W. P.; Bernard, B.; Stokes, M.; Oaida, C. M.; Painter, T. H.

    2015-12-01

    Water management agencies rely on hydrologic forecasts issued by operational agencies such as NOAA's Colorado Basin River Forecast Center (CBRFC). The CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate research-oriented, remotely-sensed snow data into CBRFC operations and to improve the accuracy of CBRFC forecasts. The partnership has yielded valuable analysis of snow surface albedo as represented in JPL's MODIS Dust Radiative Forcing in Snow (MODDRFS) data, across the CBRFC's area of responsibility. When dust layers within a snowpack emerge, reducing the snow surface albedo, the snowmelt rate may accelerate. The CBRFC operational snow model (SNOW17) is a temperature-index model that lacks explicit representation of snowpack surface albedo. CBRFC forecasters monitor MODDRFS data for emerging dust layers and may manually adjust SNOW17 melt rates. A technique was needed for efficient and objective incorporation of the MODDRFS data into SNOW17. Initial development focused in Colorado, where dust-on-snow events frequently occur. CBRFC forecasters used retrospective JPL-CBRFC analysis and developed a quantitative relationship between MODDRFS data and mean areal temperature (MAT) data. The relationship was used to generate adjusted, MODDRFS-informed input for SNOW17. Impacts of the MODDRFS-SNOW17 MAT adjustment method on snowmelt-driven streamflow prediction varied spatially and with characteristics of the dust deposition events. The largest improvements occurred in southwestern Colorado, in years with intense dust deposition events. Application of the method in other regions of Colorado and in "low dust" years resulted in minimal impact. The MODDRFS-SNOW17 MAT technique will be implemented in CBRFC operations in late 2015, prior to spring 2016 runoff. Collaborative investigation of remote sensing-based adjustment methods for the CBRFC operational hydrologic forecasting environment will continue over the next several years.

  15. In vitro effect of energy drinks on human enamel surface

    Marise Sano Suga MATUMOTO

    Full Text Available Abstract Introduction Energy drinks (ED possess low pH and citric acid in their composition, making them potentially erosive beverages that can contribute to the high dental erosion rates found currently in the general population and also in young people. Objective To evaluate the mean pH and titratable acidity of commercial ED and the influence of a brand of ED on the superficial microhardness of human enamel. Material and method Ten commercial ED were selected and the pH of two lots of each ED with and without gas was obtained. Acid titration was conducted with the addition of NaOH aliquots until the pH 7 was reached. Eighteen human enamel specimens were allocated in three groups (N=6, Red Bull (RB, Red Bull Light (RBL and distilled water (C, submitted to an acid challenge with the ED, six consecutive times, with 12 hours intervals, during three days. Knoop microhardness was measured before and after the acid challenge. Result All ED brands tested presented low pH levels ranging from 2.1 to 3.2. Regarding titratable acidity, it was found that the amount of base required promoting the neutralization of the solutions ranged from 1200μL to 3750μL. Samples of human enamel in the RB and RBL groups submitted to the acid challenge presented significantly decreased Knoop microhardness when compared with the group C. Conclusion All ED examined have potential to promote mineral loss due to the low pH and high titratable acidity. The ED analyzed promoted significant mineral losses on the dental enamel surface.

  16. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...

  17. SCANNING ELECTRON-MICROSCOPIC EVALUATION OF THE FRACTURED SURFACES OF CANINE CALCULI FROM SUBSTRATA WITH DIFFERENT SURFACE FREE-ENERGY

    UYEN, HMW; JONGEBLOED, WL; BUSSCHER, HJ

    1991-01-01

    The strength of adhesion between dental calculus and enamel or dentin surfaces determines the ease with which the calculus can be removed by brushing or professional dental treatment. In this study, we examined the adhesion of canine calculi formed on substrata with different surface free energies

  18. Structural dependence of the 5d-metal surface energies as deduced from surface core-level shift measurements

    Mrartensson, N.; Saalfeld, H.B.; Kuhlenbeck, H.; Neumann, M.

    1989-01-01

    Surface core-level shift measurements performed at the BESSY storage ring yield -0.41(2) eV for Os(0001) and 0.00(10) eV for Re(0001). An analysis of the surface shifts in the 5d transition series shows that the surface energy as a function of Z has a maximum at lower Z for the bcc phase than for the fcc-hcp phases, at W and between Re and Os, respectively

  19. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    Ahmed, Bilal; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine

  20. Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics

    2015-11-05

    V compound semiconductor manufacturing. 3. METHODS, ASSUMPTIONS, AND PROCEDURES 3.1. Nanoscale engineering and tuning of electron processes by...found to be 60 – 80 meV. The specific equidistant positions of energy levels may be associated with the quasi- parabolic form of the confinement...4) where τtr is the electron transit time, i.e. the time that an electron spends in the detector moving from the emitter to the collector

  1. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  2. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  3. Surface influence on convoy electron emission at low energies

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  4. Low energy He+ irradiation effect on graphite surface

    Asari, E.; Nakamura, K.G.; Kitajima, M.; Kawabe, T.

    1992-01-01

    Study on the lattice disordering and the secondary electron emission under low energy (1-5keV) He + irradiation is reported. Real-time Raman measurements show that difference in the observed Raman spectra for different ion energies is due to the difference of the damage depth. The relation between the observed Raman spectrum and the depth profile of lattice damage is discussed. Energy dependence of the secondary electron emission coefficient are also described. (author)

  5. Towards highly sensitive strain sensing based on nanostructured materials

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  6. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  7. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  8. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review

    Stassi, Stefano; Cauda, Valentina; Canavese, Giancarlo; Pirri, Candido Fabrizio

    2014-01-01

    The large expansion of the robotic field in the last decades has created a growing interest in the research and development of tactile sensing solutions for robot hand and body integration. Piezoresistive composites are one of the most widely employed materials for this purpose, combining simple and low cost preparation with high flexibility and conformability to surfaces, low power consumption, and the use of simple read-out electronics. This work provides a review on the different type of composite materials, classified according to the conduction mechanism and analyzing the physics behind it. In particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are reviewed here, with a perspective overview on the most used filler types and polymeric matrices. A description of the state-of-the-art of the tactile sensor solutions from the point of view of the architecture, the design and the performance is also reviewed, with a perspective outlook on the main promising applications. PMID:24638126

  9. Nanoparticles doped film sensing based on terahertz metamaterials

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  10. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  11. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  12. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  13. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  14. Cluster ion-surface interactions: from meV to MeV energies

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  15. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  16. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  18. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces

    Calle-Vallejo, F.; Martínez, J. I.; García Lastra, Juan Maria

    2012-01-01

    phenomenon between any set of adsorbates bound similarly to the surface. On the example of the near-surface alloys of Pt, we show that scalability is a result of identical variations of adsorption energies with respect to the valence configuration of both the surface components and the adsorbates....

  19. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  20. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  1. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  2. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  3. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  4. 4H-SiC surface energy tuning by nitrogen up-take

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Amarasinghe, V.P. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Xu, C.; Gustafsson, T. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Stedile, F.C. [PGMICRO, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900, Porto Alegre, RS (Brazil); Feldman, L.C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-04-30

    Highlights: • Wettability modification of 4H-SiC as a function of nitrogen adsorption is reported. • SiC surface energy was significantly reduced as nitrogen was incorporated. • Modifications obtained were proved to be inert to etching and stable against time. • Variable control of SiC surface provides new opportunities for biomedical applications. - Abstract: Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  5. Effect of crystal habits on the surface energy and cohesion of crystalline powders.

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y

    2014-09-10

    The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.

  6. Molecular beam studies of energy transfer in scattering from crystal surfaces

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  7. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  8. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  9. Surface characterization by energy distribution measurements of secondary electrons and of ion-induced electrons

    Bauer, H.E.; Seiler, H.

    1988-01-01

    Instruments for surface microanalysis (e.g. scanning electron or ion microprobes, emission electron or ion microscopes) use the current of emitted secondary electrons or of emitted ion-induced electrons for imaging of the analysed surface. These currents, integrating over all energies of the emitted low energy electrons, are however, not well suited to surface analytical purposes. On the contrary, the energy distribution of these electrons is extremely surface-sensitive with respect to shape, size, width, most probable energy, and cut-off energy. The energy distribution measurements were performed with a cylindrical mirror analyser and converted into N(E), if necessary. Presented are energy spectra of electrons released by electrons and argon ions of some contaminated and sputter cleaned metals, the change of the secondary electron energy distribution from oxidized aluminium to clean aluminium, and the change of the cut-off energy due to work function change of oxidized aluminium, and of a silver layer on a platinum sample. The energy distribution of the secondary electrons often shows detailed structures, probably due to low-energy Auger electrons, and is broader than the energy distribution of ion-induced electrons of the same object point. (author)

  10. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  11. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  12. Radiation exchange between persons and surfaces for building energy simulations

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Dreau, Jerome Le

    2015-01-01

    Thermal radiation within buildings is a significant component of thermal comfort. Typically the methods applied for calculating view factors between a person and its building surfaces requires great computational time. This research developed a view factor calculation method suitable for building...

  13. Free energy surfaces from nonequilibrium processes without work measurement

    Adib, Artur B.

    2006-04-01

    Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.

  14. Earthquake Energy Distribution along the Earth Surface and Radius

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  15. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  16. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  17. Nanoscale control of energy and matter in plasma-surface interactions: Toward energy- and matter-efficient nanotech

    Ostrikov, K.

    2011-01-01

    The approach to control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at nano- and subnanometer scales is introduced. This ability is related to the solution of the grand challenge of directing energy and matter at nanoscales and is critical for the renewable energy and energy-efficient technologies for a sustainable future development. The examples of deterministic synthesis of self-organized arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication are considered to illustrate this possibility. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under nonequilibrium conditions and harnessing numerous plasma-specific controls of species creation, delivery to the surface, nucleation, and large-scale self-organization of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilized, and further processed to meet the specific requirements of the envisaged applications.

  18. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  19. Band energy control of molybdenum oxide by surface hydration

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  20. Optical emission from low-energy ion-surface collisions

    White, C.W.; Thomas, E.W.; Van der Weg, W.F.; Tolk, N.H.

    1977-01-01

    Impact of energetic heavy particles on surfaces gives rise to emission of optical radiation from reflected particles, sputtered particles and also from excited states of the solid. The present status of research in this area is reviewed with emphasis on understanding the basic mechanisms which give rise to formation of excited states. The spectral line shape from ejected atoms may be analyzed to provide information on the distribution of speeds and directions of the excited species; the line intensity provides a measure of the probability for creating the state. Formation of excited species is related both to the collision processes within the solid and also to the interaction of the recoiling ejected species with the target surface. Most ejected species are atomic but important examples of ejected molecules are also discussed. Luminescence induced in the solid itself is related to recombination of electron hole pairs and is related significantly to the presence of defects

  1. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

    Zhang, Yao; Wang, Ao; DeBenedictis, Elizabeth P.; Keten, Sinan

    2017-11-01

    The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered

  2. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  3. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; Abild-Pedersen, Frank; Nørskov, Jens K.; Chan, Karen

    2017-01-01

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. This shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.

  4. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  5. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  6. Energy characteristics of finest coal particles surfaces versus their upgrading using flotation

    Jerzy Sablik

    2007-07-01

    The paper presents selected results of investigations on energy properties of the fine coal particles, and methodological grounds for conducting such investigations. Using the discussed relationships, values of contact angle of coal particles with various degree of coalification in the range defined by the energy nonhomogeneity of the surfaces were computed. There have been determined the values of the contact angles of coal particles with hydrophobic and hydrophilic surfaces after coating with nonpolar and polar reagents. The energy state of the surfaces of coal particles in the feeds and products of industrial flotation were determined, which enabled to evaluate this process. 22 refs., 6 figs., 4 tabs.

