WorldWideScience

Sample records for sensing intensive observation

  1. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  2. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [and others

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  3. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  4. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  5. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  6. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  7. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  8. Remote sensing observations of phytoplankton increases triggered by successive typhoons

    Science.gov (United States)

    Huang, Lei; Zhao, Hui; Pan, Jiayi; Devlin, Adam

    2017-12-01

    Phytoplankton blooms in the Western North Pacific, triggered by two successive typhoons with different intensities and translation speeds under different pre-existing oceanic conditions, were observed and analyzed using remotely sensed chlorophyll-a (Chl-a), sea surface temperature (SST), and sea surface height anomaly (SSHA) data, as well as typhoon parameters and CTD (conductivity, temperature, and depth) profiles. Typhoon Sinlaku, with relatively weaker intensity and slower translation speed, induced a stronger phytoplankton bloom than Jangmi with stronger intensity and faster translation speed (Chl-a>0.18 mg·m‒3 versus Chl-aTaiwan Island. Translation speed may be one of the important mechanisms that affect phytoplankton blooms in the study area. Pre-existing cyclonic circulations provided a relatively unstable thermodynamic structure for Sinlaku, and therefore cold water with rich nutrients could be brought up easily. The mixed-layer deepening caused by Typhoon Sinlaku, which occurred first, could have triggered an unfavorable condition for the phytoplankton bloom induced by Typhoon Jangmi which followed afterwards. The sea surface temperature cooling by Jangmi was suppressed due to the presence of the thick upper-ocean mixed-layer, which prevented the deeper cold water from being entrained into the upper-ocean mixed layer, leading to a weaker phytoplankton augment. The present study suggests that both wind (including typhoon translation speed and intensity) and pre-existing conditions (e.g., mixed-layer depths, eddies, and nutrients) play important roles in the strong phytoplankton bloom, and are responsible for the stronger phytoplankton bloom after Sinlaku's passage than that after Jangmi's passage. A new typhoon-influencing parameter is introduced that combines the effects of the typhoon forcing (including the typhoon intensity and translation speed) and the oceanic pre-condition. This parameter shows that the forcing effect of Sinlaku was stronger than

  9. Spectrographic observations of high intensity discharges

    International Nuclear Information System (INIS)

    Breton, C.; Charon, J.; Hubert, P.; Yvon, P.

    1957-01-01

    During straight discharges in deuterium at low pressure, the production of X-rays and neutrons has been observed. Spectroscopic observation of the light emitted reveals a broadening of the Balmer lines. From this a mean ionic density of the order of several 10 16 ions/cm 3 is deduced. (author) [fr

  10. Data Assimilation: Making Sense of Earth Observation

    Directory of Open Access Journals (Sweden)

    William Albert Lahoz

    2014-05-01

    Full Text Available Climate change, air quality and environmental degradation are important societal challenges for the 21st Century. These challenges require an intelligent response from society, which in turn requires access to information about the Earth System. This information comes from observations and prior knowledge, the latter typically embodied in a model describing relationships between variables of the Earth System. Data assimilation provides an objective methodology to combine observational and model information to provide an estimate of the most likely state and its uncertainty for the whole Earth System. This approach adds value to the observations – by filling in the spatio-temporal gaps in observations; and to the model – by constraining it with the observations. In this review paper we motivate data assimilation as a methodology to fill in the gaps in observational information; illustrate the data assimilation approach with examples that span a broad range of features of the Earth System (atmosphere, including chemistry; ocean; land surface; and discuss the outlook for data assimilation, including the novel application of data assimilation ideas to observational information obtained using Citizen Science. Ultimately, a strong motivation of data assimilation is the many benefits it provides to users. These include: providing the initial state for weather and air quality forecasts; providing analyses and reanalyses for studying the Earth System; evaluating observations, instruments and models; assessing the relative value of elements of the Global Observing System (GOS; and assessing the added value of future additions to the GOS.

  11. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  12. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  13. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Science.gov (United States)

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  14. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    Science.gov (United States)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  15. Data-intensive multispectral remote sensing of the nighttime Earth for environmental monitoring and emergency response

    International Nuclear Information System (INIS)

    Zhizhin, M; Poyda, A; Velikhov, V; Novikov, A; Polyakov, A

    2016-01-01

    All Most of the remote sensing applications rely on the daytime visible and infrared images of the Earth surface. Increase in the number of satellites, their spatial resolution as well as the number of the simultaneously observed spectral bands ensure a steady growth of the data volumes and computational complexity in the remote sensing sciences. Recent advance in the night time remote sensing is related to the enhanced sensitivity of the on-board instruments and to the unique opportunity to observe “pure” emitters in visible infrared spectra without contamination from solar heat and reflected light. A candidate set of the night-time emitters observable from the low-orbiting and geostationary satellites include steady state and temporal changes in the city and traffic electric lights, fishing boats, high-temperature industrial objects such as steel mills, oil cracking refineries and power plants, forest and agricultural fires, gas flares, volcanic eruptions and similar catastrophic events. Current satellite instruments can detect at night 10 times more of such objects compared to daytime. We will present a new data-intensive workflow of the night time remote sensing algorithms for map-reduce processing of visible and infrared images from the multispectral radiometers flown by the modern NOAA/NASA Suomi NPP and the USGS Landsat 8 satellites. Similar radiometers are installed on the new generation of the US geostationary GOES-R satellite to be launched in 2016. The new set of algorithms allows us to detect with confidence and track the abrupt changes and long-term trends in the energy of city lights, number of fishing boats, as well as the size, geometry, temperature of gas flares and to estimate monthly and early flared gas volumes by site or by country. For real-time analysis of the night time multispectral satellite images with global coverage we need gigabit network, petabyte data storage and parallel compute cluster with more than 20 nodes. To meet the

  16. Spatio-temporal modelling of biomass of intensively grazed perennial dairy pastures using multispectral remote sensing

    Science.gov (United States)

    Edirisinghe, Asoka; Clark, Dave; Waugh, Deanne

    2012-06-01

    Pasture biomass is a vital input for management of dairy systems in New Zealand. An accurate estimate of pasture biomass information is required for the calculation of feed budget, on which decisions are made for farm practices such as conservation, nitrogen use, rotational lengths and supplementary feeding leading to profitability and sustainable use of pasture resources. The traditional field based methods of measuring pasture biomass such as using rising plate metres (RPM) are largely inefficient in providing the timely information at the spatial extent and temporal frequency demanded by commercial environments. In recent times remote sensing has emerged as an alternative tool. In this paper we have examined the Normalised Difference Vegetation Index (NDVI) derived from medium resolution imagery of SPOT-4 and SPOT-5 satellite sensors to predict pasture biomass of intensively grazed dairy pastures. In the space and time domain analysis we have found a significant dependency of time over the season and no dependency of space across the scene at a given time for the relationship between NDVI and field based pasture biomass. We have established a positive correlation (81%) between the two variables in a pixel scale analysis. The application of the model on 2 selected farms over 3 images and aggregation of the predicted biomass to paddock scale has produced paddock average pasture biomass values with a coefficient of determination of 0.71 and a standard error of 260 kg DM ha-1 in the field observed range between 1500 and 3500 kg DM ha-1. This result indicates a high potential for operational use of remotely sensed data to predict pasture biomass of intensively grazed dairy pastures.

  17. Intensity cut-points for the Respiratory Distress Observation Scale

    Science.gov (United States)

    Campbell, Margaret L; Templin, Thomas N

    2015-01-01

    Background The Respiratory Distress Observation Scale© is an innovative solution to assessment when a dyspnea report cannot be elicited. The Respiratory Distress Observation Scale has acceptable reliability and validity psychometrics. Aim To identify distress-intensity cut-points of the Respiratory Distress Observation Scale. Design Receiver operating characteristic curve analysis was conducted with inpatients stratified by four levels of respiratory distress—none, mild, moderate, or severe. Patients provided three self-report measures of dyspnea: dichotomous (yes/no); a ranking of none, mild, moderate, or severe; and a numerical rating scale. Respiratory distress was assessed using the Respiratory Distress Observation Scale instrument. Setting/participants Participants were 136 adult inpatients, mean age 61.8 years (standard deviation = 13.18 years), 89.7% African American, and 56.6% female, who were recruited from an urban, tertiary care hospital in the Midwest of the United States. Results In all, 47% (n = 64) self-reported dyspnea (yes/no). Ranking was distributed as follows: none = 36, mild = 35, moderate = 40, and severe = 25. Numerical rating scale scores ranged from 0 to 10, mean = 4.99 (standard deviation = 2.9). Respiratory Distress Observation Scale scores ranged from 0 to 7, median (interquartile range) = 2 (1–3). Receiver operating characteristic curve analysis–determined Respiratory Distress Observation Scale score of 0–2 suggests little or no respiratory distress; score ≥3 signified moderate to severe distress. Conclusion A Respiratory Distress Observation Scale score ≥3 signifies a patient’s need for palliation of respiratory distress. An end-point for identifying responsiveness to treatment, in other words, respiratory comfort, is Respiratory Distress Observation Scale <3. Because patients with imminent respiratory failure, as typified by dying patients, were not represented yielding lower than expected Respiratory Distress

  18. An Intensive Observation of Calving at Helheim Glacier, East Greenland

    Science.gov (United States)

    Holland, David M.; Voytenko, Denis; Christianson, Knut; Dixon, Timothy H.; Mei, M. Jeffrey; Parizek, Byron R.; Vankova, Irena; Walker, Ryan T.; Walter, Jacob I.; Nicholls, Keith; hide

    2016-01-01

    Calving of glacial ice into the ocean from the Greenland Ice Sheet is an important component of global sea-level rise. The calving process itself is relatively poorly observed, understood, and modeled; as such, it represents a bottleneck in improving future global sea-level estimates in climate models. We organized a pilot project to observe the calving process at Helheim Glacier in east Greenland in an effort to better understand it. During an intensive one-week survey, we deployed a suite of instrumentation, including a terrestrial radar interferometer, global positioning system (GPS) receivers, seismometers, tsunameters, and an automated weather station. We were fortunate to capture a calving process and to measure various glaciological, oceanographic, and atmospheric parameters before, during, and after the event. One outcome of our observations is evidence that the calving process actually consists of a number of discrete events, spread out over time, in this instance over at least two days. This time span has implications for models of the process. Realistic projections of future global sea level will depend on an accurate parametrization of calving, and we argue that more sustained observations will be required to reach this objective.

  19. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    Science.gov (United States)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  20. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  1. Measurement of rain intensity by means of active-passive remote sensing

    Science.gov (United States)

    Linkova, Anna; Khlopov, Grygoriy

    2014-05-01

    Measurement of rain intensity is of great interest for municipal services and agriculture, particularly because of increasing number of floods and landslides. At that monitoring of amount of liquid precipitation allows to schedule work of hydrological services to inform the relevant public authorities about violent weather in time. That is why development of remote sensing methods for monitoring of rains is quite important task. The inverse problem solution of rain remote sensing is based on the measurements of scattering or radiation characteristics of rain drops. However liquid precipitation has a difficult structure which depends on many parameters. So using only scattering or radiation characteristics obtained by active and passive sensing at a single frequency does not allow to solve the inverse problem. Therefore double frequency sensing is widely used now for precipitation monitoring. Measurement of reflected power at two frequencies allows to find two parameters of drop size distribution of rain drops. However three-parameter distributions (for example gamma distribution) are the most prevalent now as a rain model, so in this case solution of the inverse problem requires the measurement of at least three uncorrelated variables. That is why a priori statistical meteorological data obtained by contact methods are used additionally to the double frequency sensing to solve the inverse problem. In particular, authors proposed and studied the combined method of double frequency sensing of rains based on dependence of the parameters of gamma distribution on rain intensity. The numerical simulation and experimental study shown that the proposed method allows to retrieve the profile of microstructure and integral parameters of rain with accuracy less than 15%. However, the effectiveness of the proposed method essentially depends on the reliability of the used statistical data which are tend to have a strong seasonal and regional variability led to significant

  2. The nocturnal acoustical intensity of the intensive care environment: an observational study.

    Science.gov (United States)

    Delaney, Lori J; Currie, Marian J; Huang, Hsin-Chia Carol; Lopez, Violeta; Litton, Edward; Van Haren, Frank

    2017-01-01

    The intensive care unit (ICU) environment exposes patients to noise levels that may result in substantial sleep disruption. There is a need to accurately describe the intensity pattern and source of noise in the ICU in order to develop effective sound abatement strategies. The objectives of this study were to determine nocturnal noise levels and their variability and the related sources of noise within an Australian tertiary ICU. An observational cross-sectional study was conducted in a 24-bed open-plan ICU. Sound levels were recorded overnight during three nights at 5-s epochs using Extech (SDL 600) sound monitors. Noise sources were concurrently logged by two research assistants. The mean recorded ambient noise level in the ICU was 52.85 decibels (dB) (standard deviation (SD) 5.89), with a maximum noise recording at 98.3 dB (A). All recorded measurements exceeded the WHO recommendations. Noise variability per minute ranged from 9.9 to 44 dB (A), with peak noise levels >70 dB (A) occurring 10 times/hour (SD 11.4). Staff were identified as the most common source accounting for 35% of all noise. Mean noise levels in single-patient rooms compared with open-bed areas were 53.5 vs 53 dB ( p  = 0.37), respectively. Mean noise levels exceeded those recommended by the WHO resulting in an acoustical intensity of 193 times greater than the recommended and demonstrated a high degree of unpredictable variability, with the primary noise sources coming from staff conversations. The lack of protective effects of single rooms and the contributing effects that staffs have on noise levels are important factors when considering sound abatement strategies.