  7. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  8. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  9. Statistical inference for remote sensing-based estimates of net deforestation

    Ronald E. McRoberts; Brian F. Walters

    2012-01-01

    Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...

  10. Surface energy balance measurements in the Mexico City: a review

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  11. Extension of a He-H2 potential energy surface

    Raczkowski, A.W.; Lester, W.A. Jr.

    1977-01-01

    The CI surface of Tsapline and Kutzelnigg is extended to smaller H 2 -He separations. Defining R as the H 2 -He distance, r as the H 2 separation, and γ as the angle between them, the ab initio values are fit to a Legendre series in cosγ retaining the first three (even) terms with the coefficients given as analytic functions of R and r to facilitate semiclassical scattering computations. The fit is quantitative for 1.0 approximately r/2+1. (Auth.)

  12. Fowler's approximation for the surface tension and surface energy of Lennard-Jones fluids revisited

    Mulero, A [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Galan, C [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain); Cuadros, F [Departamento de Fisica, Universidad de Extremadura, 06071-Badajoz (Spain)

    2003-04-16

    We present a detailed study of the validity of Fowler's approximation for calculating the surface tension and the surface energy of Lennard-Jones fluids. To do so, we consider three different explicit analytical expressions for the radial distribution function (RDF), including one proposed by our research group, together with very accurate expressions for the liquid and vapour densities, also proposed by our group. The calculation of the surface tension from the direct correlation function using both the Percus-Yevick and the hypernetted-chain approximations is also considered. Finally, our results are compared with those obtained by other authors by computer simulations or through relevant theoretical approximations. In particular, we consider the analytical expression proposed by Kalikmanov and Hofmans (1994 J. Phys.: Condens. Matter 6 2207-14) for the surface tension. Our results indicate that the values for the surface energy in Fowler's approximation obtained by other authors are adequate, and can be calculated from the RDF models. For the surface tension, however, the values considered as valid in previous works seem to be incorrect. The correct values can be obtained from our model for the RDF or from the Kalikmanov and Hofmans expression with suitable inputs.

  13. Constructing a multidimensional free energy surface like a spider weaving a web.

    Chen, Changjun

    2017-10-15

    Complete free energy surface in the collective variable space provides important information of the reaction mechanisms of the molecules. But, sufficient sampling in the collective variable space is not easy. The space expands quickly with the number of the collective variables. To solve the problem, many methods utilize artificial biasing potentials to flatten out the original free energy surface of the molecule in the simulation. Their performances are sensitive to the definitions of the biasing potentials. Fast-growing biasing potential accelerates the sampling speed but decreases the accuracy of the free energy result. Slow-growing biasing potential gives an optimized result but needs more simulation time. In this article, we propose an alternative method. It adds the biasing potential to a representative point of the molecule in the collective variable space to improve the conformational sampling. And the free energy surface is calculated from the free energy gradient in the constrained simulation, not given by the negative of the biasing potential as previous methods. So the presented method does not require the biasing potential to remove all the barriers and basins on the free energy surface exactly. Practical applications show that the method in this work is able to produce the accurate free energy surfaces for different molecules in a short time period. The free energy errors are small in the cases of various biasing potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  15. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  16. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  17. Relation between bulk compressibility and surface energy of electron-hole liquids

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  18. Energy storage considerations for a robotic Mars surface sampler

    O'Donnell, P.M.; Cataldo, R.L.; Gonzalez-Sanabria, O.D.

    1988-01-01

    Manned exploration of Mars is being proposed by the National Commission on Space for the next century. To accomplish this task with minimal resupply cost for extended stay times, use of Mars' resources is essential. Methods must be developed to manufacture or extract water and oxygen from elements indigenous to Mars before they send explorers to the planet. Therefore, they must send precursor surveying equipment to determine Mars' resources to a greater extent than is now known from Viking 1 and Viking 2 data. A 1992 launch is planned for the Mars Observer that will contribute greater mapping resolution and expand the scientific data base. The proposed rover will provide scientists with the necessary information about abundant resources that would guide the required technology development needed to support a manned Mars infrastructure. The actual rover operations plan for both the sample return and extended mission will have a large impact on rover capabilities and the power system supplying power for traversing and scientific instrumentation. POWER SOURCE AND CONVERSION. Several power source/conversion options for the rover have been identified. These include power generation on the lander, Entry Vehicle (EV), Mars Orbiter Vehicle (MOV) and on the rover itself. Power from the lander would require the rover to return to landing site to recharge the energy storage systems, which limits rover excursions to one-half the range of the storage capacity. For on-board rover power, a Radioisotope Thermoelectric Generator (RTG) has been considered with the appropriate energy storage to handle peak power demands

  19. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  20. Kinetic energy distributions of ions after surface collisions

    Short, R.T.; Todd, P.J.; Grimm, C.C.

    1991-01-01

    As a part of the development of an organic ion microprobe, to be used for imaging of particular organic compounds in biological tissue, various methods of quadrupole-based tandem mass spectroscopy (MS/MS) have been investigated. High transmission efficiency is essential for the success of the organic ion microprobe, due to expected low analyte concentrations in biological tissue and the potential for sample damage from prolonged exposure to the primary ion beam. MS/MS is necessary for organic ion imaging because of the complex nature of the biological matrices. The goal of these studies of was to optimize the efficiency of daughter ion production and transmission by first determining daughter ion properties and then designing ion optics based on those properties. The properties of main interest are daughter ion kinetic energy and angular distribution. 1 fig

  1. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    Whitmore, P.M.

    1982-10-01

    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed

  2. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  3. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  4. Scattering of low energy noble gas ions from a metal surface

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  5. Influence of compaction and surface roughness on low-energy ion scattering signals

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  6. Ab initio and work function and surface energy anisotropy of LaB6

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  7. Calibration of a distributed hydrology and land surface model using energy flux measurements

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  8. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of inelastic scattering of ultracold neutrons with small energy transfer at solid state surfaces

    Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.

    2001-01-01

    Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)

  10. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  11. Surface plasmon modes of a single silver nanorod: An electron energy loss study

    Nicoletti, Olivia; Wubs, Martijn; Mortensen, N. Asger

    2011-01-01

    We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima...

  12. Soil heat flux and day time surface energy balance closure at ...

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  13. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  14. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  15. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  16. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  17. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  18. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  19. Potential energy surface from spectroscopic data in the photodissociation of polyatomic molecules

    Kim, Hwa Joong; Kim, Young Sik

    2001-01-01

    The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO 2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-dependent inversion method and discussed several extensions of the algorithm

  20. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...

  1. Modification of the surface energy in isovalent nano-oxides prepared by chemical synthesis

    Miagava, J.; Gouvea, D.

    2011-01-01

    The phase stability of the nano-oxides depends on the bulk energy but it also depends on the surface energy. The difference of surface energy of the rutile and anatase phases result in a change of phase stability: TiO_2 without additives is stable as anatase when particles have nanometric size and a high specific surface area whereas rutile is stable when particles are larger. But this stability can be modified through the use of additives. Different studies demonstrate that additives segregate on the particle surface modifying the surface energy. In this work (1-X)TiO_2-XSnO_2 powders were synthesized by the polymeric precursor method with concentrations of 0 ≤ X ≤ 1. The specific surface area measurements demonstrate that the modification of the composition change the specific surface areas and it reaches a maximum at X = 0.005. The Raman spectroscopy demonstrates that a modification on the stability of the TiO_2 polymorphs occurs and the phase rutile is stabilized when SnO_2 is added to the nano powders.(author)

  2. Calculation of the surface energy of hcp-metals with the empirical electron theory

    Fu Baoqin; Liu Wei; Li Zhilin

    2009-01-01

    A brief introduction of the surface model based on the empirical electron theory (EET) and the dangling bond analysis method (DBAM) is presented in this paper. The anisotropy of spatial distribution of covalent bonds of hexagonal close-packed (hcp) metals such as Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Cd, Hf, and Re, has been analyzed. And under the first-order approximation, the calculated surface energy values for low index surfaces of these hcp-metals are in agreement with experimental and other theoretical values. Correlated analysis showed that the anisotropy of surface energy of hcp-metals was related with the ratio of lattice constants (c/a). The calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) is generated from EET.

  3. Dynamics of very low energy photoelectrons interacting with image charge of Cs/Cu(111) surface

    Hayashi, K.; Arafune, R.; Ueda, S.; Uehara, Y.; Ushioda, S.

    2005-01-01

    We have measured the very low energy photoelectron spectra of Cs-covered Cu(111) surfaces, and determined the mechanism for the appearance of a spike structure due to the interaction of emitted electron with its image charge. At high Cs coverage of 0.10 and 0.14 monolayers (ML), the spike structure appeared at the vacuum level. No such structure was found at low coverage of 0.06 ML. The vacuum level at high coverage lies in the energy gap at the Γ point in the surface Brillouin zone of the Cu(111) surface, while it lies outside the energy gap at low coverage. These results confirm the validity of our proposed mechanism that the spike structure appears when the vacuum level lies in the energy gap

  4. Full charge-density calculation of the surface energy of metals

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  5. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  6. Active surface model improvement by energy function optimization for 3D segmentation.

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Surface effects on sputtered atoms and their angular and energy dependence

    Hassanein, A.M.

    1985-04-01

    A comprehensive three-dimensional Monte Carlo computer code, Ion Transport in Materials and Compounds (ITMC), has been developed to study in detail the surfaces related phenomena that affect the amount of sputtered atoms and back-scattered ions and their angular and energy dependence. A number of important factors that can significantly affect the sputtering behavior of a surface can be studied in detail, such as having different surface properties and composition than the bulk and synergistic effects due to surface segregation of alloys. These factors can be important in determining and lifetime of fusion reactor first walls and limiters. The ITMC Code is based on Monte Carlo methods to track down the path and the damage produced by charged particles as they slow down in solid metal surfaces or compounds. The major advantages of the ITMC code are its flexibility and ability to use and compare all existing models for energy losses, all known interatomic potentials, and to use different materials and compounds with different surface and bulk composition to allow for dynamic surface composition to allow for dynamic surface composition changes. There is good agreement between the code and available experimental results without using adjusting parameters for the energy losses mechanisms. The ITMC Code is highly optimized, very fast to run and easy to use

  8. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  9. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    Dunning, F.B. E-mail: fbd@rice.edu; Dunham, H.R.; Oubre, C.; Nordlander, P

    2003-04-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  10. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    Dunning, F B; Oubre, C D; Nordlander, P

    2003-01-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  11. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  12. Effect of cocoa fat content on wetting and surface energy of chocolate

    Lubomír Lapčík

    2017-01-01

    Full Text Available The aim of this study was the quantification of the effect of the cocoa fat content on the wetting characteristics and surface free energy of different chocolate compositions. On the market, there are many different types of chocolate products which differ both in the sensory and physico-chemical properties together with their raw material compositions and the contents of the individual components. This paper focuses on differences in the use of different types of fats - cocoa butter, milk fat, equivalents or cocoa butter substitutes in chocolate products. Studied samples (prepared at Carla, Ltd. Company were followed by static contact angles of wetting measurements and by calculated surface free energies. There were investigated the effects of fat content and used fat types of the chocolate products on their final wettabilities and resulting surface free energies. There was found a linear dependence between total fat content and the surface free energy, which was gradually increasing with increasing fat content. Additionally, there were performed TG DTG and NIR spectrometry measurements of the tested materials with the aim to determine the melting point of studied fats used, as well as to determine and identify individual fat components of chocolate products which may affect the resulting value of surface free energy.