  3. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  4. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, K.; Cappelaere, P. G.; Frye, S. W.; LeMoigne, J.; Mandl, D.; Flatley, T.; Geist, A.

    2015-12-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked "thing" with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the

  5. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, Karen; Cappleare, Patrice; Frye, Stuart; LeMoigne, Jacqueline; Mandl, Daniel; Flatley, Thomas; Geist, Alessandro

    2015-01-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked thing with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the control

  6. Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry

    Science.gov (United States)

    Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini

    We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.

  7. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  8. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  9. Atmospheric correction of Earth-observation remote sensing images

    Indian Academy of Sciences (India)

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that ...

  10. Sensing Water Vapon via Spacecraft Radio Occultation Observations

    Science.gov (United States)

    Kursinski, E. Robert; Hajj, George A.

    2000-01-01

    The radio occultation technique has been used to characterize planetary atmospheres since the 1960's spanning atmospheric pressures from 16 microbars to several bars. In 1988, the use of GPS signals to make occultation observations of Earth's atmosphere was realized by Tom Yunck and Gunnar Lindal at JPL. In the GPS to low-Earth-orbiter limb- viewing occultation geometry, Fresnel diffraction yield a unique combination of high vertical resolution of 100 m to 1 km at long wavelengths (approx. 20 cm) insensitive to particulate scattering which allows routine limb sounding from the lower mesosphere through the troposphere. A single orbiting GPS/GLONASS receiver can observe - 1000 to 1400 daily occultations providing as many daily, high vertical resolution soundings as the present global radiosonde network, but with far more evenly distributed, global coverage. The occultations yield profiles of refractivity as a function of height. In the cold, dry conditions of the upper troposphere and above (T less than 240 K), profiles of density, pressure (geopotential), and temperature can be derived. Given additional temperature information, water vapor can be derived in the midddle and lower troposphere with a unique combination of vertical resolution, global distribution and insensitivity to clouds and precipitation to an accuracy of approx. 0.2 g/kg. At low latitudes, moisture profiles will be accurate to 1-5% within the convective boundary layer and better than 20% below 6 to 7 km. Accuracies of climatological averages should be approx. 0. 1 g/kg limited by the biases in the temperature estimates. To use refractivity to constrain water vapor, knowledge of temperature is required. The simplest approach is to use the temperature field from an analysis such as the 6 hour ECMWF global analysis interpolated to the locations of each occultation. A better approach is to combine the temperature and moisture fields from such an analysis with the occultation refractivity in a weighting

  11. Wave front sensing for next generation earth observation telescope

    Science.gov (United States)

    Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.

    2017-09-01

    High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.

  12. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  13. Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope

    International Nuclear Information System (INIS)

    Nakao, M.; Inoue, S.; Oishi, R.; Yoshinobu, T.; Iwasaki, H.

    1995-01-01

    The extracellular pH-distribution of colonies of Saccharomyces cerevisiae (yeast) and Escherichia coli (E. coli) were observed using a newly-developed scanning-laser-beam pH-sensing microscope. Colonies were incubated either on top of agarose plates or between the pH-sensing surface and the agar. In the latter case, colony growth was observed in-situ. The colonies could be observed within a period as short as 8 h for E. coli. The pH-distribution profiles by the colonies were found to be very sharp, in agreement with simulation results. (author)

  14. Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan

    Science.gov (United States)

    Tariq, Salman; Zia, ul-Haq; Ali, Muhammad

    2016-02-01

    Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of

  15. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  16. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data

    Directory of Open Access Journals (Sweden)

    A. Gkikas

    2016-07-01

    frequencies and lower intensities. The performance of the satellite algorithm is assessed against surface-based daily data from 109 sun-photometric (AERONET and 22 PM10 stations. The agreement between AERONET and MODIS AOD is satisfactory (R = 0.505 − 0.750 and improves considerably when MODIS level 3 retrievals with higher sub-grid spatial representativeness and homogeneity are considered. Through the comparison against PM10 concentrations, it is found that the presence of dust is justified in all ground stations with success scores ranging from 68 to 97 %. However, poor agreement is evident between satellite and ground PM10 observations in the western parts of the Mediterranean, which is attributed to the desert dust outbreaks' vertical extension and the high altitude of dust presence. The CALIOP vertical profiles of pure and polluted dust observations and the associated total backscatter coefficient at 532 nm (β532 nm, indicate that dust particles are mainly detected between 0.5 and 6 km, though they can reach 8 km between the parallels 32 and 38° N in warm seasons. An increased number of CALIOP dust records at higher altitudes is observed with increased latitude, northwards to 40° N, revealing an ascending mode of the dust transport. However, the overall intensity of DD episodes is maximum (up to 0.006 km−1 sr−1 below 2 km and at the southern parts of the study region (30–34° N. Additionally, the average thickness of dust layers gradually decreases from 4 to 2 km, moving from south to north. In spring, dust layers of moderate-to-high β532 nm values ( ∼  0.004 km−1 sr−1 are detected over the Mediterranean (35–42° N, extending from 2 to 4 km. Over the western Mediterranean, dust layers are observed between 2 and 6 km, while their base height is decreased down to 0.5 km for increasing longitudes underlying the role of topography and thermal convection. The vertical profiles of CALIOP β532 nm confirm

  17. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  18. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    Science.gov (United States)

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  19. Spectrographic observations of high intensity discharges; Observation spectrographique de decharges a forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Breton, C; Charon, J; Hubert, P; Yvon, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    During straight discharges in deuterium at low pressure, the production of X-rays and neutrons has been observed. Spectroscopic observation of the light emitted reveals a broadening of the Balmer lines. From this a mean ionic density of the order of several 10{sup 16} ions/cm{sup 3} is deduced. (author) [French] Au cours de decharges rectilignes dans le deuterium sous basse pression, la production de rayons X et de neutrons a ete observee. L'observation spectroscopique de la lumiere emise revele un elargissement des raies de Balmer. On en deduit une densite ionique moyenne de l'ordre de quelques 10{sup 16} ions/cm{sup 3}. (auteur)

  20. Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE

    Science.gov (United States)

    Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.

    2005-03-01

    Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.

  1. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  2. The first observations of laser satellites from plasma created by high intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Osterheld, A.; Young, B.; Dunn, J.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Laser satellites, i.e. spectral lines caused by non-linear interaction of strong laser radiation with multicharged ions, are observed for the first time. Their identification are carried out by comparison of both experimental wavelengths and intensities with theoretical ones. It is shown that observation of laser satellites allows to measure directly the energies of ionic metastable states. (orig.). 3 refs.

  3. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  4. Local Scale Radiobrightness Modeling During the Intensive Observing Period-4 of the Cold Land Processes Experiment-1

    Science.gov (United States)

    Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.

    2004-12-01

    The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.

  5. OPUS: A Comprehensive Search Tool for Remote Sensing Observations of the Outer Planets. Now with Enhanced Geometric Metadata for Cassini and New Horizons Optical Remote Sensing Instruments.

    Science.gov (United States)

    Gordon, M. K.; Showalter, M. R.; Ballard, L.; Tiscareno, M.; French, R. S.; Olson, D.

    2017-06-01

    The PDS RMS Node hosts OPUS - an accurate, comprehensive search tool for spacecraft remote sensing observations. OPUS supports Cassini: CIRS, ISS, UVIS, VIMS; New Horizons: LORRI, MVIC; Galileo SSI; Voyager ISS; and Hubble: ACS, STIS, WFC3, WFPC2.

  6. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  7. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-05-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  8. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  9. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Science.gov (United States)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  10. Measurement of guided light-mode intensity: An alternative waveguide sensing principle

    DEFF Research Database (Denmark)

    Horvath, R.; Skivesen, N.; Pedersen, H.C.

    2004-01-01

    An alternative transduction mechanism for planar optical waveguide sensors is reported. Based on a simple measurement of the mode intensity, the presented transduction is an interesting alternative to the conventional mode-angle transduction, because the expensive, high-precision angular rotation...

  11. Deconstructing the Rosenfeld curve: Making sense of California's low electricity intensity

    International Nuclear Information System (INIS)

    Sudarshan, Anant

    2013-01-01

    Regulatory regimes that have increased household energy efficiency are of widespread interest to policymakers today. A prominent example is the state of California where electricity intensities in the residential sector have stayed near constant since the 1970s in sharp contrast to nationwide trends in the United States. A structural model of residential energy consumption is used to show that the use of energy intensities alone to evaluate the success of California efficiency programs is misleading and glosses over important policy independent factors. We quantify important effects of price, climate conditions and demographic characteristics on energy consumption in California. We also provide evidence of split incentive considerations in residential energy consumption patterns. We conclude that while state policy may have had some effect on efficiency, caution needs to be exercised in using the California example to inform expectations from similar measures in other regions. - Highlights: • We model electricity and heating fuel consumption in US households. • We use the structural model to estimate price elasticities. • California energy intensities are strongly influenced by policy independent factors. • The role of energy efficiency policy in lowering intensities is limited. • Evidence of split incentive considerations in energy demand

  12. AIP1OGREN: Aerosol Observing Station Intensive Properties Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, Annette [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flynn, Connor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-15

    The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS). Aerosol extensive properties depend on both the nature of the aerosol and the amount of the aerosol. We compute several properties as relationships between the various extensive properties. These intensive properties are independent of aerosol amount and instead relate to intrinsic properties of the aerosol itself. Along with the original extensive properties we report aerosol single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and Ångström exponent for scattering and absorption with one-minute averaging. An hourly averaged file is produced from the 1-minute files that includes all extensive and intensive properties as well as submicron scattering and submicron absorption fractions. Finally, in both the minutely and hourly files the aerosol radiative forcing efficiency is provided.

  13. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    Science.gov (United States)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall

  14. The Eldicus prospective, observational study of triage decision making in European intensive care units. Part II: Intensive care benefit for the elderly

    DEFF Research Database (Denmark)

    Sprung, Charles L; Artigas, Antonio; Kesecioglu, Jozef

    2012-01-01

    on mortality and intensive care unit benefit, specifically for elderly patients. DESIGN:: Prospective, observational study of triage decisions from September 2003 until March 2005. SETTING:: Eleven intensive care units in seven European countries. PATIENTS:: All patients >18 yrs with an explicit request......RATIONALE:: Life and death triage decisions are made daily by intensive care unit physicians. Admission to an intensive care unit is denied when intensive care unit resources are constrained, especially for the elderly. OBJECTIVE:: To determine the effect of intensive care unit triage decisions...... care unit rejections than younger patients and have a higher mortality when admitted, the mortality benefit appears greater for the elderly. Physicians should consider changing their intensive care unit triage practices for the elderly....

  15. Intense Particulate Pollution Events Observed with Lidar over the Paris Megalopolis

    Science.gov (United States)

    Chazette, Patrick; Royer, Philippe

    2016-06-01

    The great particulate pollution event that affected the Paris Megalopolis in March 2014 was due to long-range transport from the northern-northeastern Europe. Although this phenomenon has appeared as exceptional in the media, this is not an exception and similar events have already been observed by lidar measurements. Here we will briefly describe and illustrate the origin of this intense pollution obviously harmful to health.

  16. Intense Particulate Pollution Events Observed with Lidar over the Paris Megalopolis

    Directory of Open Access Journals (Sweden)

    Chazette Patrick

    2016-01-01

    Full Text Available The great particulate pollution event that affected the Paris Megalopolis in March 2014 was due to long-range transport from the northern-northeastern Europe. Although this phenomenon has appeared as exceptional in the media, this is not an exception and similar events have already been observed by lidar measurements. Here we will briefly describe and illustrate the origin of this intense pollution obviously harmful to health.

  17. Intense Particulate Pollution Events Observed with Lidar over the Paris Megalopolis

    OpenAIRE

    Chazette Patrick; Royer Philippe

    2016-01-01

    The great particulate pollution event that affected the Paris Megalopolis in March 2014 was due to long-range transport from the northern-northeastern Europe. Although this phenomenon has appeared as exceptional in the media, this is not an exception and similar events have already been observed by lidar measurements. Here we will briefly describe and illustrate the origin of this intense pollution obviously harmful to health.

  18. Developing A Model for Lake Ice Phenology Using Satellite Remote Sensing Observations

    Science.gov (United States)

    Skoglund, S. K.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Ewing, H. A.

    2017-12-01

    Many northern temperate freshwater lakes are freezing over later and thawing earlier. This shift in timing, and the resulting shorter duration of seasonal ice cover, is expected to impact ecological processes, negatively affecting aquatic species and the quality of water we drink. Long-term, direct observations have been used to analyze changes in ice phenology, but those data are sparse relative to the number of lakes affected. Here we develop a model to utilize remote sensing data in approximating the dates of ice-on and ice-off for many years over a variety of lakes. Day and night surface temperatures from MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra (MYD11A1 and MOD11A1 data products) for 2002-2017 were utilized in combination with observed ice-on and ice-off dates of Lake Auburn, Maine, to determine the ability of MODIS data to match ground-based observations. A moving average served to interpolate MODIS temperature data to fill data gaps from cloudy days. The nighttime data were used for ice-off, and the daytime measurements were used for ice-on predictions to avoid fluctuations between day and night ice/water status. The 0˚C intercepts of those data were used to mark approximate days of ice-on or ice-off. This revealed that approximations for ice-off dates were satisfactory (average ±8.2 days) for Lake Auburn as well as for Lake Sunapee, New Hampshire (average ±8.1 days), while approximations for Lake Auburn ice-on were less accurate and showed consistently earlier-than-observed ice-on dates (average -33.8 days). The comparison of observed and remotely sensed Lake Auburn ice cover duration showed relative agreement with a correlation coefficient of 0.46. Other remote sensing observations, such as the new GOES-R satellite, and further exploration of the ice formation process can improve ice-on approximation methods. The model shows promise for estimating ice-on, ice-off, and ice cover duration for northern temperate lakes.

  19. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  20. Spatial correlations in intense ionospheric scintillations - comparison between numerical computation and observation

    International Nuclear Information System (INIS)

    Kumagai, H.

    1987-01-01

    The spatial correlations in intense ionospheric scintillations were analyzed by comparing numerical results with observational ones. The observational results were obtained by spaced-receiver scintillation measurements of VHF satellite radiowave. The numerical computation was made by using the fourth-order moment equation with fairly realistic ionospheric irregularity models, in which power-law irregularities with spectral index 4, both thin and thick slabs, and both isotropic and anisotropic irregularities, were considered. Evolution of the S(4) index and the transverse correlation function was computed. The numerical result that the transverse correlation distance decreases with the increase in S(4) was consistent with that obtained in the observation, suggesting that multiple scattering plays an important role in the intense scintillations observed. The anisotropy of irregularities proved to act as if the density fluctuation increased. This effect, as well as the effect of slab thickness, was evaluated by the total phase fluctuations that the radiowave experienced in the slab. On the basis of the comparison, the irregularity height and electron-density fluctuation which is necessary to produce a particular strength of scintillation were estimated. 30 references

  1. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    Science.gov (United States)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  2. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  3. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011

    Science.gov (United States)

    Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.

    2013-08-01

    The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.

  4. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    Science.gov (United States)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  5. Observations of intense velocity shear and associated electrostatic waves near an auroral arc

    International Nuclear Information System (INIS)

    Kelley, M.C.; Carlson, C.W.

    1977-01-01

    An intense shear in plasma flow velocity of magnitude 20 (m/s)m -1 has been detected at the edge of an auroral arc. The region of shear appears to display structure with two characteristic scale sizes. The larger structures were of the order of a few kilometers in size and were identified by a deviation of the direction of the charge sheets crossed by the rocket from a direction parallel to the visible arc. As is shown in the companion paper (Carlson and Kelley, 1977), the average (undisturbed) charge sheet was parallel to the arc. These observations are consistent with television studies which often display such structures propagating along the edges of auroral forms. Additional intense irregularities were detected with characteristic wavelengths smaller than the scale size of the shear. The irregularities are discussed in light of the branches of a velocity shear driven instability suggested by several workers: the Kelvin-Helmholtz instability operating at the longest wavelengths and the drift shear instability at the shorter. Neither mode has wavelengths as short as those observed however. A velocity shear mechanism operating at wavelengths short in comparison with the shear scale length, such as those observed here, would be of significant geophysical importance. For example, it could be responsible for production of high-latitude irregularities which exist throughout the polar cap and for the short-wavelength waves responsible for intense 3-m backscatter during equatorial spread F conditions. Since the wavelengths produced by the short-wavelength mode are in the range of typical auroral E region radars, such data must be carefully checked for F region contamination

  6. Forecasting probabilistic seismic shaking for greater Tokyo from 400 years of intensity observations (Invited)

    Science.gov (United States)

    Bozkurt, S.; Stein, R. S.; Toda, S.

    2009-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past shaking. We calculate the time-averaged (Poisson) probability of severe shaking by using more than 10,000 intensity observations recorded since AD 1600 in a 350-km-wide box centered on Tokyo. Unlike other hazard assessment methods, source and site effects are included without modeling, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same; and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct here suggest that both assumptions are sound. The resulting 30-year probability of IJMA≥6 shaking (~PGA≥0.9 g or MMI≥IX) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba. This result means that there is a 30% chance that 4 million people would be subjected to IJMA≥6 shaking during an average 30-year period. We also produce exceedance maps of peak ground acceleration for building code regulations, and calculate short-term hazard associated with a hypothetical catastrophe bond. Our results resemble an independent assessment developed from conventional seismic hazard analysis for greater Tokyo. Over 10000 intensity observations stored and analyzed using geostatistical tools of GIS. Distribution of historical data is shown on this figure.

  7. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes

  8. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  9. Intensity of emission lines of the quiescent solar corona: comparison between calculated and observed values

    Science.gov (United States)

    Krissinel, Boris

    2018-03-01

    The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.

  10. Detection and plant monitoring programs: lessons from an intensive survey of Asclepias meadii with five observers.

    Directory of Open Access Journals (Sweden)

    Helen M Alexander

    Full Text Available Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering, and patch size (number of stems on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches, the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.

  11. Detection and plant monitoring programs: lessons from an intensive survey of Asclepias meadii with five observers.

    Science.gov (United States)

    Alexander, Helen M; Reed, Aaron W; Kettle, W Dean; Slade, Norman A; Bodbyl Roels, Sarah A; Collins, Cathy D; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers) generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.

  12. Corroborating a new probabilistic seismic hazard assessment for greater Tokyo from historical intensity observations

    Science.gov (United States)

    Bozkurt, S.; Stein, R.; Toda, S.

    2006-12-01

    The long recorded history of earthquakes in Japan affords an opportunity to forecast seismic shaking exclusively from past observations of shaking. For this we analyzed 10,000 intensity observations recorded during AD 1600-2000 in a 350 x 350 km area centered on Tokyo in a Geographic Information System. A frequency-intensity curve is found for each 5 x 5 km cell, and from this the probability of exceeding any intensity level can be estimated. The principal benefits of this approach is that it builds the fewest possible assumptions into a probabilistic seismic forecast, it includes site and source effects without imposing this behavior, and we do not need to know the size or location of any earthquake or the location and slip rate of any fault. The cost is that we must abandon any attempt to make a time-dependent forecast, which could be quite different. We believe the method is suitable to many applications of probabilistic seismic hazard assessment, and to other regions. The two key assumptions are that the slope of the observed frequency-intensity relation at every site is the same, and that the 400-year record is long enough to encompass the full range of seismic behavior. Tests we conduct suggest that both assumptions are sound. The resulting 30-year probability of IJMA>=6 shaking (roughly equivalent to PGA>=0.9 g or MMI=IX-X) is 30-40% in Tokyo, Kawasaki, and Yokohama, and 10-15% in Chiba and Tsukuba, the range reflecting spatial variability and curve-fitting alternatives. The strongest shaking is forecast along the margins of Tokyo Bay, within the river sediments extending northwest from Tokyo, and at coastal sites near the plate boundary faults. We also produce long- term exceedance maps of peak ground acceleration for building code regulations, and short-term hazard maps associated with hypothetical catastrophe bonds. Our results for greater Tokyo resemble our independent Poisson probability developed from conventional seismic hazard analysis, as well as

  13. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  14. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  15. Surface Ocean Dispersion Observations from the Ship-Tethered Aerostat Remote Sensing System

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier; Ozgokmen, Tamay; Novelli, Guillaume

    2018-01-01

    Oil slicks and sheens reside at the air-sea interface, a region of the ocean that is notoriously difficult to measure and, therefore, little is known about the velocity field at the sea surface. The Ship-Tethered Aerostat Remote Sensing System (STARSS) was developed to measure Lagrangian velocities...... of experiments in the northern Gulf of Mexico in January- February 2016. STARSS was equipped with a GPS and inertial navigation system (INS) that was used to directly georectify the aerial images. A relative rectification technique was developed that translates and rotates the drift cards to minimize the total...... movement of all drift cards from one frame to the next. Rectified drift card positions were used to quantify scale-dependent dispersion by computing relative dispersion, relative diffusivity, and velocity structure functions. STARSS was part of a nested observational framework, which included deployments...

  16. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  17. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  18. Community Observatories: Fostering Ideas that STEM From Ocean Sense: Local Observations. Global Connections.

    Science.gov (United States)

    Pelz, M. S.; Ewing, N.; Hoeberechts, M.; Riddell, D. J.; McLean, M. A.; Brown, J. C. K.

    2015-12-01

    Ocean Networks Canada (ONC) uses education and communication to inspire, engage and educate via innovative "meet them where they are, and take them where they need to go" programs. ONC data are accessible via the internet allowing for the promotion of programs wherever the learners are located. We use technologies such as web portals, mobile apps and citizen science to share ocean science data with many different audiences. Here we focus specifically on one of ONC's most innovative programs: community observatories and the accompanying Ocean Sense program. The approach is based on equipping communities with the same technology enabled on ONC's large cabled observatories. ONC operates the world-leading NEPTUNE and VENUS cabled ocean observatories and they collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible. Community observatories allow for similar monitoring on a smaller scale, and support STEM efforts via a teacher-led program: Ocean Sense. This program, based on local observations and global connections improves data-rich teaching and learning via visualization tools, interactive plotting interfaces and lesson plans for teachers that focus on student inquiry and exploration. For example, students use all aspects of STEM by accessing, selecting, and interpreting data in multiple dimensions, from their local community observatories to the larger VENUS and NEPTUNE networks. The students make local observations and global connections in all STEM areas. The first year of the program with teachers and students who use this innovative technology is described. Future community observatories and their technological applications in education, communication and STEM efforts are also described.

  19. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    Science.gov (United States)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  20. The intense magnetic storm of December 19, 1980: Observations at L = 4

    International Nuclear Information System (INIS)

    Bering, E.A. III; Benbrook, J.R.; Haacke, R.; Dudeney, J.R.; Lanzerotti, L.J.; MacLennan, C.G.; Rosenberg, T.J.

    1991-01-01

    The intense magnetic storm of December 19, 1980 occurred during a major rocket and balloon geophysical research campaign at Siple Station, Antarctica. A balloon flight measuring the electric field and bremsstrahlung X ray flux was conducted during the main phase of the storm. The balloon data and associated ground-based data from around the world contain several lines of evidence which indicate that the dayside auroral oval expanded to an invariant latitude ≤ 59 degree during the storm. Evidence for this conclusion includes (1) the pattern of ground-based magnetic field and ionospheric electric field perturbations; (2) a substantial departure from the normal diurnal curve of the vertical component of the electric field in the stratosphere; and, (3) identical, relatively rapid equatorward motion of regions of electron precipitation, observed or inferred to occur, simultaneously at three L∼4 stations: Siple, Halley Bay and SANAE, separated by several hours in local time across the dayside. The absence of electron precipitation at Siple after this equatorward motion is an indication that the polar cap had expanded to include Siple during this interval. The power spectra of the magnetic field fluctuations at ULF observed at Siple and in a conjugate latitude chain of magnetometers were consistent with the presence of the dayside auroral oval in the near vicinity of Siple and with the presence of a major magnetospheric boundary slightly equatorward of ∼ 59 degree. The stratospheric electric field measured during the recovery phase was very large for this latitude for a period of several hours. This observation suggests that a subauroral latitude ion drift event of unusual intensity and duration accompanied this storm

  1. Integration of Remote Sensing Techniques for Intensity Zonation within a Landslide Area: A Case Study in the Northern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    Veronica Tofani

    2014-01-01

    Full Text Available This paper describes the application of remote sensing techniques, based on SAR interferometry for the intensity zonation of the landslide affecting the Castagnola village (Northern Apennines of Liguria region, Italy. The study of the instability conditions of the landslide started in 2001 with the installation of conventional monitoring systems, such as inclinometers and crackmeters, ranging in time from April 2001 to April 2002, which allowed to define the deformation rates of the landslide and to locate the actual landslide sliding surface, as well as to record the intensity of the damages and cracks affecting the buildings located within the landslide perimeter. In order to investigate the past long-term evolution of the ground movements a PSI (Persistent Scatterers Interferometry analysis has been performed making use of a set of ERS1/ERS2 images acquired in 1992–2001 period. The outcome of the PSI analysis has allowed to confirm the landslide extension as mapped within the official landslide inventory map as well as to reconstruct the past line-of-sight average velocities of the landslide and the time-series deformations. Following the high velocities detected by the PSI, and the extensive damages surveyed in the buildings of the village, the Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR system has been installed. The GBInSAR monitoring system has been equipped during October 2008 and three distinct campaigns have been carried out from October 2008 until March 2009. The interpretation of the data has allowed deriving a multi-temporal deformation map of the landslide, showing the up-to-date displacement field and the average landslide velocity. A new landslide boundary has been defined and two landslide sectors characterized by different displacement rates have been identified.