  13. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  14. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  15. On the mechanics of continua with boundary energies and growing surfaces

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in

  16. Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag3PO4 with high surface energy

    Xie, Yao; Huang, Zhaohui; Zhang, Zhijie; Zhang, Xiaoguang; Wen, Ruilong; Liu, Yangai; Fang, Minghao; Wu, Xiaowen

    2016-01-01

    Graphical abstract: The high amount of rhombic dodecahedral Ag 3 PO 4 particles with a high exposure of the {110} facets and high surface energy (the surface energy of the {110} facets was 1.31 J/m 2 , greater than that of the {100} facet (1.12 J/m 2 ).) exhibited excellent photocatalytic activity. - Highlights: • High contents of rhombic dodecahedral Ag 3 PO 4 photocatalysts are prepared. • Excessive EG can destroy the morphology of Ag 3 PO 4 in synthesis process. • The rhombic dodecahedral Ag 3 PO 4 exhibits high surface energy. • High surface energy implies high photocatalytic activity. - Abstract: In this study, a series of Ag 3 PO 4 photocatalysts with different contents of rhombic dodecahedral particles were prepared in one pot by a facile, novel hydrothermal method using ethylene glycol (EG), which served as both a morphology modifier and reducing agent. The effects of EG content on the morphologies of Ag 3 PO 4 photocatalysts were discussed. The photocatalytic activity of the Ag 3 PO 4 photocatalysts was evaluated by the degradation of methylene blue trihydrate under visible-light irradiation. With the use of 0.8% EG in the reaction solvent, the sample exhibited excellent photocatalytic activity, attributed to the high amount of rhombic dodecahedral Ag 3 PO 4 particles with a high exposure of the {110} facets and high surface energy. The surface energy of the {110} facets was 1.31 J/m 2 , greater than that of the {100} facet (1.12 J/m 2 ). However, with 1% EG in the reaction solvent, although the Ag 3 PO 4 photocatalysts were composed of a majority of rhombic dodecahedral Ag 3 PO 4 particles, tiny Ag particles formed from Ag + under the action of EG attached on the surface of the sample decreased the absorption of visible light, resulting in low photocatalytic activity.

  17. Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.

    de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri

    2015-07-01

    The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.

  18. Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics

    Hošek, Petr; Spiwok, Vojtěch

    2016-01-01

    Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.

  19. Silver inkjet printing with control of surface energy and substrate temperature

    Lee, S-H; Shin, K-Y; Hwang, J Y; Kang, K T; Kang, H S

    2008-01-01

    The characteristics of silver inkjet printing were intensively investigated with control of surface energy and substrate temperature. A fluorocarbon (FC) film was spincoated on a silicon (Si) substrate to obtain a hydrophobic surface, and an ultraviolet (UV)/ozone (O 3 ) treatment was performed to control the surface wettability of the FC film surface. To characterize the surface changes, we performed measurements of the static and dynamic contact angles and calculated the surface energy by Wu's harmonic mean model. The surface energy of the FC film increased with the UV/O 3 treatment time, while the contact angles decreased. In silver inkjet printing, the hydrophobic FC film could reduce the diameter of the printed droplets. Merging of deposited droplets was observed when the substrate was kept at room temperature. Substrate heating was effective in preventing the merging phenomenon among the deposited droplets, and in reducing the width of printed lines. The merging phenomenon of deposited droplets was also prevented by increasing the UV/O 3 treatment time. Continuous silver lines in the width range of 48.04–139.21 µm were successfully achieved by inkjet printing on the UV/O 3 -treated hydrophobic FC films at substrate temperatures below 90 °C

  20. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  1. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

    Guzinski, R.; Nieto, H.; Stisen, S.

    2015-01-01

    Evapotranspiration (ET) is the main link between the natural water cycle and the land surface energy budget. Therefore water-balance and energy-balance approaches are two of the main methodologies for modelling this process. The water-balance approach is usually implemented as a complex....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...

  3. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  4. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    Kolb, Brian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zhao, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331 (China); Jiang, Bin [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H{sub 2} → H{sub 2} + H, H + H{sub 2}O → H{sub 2} + OH, and H + CH{sub 4} → H{sub 2} + CH{sub 3}. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  5. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    Kolb, Brian; Zhao, Bin; Guo, Hua; Li, Jun; Jiang, Bin

    2016-01-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H 2 → H 2 + H, H + H 2 O → H 2 + OH, and H + CH 4 → H 2 + CH 3 . A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  6. Experimental determination of the thermal contact conductance between two solid surfaces by the energy pulse technique

    Rubin, Gerson Antonio

    1979-01-01

    An experimental procedure for the determination of the thermal contact conductance between two solid surfaces as a function of the contact pressure and the energy of the laser radiation has been developed using the laser pulse method. A rubi laser with variable energy levels was employed as a radiating pulse energy source. The laser beam was allowed to impinge perpendicularly on the front face of a electrolytic iron 73 4 . The temperature fluctuations resulting on the back surface of the sample was detected by a thermocouple, which Is coupled to a PDP-11/45 Computer 32 Kbytes of memory, through a Analog-Digital Converter. A theoretical function, derived exclusively for the problem mentioned in this work, was adjusted by a method of least square fitting of experimental results. This adjustment yielded the value of a parameter related to the contact conductance between two surfaces. The experimental error obtained for the thermal contact conductance was +- 4.9%. (author)

  7. Use of low energy alkali ion scattering as a probe of surface structure

    Overbury, S.H.

    1986-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distributions are discussed in terms of advantages and disadvantages of each. The scattering potential which is the primary non-structural parameter needed for analysis, is discussed in terms of recent experimental results. The structure of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo(111) surface and missing row reconstructions on the Au(110) and Pt(110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au(110) and Pt(110) surfaces and unreconstructed Mo(111) surfaces, and to ordering of adsorbates on Mo(001). 47 refs., 12 figs

  8. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  9. Interaction of low energy electrons with surface lattice vibrations. Final report

    Tong, S.Y.

    1984-01-01

    In carrying out the DOE contract, we have succeeded in constructing a new microscopic theory, with multiple scattering, for the inelastic scattering of electrons by surface vibrations. We have applied the theory to detailed studies of angle and energy variations of the inelastic cross-section for two important systems in surface physics: carbon monoxide molecules adsorbed on the (100) surface of a nickel crystal, and hydrogen atoms adsorbed on a reconstructed tungsten (100) surface. These calculations have outlined general trends that we expect to apply to a wide variety of systems. Also, we have discovered a series of new selection rules that apply to off-specular scattering. Particularly interesting are pseudo-selection rules which are not group theoretical in origin, but approximate statements that hold well when the electron scattering amplitude exhibits a slow energy variation. We have found and defined conditions for which these selection rules would hold and break down

  10. Molar Surface Gibbs Energy of the Aqueous Solution of Ionic Liquid [C4mim][Oac

    TONG Jing; ZHENG Xu; TONG Jian; QU Ye; LIU Lu; LI Hui

    2017-01-01

    The values of density and surface tension for aqueous solution of ionic liquid(IL) 1-butyl-3-methylimidazolium acetate([C4mim][OAc]) with various molalities were measured in the range of 288.15-318.15 K at intervals of 5 K.On the basis of thermodynamics,a semi-empirical model-molar surface Gibbs energy model of the ionic liquid solution that could be used to predict the surface tension or molar volume of solutions was put forward.The predicted values of the surface tension for aqueous [C4im][OAc] and the corresponding experimental ones were highly correlated and extremely similar.In terms of the concept of the molar Gibbs energy,a new E(o)tv(o)s equation was obtained and each parameter of the new equation has a clear physical meaning.

  11. Surface transformation hardening on steels treated with solar energy in central tower and heliostats field

    Rodriguez, G.P.; Lopez, V.; de Damborenea, J.J.; Vazquez, A.J. [Centro Nacional de Investigaciones Metalurgicas CENIM/CSIC, Madrid (Spain)

    1995-04-28

    The possibility of surface hardening on AISI 4140 steel treated with concentrated solar energy in solar installations for electricity production has been studied. The samples were slides from a 35 mm diameter steel bar and their height was 35 mm. The quenching was made in water but also was considered the possibility of self-quenching by cooling in air. The amount of the surface hardness and the different structures obtained in both cases are presented, and some discussion is made with reference to the surface hardness, the hardness profiles and the structures obtained. The heating of steel with concentrated solar energy may produce similar hardening to that obtained with more conventional techniques of surface hardening

  12. Surface free energy of CrN x films deposited using closed field unbalanced magnetron sputtering

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Fu, Y.-S.; Wang, Y.-C.; Lee, Y.-H.

    2006-01-01

    CrN x thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrN x films at temperatures in the range 20-170 deg. C. In this study CrN x thin films with CrN, Cr(N), Cr 2 N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr +2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrN x films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrN x film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 deg. C. This is lower than that of Cr(N), Cr 2 N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrN x films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness

  13. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  14. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  15. The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region

    Khosla, Radhika

    Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building

  16. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  17. The nanostructure formation on muscovite mica surface induced by intermediate-energy ions

    Zhou, P.; Zhang, HQ., E-mail: zhanghq@lzu.edu.cn; Zhang, Q.; Liu, Z.; Guan, S.; Wang, G.; Zhou, C.; Jia, J.; Lv, X.; Shao, J.; Cui, Y.; Chen, L.; Chen, X., E-mail: chenxm@lzu.edu.cn

    2013-07-15

    Muscovite mica sheets were bombarded by lithium, carbon and oxygen ions in the energy range from several hundred keV to several MeV. The induced surface structures were measured in the air with atomic force microscopy (AFM) in the tapping mode. The hillock-like structure on the mica surface was observed. The height of the hillock increases linearly when the energy loss is above 1.2 keV/nm. The induced structures are similar with the similar electronic stopping powers but different projectiles for muscovite mica.

  18. Search for high energy skimming neutrinos at a surface detector array

    Vo Van Thuan; Hoang Van Khanh; Pham Ngoc Diep

    2010-01-01

    In the present study we propose a new method for detection of high energy cosmological muon neutrinos by transition radiations at a medium interface. The emerging electro-magnetic radiations induced by earth-skimming heavy charged leptons are able to trigger a few of aligned neighboring local water Cherenkov stations at a surface detector array similar to the Pierre Auger Observatory. The estimation applied to the model of Gamma Ray Burst induced neutrino fluxes and the spherical earth surface shows a competitive rate of muon neutrino events in the energy range below the GZK cut-off. (author)

  19. Surface technology is essential for transition to a hydrogen-based energy system

    Nielsen, L. P.; Leisner, P.; Møller, P.

    2018-01-01

    The importance of advanced surface technology for the success of the ongoing energy turnaround in Germany has recently been discussed in this journal. The purpose of the present article is to add views based on the conditions valid for the Nordic region.......The importance of advanced surface technology for the success of the ongoing energy turnaround in Germany has recently been discussed in this journal. The purpose of the present article is to add views based on the conditions valid for the Nordic region....

  20. Surface absorption in the 32S+24Mg interactions at energies near the Coulomb barrier

    Pacheco, J.C.; Sanchez, F.; Diaz, J.; Ferrero, J.L.; Bilwes, B.; Kadi-Hanifi, D.