  2. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    Science.gov (United States)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and

  3. Stratospheric platforms: a novel technological support for Earth observation and remote sensing applications

    Science.gov (United States)

    Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella

    2001-12-01

    The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show

  4. Impact of a standardized nurse observation protocol including MEWS after Intensive Care Unit discharge.

    Science.gov (United States)

    De Meester, K; Das, T; Hellemans, K; Verbrugghe, W; Jorens, P G; Verpooten, G A; Van Bogaert, P

    2013-02-01

    Analysis of in-hospital mortality after serious adverse events (SAE's) in our hospital showed the need for more frequent observation in medical and surgical wards. We hypothesized that the incidence of SAE's could be decreased by introducing a standard nurse observation protocol. To investigate the effect of a standard nurse observation protocol implementing the Modified Early Warning Score (MEWS) and a color graphic observation chart. Pre- and post-intervention study by analysis of patients records for a 5-day period after Intensive Care Unit (ICU) discharge to 14 medical and surgical wards before (n=530) and after (n=509) the intervention. For the total study population the mean Patient Observation Frequency Per Nursing Shift (POFPNS) during the 5-day period after ICU discharge increased from .9993 (95% C.I. .9637-1.0350) in the pre-intervention period to 1.0732 (95% C.I. 1.0362-1.1101) (p=.005) in the post-intervention period. There was an increased risk of a SAE in patients with MEWS 4 or higher in the present nursing shift (HR 8.25; 95% C.I. 2.88-23.62) and the previous nursing shift (HR 12.83;95% C.I. 4.45-36.99). There was an absolute risk reduction for SAE's within 120h after ICU discharge of 2.2% (95% C.I. -0.4-4.67%) from 5.7% to 3.5%. The intervention had a positive impact on the observation frequency. MEWS had a predictive value for SAE's in patients after ICU discharge. The drop in SAE's was substantial but did not reach statistical significance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Acute tendon changes in intense CrossFit workout: an observational cohort study.

    Science.gov (United States)

    Fisker, F Y; Kildegaard, S; Thygesen, M; Grosen, K; Pfeiffer-Jensen, M

    2017-11-01

    CrossFit is a fitness program that has become increasingly popular in the Western world, but as in other sports, the risk of injury is present. Only a few studies have addressed health benefits and injuries in CrossFit. It is known that chronically overloaded tendons will thicken and increase the risk of tendinopathy. However, it remains unknown whether acute overload caused by strenuous, high-intensity exercise will exert changes in tendons and if these changes can be detected and described by ultrasonography. The aim of this study is to evaluate the effects of acute overload on tendon thickness using ultrasonography. Standardized ultrasound measurements of the patella, Achilles, and plantaris tendons were performed before and after a specific workout in 34 healthy subjects. Significant increases were observed in patella tendon thickness before (M = 4.5, SD = 0.6) and after (M = 5.0, SD = 0.7) highly intense strenuous exercise, with an estimated mean differences of 0.47 mm (95% CI: 0.35-0.59 mm; P CrossFit exercises. In order to understand the underlying mechanisms of the findings and possibly utilize this to gain a better understanding, further studies must be conducted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Nurse staffing, medical staffing and mortality in Intensive Care: An observational study.

    Science.gov (United States)

    West, Elizabeth; Barron, David N; Harrison, David; Rafferty, Anne Marie; Rowan, Kathy; Sanderson, Colin

    2014-05-01

    To investigate whether the size of the workforce (nurses, doctors and support staff) has an impact on the survival chances of critically ill patients both in the intensive care unit (ICU) and in the hospital. Investigations of intensive care outcomes suggest that some of the variation in patient survival rates might be related to staffing levels and workload, but the evidence is still equivocal. Information about patients, including the outcome of care (whether the patient lived or died) came from the Intensive Care National Audit & Research Centre (ICNARC) Case Mix Programme. An Audit Commission survey of ICUs conducted in 1998 gave information about staffing levels. The merged dataset had information on 65 ICUs and 38,168 patients. This is currently the best available dataset for testing the relationship between staffing and outcomes in UK ICUs. A cross-sectional, retrospective, risk adjusted observational study. Multivariable, multilevel logistic regression. ICU and in-hospital mortality. After controlling for patient characteristics and workload we found that higher numbers of nurses per bed (odds ratio: 0.90, 95% confidence interval: [0.83, 0.97]) and higher numbers of consultants (0.85, [0.76, 0.95]) were associated with higher survival rates. Further exploration revealed that the number of nurses had the greatest impact on patients at high risk of death (0.98, [0.96, 0.99]) whereas the effect of medical staffing was unchanged across the range of patient acuity (1.00, [0.97, 1.03]). No relationship between patient outcomes and the number of support staff (administrative, clerical, technical and scientific staff) was found. Distinguishing between direct care and supernumerary nurses and restricting the analysis to patients who had been in the unit for more than 8h made little difference to the results. Separate analysis of in-unit and in-hospital survival showed that the clinical workforce in intensive care had a greater impact on ICU mortality than on

  7. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    Science.gov (United States)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  8. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    Science.gov (United States)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  9. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations

    Science.gov (United States)

    Rashid, Irfan; Abdullah, Tariq; Glasser, Neil F.; Naz, Heena; Romshoo, Shakil Ahmad

    2018-02-01

    This study analyses the behaviour of an actively surging glacier, Hispar, in Pakistan using remote sensing methods. We used 15 m panchromatic band of Landsat 8 OLI from 2013 to 2017 to assess the changes in glacier velocity, glacier geomorphology and supraglacial water bodies. For the velocity estimation, correlation image analysis (CIAS) was used, which is based on normalized cross-correlation (NCC) of satellite data. On-screen digitization was employed to quantify changes in the glacier geomorphology and dynamics of supraglacial water bodies on the glacier. Our velocity estimates indicate that the upper part of the glacier is presently undergoing an active surge which not only affects the debris distribution but also impacts the development of supraglacial water bodies. Velocities in the actively surging part of the main glacier trunk and its three tributaries reach up to 900 m yr- 1. The surge of Hispar also impacts the distribution of supraglacial debris causing folding of the medial moraines features present on the glacier surface. Changes in the number and size of supraglacial lakes and ponds were also observed during the observation period from 2013 to 2017.

  10. Spatial and spectral interpolation of ground-motion intensity measure observations

    Science.gov (United States)

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  11. Does neonatal pain management in intensive care units differ between night and day? An observational study.

    Science.gov (United States)

    Guedj, Romain; Danan, Claude; Daoud, Patrick; Zupan, Véronique; Renolleau, Sylvain; Zana, Elodie; Aizenfisz, Sophie; Lapillonne, Alexandre; de Saint Blanquat, Laure; Granier, Michèle; Durand, Philippe; Castela, Florence; Coursol, Anne; Hubert, Philippe; Cimerman, Patricia; Anand, K J S; Khoshnood, Babak; Carbajal, Ricardo

    2014-02-20

    To determine whether analgesic use for painful procedures performed in neonates in the neonatal intensive care unit (NICU) differs during nights and days and during each of the 6 h period of the day. Conducted as part of the prospective observational Epidemiology of Painful Procedures in Neonates study which was designed to collect in real time and around-the-clock bedside data on all painful or stressful procedures. 13 NICUs and paediatric intensive care units in the Paris Region, France. All 430 neonates admitted to the participating units during a 6-week period between September 2005 and January 2006. During the first 14 days of admission, data were collected on all painful procedures and analgesic therapy. The five most frequent procedures representing 38 012 of all 42 413 (90%) painful procedures were analysed. Observational study. We compared the use of specific analgesic for procedures performed during each of the 6 h period of a day: morning (7:00 to 12:59), afternoon, early night and late night and during daytime (morning+afternoon) and night-time (early night+late night). 7724 of 38 012 (20.3%) painful procedures were carried out with a specific analgesic treatment. For morning, afternoon, early night and late night, respectively, the use of analgesic was 25.8%, 18.9%, 18.3% and 18%. The relative reduction of analgesia was 18.3%, pnight-time and 28.8%, pday. Parental presence, nurses on 8 h shifts and written protocols for analgesia were associated with a decrease in this difference. The substantial differences in the use of analgesics around-the-clock may be questioned on quality of care grounds.

  12. The association between patient safety culture and burnout and sense of coherence: A cross-sectional study in restructured and not restructured intensive care units.

    Science.gov (United States)

    Vifladt, Anne; Simonsen, Bjoerg O; Lydersen, Stian; Farup, Per G

    2016-10-01

    To study the associations between registered nurses' (RNs) perception of the patient safety culture (safety culture) and burnout and sense of coherence, and to compare the burnout and sense of coherence in restructured and not restructured intensive care units (ICUs). Cross-sectional study. RNs employed at seven ICUs in six hospitals at a Norwegian Hospital Trust. One to four years before the study, three hospitals merged their general and medical ICUs into one general mixed ICU. The safety culture, burnout and sense of coherence were measured with the questionnaires Hospital Survey on Patient Safety Culture, Bergen Burnout Indicator and Sense of Coherence. Participant characteristics and working in restructured and not restructured ICUs were registered. In total, 143/289(49.5%) RNs participated. A positive safety culture was statistically significantly associated with a low score for burnout and a strong sense of coherence. No statistically significant differences were found in burnout and sense of coherence between RNs in the restructured and not restructured ICUs. In this study, a positive safety culture was associated with absence of burnout and high ability to cope with stressful situations. Burnout and sense of coherence were independent of the restructuring process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Developments in Earth Observation data reception, dissemination and archival at National Remote Sensing Agency

    Science.gov (United States)

    Radhakrishnan, K.; Manjunath, A. S.; Kumar, Anil

    2009-10-01

    With the rapid advancement in remote sensing technology and corresponding applications, the Earth Observation Ground Segment has undergone a significant change at NRSA. From dedicated data acquisition and processing systems, we have realized multi-mission data acquisition quick look and browse systems and also multi-mission integrated information management systems. Front end of data reception station has been upgraded to handle wider bandwidth and data rates up to 320 Mbps for near future missions such as the Radar Imaging Satellite (RISAT). Antenna, feed, down converters and RF chain have been upgraded. To cater to multi-mission scenario mission independent, fully configurable demodulator/bit synchs have been deployed. For handling data acquisition in multi-satellite scenario where in data from 5 to 6 remote sensing satellites are to be received almost simultaneously, automation of operations has been incorporated towards station configuration to avoid manual errors. From media-based data handling, there has been a shift towards net centric data handling among the various work centers such as user order processing, data processing systems, special processing systems, data quality evaluation, and product quality control work centers. The turn around time for dissemination of user desired data products has been improved from two weeks to one day. Presently a state of the art integrated environment has been envisaged which will bring down the turn around time for the supply of data products significantly. Automation has been incorporated at both data acquisition and data processing to improve the product throughput. Presently NRSA is catering to a demand of about 30,000 data products per annum and in the next two years it is aimed to reach a level of 50,000 products per annum by realizing the integrated multi-mission ground system for earth observation (IMGEOS). This will significantly modify the entire data production and dissemination chain so that data can be

  14. Remote sensing observing systems of the Meteorological Service of Catalonia (SMC): application to thunderstorm surveillance

    Science.gov (United States)

    Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.

    2009-09-01

    Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000

  15. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  16. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  17. Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-03-01

    Full Text Available This study concentrates on the characteristics of field-aligned currents (FACs in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer than in the Northern (winter Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1 the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2 The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3 The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude.

  18. BACTERIAL COLONY GROWTH IN THE VENTILATOR CIRCUIT OF THE INTENSIVE OBSERVATION UNIT AT RSUD DR. SOETOMO SURABAYA

    Directory of Open Access Journals (Sweden)

    Fajar Perdhana

    2016-09-01

    Full Text Available Ventilator-associated pneumonia (VAP remains a problem with the highest cos, morbidity and mortalityt in the Intensive Care Unit (ICU. The correlation between mechanical ventilation and pneumonia is considered as common sense, yet scientific evidence to support this statement is still needed. This research aims to analyze the bacterial colony grows in mechanical ventilation circuit and those grew in the patient’s sputum culture. We performed an observational study. Samples for bacterial culture were taken from ventilator circuit and patient sputum on Day-0, Day-3 and Day-7. Sputum samplings are collected using double catheter tracheal aspiration technique; Results are then analyzed with Chi-square test. While the similarity of bacteria species in ventilator circuit to patient’s sputum is analyzed with Binomial test. Two samples are dropped out immediately due to the rate of bacterial growth on Day-0. Bacterial colony growth in ventilator circuit shows a significant difference on Day-3 and Day-7 at 50% and 92% respectively (p = 0.05. A comparison for the bacterial similarity of the ventilator circuit and patient’s sputum shows that the bacterial growth on Day-3 is 7 out of 14 (50% and 3 with more than 105 CFU/ml colony; while on Day-7, there are 13 out of 14 positive bacterial growth, both in the circuit and the patient’s sputum. Among them, 5 out of 14 (35% of the bacterial colony which grow in the circuit have the same species as those grow in patient’s sputum. The recent study shows that there is bacteria colony growth in the ventilator circuit after Day-3 and a significant increase on Day-7. Almost half of the colony illustrates similar species from both ventilator circuit and patient’s sputum. This suggests that the bacterial growth on Day-7 in the ventilator circuit might be related to those growth in patient’s sputum.

  19. An Alternative Approach of Coastal Sea-Level Observation from Remote Sensing Imageries

    Science.gov (United States)

    Peng, H. Y.; Tseng, K. H.; Chung-Yen, K.; Lin, T. H.; Liao, W. H.; Chen, C. F.