    1995-01-01

    Elastic scattering 32 S on 24 Mg has been measured at 65.0, 75.0, 86.3, 95.0 and 110.0 MeV-lab energies, and the data were systematically analysed with semi-phenomenological potentials. Using microscopic potentials we found similar results at the lowest incident energies, for which we have compared both the microscopic and semi-phenomenological potentials. It appears that the absorption takes place in a narrow range at the nuclear surface and is mainly due to the low lying collective surface states. (author). 41 refs., 11 figs., 4 tabs

  1. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)

    2014-12-01

    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  2. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  3. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  4. An ab initio potential energy surface for the reaction N+ + H2→ NH+ + H

    Gittins, M.A.; Hirst, D.M.

    1975-01-01

    Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N + + H 2 →NH + + H are reported. For the collinear approach of N + to H 2 , the 3 Σ - surface has no activation barrier and has a shallow well (ca.1eV). For perpendicular approach (Csub(2V)symmetry) the 3 B 2 states is of high energy, the 3 A 2 state has a shallow well but as the bond angle increases the 3 B 1 states decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3 B 1 (HNH) + . (auth.)

  5. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  6. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  7. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  8. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  9. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Brajkovic, Denis; Antonijevic, Djordje; Milovanovic, Petar; Kisic, Danilo; Zelic, Ksenija; Djuric, Marija; Rakocevic, Zlatko

    2014-01-01

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  10. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Brajkovic, Denis [Clinic for Dentistry, Department of Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac (Serbia); Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Kisic, Danilo [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia); Zelic, Ksenija; Djuric, Marija [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Rakocevic, Zlatko, E-mail: zlatkora@vinca.rs [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia)

    2014-08-30

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  11. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  12. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  13. Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures

    Anees, P; Valsakumar, M C; Chandra, Sharat; Panigrahi, B K

    2014-01-01

    Ab initio simulations have been performed to study the structure, energetics and stability of several plausible stacking sequences in graphite. These calculations suggest that in addition to the standard structures, graphite can also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal type stacking. The free energy difference between these structures is very small (∼1 meV/atom), and hence all the structures can coexist from purely energetic considerations. Calculated x-ray diffraction patterns are similar to those of the standard structures for 2θ ⩽ 70°. Shear elastic constant C 44 is negative in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal structures, suggesting that these structures are mechanically unstable. Phonon dispersions show that the frequencies of some modes along the Γ–A direction in the Brillouin zone are imaginary in all of the new structures, implying that these structures are dynamically unstable. Incorporation of zero point vibrational energy via the quasi-harmonic approximation does not result in the restoration of dynamical stability. Potential energy surfaces for the unstable normal modes are seen to have the topography of a potential hill for all the new structures, confirming that all of the new structures are inherently unstable. The fact that the potential energy surface is not in the form of a double well implies that the structures are linearly as well as globally unstable. (paper)

  14. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  15. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Arnau, A.; Ponce, V. H.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-01-01

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated

  16. On the topography of sputtered or chemically etched crystals: surface energies minimised

    Chadderton, L.T.; Cope, J.O.

    1984-01-01

    The sputtering of single or polycrystalline metal surfaces by heavy ions gives rise to the characteristic topographical features of etch pits, ripples, and cones (pyramids). For cones and pyramids, in particular, no completely satisfactory explanation exists as to the origin of the basic geometry. Scanning electron micrographs are shown. It is proposed that for topographical features of both chemical etch and ion beam origin on single crystal surfaces, the presence of facets on cones and pyramids in particular, is due to the minimization of surface energy. (U.K.)

  17. SEMIC: an efficient surface energy and mass balance model applied to the Greenland ice sheet

    M. Krapp

    2017-07-01

    Full Text Available We present SEMIC, a Surface Energy and Mass balance model of Intermediate Complexity for snow- and ice-covered surfaces such as the Greenland ice sheet. SEMIC is fast enough for glacial cycle applications, making it a suitable replacement for simpler methods such as the positive degree day (PDD method often used in ice sheet modelling. Our model explicitly calculates the main processes involved in the surface energy and mass balance, while maintaining a simple interface and requiring minimal data input to drive it. In this novel approach, we parameterise diurnal temperature variations in order to more realistically capture the daily thaw–freeze cycles that characterise the ice sheet mass balance. We show how to derive optimal model parameters for SEMIC specifically to reproduce surface characteristics and day-to-day variations similar to the regional climate model MAR (Modèle Atmosphérique Régional, version 2 and its incorporated multilayer snowpack model SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer. A validation test shows that SEMIC simulates future changes in surface temperature and surface mass balance in good agreement with the more sophisticated multilayer snowpack model SISVAT included in MAR. With this paper, we present a physically based surface model to the ice sheet modelling community that is general enough to be used with in situ observations, climate model, or reanalysis data, and that is at the same time computationally fast enough for long-term integrations, such as glacial cycles or future climate change scenarios.

  18. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  19. Benchmark Database of Transition Metal Surface and Adsorption Energies from Many-Body Perturbation Theory

    Schmidt, Per Simmendefeldt; Thygesen, Kristian Sommer

    2018-01-01

    (RPA) is found to yield high accuracy for both adsorption and surface energies. In contrast, all the considered density functionals fail to describe both quantities accurately. This establishes the RPA as a universally accurate method for surface science. In the second part, we use the RPA to construct...... be significant. RPA is compared to the more advanced renormalized adiabatic LDA (rALDA) method for a subset of the reactions, and they are found to describe the adsorbate-metal bond as well as adsorbate-adsorbate interactions similarly. The RPA results are compared to a range of standard density functional...... theory methods typically employed for surface reactions representing the various rungs on Jacob's ladder. The deviations are found to be highly functional, surface, and reaction dependent. Our work establishes the RPA and rALDA methods as universally accurate full ab initio methods for surface science...

  20. Low-energy electron diffraction experiment, theory and surface structure determination

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  1. Office buildings and energy from the environment. Cooling and heating using near-surface geothermal energy; Buerogebaeude und Umweltenergie. Kuehlen und Heizen mit oberflaechennaher Geothermie

    Bohne, Dirk; Harhausen, Gunnar; Wohlfahrt, Matthias [Leibniz Univ. Hannover (Germany). Inst. fuer Entwerfen und Konstruieren

    2009-07-01

    Increasing energy prices, uncertainties relating to imported energy and the first signs of an impending global climate change have enhanced interest in renewable energy sources, whose wide-spread use is receiving much public interest. Three scientists of the Institute of Design and Construction of Leibniz University Hanover investigated the application of near-surface geothermal energy for heating and cooling of buildings. (orig.)

  2. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  3. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  4. Surface Energy Balance in Jakarta and Neighboring Regions As Simulated Using Fifth Mesoscale Model (MM5

    Yopi Ilhamsyah

    2014-04-01

    Full Text Available The objective of the present research was to assess the surface energy balance particularly in terms of the computed surface energy and radiation balance and the development of boundary layer over Jakarta and Neighboring Regions (JNR by means of numerical model of fifth generation of Mesoscale Model (MM5. The MM5 with four domains of 9 kilometers in spatial resolution presenting the outermost and the innermost of JNR is utilized. The research focuses on the third and fourth domains covering the entire JNR. The description between radiation and energy balance at the surface is obtained from the model. The result showed that energy balance is higher in the city area during daytime. Meanwhile, energy components, e.g., surface sensible and latent heat flux showed that at the sea and in the city areas were higher than other areas. Moreover, ground flux showed eastern region was higher than others. In general, radiation and energy balance was higher in the daytime and lower in the nighttime for all regions. The calculation of Bowen Ratio, the ratio of surface sensible and latent heat fluxes, was also higher in the city area, reflecting the dominations of urban and built-up land in the region. Meanwhile, Bowen Ratio in the rural area dominated by irrigated cropland was lower. It is consistent with changes of land cover properties, e.g. albedo, soil moisture, and thermal characteristics. In addition, the boundary layer is also higher in the city. Meanwhile western region dominated by suburban showed higher boundary layer instead of eastern region.

  5. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  6. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  7. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  8. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  9. Surface Modification of MXenes: A Pathway to Improve MXene Electrode Performance in Electrochemical Energy Storage Devices

    Ahmed, Bilal

    2017-12-31

    The recent discovery of layered transition metal carbides (MXenes) is one of the most important developments in two-dimensional (2D) materials. Preliminary theoretical and experimental studies suggest a wide range of potential applications for MXenes. The MXenes are prepared by chemically etching ‘A’-layer element from layered ternary metal carbides, nitrides and carbonitrides (MAX phases) through aqueous acid treatment, which results in various surface terminations such as hydroxyl, oxygen or fluorine. It has been found that surface terminations play a critical role in defining MXene properties and affects MXene performance in different applications such as electrochemical energy storage, electromagnetic interference shielding, water purification, sensors and catalysis. Also, the electronic, thermoelectric, structural, plasmonic and optical properties of MXenes largely depend upon surface terminations. Thus, controlling the surface chemistry if MXenes can be an efficient way to improve their properties. This research mainly aims to perform surface modifications of two commonly studied MXenes; Ti2C and Ti3C2, via chemical, thermal or physical processes to enhance electrochemical energy storage properties. The as-prepared and surface modified MXenes have been studied as electrode materials in Li-ion batteries (LIBs) and supercapacitors (SCs). In pursuit of desirable MXene surface, we have developed an in-situ room temperature oxidation process, which resulted in TiO2/MXene nanocomposite and enhanced Li-ion storage. The idea of making metal oxide and MXene nanocomposites was taken to the next level by combining a high capacity anode materials – SnO2 – and MXene. By taking advantage of already existing surface functional groups (–OH), we have developed a composite of SnO2/MXene by atomic layer deposition (ALD) which showed enhanced capacity and excellent cyclic stability. Thermal annealing of MXene at elevated temperature under different atmospheres was

  10. Construction of diabatic energy surfaces for LiFH with artificial neural networks

    Guan, Yafu; Fu, Bina; Zhang, Dong H.

    2017-12-01

    A new set of diabatic potential energy surfaces (PESs) for LiFH is constructed with artificial neural networks (NNs). The adiabatic PESs of the ground state and the first excited state are directly fitted with NNs. Meanwhile, the adiabatic-to-diabatic transformation (ADT) angles (mixing angles) are obtained by simultaneously fitting energy difference and interstate coupling gradients. No prior assumptions of the functional form of ADT angles are used before fitting, and the ab initio data including energy difference and interstate coupling gradients are well reproduced. Converged dynamical results show remarkable differences between adiabatic and diabatic PESs, which suggests the significance of non-adiabatic processes.

  11. The conditions for total reflection of low-energy atoms from crystal surfaces

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  12. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface

    Kopylov, Oleksii; Huck, Alexander; Kadkhodazadeh, Shima

    2014-01-01

    to approximately 10 nm was observed. By comparing the carrier dynamics of the quantum wells and the nanocrystals, we found that nonradiative recombination via surface states, generated during dry etching of the wafer, counteracts the nonradiative energy-transfer process to the nanocrystals and therefore decreases......We have studied room-temperature, nonradiative resonant energy transfer from InGaN/GaN quantum wells to CdSe/ZnS nanocrystals separated by aluminum oxide layers of different thicknesses. Nonradiative energy transfer from the quantum wells to the nanocrystals at separation distances of up...

  13. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  14. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  15. Self-energy behavior away from the Fermi surface in doped Mott insulators.

    Merino, J; Gunnarsson, O; Kotliar, G

    2016-02-03

    We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.

  16. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  17. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Studt, Felix

    2007-01-01

    Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorp...

  18. Daily cycle of the surface energy balance in Antarctica and the influence of clouds

    van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; van As, D.; Boot, W.