    2017-12-01

    Coastal sea level can be observed as waterline changes along a coastal digital elevation model (DEM). However, most global DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM with 30 m resolution, provide limited coverage over coastal area due to the impermeability of radar signal over water and the lack of low-tide coincidence. Therefore, we aim to extend to coverage of SRTM DEM for the determination of intertidal zone and to monitor sea-level changes along the entire coastline of Taiwan (>1200km). We firstly collect historical cloud-free images since the 1980s, including Landsat series, SPOT series and Sentinel-2, and then calculate the Modified Normalized Difference Water Index (MNDWI) to identify water pixels. After computing water appearance probability of each pixel, it is converted into actual elevation by introducing the DTU10 tide model for high tide and low tide boundaries. A coastal DEM of intertidal zone is reconstructed and the accuracy is at 50 cm level as compared with in situ DEM built by an unmanned aerial vehicle (UAV). Finally, we use this product to define the up-to-date intertidal zone and estimate sea-level changes by using remote sensing snapshots.

  20. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    Science.gov (United States)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  1. Approximation of Resting Energy Expenditure in Intensive Care Unit Patients Using the SenseWear Bracelet: A Comparison With Indirect Calorimetry.

    Science.gov (United States)

    Sundström, Martin; Mehrabi, Mahboubeh; Tjäder, Inga; Rooyackers, Olav; Hammarqvist, Folke

    2017-08-01

    Indirect calorimetry (IC) is the gold standard for determining energy expenditure in patients requiring mechanical ventilation. Metabolic armbands using data derived from dermal measurements have been proposed as an alternative to IC in healthy subjects, but their utility during critical illness is unclear. The aim of this study was to determine the level of agreement between the SenseWear armband and the Deltatrac Metabolic Monitor in mechanically ventilated intensive care unit (ICU) patients. Adult ICU patients requiring invasive ventilator therapy were eligible for inclusion. Simultaneous measurements were performed with the SenseWear Armband and Deltatrac under stable conditions. Resting energy expenditure (REE) values were registered for both instruments and compared with Bland-Altman plots. Forty-two measurements were performed in 30 patients. The SenseWear Armband measured significantly higher REE values as compared with IC (mean bias, 85 kcal/24 h; P = .027). Less variability was noted between individual SenseWear measurements and REE as predicted by the Harris-Benedict equation (2 SD, ±327 kcal/24 h) than when IC was compared with SenseWear and Harris-Benedict (2 SD, ±473 and ±543 kcal/24 h, respectively). The systematic bias and large variability of the SenseWear armband when compared with gas exchange measurements confer limited benefits over the Harris Benedict equation in determining caloric requirements of ICU patients.

  2. Turbulence kinetic energy budget during the afternoon transition - Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Science.gov (United States)

    Nilsson, Erik; Lohou, Fabienne; Lothon, Marie; Pardyjak, Eric; Mahrt, Larry; Darbieu, Clara

    2016-07-01

    The decay of turbulence kinetic energy (TKE) and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of -0.69 was found for the afternoon period. For comparison with previous results, the TKE budget terms are normalized with

  3. Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days

    Directory of Open Access Journals (Sweden)

    E. Nilsson

    2016-07-01

    Full Text Available The decay of turbulence kinetic energy (TKE and its budget in the afternoon period from midday until zero-buoyancy flux at the surface is studied in a two-part paper by means of measurements from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field campaign for 10 intensive observation period days. Here, in Part 1, near-surface measurements from a small tower are used to estimate a TKE budget. The overall boundary layer characteristics and mesoscale situation at the site are also described based upon taller tower measurements, radiosoundings and remote sensing instrumentation. Analysis of the TKE budget during the afternoon transition reveals a variety of different surface layer dynamics in terms of TKE and TKE decay. This is largely attributed to variations in the 8 m wind speed, which is responsible for different amounts of near-surface shear production on different afternoons and variations within some of the afternoon periods. The partitioning of near-surface production into local dissipation and transport in neutral and unstably stratified conditions was investigated. Although variations exist both between and within afternoons, as a rule of thumb, our results suggest that about 50 % of the near-surface production of TKE is compensated for by local dissipation near the surface, leaving about 50 % available for transport. This result indicates that it is important to also consider TKE transport as a factor influencing the near-surface TKE decay rate, which in many earlier studies has mainly been linked with the production terms of TKE by buoyancy and wind shear. We also conclude that the TKE tendency is smaller than the other budget terms, indicating a quasi-stationary evolution of TKE in the afternoon transition. Even though the TKE tendency was observed to be small, a strong correlation to mean buoyancy production of −0.69 was found for the afternoon period. For comparison with previous results, the TKE

  4. Comparing NEXRAD Operational Precipitation Estimates and Raingage Observations of Intense Precipitation in the Missouri River Basin.

    Science.gov (United States)

    Young, C. B.

    2002-05-01

    Accurate observation of precipitation is critical to the study and modeling of land surface hydrologic processes. NEXRAD radar-based precipitation estimates are increasingly used in field experiments, hydrologic modeling, and water and energy budget studies due to their high spatial and temporal resolution, national coverage, and perceived accuracy. Extensive development and testing of NEXRAD precipitation algorithms have been carried out in the Southern Plains. Previous studies (Young et al. 2000, Young et al. 1999, Smith et al. 1996) indicate that NEXRAD operational products tend to underestimate precipitation at light rain rates. This study investigates the performance of NEXRAD precipitation estimates of high-intensity rainfall, focusing on flood-producing storms in the Missouri River Basin. NEXRAD estimates for these storms are compared with data from multiple raingage networks, including NWS recording and non-recording gages and ALERT raingage data for the Kansas City metropolitan area. Analyses include comparisons of gage and radar data at a wide range of temporal and spatial scales. Particular attention is paid to the October 4th, 1998, storm that produced severe flooding in Kansas City. NOTE: The phrase `NEXRAD operational products' in this abstract includes precipitation estimates generated using the Stage III and P1 algorithms. Both of these products estimate hourly accumulations on the (approximately) 4 km HRAP grid.

  5. Prospective Observational Evaluation of Sedation and Pain Management Guideline Adherence Across New Jersey Intensive Care Units.

    Science.gov (United States)

    Brophy, Alison; Cardinale, Maria; Andrews, Liza B; Kaplan, Justin B; Adams, Christopher; Opsha, Yekaterina; Brandt, Kimberly A; Dixit, Deepali; Nerenberg, Steven F; Saleh, Julie A

    2018-01-01

    The practice guidelines for the management of pain, agitation, and delirium (PAD) from the Society of Critical Care Medicine shifted from primarily focusing on the treatment of anxiety in 2002 to the treatment of pain in 2013. This prospective, observational, multicenter study aimed to assess the degree of practice adherence to the PAD guidelines for ventilated patients in New Jersey intensive care units (ICUs). Pharmacist investigators at 8 centers designated 4 days at least 10 days apart to evaluate all patients on mechanical ventilation. The primary outcomes included adherence to 4 guideline recommendations: treatment of pain before sedation, use of nonnarcotic analgesic medications, use of nonbenzodiazepine sedative medications, and use of goal-directed sedation. Of 138 patients evaluated, 50% had a primary medical diagnosis (as opposed to surgical, cardiac, or neurological diagnosis), and the median Sequential Organ Failure Assessment (SOFA) score was 7. Pain was treated prior to administration of sedatives in 55.4% of subjects, with fentanyl being the primary analgesic used. In addition, 19% received no analgesia, and 11.5% received nonopioid analgesia. Sedative agents were administered to 87 subjects (48 nonbenzodiazepine and 39 benzodiazepine). Of those receiving benzodiazepines, 22 received intermittent bolus regimens and 16 received continuous infusions, of which 5 were for another indication besides sedation. Validated scales measuring the degree of sedation were completed at least once in 56 (81.6%) patients receiving sedatives. Current sedation practices suggest that integration of evidence-based PAD guidelines across New Jersey adult ICUs is inconsistent despite pharmacist involvement.

  6. Candidemia in the Neonatal Intensive Care Unit: A Retrospective, Observational Survey and Analysis of Literature Data

    Directory of Open Access Journals (Sweden)

    Giuseppina Caggiano

    2017-01-01

    Full Text Available We evaluated the epidemiology of Candida bloodstream infections in the neonatal intensive care unit (NICU of an Italian university hospital during a 9-year period as a means of quantifying the burden of infection and identifying emerging trends. Clinical data were searched for in the microbiological laboratory database. For comparative purposes, we performed a review of NICU candidemia. Forty-one candidemia cases were reviewed (overall incidence, 3.0 per 100 admissions. Candida parapsilosis sensu stricto (58.5% and C. albicans (34.1% were the most common species recovered. A variable drift through years was observed; in 2015, 75% of the cases were caused by non-albicans species. The duration of NICU hospitalization of patients with non-albicans was significantly longer than in those with C. albicans (median days, 10 versus 12. Patients with non-albicans species were more likely to have parenteral nutrition than those with C. albicans (96.3% versus 71.4%. Candida albicans was the dominant species in Europe and America (median, 55% and 60%; resp.; non-albicans species predominate in Asia (75%. Significant geographic variation is evident among cases of candidemia in different parts of the world, recognizing the importance of epidemiological data to facilitate the treatment.

  7. "Radiative Closure Studies for Clear Skies During the ARM 2003 Aerosol Intensive Observation Period"

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Michalsky, G. P. Anderson, J. Barnard, J. Delamere, C. Gueymard, S. Kato, P. Kiedron, A. McComiskey, and P. Ricchiazzi

    2006-04-01

    The Department of Energy's Atmospheric Radiation Measurement (ARM) program sponsored a large intensive observation period (IOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this IOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are less than 1%, and biases between modeled and measured diffuse irradiances are less than 2%.

  8. Observation of intense beam in low pressure from IPR Plasma Focus facility

    International Nuclear Information System (INIS)

    Kumar, R.; Shyam, A.; Chaturvedi, S.; Lathi, D.; Sarkar, Partha; Chaudhari, V.; Verma, R.; Shukla, R.; Debnath, K.; Sonara, J.; Shah, K.; Adhikary, B.

    2004-01-01

    Full text: Plasma focus (PF) is a powerful source of various ionizing radiation such as charged particles beam (ions and electrons), X-ray, neutrons etc. This device can operate from energy level of 50J to 1MJ. Plasma Focus is relatively small, simple and cheap in comparison with other radiation sources based on isotopes, accelerators and fusion reactors. Radiation pulse from PF is strong and very short. Now with the new pulsed power technology this device can be operated repeatedly with enhanced lifetime. All these features make plasma focus a versatile device for academic as well as industrial interest such as hot plasma physics and plasma collective processes, equation of state of matter under extreme conditions, material science including material characterization, dynamic equation control, and surface modification and destruction test. Intense burst of neutrons have been observed from a low energy (3.6 kJ) Mather type plasma focus device operated in 0.4 Torr pressure of deuterium medium at IPR. The emitted neutrons (10 9 /shot), that are accompanied by a strong hard X-ray pulse, were found to be having energy up to 3.26 MeV in the axial direction of the device

  9. Predictors of stress among parents in pediatric intensive care unit: a prospective observational study.

    Science.gov (United States)

    Aamir, Mohd; Mittal, Kundan; Kaushik, Jaya Shankar; Kashyap, Haripal; Kaur, Gurpreet

    2014-11-01

    To determine the sociodemographic and clinical factors leading to stress among parents whose children are admitted in pediatric intensive care unit (PICU). A prospective observational study was conducted in PICU of a tertiary care hospital of north India. Parents of children admitted to PICU for at least 48 h duration were eligible for participation. At the end of 48 h, parental stress was assessed using parental stress scale (PSS:PICU) questionnaire which was administered to the parents. Baseline demographic and clinical parameters of children admitted to PICU were recorded. The parental stress was compared with demographic and clinical characteristics of children using appropriate statistical methods. A total of 49 parents were finally eligible for participation. Mean (SD) parental stress scores was highest in domains of procedures [1.52 (0.66)] and behavior and emotional [1.32 (0.42)] subscales. Mean (SD) total parental stress score among intubated children [1.31 (0.25)] was significantly more than among non intubated children [0.97 (0.26)] (p parental stress score were comparable in terms of gender (p = 0.15) and socioeconomic status (p = 0.32). On subscale analysis, it was found that professional communication is a significant stressor in age groups 0-12 mo [0.61(0.41)] (p = 0.02). It was observed that parents of intubated children were significantly stressed by the physical appearance of their children (p parental role (p = 0.002). Total parental stress score had a positive correlation with PRISM score (r = 0.308). Indian parents are stressed maximally with environment of PICU. Factor leading to parental stress was intubation status of the child and was not affected by gender or socio demographic profile of the parents.