    2006-01-01

    We present the summertime daily cycle of the Antarctic surface energy balance (SEB) and its sensitivity to cloud cover. We use data of automatic weather stations (AWS) located in four major Antarctic climate zones: the coastal ice shelf, the coastal and interior katabatic wind zone and the interior

  19. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  20. Modified-surface-energy methods for deriving heavy-ion potentials

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  1. The desorption behaviour of implanted noble gases at low energy on silicon surfaces

    Holtslag, A.H.M.; van Silfhout, Arend

    1987-01-01

    Under UHV conditions, clean crystalline Si(111) surfaces have been bombarded mass-selectively at room temperature with noble gas ions, Ne+, Ar+, Kr+, at normal incidence. By means of stepwise heating up to 1050 K the activation energies and desorbed doses of the noble gases have been straight

  2. A high performance GPU implementation of Surface Energy Balance System (SEBS) based on CUDA-C

    Abouali, Mohammad; Timmermans, J.; Castillo, Jose E.; Su, Zhongbo

    2013-01-01

    This paper introduces a new implementation of the Surface Energy Balance System (SEBS) algorithm harnessing the many cores available on Graphics Processing Units (GPUs). This new implementation uses Compute Unified Device Architecture C (CUDA-C) programming model and is designed to be executed on a

  3. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  4. A new analytical potential energy surface for the adsorption systemk CO/Cu(100)

    Marquardt, R.; Cuvelier, F.; Olsen, R.A.; Baerends, E.J.; Tremblay, J.C.; Saalfrank, P.

    2010-01-01

    Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M.

  5. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin

    2017-01-01

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  6. Potential energy surfaces of adsorbates on periodic substrates: Application of the Morse theory

    Pick, Štěpán

    2009-01-01

    Roč. 79, č. 4 (2009), 045403-1-5 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z40400503 Keywords : adsorbed layers * Morse potential * potential energy surfaces * substrates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.475, year: 2009

  7. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    Ng, Kim Choon

    2017-08-31

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  8. Surface energy balance of fresh and saline waters : AquaSEBS

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  9. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography

    Yucheng Peng; Douglas J. Gardner; Yousoo Han; Zhiyong Cai; Mandla A. Tshabalala

    2013-01-01

    Research and development of the renewable nanomaterial cellulose nanofibrils (CNFs) has received considerable attention. The effect of drying on the surface energy of CNFs was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and...

  10. Surface energy balance of seasonal snow cover for snow-melt ...

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  11. Impact of surface energy on the shock properties of granular explosives

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  12. Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces

    Kumar, Tanuj [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 1123029 (India); Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Manish, E-mail: manishbharadwaj@gmail.com [Department of Physics, Central University of Rajasthan, Kishangarh 305801 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Sahoo, P.K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-12-01

    Highlights: • A new process for controlling the near-surface amorphization of ripples on Si surfaces. • Ripples generation by 100 KeV Ar{sup +} and amorphization control by 60 KeV Ar{sup +} irradiation. • Advantage of energy-separated irradiation demonstrated by detailed RBS and AFM studies. • Relevant mechanism is presented on the basis of DAMAGE and SIMNRA simulations. • Key role of solid flow towards the amorphous/crystalline interface is demonstrated. - Abstract: Nanoscale ripples on semiconductor surfaces have potential application in biosensing and optoelectronics, but suffer from uncontrolled surface-amorphization when prepared by conventional ion-irradiation methods. A two-step, energy-separated sequential-irradiation enables simultaneous control of surface-amorphization and ripple-dimensions on Si(1 0 0). The evolution of ripples using 100 keV Ar{sup +} bombardment and further tuning of the patterns using a sequential-irradiation by 60 keV Ar{sup +} at different fluences are demonstrated. The advantage of this approach as opposed to increased fluence at the same energy is clarified by atomic force microscopy and Rutherford backscattering spectroscopy investigations. The explanation of our findings is presented through DAMAGE simulation.

  13. Mechanisms for the reflection of light atoms from crystal surfaces at kilovolt energies

    Hou, M.; Robinson, M.T.

    1978-01-01

    The computer program MARLOWE was used to investigate the backscattering of protons from the (110) surface of a nickel crystal. Grazing incidence was considered so that anisotropic effects originated mainly from the surface region. The contribution of aligned scattering was studied by comparing the results with similar calculations for an amorphous target. Energy distributions of backscattered particles were investigated for incident energies ranging from 0.1 to 5 keV. The structure of these distributions was explained by making calculations for several target thickness. Specular reflection was found to depend on the structure of the first few atomic planes only. The (110) rows in the surface plane were responsible for focusing into surface semichannels. Focusing in these semichannels was found to be the strongest under total reflection conditions (below about 1.3 keV) while the scattering intensity from surface rows increased with increasing incident energy. The orientation of the plane of incidence was found to have large influence on the relative contributions of the reflection mechanisms involved. (orig.) [de

  14. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  15. Global potential energy surface of ground state singlet spin O4

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  16. U. K. surface passenger transport sector. Energy consumption and policy options for conservation

    Maltby, D; Monteath, I G; Lawler, K A

    1978-12-01

    Forecasts of U.K. energy consumption in this sector for four future scenarios based on different economic growth rates, energy prices, and energy conservation policies, show that by the year 2000, private transport will probably account for 76-94% of total energy consumption in surface passenger transport. A 33% increase in the average miles-per-gallon fuel consumption through technological improvements in private vehicles, conversion of private vehicles to diesel oil, additional fuel taxation equivalent to 25 or 50% fuel price increase, a 10% reduction in average car engine size (encouraged by taxation), and changes in public transport technology offer energy savings of about 20, 5-10, 6.3 or 12.5, 2-4, and 2%, respectively. There is considerable uncertainty about the outcome of these options.

  17. Improved parametric fits for the HeH2 ab initio energy surface

    Muchnick, P.

    1992-01-01

    A brief history of the development of ab initio calculations for the HeH 2 quasi-molecule energy surface, and the parametric fits to these ab initio calculations, is presented. The concept of 'physical reasonableness' of the parametric fit is discussed. Several new improved parametric fits for the energy surface, meeting these requirements, are then proposed. One fit extends the Russek-Garcia parametric fit for the deep repulsion region to include r-dependent parameters, resulting in a more physically reasonable fit with smaller average error. This improved surface fit is applied to quasi-elastic collisions of He on H 2 in the impulse approximation. Previous classical calculations of the scaled inelastic vibrorotational excitation energy distributions are improved with this more accurate parametric fit of the energy surface and with the incorporation of quantum effects in vibrational excitation. It is shown that Sigmund's approach in developing his scaling law is incomplete in the contribution of the three-body interactions to vibrational excitation of the H 2 molecule is concerned. The Sigmund theory is extended to take into account for r-dependency of three-body interactions. A parametric fit for the entire energy surface from essentially 0 ≤R≤∞ and 1.2≤r≤1.6 a.u., where R is the intermolecular spacing and r is the hydrogen bonding length, is also presented. This fit is physically reasonable in all asymptotic limits. This first, full surface parametric fit is based primarily upon a composite of ab initio studies by Russek and Garcia and Meyer, Hariharan and Kutzelnigg. Parametric fits for the H 2 (1sσ g ) 2 , H 2 + (1sσ g ), H 2 + (2pσ u ) and (LiH 2 ) + energy surfaces are also presented. The new parametric fits for H 2 , H 2 + (1sσ g ) are shown to be improvements over the well-known Morse potentials for these surfaces

  18. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  19. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    Ranjan, M., E-mail: ranjanm@ipr.res.in; Joshi, P.; Mukherjee, S.

    2016-07-15

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar{sup +} ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  20. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  1. Trajectory resolved analysis of LEIS energy spectra: Neutralization and surface structure

    Beikler, Robert; Taglauer, Edmund

    2001-01-01

    For a quantitative evaluation of low-energy ion scattering (LEIS) data with respect to surface composition and structure a detailed analysis of the energy spectra is required. This includes the identification of multiple scattering processes and the determination of ion survival probabilities. We analyzed scattered ion energy spectra by using the computer code MARLOWE for which we developed a new analysis routine that allows to record energy distributions in dependence of the number of projectile-target atom collisions, in dependence of the distance of closest approach, or in dependence of the scattering crystalline layer. This procedure also permits the determination of ion survival probabilities by applying simple collision-dependent neutralization models. Experimental energy spectra for various projectile (He + , Ne + , Na + ) and target (transition metals, oxides) combinations are well reproduced and quantitative results for ion survival probabilities are obtained. These are largely in agreement with results obtained for bimetallic crystal surfaces obtained in a different way. Such MARLOWE calculations are also useful for the identification of structure relevant processes. This is shown exemplarily for the reconstructed Au(1 1 0) surface including a possibility to determine the (1x2)→(1x1) transition temperature

  2. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  3. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    Frisch, M.J.; Binkley, J.S.; Schaefer, H.F. III

    1984-01-01

    The relative energies of the stationary points on the FH 2 and H 2 CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H 2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Moller--Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H 2 →FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol -1 of the experimental value using the largest basis set considered. The qualitative features of the H 2 CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended

  5. Low-energy particle interaction at carbon nanowalls on W surface

    Tanaka, N., E-mail: nozomi.tanaka@ppl2.qse.tohoku.ac.j [Tohoku University, Aramaki 6-01-2, Aoba, Sendai 980-8579 (Japan); Yamaoka, H. [Harima Institute, RIKEN (The Institute of Physical and Chemical Research), Hyogo 679-5148 (Japan); Nishiura, M.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagamura, T.; Sasao, M. [Tohoku University, Aramaki 6-01-2, Aoba, Sendai 980-8579 (Japan); Kenmotsu, T. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Matsumoto, Y. [Tokushima Bunri University, Yamashiro, Tokushima 770-8514 (Japan); Wada, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2009-06-15

    We measured the characteristics of the reflected particles from a carbon nanowall (CNW) deposited on a W surface following the injection of 1-2 keV H{sup +} and O{sup +} ions. The reflected ion energies and intensities indicated a contribution from multiple scattering in the target. The reflection angular dependence of the reflected ion intensities reached the maximum around the mirror angle and showed a sharp distribution, which may be attributable to the effect due to the aligned structure of the CNW. The energies and intensities of the reflected ions decreased with the time of ion bombardment. The intensities and energies of the reflected ions were, however, recovered to some degree by baking the sample, indicating the surface modification due to retention of the injected particles during the injection. We used the Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) to study these processes theoretically and the calculated results supported the experimental results.

  6. Energy loss of MeV protons specularly reflected from metal surfaces

    Juaristi, J.I.; Garcia de Abajo, F.J.; Echenique, P.M.

    1996-01-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. copyright 1996 The American Physical Society

  7. Simulated Effects of Land Cover Conversion on the Surface Energy Budget in the Southwest of China

    Jiangbo Gao

    2014-03-01

    Full Text Available In this paper, the coupled WRF/SSiB model, accompanied by a Karst Rocky Desertification (KRD map of the Guizhou Karst Plateau (GKP of China, was applied to detect how the changed vegetation and soil characteristics over the GKP modify the energy balance at the land surface. The results indicated that land degradation led to reduced net radiation by inducing more upward shortwave and longwave radiation, which were associated with increasing surface albedo and temperature, respectively. The KRD also resulted in changed surface energy partitioning into sensible and latent heat fluxes. The latent heat flux at land surface was reduced substantially due to the higher surface albedo and stomatal resistance, the lower Leaf Area Index (LAI and roughness length in the degradation experiment, while the sensible heat flux increased, mainly because of the higher surface temperature. Furthermore, the moisture flux convergence was reduced, owing to the lower atmospheric heating and the relative subsidence. However, compared with the reduced evaporation, the decrease in moisture flux convergence contributed much less to the reduced precipitation. Precipitation strongly affects soil moisture, vegetation growth and phenology, and thus evaporation and convective latent heating, so when precipitation was changed, a feedback loop was created.

  8. Energy transfer and photochemistry on a metal surface: Mo(CO)6 on Rh(100)

    Germer, T.A.; Ho, W.

    1989-01-01

    The occurrence of photoinduced reactions on solid surfaces depends on the relative rates between the excited-state decomposition and the energy transfer to the surface. In this study, the photodecomposition of Mo(CO) 6 on Rh(100) at 90 K by 325-nm UV irradiation has been studied as a function of coverage and surface preparation using thermal desorption spectroscopy, electron energy-loss spectroscopy, and photoinduced desorption spectroscopy. It is found that Mo(CO) 6 adsorbs dissociatively on Rh(100) into carbonyl fragments and CO in the first monolayer and molecularly in multilayers. Photoinduced desorption of CO is observed for the multilayers adsorbed onto the dissociated first layer via a nonthermal electronic excitation of adsorbed metal carbonyls. The presence of the metal surface prevents complete decarbonylation as in the gas phase; deexcitation of electronically excited carbonyls is not sufficiently fast to quench all the observed photochemistry. It is also found that Mo(CO) 6 adsorbs molecularly on a presaturated CO ordered overlayer on Rh(100) and undergoes photodissociation to a greater degree than on the dissociated and disordered surface of carbonyl fragments. The ordered CO layer effectively screens the interaction between the molecular carbonyls and the Rh(100) layer surface

  9. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  10. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  11. Fast exploration of an optimal path on the multidimensional free energy surface

    Chen, Changjun

    2017-01-01

    In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475

  12. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  13. Proper surface channelling of low energy argon ions incident on a nickel (110) crystal

    Evdokimov, I.N.; Berg, J.A. van den; Armour, D.G.

    1979-01-01

    The scattering behaviour of 6 keV argon ions from a nickel (110) surface has been investigated for specular reflection under grazing incidence conditions. The occurrence of an anomalously high energy loss has been confirmed and the transition from chain scattering at large scattering angles to a distinctly different type of scattering at small angles has been investigated. The characteristics of the low angle scattering phenomena, which dominate the observed spectra at scattering angles below about 18 0 , may be explained in terms of a surface hyperchannelling model in which the incident ions are confined to move within the shallow 'potential valleys' between two atomic rows in the surface. The critical angle for occurrence of this phenomena which is distinctly different from surface semichannelling has been evaluated with Lindhard's standard string potential. The experimentally measured critical angles are in good agreement with the calculated ones. (author)

  14. Surface effects in the energy loss of ions passing through a thin foil

    Osma, J.; Garcia de Abajo, F.J.

    1997-01-01

    The role of surface plasmon excitation in the interaction of ions passing through thin films has been studied in both the Bloch hydrodynamic approximation and the local response approach for projectile velocities above the maximum of the stopping power curve. The effect of the surface is found to be much weaker when the dispersion of the modes is taken into consideration than in the case of nondispersive media, though qualitatively the main features of the hydrodynamic approach resemble those of the local one. A generalization of the Bothe-Landau convolution formula for the loss probability distribution is derived to take into account the scattering due to the surface. The effects of the surface in the energy-loss spectra are discussed. A comparison with experiment is given. copyright 1997 The American Physical Society

  15. Calculated energy distributions for light 0.25--18-keV ions scattered from solid surfaces

    Robinson, J.E.; Harms, A.A.; Karapetsas, S.K.

    1975-01-01

    Scattered energy distributions are calculated for light ions incident on Nb and Mo surfaces of interest for controlled nulcear fusion reactors. The scattered energy is found to vary as a function of the reflection coefficient between a multiple-collision limit at low energies and a single-collision Rutherford scattering limit at high energies. High-energy peaking of the scattered particle distributions is also found for low incident energies

  16. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  17. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  18. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  19. Determination of surface energies of hot-melt extruded sugar-starch pellets.

    Yeung, Chi-Wah; Rein, Hubert

    2018-02-01

    Hot-melt extruded sugar-starch pellets are an alternative for commercial sugar spheres, but their coating properties remain to be studied. Both the European Pharmcopoeia 8.6 and the United States Pharmacopoeia 40 specify the composition of sugar-starch pellets without giving requirements for the manufacturing process. Due to various fabrication techniques, the physicochemical properties of pellets may differ. Therefore, the adhesion energies of three coating dispersions (sustained, enteric and immediate release) on different types of pellets were investigated. In this context, the surface energies of various kinds of corn starch (normal, waxy, high-amylose) and sucrose pellets were analyzed using the sessile drop method, whereas the surface tensions of the coating dispersions were examined using the pendant drop method. The adhesion forces were calculated from the results of these studies. Furthermore, sugar spheres were characterized in terms of particle size distribution, porosity and specific surface area. An increase of the pellets' sucrose content leads to a more porous surface structure, which gives them an enhanced wetting behavior with coating dispersions. The adhesion energies of extruded sugar-starch pellets are similar to those of commercial sugar spheres, which comply with pharmacopeial requirements. Both types of pellets are equally suited for coating.

  20. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  1. Nanometer-size surface modification produced by single, low energy, highly charged ions

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  2. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  3. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  4. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance

    Saw, Cheng B.; Ayyangar, Komanduri M.; Pawlicki, Todd; Korb, Leroy J.

    1995-01-01

    Purpose: To determine the effects of extended source-to-surface distance (SSD) on dose distributions for a range of medium energy electron beams and cone sizes. Methods and Materials: The depth-dose curves and isodose distributions of 6 MeV, 10 MeV, and 14 MeV electron beams from a dual photon and multielectron energies linear accelerator were studied. To examine the influence of cone size, the smallest and the largest cone sizes available were used. Measurements were carried out in a water phantom with the water surface set at three different SSDs from 101 to 116 cm. Results: In the region between the phantom surface and the depth of maximum dose, the depth-dose decreases as the SSD increases for all electron beam energies. The effects of extended SSD in the region beyond the depth of maximum dose are unobservable and, hence, considered minimal. Extended SSD effects are apparent for higher electron beam energy with small cone size causing the depth of maximum dose and the rapid dose fall-off region to shift deeper into the phantom. However, the change in the depth-dose curve is small. On the other hand, the rapid dose fall-off region is essentially unaltered when the large cone is used. The penumbra enlarges and electron beam flatness deteriorates with increasing SSD

  5. Surface modification and metallization of polycarbonate using low energy ion beam

    Reheem, A.M. Abdel; Maksoud, M.I.A. Abdel; Ashour, A.H.

    2016-01-01

    The low energy argon ion is used for irradiation polycarbonate samples using cold cathode ion source. The surface of the PC substrates is examined using SEM, UV-spectroscopy and FTIR. It was found that the energy band gap decrease by increase argon ion fluence. Copper films are deposited onto polycarbonate (PC) substrates after irradiation by argon ion beam. The structure, surface morphology and the optical band gap are investigated using XRD, SEM and UV spectroscopy. It can be seen that the intensity increases with deposition time and band gap decreases from 3.45 eV for the pristine PC to ∼1.7 eV for copper thin film. - Highlights: • The low energy argon ion is used for irradiation polycarbonate samples. • The surface roughness increase from 9 µm to 23.5 µm after argon ion irradiated. • Copper films are deposited onto polycarbonate (PC) substrates. • Energy band gap decreases from 3.45 eV for pristine to 1.7 eV for copper thin film.

  6. Analysis of the free-energy surface of proteins from reversible folding simulations.

    Lucy R Allen

    2009-07-01

    Full Text Available Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  7. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  8. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  9. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method

    Jie Ji

    2017-02-01

    Full Text Available The influence of organic additives (Sasobit and RH and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90, and two aggregate types (limestone and basalt were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed.

  10. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  11. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data. (C) 2012 American......We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...... extended with a series of 3s3p2d1flg midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 angstrom from the molecular center of mass and at an angle of 9.08 degrees with respect...

  12. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  13. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  14. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  15. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  16. Determination of the specific surface energy of oxides and glasses in the solid-state

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  17. Energy of surface states for 3D magnetic Schrödinger operators

    Nasrallah, Marwa

    In this dissertation, we study the Schrödinger operator with magnetic field in a three dimensional domain with compact smooth boundary. Functions in the domain of the operator satisfy (magnetic) Neumann condition on the boundary. The operator depends on the semi-classical parameter....... As this parameter becomes small, certain eigenfunctions of the operator are localized near the boundary of the domain, hence they will be called surface states. The main result of this dissertation is the calculation of the leading order terms of the energy and the number of surface states when the semi-classical...

  18. Temperature dependence of the surface energy of mercury from 0 to 250 deg. C

    Halas, S

    2002-01-01

    The surface energy (SE) for mercury was calculated on the basis of the free electron model in which the electron density parameter, r sub s , for bulk electrons was calculated from the density of mercury while the electron density parameter for surface electrons, r sub s sub s , was assumed to be higher by a factor that is linearly dependent on temperature. Ideal agreement of calculated SE values with experimental data was attained for the temperatures 0-250 deg. C assuming that r sub s sub s = r sub s x 1.0021 sup T sup / sup 1 sup 0 sup 0 deg. C. (letter to the editor)

  19. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  20. Nuclear-deformation energies according to a liquid-drop model with a sharp surface

    Blocki, J.; Swiatecki, W.J.

    1982-05-01

    We present an atlas of 665 deformation-energy maps and 150 maps of other properties of interest, relevant for nuclear systems idealized as uniformly charged drops endowed with a surface tension. The nuclear shapes are parametrized in terms of two spheres modified by a smoothly fitted quadratic surface of revolution and are specified by three variables: asymmetry, sphere separation, and a neck variable (that goes over into a fragment-deformation variable after scission). The maps and related tables should be useful for the study of macroscopic aspects of nuclear fission and of collisions between any two nuclei in the periodic table

  1. Low energy ion scattering as a tool for surface structure and composition analysis

    Armour, D.G.

    1980-01-01

    Low energy ion scattering is finding increasing application in the study of areas such as gas adsorption, thin film deposition and surface damage creation and annealing during ion irradiation where structural and compositional changes occurring in only the outermost atomic layer need to be monitored. The capabilities of the technique and the ways in which it has been developed for different types of analysis depend strongly on the fundamental atomic collision processes taking place at the surface and it is these processes, together with examples of their role in analysis applications, that form the subject of this paper. (author)

  2. A thermal spike analysis of low energy ion activated surface processes

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  3. Positronium formation at surfaces and studies towards the production of low energy antihydrogen

    Cassidy, David Barry

    A magnetically guided slow positron beam has been used to measure positronium formation fractions via spectroscopy of annihilation radiation. Positrons with energies in the range 0-3 keV were implanted into tungsten, copper, magnesium oxide powder and silica aerogel targets at room temperature and at cryogenic temperatures ( 30 K). This was done with and without nitrogen gas condensed on the surface of these materials. The resulting gamma rays were detected by a CsI detector and an associated PC-based spectroscopy system. In most cases studied the measured energy dependence of the positronium fractions was consistent with previous similar work, however, anomalous behaviour was found in some of the data when gas was condensed on metal surfaces. Using the same positron beam initial measurements of positronium energy distributions have been made. This was accomplished using a HPGe detector to measure the Doppler shift of the energy' of the positronium annihilation radiation. This novel technique has not yet been refined and estimates of its potential are reported. A Monte Carlo simulation of the reaction to form antihydrogen by positronium impact upon antiprotons has been undertaken. Total and differential cross sections have been utilised as input to the simulation which models the conditions foreseen in planned antihydrogen formation experiments using antiprotons and positrons held in Penning traps. Thus, predictions of antihydrogen production rates, angular distributions and the variation of the mean antihydrogen temperature as a function of the incident positronium energy have been made.