  10. Asthma changes at a Pediatric Intensive Care Unit after 10 years: Observational study

    Directory of Open Access Journals (Sweden)

    Ayman A Al-Eyadhy

    2015-01-01

    Full Text Available Objectives: To describe the change in the management, and outcome of children with acute severe asthma (ASA admitted to Pediatric Intensive Care Unit (PICU at tertiary institute, as compared to previously published report in 2003. Methods : This is a retrospective observational study. All consecutive pediatric ASA patients who were admitted to PICU during the study period were included. The data were extracted from PICU database and medical records. The Cohort in this study (2013 Cohort was compared with the Cohort of ASA, which was published in 2003 from the same institution (2003 Cohort. Results: In comparison to previous 2003 Cohort, current Cohort (2013 revealed higher mean age (5.5 vs. 3.6 years; P ≤ 0.001, higher rate of PICU admission (20.3% vs. 3.6%; P ≤ 0.007, less patients who received maintenance inhaled steroids (43.3% vs. 62.4%; P ≤ 0.03, less patients with pH <7.3 (17.9% vs. 42.9%; P ≤ 0.001. There were more patients in 2013 Cohort who received: Inhaled Ipratropium bromide (97% vs. 68%; P ≤ 0.001, intravenous magnesium sulfate (68.2% vs. none, intravenous salbutamol (13.6% vs. 3.6%; P ≤ 0.015, and noninvasive ventilation (NIV (35.8% vs. none while no patients were treated with theophylline (none vs. 62.5%. The median length of stay (LOS was 2 days while mean LOS was half a day longer in the 2013 Cohort. None of our patients required intubation, and there was no mortality. Conclusion: We observed slight shift toward older age, considerably increased the rate of PICU admission, increased utilization of Ipratropium bromide, magnesium sulfate, and NIV as important modalities of treatment.

  11. Accumulation of advanced glycation end (AGEs products in intensive care patients: an observational, prospective study

    Directory of Open Access Journals (Sweden)

    Rommes Johannes H

    2010-05-01

    Full Text Available Abstract Background Oxidative stress plays an important role in the course and eventual outcome in a majority of patients admitted to the intensive care unit (ICU. Markers to estimate oxidative stress are not readily available in a clinical setting. AGEs accumulation has been merely described in chronic conditions, but can also occur acutely due to oxidative stress. Since AGEs have emerged to be stable end products, these can be a marker of oxidative stress. Skin autofluorescence (AF is a validated marker of tissue content of AGEs. We hypothesized that AGEs accumulate acutely in ICU patients. Methods We performed an observational prospective study in a medical surgical ICU in a university affiliated teaching hospital. All consecutively admitted ICU patients in a 2 month period were included. Skin AF was measured using an AGE reader in 35 consecutive ICU patients > 18 yrs. As a comparison, historical data of a control group (n = 231 were used. These were also used to calculate age-adjusted AF-levels (AFadj. Values are expressed as median and interquartile range [P25-P75]. Differences between groups were tested by non parametric tests. P Results AFadj values were higher in ICU patients (0.33 [0.00 - 0.68] than in controls (-0.07 [-0.29 - 0.24]; P adj were observed between acute or planned admissions, or presence of sepsis, nor was skin AFadj related to severity of disease as estimated by APACHE-II score, length of ICU, hospital stay or mortality. Conclusion Acute AGE accumulation in ICU patients was shown in this study, although group size was small. This can possibly reflect oxidative stress in ICU patients. Further studies should reveal whether AGE-accumulation will be a useful parameter in ICU patients and whether skin AF has a predictive value for outcome, which was not shown in this small study.

  12. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    Science.gov (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  13. Defining the Application Readiness of Products when Developing Earth Observing Remote Sensing Data Products

    Science.gov (United States)

    Escobar, V. M.

    2017-12-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in Earth Science. With new satellite missions being launched every year, new types of Earth Science data are being incorporated into science models and decision-making systems in a broad array of organizations. These applications help hazard mitigation and decision-making in government, private, and civic institutions working to reduce its impact on human wellbeing. Policy guidance and knowledge of product maturity can influence mission design as well as development of product applications in user organizations. Ensuring that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive is a critical outcome from engagement of user communities. Tracking the applications and product maturity help improve the use of data. NASA's Applications Readiness Levels reduce cost and increase the confidence in applications. ARLs help identify areas where NASA products are most useful while allowing the user to leverage products in early development as well as those ready for operational uses. By considering the needs of the user community early on in the mission-design process, agencies can use ARLs to ensure that satellites meet the needs of multiple constituencies and the development of products are integrated into user organizations organically. ARLs and user integration provide a perspective on the maturity and readiness of a products ability to influence policy and decision-making. This paper describes the mission application development process at NASA and within the Earth Science Directorate. We present the successes and challenges faced by NASA data users and explain how ARLs helps link NASA science to the appropriate policies and decision frameworks. The methods presented here can be adapted to other programs and institutions seeking to rapidly move

  14. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.

    Science.gov (United States)

    Anderson, Will; Lane, Rebecca; Korbie, Darren; Trau, Matt

    2015-06-16

    Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles.

  15. Earth Observation from the International Space Station -Remote Sensing in Schools-

    Science.gov (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  16. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    Science.gov (United States)

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco

    2017-04-01

    remote sensing (i.e. SEVIRI, AMSU) is used to complement observations from a virtual ground-based microwave radiometer network based on the reanalysis of the COSMO model for Europe. In this contribution, we present a synergetic retrieval algorithm of stability indices from satellite observations and ground-based microwave measurements based on the COSMO-DE reanalysis as truth. In order to make the approach feasible for data assimilation applications at national weather services, we simulate satellite observations with the standard RTTOV model and use the newly developed RTTOV-gb (ground-based) for the ground-based radiometers (De Angelis et al., 2016). For the detection of significant instabilities, we show the synergy benefit in terms of uncertainty reduction, probability of detection and other forecast skill scores. The overall goal of ARON is to quantify the impact of ground-based vertical profilers within an integrated forecasting system, which combines short-term and now-casting.

  17. Aerosol chemical composition at Cabauw, the Netherlands as observed in two intensive periods in May 2008 and March 2009

    NARCIS (Netherlands)

    Mensah, A.A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, T.F.; Brink, H. ten; Henzing, B.; Kiendler-Scharr, A.

    2012-01-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol

  18. Constraining the interaction between dark sectors with future HI intensity mapping observations

    Science.gov (United States)

    Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda

    2018-04-01

    We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.

  19. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    Science.gov (United States)

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  20. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    Science.gov (United States)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  1. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  2. Remote-sensing imperatives of the Global Ocean Observing System (GOOS)

    Digital Repository Service at National Institute of Oceanography (India)

    Summerhayes, C.; Desa, E.; Swamy, G.N.

    is crucial. The tasks are thus to advance the function of remote-sensing algorithms to encompass those variables which are presently monitored by in situ systems, leaving these systems to act more as sea-truth validators than as in situ data suppliers...

  3. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  4. Reflecting on mirror mechanisms: motor resonance effects during action observation only present with low-intensity transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michela Loporto

    Full Text Available Transcranial magnetic stimulation (TMS studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1 via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI and abductor digiti minimi (ADM muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold or stimulating position (FDI-OSP vs. ADM-OSP influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the

  5. Observations of MeV electrons and scattered light from intense, subpicosecond laser-plasma interactions

    International Nuclear Information System (INIS)

    Darrow, C.; Lane, S.; Klem, D.; Perry, M.D.

    1993-01-01

    In this paper the authors present work in progress in their experimental investigation of the coupling of intense, subpicosecond laser pulses with plasmas preformed on solid targets. (This situation is to be contrasted with the interaction of intense laser fields with solid-density matter. A subject which has generated considerable interest in the last several years.) The characterization of the energy distribution of energetic electrons which escape a solid target irradiated by an intense laser is discussed. The authors have also performed experiments to study the excitation of parametric instabilities near the quarter-critical layer and second-harmonic generation near the critical layer in the plasma. They discuss some preliminary scattered light spectroscopy measurements

  6. The big comet crash of 1994. Intensive observational campaign at ESO

    Science.gov (United States)

    1994-01-01

    Astronomers all over the world are preparing themselves for observations of a most unique event: during a period of six days in July 1994, at least 21 fragments of comet Shoemaker-Levy 9 will collide with giant planet Jupiter. At the European Southern Observatory, an intensive observational campaign with most of the major telescopes at La Silla is being organized with the participation of a dozen international teams of astronomers. This is the first time ever that it has been possible to predict such a collision. Although it is difficult to make accurate estimates, it is likely that there will be important, observable effects in the Jovian atmosphere. WHAT IS KNOWN ABOUT THE COMET ? Comet Shoemaker-Levy 9 is the ninth short-period comet discovered by Gene and Carolyn Shoemaker and David Levy. It was first seen on a photographic plate obtained on 18 March 1993 with the 18-inch Schmidt telescope at the Mount Palomar Observatory, California. It was close in the sky to Jupiter and orbital calculations soon showed that it moves in a very unusual orbit. While other comets revolve around the Sun, this one moves in an elongated orbit around Jupiter. It is obvious that it must have been ``captured'' rather recently by the gravitational field of the planet. It was also found that Shoemaker-Levy 9 consists of several individual bodies which move like ``pearls on a string'' in a majestic procession. It was later determined that this is because the comet suffered a dramatic break-up due to the strong attraction of Jupiter at the time of an earlier close passage to this planet in July 1992. High-resolution Hubble Space Telescope images have shown the existence of up to 21 individual fragments (termed ``nuclei''), whose diameters probably range between a few kilometres and a few hundred meters. There is also much cometary dust visible around the nuclei; it is probably a mixture of grains of different sizes, from sub-millimetre sand up to metre-sized boulders. No outgassing has so

  7. On Compressed Sensing and the Estimation of Continuous Parameters From Noisy Observations

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2012-01-01

    Compressed sensing (CS) has in recent years become a very popular way of sampling sparse signals. This sparsity is measured with respect to some known dictionary consisting of a finite number of atoms. Most models for real world signals, however, are parametrised by continuous parameters correspo......Compressed sensing (CS) has in recent years become a very popular way of sampling sparse signals. This sparsity is measured with respect to some known dictionary consisting of a finite number of atoms. Most models for real world signals, however, are parametrised by continuous parameters...... corresponding to a dictionary with an infinite number of atoms. Examples of such parameters are the temporal and spatial frequency. In this paper, we analyse how CS affects the estimation performance of any unbiased estimator when we assume such infinite dictionaries. We base our analysis on the Cramer...

  8. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  9. Refeeding syndrome influences outcome of anorexia nervosa patients in intensive care unit: an observational study

    OpenAIRE

    Vignaud, Marie; Constantin, Jean-Michel; Ruivard, Marc; Villemeyre-Plane, Michele; Futier, Emmanuel; Bazin, Jean-Etienne; Annane, Djillali

    2010-01-01

    Introduction Data on the epidemiology and management of anorexia nervosa (AN) in the intensive care unit (ICU) are scarce. The aim of this study was to evaluate the prevalence and associated morbidity and mortality of AN in French ICUs. Methods We randomly selected 30 ICUs throughout France. Thereafter, we retrospectively analyzed all patients with AN admitted to any of these 30 ICUs between May 2006 and May 2008. We considered demographic data, diagnosis at admission and complications occurr...

  10. Does a single specialty intensive care unit make better business sense than a multi-specialty intensive care unit? A costing study in a trauma center in India.

    Science.gov (United States)

    Kumar, Parmeshwar; Jithesh, Vishwanathan; Gupta, Shakti Kumar

    2015-01-01

    Though intensive care units (ICUs) only account for 10% of hospital beds, they consume nearly 22% of hospital resources. Few definitive costing studies have been conducted in Indian settings that would help determine appropriate resource allocation. To evaluate and compare the cost of intensive care delivery between multi-specialty and neurosurgery ICU in an apex trauma care facility in India. The study was conducted in a polytrauma and neurosurgery ICU at a 203 bedded level IV trauma care facility in New Delhi, India from May, 2012 to June 2012. The study was cross-sectional, retrospective, and record-based. Traditional costing was used to arrive at the cost for both direct and indirect cost estimates. The cost centers included in study were building cost, equipment cost, human resources, materials and supplies, clinical and nonclinical support services, engineering maintenance cost, and biomedical waste management. Fisher's two-tailed t-test. Total cost/bed/day for the multi-specialty ICU was Rs. 14,976.9/- and for the neurosurgery ICU was Rs. 14,306.7/-, manpower constituting nearly half of the expenditure in both ICUs. The cost center wise and overall difference in the cost among the ICUs were statistically significant. Quantification of expenditure in running an ICU in a trauma center would assist healthcare decision makers in better allocation of resources. Although multi-specialty ICUs are more expensive, other factors will also play a role in defining the kind of ICU that need to be designed.