  4. Computer simulation study of the displacement threshold-energy surface in Cu

    King, W.E.; Benedek, R.

    1981-01-01

    Computer simulations were performed using the molecular-dynamics technique to determine the directional dependence of the threshold energy for production of stable Frenkel pairs in copper. Sharp peaks were observed in the simulated threshold energy surface in between the low-index directions. Threshold energies ranged from approx.25 eV for directions near or to 180 eV at the position of the peak between and . The general topographical features of the simulated threshold-energy surface are in good agreement with those determined from an analysis of recent experiments by King et al. on the basis of a Frenkel-pair resistivity rho/sub F/ = 2.85 x 10 -4 Ω cm. Evidence is presented in favor of this number as opposed to the usually assumed value, rho/sub F/ = 2.00 x 10 -4 Ω cm. The energy dependence of defect production in a number of directions was investigated to determine the importance of nonproductive events above threshold

  5. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  6. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  7. Low energy ion beam systems for surface analytical and structural studies

    Nelson, G.C.

    1980-01-01

    This paper reviews the use of low energy ion beam systems for surface analytical and structural studies. Areas where analytical methods which utilize ion beams can provide a unique insight into materials problems are discussed. The design criteria of ion beam systems for performing materials studies are described and the systems now being used by a number of laboratories are reviewed. Finally, several specific problems are described where the solution was provided at least in part by information provided by low energy ion analysis techniques

  8. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  9. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  10. Inelastic energy loss of light particles scattered by solid surfaces at low energy: influence of the 'gap'

    Boudjema, M.; D'bichi, N.; Boudouma, Y.; Chami, A.C.; Arezki, B.; Khalal, K.; Benazeth, C.; Benoit-Cattin, P.

    2000-01-01

    The energy spectra of particles scattered by solid surfaces are used to determine the inelastic energy loss at low energy. Assuming the binary collision approximation, a modified TRIM code provides length distributions which are converted to time-of-flight (TOF) spectra by using the friction coefficient as an adjustable parameter. Owing to the nonlinear effects occurring in this energy range, the theoretical value of the electronic stopping power is performed from electron-particle scattering cross-section using a screened potential and so, the phase shifts, obtained self-consistently in the framework of density functional theory (DFT). In the case of He/a:Si interaction at 4 keV, the standard model leads to a largely overestimated value. This fact has been attributed to the presence of the electron energy gap E G and to the structure of the valence band. We verify this assumption in a non-static model involving all electrons of the valence band with a threshold condition v e '2 >v F 2 +2E G , where v F is the Fermi velocity and v e the electron velocity after scattering (non-static extended collisional model). The theoretical results agree very well with the experimental ones for He colliding three targets: a:Si, a:Ge and polycrystalline Ni at 4 keV. The calculations performed for the velocity range below 1 a.u. confirm the important role of the gap and the band structure in the lowering of stopping power at low velocity

  11. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  12. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  13. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  14. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  15. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  16. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  17. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  18. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  19. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  20. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    Colliex, Christian, E-mail: christian.colliex@u-psud.fr; Kociak, Mathieu; Stéphan, Odile

    2016-03-15

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  1. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  2. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  3. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  4. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l.-above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly...... negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0.......78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...

  5. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  6. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  7. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  8. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Nassisi Vincenzo

    2018-01-01

    Full Text Available In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  9. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  10. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  11. Structure and morphology of surface of silicon crystals to be applied for channeling at relativistic energies

    Vomiero, Alberto; Restello, Silvio; Scian, Carlo; Marchi, Enrico Boscolo; Mea, Gianantonio Della; Guidi, Vincenzo; Milan, Emiliano; Baricordi, Stefano; Martinelli, Giuliano; Carnera, Alberto; Sambo, Andrea

    2006-01-01

    Bent crystals can be successfully applied for extraction/collimation of relativistic particles. A crucial feature to obtain high extraction efficiencies is the treatment of the surfaces being encountered by the beam, since mechanical operations induce considerable lattice imperfections. In order to remove the superficial damaged layer a planar etching can be applied on the surface exposed to the beam. This work presents a systematic study of the morphology and the crystalline perfection of the surface of the samples that have been used in accelerators with high efficiency. Crystals with different surface treatments have been investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied on the characterisation of surface morphology. Low energy backscattering channeling of 2-MeV α particles or protons was used as a probe for the crystalline structure. The presence of a superficial damaged layer in the samples just after mechanical treatment was unveiled, while, in contrast, chemical etching leaves a surface with high crystalline perfection that can be related to the record efficiency

  12. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  13. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  14. The surface energy, thermal vibrations of dislocation lines and the critical crack extension force

    Chiang, Chien.

    1979-09-01

    The connections between atomic structure and mechanical properties of metals are interested by many physicist and mechanists recently. The authors of this paper try to connect the fracture of materials with the surface energy and dislocation properties, which may be treated with lattice dynamics and electron theory of solids. It shows that to combine the knowledge of solid state physics and fracture mechanics is quite important. (author)

  15. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  16. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  17. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  19. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  20. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  1. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics.

    Awasthi, Shalini; Kapil, Venkat; Nair, Nisanth N

    2016-06-15

    Metadynamics (MTD) is a very powerful technique to sample high-dimensional free energy landscapes, and due to its self-guiding property, the method has been successful in studying complex reactions and conformational changes. MTD sampling is based on filling the free energy basins by biasing potentials and thus for cases with flat, broad, and unbound free energy wells, the computational time to sample them becomes very large. To alleviate this problem, we combine the standard Umbrella Sampling (US) technique with MTD to sample orthogonal collective variables (CVs) in a simultaneous way. Within this scheme, we construct the equilibrium distribution of CVs from biased distributions obtained from independent MTD simulations with umbrella potentials. Reweighting is carried out by a procedure that combines US reweighting and Tiwary-Parrinello MTD reweighting within the Weighted Histogram Analysis Method (WHAM). The approach is ideal for a controlled sampling of a CV in a MTD simulation, making it computationally efficient in sampling flat, broad, and unbound free energy surfaces. This technique also allows for a distributed sampling of a high-dimensional free energy surface, further increasing the computational efficiency in sampling. We demonstrate the application of this technique in sampling high-dimensional surface for various chemical reactions using ab initio and QM/MM hybrid molecular dynamics simulations. Further, to carry out MTD bias reweighting for computing forward reaction barriers in ab initio or QM/MM simulations, we propose a computationally affordable approach that does not require recrossing trajectories. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The role of clouds in the surface energy balance over the Amazon forest

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    Deforestation in the Amazon region will initially impact the energy balance at the land surface through changes in land cover and surface hydrology. However, continuation of this human activity will eventually lead to atmospheric feedbacks, including changes in cloudiness which may play an important role in the final equilibrium of solar and terrestrial radiation at the surface. In this study, the different components of surface radiation over an undisturbed forest in the Amazon region are computed using data from the Amazon region micrometerological experiment (ARME). Several measures of cloudiness are defined: two estimated from the terrestrial radiation measurements, and one from the solar radiation measurements. The sensitivity of the surface fluxes of solar and terrestrial radiation to natural variability in cloudiness is investigated to infer the potential role of the cloudiness feedback in the surface energy balance. The results of this analysis indicate that a 1% decrease in cloudiness would increase net solar radiation by ca. 1.6 W/m 2 . However, the overall magnitude of this feedback, due to total deforestation of the Amazon forest, is likely to be of the same order as the magnitude of the decrease in net solar radiation due to the observed increase in surface albedo following deforestation. Hence, the total change in net solar radiation is likely to have a negligible magnitude. In contrast to this conclusion, we find that terrestrial radiation is likely to be more strongly affected; reduced cloudiness will decrease net terrestrial radiation; a 1% decrease in cloudiness induces a reduction in net terrestrial radiation of ca. 0.7 W/m 2 ; this process augments the similar effects of the predicted warming and drying in the boundary layer. Due to the cloudiness feedback, the most significant effect of large-scale deforestation on the surface energy balance is likely to be in the modification of the terrestrial radiation field rather than the classical albedo

  3. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  4. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  5. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  6. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  7. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  8. Surface oxidation in glassy arsenic trisulphide induced by high-energy γ-irradiation

    Shpotyuk, M.; Shpotyuk, O.; Serkiz, R.; Demchenko, P.; Kozhyukhin, S.

    2014-01-01

    Influence of high-energy γ-irradiation with ∼3 MGy dose on glassy g-As 2 S 3 was investigated by a complex of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction methods. A white layer composed of separate 1–2 μm rhombohedral arsenolite As 2 O 3 crystallites was observed at the surface of γ-irradiated samples. These As 2 O 3 extractions along with crystallised S allotropes are responsible for expansion of the first sharp diffraction peaks in the XRD patterns of g-As 2 S 3 . - Highlights: • As 2 O 3 crystallites are observed at the surface of γ-irradiated As 2 S 3 samples. • Observed crystallites can be removed from the surface after washing and polishing. • γ-Irradiation broadens the FSDP due to satellite lines located on its both sides. • As 2 O 3 and S phases extracted at the surface are responsible for satellite lines

  9. Energy-driven surface evolution in beta-MnO2 structures

    Yao, Wentao; Yuan, Yifei; Asayesh-Ardakani, Hasti; Huang, Zhennan; Long, Fei; Friedrich, Craig; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2018-01-01

    Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 < 100 > Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.

  10. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    Nguyen, Duc; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Girolami, Gregory S.; Lyding, Joseph; Gruebele, Martin

    2014-11-01

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB2 glass surface, two-state hopping of 1-2 nm diameter cooperatively rearranging regions or "clusters" occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how "mixed" features can show up in surface dynamics of glasses.

  11. Effects of O2 and H2O plasma immersion ion implantation on surface chemical composition and surface energy of poly vinyl chloride

    Zhang Wei; Chu, Paul K.; Ji Junhui; Zhang, Yihe; Jiang Zhimin

    2006-01-01

    Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O 2 and H 2 O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many C-C bonds are transformed into more polar oxygen containing functional groups

  12. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  13. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Magali Odi-Lara

    2016-03-01

    Full Text Available The main goal of this research was to estimate the actual evapotranspiration (ETc of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO dual crop coefficient approach, in which the basal crop coefficient (Kcb was derived from the soil adjusted vegetation index (SAVI calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82·SAVI − 0.07 (R2 = 0.95. The methodology was applied during two growing seasons (2010–2011 and 2012–2013, and ETc was evaluated using latent heat fluxes (LE from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm·day−1, which mean a relative error of 25%. The index of agreement (d values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards.

  14. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead.