  11. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  12. Does a single specialty intensive care unit make better business sense than a multi-specialty intensive care unit? A costing study in a trauma center in India

    Science.gov (United States)

    Kumar, Parmeshwar; Jithesh, Vishwanathan; Gupta, Shakti Kumar

    2015-01-01

    Context: Though intensive care units (ICUs) only account for 10% of hospital beds, they consume nearly 22% of hospital resources. Few definitive costing studies have been conducted in Indian settings that would help determine appropriate resource allocation. Aim: To evaluate and compare the cost of intensive care delivery between multi-specialty and neurosurgery ICU in an apex trauma care facility in India. Materials and Methods: The study was conducted in a polytrauma and neurosurgery ICU at a 203 bedded level IV trauma care facility in New Delhi, India from May, 2012 to June 2012. The study was cross-sectional, retrospective, and record-based. Traditional costing was used to arrive at the cost for both direct and indirect cost estimates. The cost centers included in study were building cost, equipment cost, human resources, materials and supplies, clinical and nonclinical support services, engineering maintenance cost, and biomedical waste management. Statistical Analysis: Fisher's two-tailed t-test. Results: Total cost/bed/day for the multi-specialty ICU was Rs. 14,976.9/- and for the neurosurgery ICU was Rs. 14,306.7/-, manpower constituting nearly half of the expenditure in both ICUs. The cost center wise and overall difference in the cost among the ICUs were statistically significant. Conclusions: Quantification of expenditure in running an ICU in a trauma center would assist healthcare decision makers in better allocation of resources. Although multi-specialty ICUs are more expensive, other factors will also play a role in defining the kind of ICU that need to be designed. PMID:25829909

  13. Does a single specialty intensive care unit make better business sense than a multi-specialty intensive care unit? A costing study in a trauma center in India

    Directory of Open Access Journals (Sweden)

    Parmeshwar Kumar

    2015-01-01

    Full Text Available Context: Though intensive care units (ICUs only account for 10% of hospital beds, they consume nearly 22% of hospital resources. Few definitive costing studies have been conducted in Indian settings that would help determine appropriate resource allocation. Aim: To evaluate and compare the cost of intensive care delivery between multi-specialty and neurosurgery ICU in an apex trauma care facility in India. Materials and Methods: The study was conducted in a polytrauma and neurosurgery ICU at a 203 bedded level IV trauma care facility in New Delhi, India from May, 2012 to June 2012. The study was cross-sectional, retrospective, and record-based. Traditional costing was used to arrive at the cost for both direct and indirect cost estimates. The cost centers included in study were building cost, equipment cost, human resources, materials and supplies, clinical and nonclinical support services, engineering maintenance cost, and biomedical waste management. Statistical Analysis: Fisher′s two-tailed t-test. Results: Total cost/bed/day for the multi-specialty ICU was Rs. 14,976.9/- and for the neurosurgery ICU was Rs. 14,306.7/-, manpower constituting nearly half of the expenditure in both ICUs. The cost center wise and overall difference in the cost among the ICUs were statistically significant. Conclusions: Quantification of expenditure in running an ICU in a trauma center would assist healthcare decision makers in better allocation of resources. Although multi-specialty ICUs are more expensive, other factors will also play a role in defining the kind of ICU that need to be designed.

  14. Relativistic Electrons Observed at UARS and the Interpretation of their Storm-Associated Intensity Variations

    Science.gov (United States)

    Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of

  15. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data

    Directory of Open Access Journals (Sweden)

    Ate Poortinga

    2017-01-01

    Full Text Available Due to increasing pressures on water resources, there is a need to monitor regional water resource availability in a spatially and temporally explicit manner. However, for many parts of the world, there is insufficient data to quantify stream flow or ground water infiltration rates. We present the results of a pixel-based water balance formulation to partition rainfall into evapotranspiration, surface water runoff and potential ground water infiltration. The method leverages remote sensing derived estimates of precipitation, evapotranspiration, soil moisture, Leaf Area Index, and a single F coefficient to distinguish between runoff and storage changes. The study produced significant correlations between the remote sensing method and field based measurements of river flow in two Vietnamese river basins. For the Ca basin, we found R2 values ranging from 0.88–0.97 and Nash–Sutcliffe efficiency (NSE values varying between 0.44–0.88. The R2 for the Red River varied between 0.87–0.93 and NSE values between 0.61 and 0.79. Based on these findings, we conclude that the method allows for a fast and cost-effective way to map water resource availability in basins with no gauges or monitoring infrastructure, without the need for application of sophisticated hydrological models or resource-intensive data.

  16. Long-term Observations of Intense Precipitation Small-scale Spatial Variability in a Semi-arid Catchment

    Science.gov (United States)

    Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.

    2017-12-01

    In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

  17. LANDSAT remote sensing: observations of an Appalachian mountaintop surface coal mining and reclamation operation

    International Nuclear Information System (INIS)

    1979-10-01

    The potential benefits of using LANDSAT remote sensing data by state agencies as an aide in monitoring surface coal mining operations are reviewed. A mountaintop surface mine in eastern Kentucky was surveyed over a 5 year period using satellite multispectral scanner data that were classified by computer analyses. The analyses were guided by aerial photography and by ground surveys of the surface mines procured in 1976. The application of the LANDSAT data indicates that: (1) computer classification of the various landcover categories provides information for monitoring the progress of surface mining and reclamation operations, (2) successive yearly changes in barren and revegetated areas can be qualitatively assessed for surface mines of 100 acres or more of disrupted area, (3) barren areas consisting of limestone and shale mixtures may be recognized, and revegetated areas in various stages of growth may be identified against the hilly forest background

  18. Measuring Coronal Magnetic Fields with Remote Sensing Observations of Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Bemporad, Alessandro; Susino, Roberto; Frassati, Federica; Fineschi, Silvano, E-mail: bemporad@oato.inaf.it [INAF, Turin Astrophysical Observatory, Pino Torinese (Italy)

    2016-05-27

    Our limited knowledge of the magnetic fields structuring in the solar corona represents today the main hurdle in our understanding of its structure and dynamic. Over the last decades significant efforts have been dedicated to measure these fields, by approaching the problem on many different sides and in particular: (i) by improving our theoretical understanding of the modification (via Zeeman and Hanle effects) induced by these fields on the polarization of coronal emission lines, (ii) by developing new instrumentation to measure directly with spectro-polarimeters these modifications, (iii) by improving the reliability of the extrapolated coronal fields starting from photospheric measurements, (iv) by developing new techniques to analyse existing remote sensing data and infer properties of these fields, or by combining all these different approaches (e.g., Chifu et al.,).

  19. Prediction of SEP Peak Proton Intensity Based on CME Speed, Direction and Observations of Associated Solar Phenomena

    Science.gov (United States)

    Richardson, I. G.; Mays, M. L.; Thompson, B. J.; Kwon, R.; Frechette, B. P.

    2017-12-01

    We assess whether a formula obtained by Richardson et al. (Solar Phys., 289, 3059, 2014; DOI 10.1007/s11207-014-0524-8) relating the intensity of 14-24 MeV protons in a solar energetic particle event at 1 AU to the solar event location and the speed of the associated coronal mass ejection (CME), may be used to "predict" the intensity of a solar energetic particle event. Starting with a subset of several hundred CMEs in the CCMC/SWRC DONKI real-time database (http://kauai.ccmc.gsfc.nasa.gov/DONKI/) selected without consideration of whether they were associated with SEP events, we first use the CME speed and direction to predict the proton intensity at Earth or the STEREO spacecraft using this formula. Since most of these CMEs were not in fact associated with SEP events, many "false alarms" result. We then examine whether considering other phenomena which may accompany the CMEs, such as the X-ray flare intensity and the properties of type II and type III radio emissions, may help to reduce the false alarm rate. We also use CME parameters calculated from an ellipsoidal shell fit to multi-spacecraft CME shock observations for a smaller number of events to predict the SEP intensity. We calculate skill scores for each case and assess whether the Richardson et al. (2014) formula, using additional observations to reduce the false alarm rate, has any potential as a SEP prediction tool, assuming that the required observations could be acquired sufficiently rapidly following the onset of the related solar event/CME.

  20. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Directory of Open Access Journals (Sweden)

    E. C. Turner

    2016-11-01

    Full Text Available The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0° clear-sky submillimetre spectrum from 30 mm (10 GHz to 150 µm (2000 GHz at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr, hydrogen bromide (HBr, perhydroxyl radical (HO2 and nitrous oxide (N2O the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate

  1. Experimental observation of parametric instabilities at laser intensities relevant for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Cristoforetti, G.; Colaïtis, A.; Antonelli, L.; Atzeni, S.; Baffigi, F.; Batani, D.; Barbato, F.; Boutoux, G.; Dudžák, Roman; Koester, P.; Krouský, Eduard; Labate, L.; Nicolaï, P.; Renner, Oldřich; Skoric, M.; Tikhonchuk, V.; Gizzi, L.A.

    2017-01-01

    Roč. 117, č. 3 (2017), č. článku 35001. ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014; GA MŠk EF15_008/0000162 EU Projects: European Commission(XE) 633053 - EUROfusion Grant - others:EU - ICT(XE) COST Action IC1208; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser intensity regime * Stimulated Brillouin Scattering (SBS) * Stimulated Raman Scattering (SRS) * Two-Plasmon Decay (TPD) Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 1.957, year: 2016 https://doi.org/10.1209/0295-5075/117/35001

  2. Heating of a dense plasma with an intense relativistic electron beam: initial observations

    International Nuclear Information System (INIS)

    Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.

    1981-01-01

    A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV

  3. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    Science.gov (United States)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  4. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    Science.gov (United States)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  5. Remote sensing estimates of impervious surfaces for hydrological modelling of changes in flood risk during high-intensity rainfall events

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus; Drews, Martin

    This paper addresses the accuracy and applicability of medium resolution (MR) remote sensing estimates of impervious surfaces (IS) for urban land cover change analysis. Landsat-based vegetation indices (VI) are found to provide fairly accurate measurements of sub-pixel imperviousness for urban...... areas at different geographical locations within Europe, and to be applicable for cities with diverse morphologies and dissimilar climatic and vegetative conditions. Detailed data on urban land cover changes can be used to examine the diverse environmental impacts of past and present urbanisation...

  6. Using a didactic model to improve patient observation skills in neonatal intensive care nurse trainees - a pilot study.

    Science.gov (United States)

    Solberg, Marianne Trygg; Tandberg, Bente Silnes; Lerdal, Anners

    2012-08-01

    To implement a didactic model for students specialising in intensive care nursing (n=12) and nurses working in neonatal intensive care units (NICU) (n=17). To evaluate nurse self-assessments following observation of children with congenital heart disease (CHD), before and after participation in the programme, as well as the usefulness of the programme. A pilot study with a pre- and post-test design, using self-administered questionnaires. The didactic model increased the number of clinical observations and assessments of physiological factors made by both students and NICU nurses during evaluation of children with suspected CHD. The majority of nurses reported that both participation in the programme and the didactic model were useful and they demonstrated high-level knowledge, according to Bloom's taxonomy for cognitive learning. In particular, subjects found that the literature provided and structured bedside guidance in the clinical setting assisted learning. Intensive care students and NICU nurses performed clinical observations and physical factor assessments more frequently after completing the programme, compared with baseline. We speculate that this didactic model may also be useful in other clinical settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm.

    Science.gov (United States)

    Varsani, A; Nakamura, R; Sergeev, V A; Baumjohann, W; Owen, C J; Petrukovich, A A; Yao, Z; Nakamura, T K M; Kubyshkina, M V; Sotirelis, T; Burch, J L; Genestreti, K J; Vörös, Z; Andriopoulou, M; Gershman, D J; Avanov, L A; Magnes, W; Russell, C T; Plaschke, F; Khotyaintsev, Y V; Giles, B L; Coffey, V N; Dorelli, J C; Strangeway, R J; Torbert, R B; Lindqvist, P-A; Ergun, R

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R E .

  8. The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Lea, Guillaume

    2016-01-01

    We present a comprehensive database of near-shore wind observations that were carried out during the experimental campaign of the RUNE project. RUNE aims at reducing the uncertainty of the near-shore wind resource estimates from model outputs by using lidar, ocean, and satellite observations. Here...

  9. ELF whistler events with a reduced intensity observed by the DEMETER spacecraft

    Science.gov (United States)

    Zahlava, J.; Nemec, F.; Santolik, O.; Kolmasova, I.; Parrot, M.

    2017-12-01

    A survey of VLF frequency-time spectrograms obtained by the DEMETER spacecraft (2004-2010, altitude about 700 km) revealed that the intensity of fractional hop whistlers is sometimes significantly reduced at specific frequencies. These frequencies are typically above about 3.4 kHz (second cutoff frequency of the Earth-ionosphere waveguide), and they vary smoothly in time. The events were explained by the wave propagation in the Earth-ionosphere waveguide, and a resulting interference of the first few waveguide modes. We analyze the events whose frequency-time structure is rather similar, but at frequencies below 1 kHz. Altogether, 284 events are identified during the periods with active Burst mode, when high resolution data are measured by DEMETER. The vast majority of events (93%) occurs during the nighttime. All six electromagnetic field components are available, which allows us to perform a detailed wave analysis. An overview of the properties of these events is presented, and their possible origin is discussed.