    Imen, Sanaz; Chang, Ni-Bin; Yang, Y Jeffrey

    2015-09-01

    Adjustment of the water treatment process to changes in water quality is a focus area for engineers and managers of water treatment plants. The desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of total suspended solids (TSS) concentrations. This paper presents the development of a suite of nowcasting and forecasting methods by using high-resolution remote-sensing-based monitoring techniques on a daily basis. First, the integrated data fusion and mining (IDFM) technique was applied to develop a near real-time monitoring system for daily nowcasting of the TSS concentrations. Then a nonlinear autoregressive neural network with external input (NARXNET) model was selected and applied for forecasting analysis of the changes in TSS concentrations over time on a rolling basis onward using the IDFM technique. The implementation of such an integrated forecasting and nowcasting approach was assessed by a case study at Lake Mead hosting the water intake for Las Vegas, Nevada, in the water-stressed western U.S. Long-term monthly averaged results showed no simultaneous impact from forest fire events on accelerating the rise of TSS concentration. However, the results showed a probable impact of a decade of drought on increasing TSS concentration in the Colorado River Arm and Overton Arm. Results of the forecasting model highlight the reservoir water level as a significant parameter in predicting TSS in Lake Mead. In addition, the R-squared value of 0.98 and the root mean square error of 0.5 between the observed and predicted TSS values demonstrates the reliability and application potential of this remote sensing-based early warning system in terms of TSS projections at a drinking water intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Critical insight into the influence of the potential energy surface on fission dynamics

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  16. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  17. NATO Advanced Research Workshop on Geometrical Derivatives of Energy Surfaces and Molecular Properties

    Simons, Jack

    1986-01-01

    The development and computational implementation of analytical expres­ sions for the low-order derivatives of electronic energy surfaces and other molecular properties has undergone rapid growth in recent years. It is now fairly routine for chemists to make use of energy gradient information in locating and identifying stable geometries and transition states. The use of second analytical derivative (Hessian or curvature) expressions is not yet routine, and third and higher energy derivatives as well as property (e.g., dipole moment, polarizability) derivatives are just beginning to be applied to chemical problems. This NATO Advanced Research Workshop focused on analyzing the re­ lative merits of various strategies for deriving the requisite analyti­ cal expressions, for computing necessary integral derivatives and wave­ function parameter derivatives, and for efficiently coding these expres­ sions on conventional scalar machines and vector-oriented computers. The participant list contained many scientist...

  18. Energy pumping analysis of skating motion in a half pipe and on a level surface

    Feng, Z. C.; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields.

  19. Energy pumping analysis of skating motion in a half pipe and on a level surface

    Feng, Z C; Xin, Ming

    2015-01-01

    In this paper, an energy pumping mechanism for locomotion is analysed. The pumping is accomplished by exerting forces perpendicular to the direction of motion. The paper attempts to demonstrate an interesting application of the classical mechanics to two sporting events: a person skating in a half pipe and a person travelling on a level surface on a skateboard. The equations of motion based on simplified mechanical models are derived using the Lagrange mechanics. The energy-pumping phenomenon is revealed through numerical simulations with simple pumping actions. The result presented in this paper can be used as an interesting class project in undergraduate mechanics or physics courses. It also motivates potential new applications of energy pumping in many engineering fields. (paper)

  20. Two-Dimensional Free Energy Surfaces for Electron Transfer Reactions in Solution

    Shigeo Murata

    2008-01-01

    Full Text Available Change in intermolecular distance between electron donor (D and acceptor (A can induce intermolecular electron transfer (ET even in nonpolar solvent, where solvent orientational polarization is absent. This was shown by making simple calculations of the energies of the initial and final states of ET. In the case of polar solvent, the free energies are functions of both D-A distance and solvent orientational polarization. On the basis of 2-dimensional free energy surfaces, the relation of Marcus ET and exciplex formation is discussed. The transient effect in fluorescence quenching was measured for several D-A pairs in a nonpolar solvent. The results were analyzed by assuming a distance dependence of the ET rate that is consistent with the above model.

  1. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  2. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  3. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  4. Influence of milling process in the surface energy of glass tile frits

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-01-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO 2 by 5% of B 2 O 3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A 2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m - 2) and the less acidic constant (0.13 kJ.mol - 1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  5. Deposition of thin films and surface modification by pulsed high energy density plasma

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  6. Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5

    D. Wang

    2017-07-01

    Full Text Available Land surface models bear substantial biases in simulating surface water and energy budgets despite the continuous development and improvement of model parameterizations. To reduce model biases, Parr et al. (2015 proposed a method incorporating satellite-based evapotranspiration (ET products into land surface models. Here we apply this bias correction method to the Community Land Model version 4.5 (CLM4.5 and test its performance over the conterminous US (CONUS. We first calibrate a relationship between the observational ET from the Global Land Evaporation Amsterdam Model (GLEAM product and the model ET from CLM4.5, and assume that this relationship holds beyond the calibration period. During the validation or application period, a simulation using the default CLM4.5 (CLM is conducted first, and its output is combined with the calibrated observational-vs.-model ET relationship to derive a corrected ET; an experiment (CLMET is then conducted in which the model-generated ET is overwritten with the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, we demonstrate that CLMET greatly improves the hydrological simulations over most of the CONUS, and the improvement is stronger in the eastern CONUS than the western CONUS and is strongest over the Southeast CONUS. For any specific region, the degree of the improvement depends on whether the relationship between observational and model ET remains time-invariant (a fundamental hypothesis of the Parr et al. (2015 method and whether water is the limiting factor in places where ET is underestimated. While the bias correction method improves hydrological estimates without improving the physical parameterization of land surface models, results from this study do provide guidance for physically based model development effort.

  7. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  8. Improved drought monitoring in the Greater Horn of Africa by combining meteorological and remote sensing based indicators

    Horion, Stéphanie Marie Anne F; Kurnik, Blaz; Barbosa, Paulo

    2010-01-01

    , and therefore to better trigger timely and appropriate actions on the field. In this study, meteorological and remote sensing based drought indicators were compared over the Greater Horn of Africa in order to better understand: (i) how they depict historical drought events ; (ii) if they could be combined...... distribution. Two remote sensing based indicators were tested: the Normalized Difference Water Index (NDWI) derived from SPOT-VEGETATION and the Global Vegetation Index (VGI) derived form MERIS. The first index is sensitive to change in leaf water content of vegetation canopies while the second is a proxy...... of the amount and vigour of vegetation. For both indexes, anomalies were estimated using available satellite archives. Cross-correlations between remote sensing based anomalies and SPI were analysed for five land covers (forest, shrubland, grassland, sparse grassland, cropland and bare soil) over different...

  9. Surface energy exchanges over contrasting vegetation types on a subtropical sand island

    Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien

    2017-04-01

    The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.

  10. Future projections of the Greenland ice sheet energy balance driving the surface melt

    B. Franco

    2013-01-01

    Full Text Available In this study, simulations at 25 km resolution are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from three CMIP5 global circulation models (GCMs, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface air temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are preferentially driven by stronger sensible heat fluxes, induced by enhanced warm air advection over the ice sheet. Over the central dry snow zone, the surface albedo positive feedback induced by the increase in summer melt exceeds the negative feedback of heavier snowfall for TAS anomalies higher than 4 °C. In addition to the incoming longwave flux increase associated with the atmosphere warming, GCM-forced MAR simulations project an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-Interim–forced MAR for recent climate conditions, where the observed melt increase since the 1990s seems mainly to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season, which highlights the importance of solar radiation absorbed by the ice sheet surface in the melt SEB.

  11. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  12. The energy landscape of glassy dynamics on the amorphous hafnium diboride surface

    Nguyen, Duc; Girolami, Gregory S.; Mallek, Justin; Cloud, Andrew N.; Abelson, John R.; Lyding, Joseph; Gruebele, Martin

    2014-01-01

    Direct visualization of the dynamics of structural glasses and amorphous solids on the sub-nanometer scale provides rich information unavailable from bulk or conventional single molecule techniques. We study the surface of hafnium diboride, a conductive ultrahigh temperature ceramic material that can be grown in amorphous films. Our scanning tunneling movies have a second-to-hour dynamic range and single-point current measurements extend that to the millisecond-to-minute time scale. On the a-HfB 2 glass surface, two-state hopping of 1–2 nm diameter cooperatively rearranging regions or “clusters” occurs from sub-milliseconds to hours. We characterize individual clusters in detail through high-resolution (<0.5 nm) imaging, scanning tunneling spectroscopy and voltage modulation, ruling out individual atoms, diffusing adsorbates, or pinned charges as the origin of the observed two-state hopping. Smaller clusters are more likely to hop, larger ones are more likely to be immobile. HfB 2 has a very high bulk glass transition temperature T g , and we observe no three-state hopping or sequential two-state hopping previously seen on lower T g glass surfaces. The electronic density of states of clusters does not change when they hop up or down, allowing us to calibrate an accurate relative z-axis scale. By directly measuring and histogramming single cluster vertical displacements, we can reconstruct the local free energy landscape of individual clusters, complete with activation barrier height, a reaction coordinate in nanometers, and the shape of the free energy landscape basins between which hopping occurs. The experimental images are consistent with the compact shape of α-relaxors predicted by random first order transition theory, whereas the rapid hopping rate, even taking less confined motion at the surface into account, is consistent with β-relaxations. We make a proposal of how “mixed” features can show up in surface dynamics of glasses

  13. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  14. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  15. The role of surface energy fluxes in pan-Arctic snow cover changes

    Shi Xiaogang; Lettenmaier, Dennis P; Groisman, Pavel Ya; Dery, Stephen J

    2011-01-01

    We analyze snow cover extent (SCE) trends in the National Oceanic and Atmospheric Administration's (NOAA) northern hemisphere weekly satellite SCE data using the Mann-Kendall trend test and find that North American and Eurasian snow cover in the pan-Arctic have declined significantly in spring and summer over the period of satellite record beginning in the early 1970s. These trends are reproduced, both in trend direction and statistical significance, in reconstructions using the variable infiltration capacity (VIC) hydrological model. We find that spring and summer surface radiative and turbulent fluxes generated in VIC have strong correlations with satellite observations of SCE. We identify the role of surface energy fluxes and determine which is most responsible for the observed spring and summer SCE recession. We find that positive trends in surface net radiation (SNR) accompany most of the SCE trends, whereas modeled latent heat (LH) and sensible heat (SH) trends associated with warming on SCE mostly cancel each other, except for North America in spring, and to a lesser extent for Eurasia in summer. In spring over North America and summer in Eurasia, the SH contribution to the observed snow cover trends is substantial. The results indicate that ΔSNR is the primary energy source and ΔSH plays a secondary role in changes of SCE. Compared with ΔSNR and ΔSH, ΔLH has a minor influence on pan-Arctic snow cover changes.

  16. Tuning Surface Energy Landscapes in Metallic Quantum Films using Alkali Adsorbates

    Khajetoorians, Alexander; Qin, Shengyong; Zhu, Wenguang; Eisele, Holger; Zhang, Zhenyu; Shih, Chih-Kang

    2008-03-01

    Quantum confinement shows a strong interplay with growth and kinetics in thin metal systems where the Fermi wavelength has a special relationship to the surface normal lattice constant. In the case of Pb/Si(111) systems, this relationship reveals an interesting thickness-dependent bilayer oscillation in the density of states and surface energy up to a phase. In this paper, we report on a novel effect: tuning of the energy landscape of a flat-top quantum Pb mesa using Cs adsorbates. Using STM/STS, we show that depositing Cs adsorbates on a thin Pb mesa promotes quantum stable Pb nanoislands on preferentially unstable thicknesses. Thickness-dependent nanoisland densities show a strong bilayer oscillation correlating with quantum stability. By modifying the Cs coverage on the mesa surface, we can tune the lateral size distribution of the nanoislands and the overall amplitude of the island density oscillation. Nanoisland formation is linked to a step decoration of Cs adatoms along the step edge of the nanoisland.

  17. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  18. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  19. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  20. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.