  10. Ground observations and remote sensing data for integrated modelisation of water budget in the Merguellil catchment, Tunisia

    Science.gov (United States)

    Mougenot, Bernard

    2016-04-01

    The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil

  11. Refeeding syndrome influences outcome of anorexia nervosa patients in intensive care unit: an observational study.

    Science.gov (United States)

    Vignaud, Marie; Constantin, Jean-Michel; Ruivard, Marc; Villemeyre-Plane, Michele; Futier, Emmanuel; Bazin, Jean-Etienne; Annane, Djillali

    2010-01-01

    Data on the epidemiology and management of anorexia nervosa (AN) in the intensive care unit (ICU) are scarce. The aim of this study was to evaluate the prevalence and associated morbidity and mortality of AN in French ICUs. We randomly selected 30 ICUs throughout France. Thereafter, we retrospectively analyzed all patients with AN admitted to any of these 30 ICUs between May 2006 and May 2008. We considered demographic data, diagnosis at admission and complications occurring during the stay, focusing on refeeding syndrome and management of refeeding. Eleven of the 30 ICUs participated in the retrospective study, featuring 68 patients, including 62 women. Average body mass index at the admission was 12 ± 3 kg/m2. Twenty one were mechanically ventilated, mainly for neurological reasons. The reported average calorie intake was 22.3 ± 13 kcal/kg/24 h. Major diagnoses at admission were metabolic problems, refeeding survey and voluntary drug intoxication and infection. The most common complications were metabolic, hematological, hepatic, and infectious events, of which 10% occurred during refeeding. Seven patients developed refeeding syndrome. At day one, the average calorie intake was higher for patients who developed refeeding syndrome (23.2 ± 5 Kcal/kg/j; n = 7) versus patients without refeeding syndrome (14.1 ± 3 Kcal/kg/j; n = 61) P = 0.02. Seven patients died, two from acute respiratory distress syndrome and five from multiorgan-failure associated with major hydroelectrolytic problems. The frequency of AN in ICU patients is very low and the crude mortality in this group is about 10%. Prevention and early-detection of refeeding syndrome is the key point.

  12. Differences in rain rate intensities between TRMM observations and community atmosphere model simulations

    Science.gov (United States)

    Deng, Yi; Bowman, Kenneth P.; Jackson, Charles

    2007-01-01

    Precipitation related latent heating is important in driving the atmospheric general circulation and in generating intraseasonal to decadal atmospheric variability. Our ability to project future climate change, especially trends in costly precipitation extremes, hinges upon whether coupled GCMs capture processes that affect precipitation characteristics. Our study compares the tropical-subtropical precipitation characteristics of simulations by the NCAR CAM3.1 atmospheric GCM and observations derived from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite. Despite a fairly good simulation of the annual mean rain rate, CAM rains about 10-50% more often than the real world and fails to capture heavy rainfall associated with deep convective systems over subtropical South America and U.S. Southern Plains. When it rains, there is a likelihood of 0.96-1.0 that it rains lightly in the model, compared to values of 0.84-1.0 in TRMM data. On the other hand, the likelihood of the occurrence of moderate to heavy rainfall is an order of magnitude higher in observations (0.12-0.2) than that in the model (model compensates for the lack of heavy precipitation through raining more frequently within the light rain category, which leads to an annual rainfall amount close to what is observed. CAM captures the qualitative change of rain rate PDF from a "dry" oceanic to a "wet" oceanic region, but it fails to simulate the change of precipitation characteristics from an oceanic region to a land region where thunderstorm rainfall dominates.

  13. An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2018-04-01

    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in

  14. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Science.gov (United States)

    Mensah, A. A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, Th. F.; ten Brink, H.; Henzing, B.; Kiendler-Scharr, A.

    2012-05-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA) based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS). An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42%) was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  15. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Directory of Open Access Journals (Sweden)

    A. A. Mensah

    2012-05-01

    Full Text Available Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS. An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42% was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  16. Observations of electrons in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS)

    International Nuclear Information System (INIS)

    Dooling, J.C.; Brumwell, F.R.; Czyz, W.S.; Harkay, K.C.; Lien, M.K.; McMichael, G.E.

    2004-01-01

    In the process of accelerating protons from 50 to 450 MeV at 30 Hz, low-energy electrons are generated within the IPNS RCS vacuum chamber. Electrons from background gas stripping are detected using an Ionization Profile Monitor (IPM) to generate integrated, horizontal charge distributions of the single-harmonic bunch during acceleration. Recently, a Retarding Field Analyzer (RFA) was installed in the RCS to look for evidence of beam-induced multipacting by measuring the electrons ejected by the space charge of the beam. A wide-band, high-gain transimpedance amplifier has been built to observe time structure in the electron signal detected with the RFA. Though a noisy power supply prevented full I-V characteristics from being obtained, interesting features are observed; especially, after the period of phase modulation between the rf cavities that is deliberately introduced during the cycle. The phase modulation generates a longitudinal quadrupole oscillation in the bunch, which is believed to enhance beam stability. Preliminary results indicate that electron multipacting is not significant in the RCS. The effects of background gas neutralization are considered and details of the RFA measurements are presented.

  17. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Aran, A. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Gomez-Herrero, R.; Dresing, N.; Heber, B., E-mail: david.lario@jhuapl.edu [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany)

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  18. Remote Sensing based multi-temporal observation of North Korea mining activities : A case study of Rakyeon mine

    Science.gov (United States)

    Lim, J. H.; Yu, J.; Koh, S. M.; Lee, G.

    2017-12-01

    Mining is a major industrial business of North Korea accounting for significant portion of an export for North Korean economy. However, due to its veiled political system, details of mining activities of North Korea is rarely known. This study investigated mining activities of Rakyeon Au-Ag mine, North Korea based on remote sensing based multi-temporal observation. To monitor the mining activities, CORONA data acquired in 1960s and 1970s, SPOT and Landsat data acquired in 1980s and 1990s and KOMPSAT-2 data acquired in 2010s are utilized. The results show that mining activities of Rakyeon mine continuously carried out for the observation period expanding tailing areas of the mine. However, its expanding rate varies between the period related to North Korea's economic and political situations.

  19. Remote Sensing and Underwater Glider Observations of a Springtime Plume in Western Lake Superior

    Science.gov (United States)

    Plumes are commonly observed in satellite imagery of western Lake Superior following storm events, and represent a significant cross-shelf pathway for sediment and other constituents. However, their subsurface extent is poorly understood. This study reports results from plume ob...

  20. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  1. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  2. Observation of muon intensity variations by season with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mathis, M.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O’Connor, J.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tognini, S. C.; Toner, R.; Torretta, D.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.

    2014-07-01

    A sample of 1.53$\\times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $\\alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$\\pm$0.003(stat.)$\\pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$\\pm$0.003(stat.)$\\pm$0.046(syst.).

  3. Carboxyhemoglobin levels in medical intensive care patients: a retrospective, observational study.

    Science.gov (United States)

    Fazekas, Andreas S; Wewalka, Marlene; Zauner, Christian; Funk, Georg-Christian

    2012-01-11

    Critical illness leads to increased endogenous production of carbon monoxide (CO) due to the induction of the stress-response enzyme, heme oxygenase-1 (HO-1). There is evidence for the cytoprotective and anti-inflammatory effects of CO based on animal studies. In critically ill patients after cardiothoracic surgery, low minimum and high maximum carboxyhemoglobin (COHb) levels were shown to be associated with increased mortality, which suggests that there is an 'optimal range' for HO-1 activity. Our study aimed to test whether this relationship between COHb and outcome exists in non-surgical ICU patients. We conducted a retrospective, observational study in a medical ICU at a university hospital in Vienna, Austria involving 868 critically ill patients. No interventions were undertaken. Arterial COHb was measured on admission and during the course of treatment in the ICU. The association between arterial COHb levels and ICU mortality was evaluated using bivariate tests and a logistic regression model. Minimum COHb levels were slightly lower in non-survivors compared to survivors (0.9%, 0.7% to 1.2% versus 1.2%, 0.9% to 1.5%; P=0.0001), and the average COHb levels were marginally lower in non-survivors compared to survivors (1.5%, 1.2% to 1.8% versus 1.6%, 1.4% to 1.9%, P=0.003). The multivariate logistic regression analysis revealed that the association between a low minimum COHb level and increased mortality was independent of the severity of illness and the type of organ failure. Critically ill patients surviving the admission to a medical ICU had slightly higher minimum and marginally higher average COHb levels when compared to non-survivors. Even though the observed differences are statistically significant, the minute margins would not qualify COHb as a predictive marker for ICU mortality.

  4. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    Science.gov (United States)

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  5. Fusing Mobile In Situ Observations and Satellite Remote Sensing of Chemical Release Emissions to Improve Disaster Response

    Directory of Open Access Journals (Sweden)

    Ira Leifer

    2016-09-01

    Full Text Available Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and spacebased remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG Surveyor, a commuter car modified for science. Mobile surface in situ CH4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr-1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. This study demonstrated a novel application of satellite aerosol remote

  6. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis

    Science.gov (United States)

    Nie, Yong; Liu, Qiao; Wang, Jida; Zhang, Yili; Sheng, Yongwei; Liu, Shiyin

    2018-05-01

    Glacial lake outburst floods (GLOFs) are a unique type of natural hazard in the cryosphere that may result in catastrophic fatalities and damages. The Himalayas are known as one of the world's most GLOF-vulnerable zones. Effective hazard assessments and risk management require a thorough inventory of historical GLOF events across the Himalayas, which is hitherto absent. Existing studies imply that numerous historical GLOF events are contentious because of discrepant geographic coordinates, names, or outburst time, requiring further verifications. This study reviews and verifies over 60 historical GLOF events across the Himalayas using a comprehensive method that combines literature documentations, archival remote sensing observations, geomorphological analysis, and field investigations. As a result, three unreported GLOF events were discovered from remote sensing images and geomorphological analysis. Eleven suspicious events were identified and suggested to be excluded. The properties of five outburst lakes, i.e., Degaco, Chongbaxia Tsho, Geiqu, Lemthang Tsho, and a lake on Tshojo Glacier, were corrected or updated. A total of 51 GLOF events were verified to be convincing, and these outburst lakes were classified into three categories according to their statuses in the past decades, namely disappeared (12), stable (30), and expanding (9). Statistics of the verified GLOF events show that GLOF tended to occur between April and October in the Himalayas. We suggest that more attention should be paid to rapidly expanding glacial lakes with high possibility of repetitive outbursts. This study also demonstrates the effectiveness of integrating remote sensing and geomorphic interpretations in identifying and verifying GLOF events in remote alpine environments. This inventory of GLOFs with a range of critical attributes (e.g., locations, time, and mechanisms) will benefit the continuous monitoring and prediction of potentially dangerous glacial lakes and contribute to

  7. The ICAP Active Learning Framework Predicts the Learning Gains Observed in Intensely Active Classroom Experiences

    Directory of Open Access Journals (Sweden)

    Benjamin L. Wiggins

    2017-05-01

    Full Text Available STEM classrooms (science, technology, engineering, and mathematics in postsecondary education are rapidly improved by the proper use of active learning techniques. These techniques occupy a descriptive spectrum that transcends passive teaching toward active, constructive, and, finally, interactive methods. While aspects of this framework have been examined, no large-scale or actual classroom-based data exist to inform postsecondary education STEM instructors about possible learning gains. We describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive in this ecological classroom environment. Students in interactive classrooms demonstrate significantly improved learning outcomes relative to students in constructive classrooms. This improvement in learning is relatively subtle; similar experimental designs without repeated measures would be unlikely to have the power to observe this significance. We discuss the importance of seemingly small learning gains that might propagate throughout a course or departmental curriculum, as well as improvements with the necessity for faculty to develop and implement similar activities.

  8. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    Energy Technology Data Exchange (ETDEWEB)

    B.E. Law; D. Turner; M. Goeckede

    2010-06-01

    GOAL: To develop and apply an approach to quantify and understand the regional carbon balance of the west coast states for the North American Carbon Program. OBJECTIVE: As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance. APPROACH: In performing the regional analysis, the research plan for the bottom-up approach uses a nested hierarchy of observations that include AmeriFlux data (i.e., net ecosystem exchange (NEE) from eddy covariance and associated biometric data), intermediate intensity inventories from an extended plot array partially developed from the PI's previous research, Forest Service FIA and CVS inventory data, time since disturbance, disturbance type, and cover type from Landsat developed in this study, and productivity estimates from MODIS algorithms. The BIOME-BGC model is used to integrate information from these sources and quantify C balance across the region. The inverse modeling approach assimilates flux data from AmeriFlux sites, high precision CO2 concentration data from AmeriFlux towers and four new calibrated CO2 sites

  9. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....

  10. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale

    Directory of Open Access Journals (Sweden)

    Yaokui Cui

    2014-04-01

    Full Text Available Rainfall interception loss of forest is an important component of water balance in a forested ecosystem. The Gash analytical model has been widely used to estimate the forest interception loss at field scale. In this study, we proposed a simple model to estimate rainfall interception loss of heterogeneous forest at regional scale with several reasonable assumptions using remote sensing observations. The model is a modified Gash analytical model using easily measured parameters of forest structure from satellite data and extends the original Gash model from point-scale to the regional scale. Preliminary results, using remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS products, field measured rainfall data, and meteorological data of the Automatic Weather Station (AWS over a picea crassifolia forest in the upper reaches of the Heihe River Basin in northwestern China, showed reasonable accuracy in estimating rainfall interception loss at both the Dayekou experimental site (R2 = 0.91, RMSE = 0.34 mm∙d −1 and the Pailugou experimental site (R2 = 0.82, RMSE = 0.6 mm∙d −1, compared with ground measurements based on per unit area of forest. The interception loss map of the study area was shown to be strongly heterogeneous. The modified model has robust physics and is insensitive to the input parameters, according to the sensitivity analysis using numerical simulations. The modified model appears to be stable and easy to be applied for operational estimation of interception loss over large areas.

  11. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    Science.gov (United States)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  12. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    Science.gov (United States)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  13. Hydrological modelling of the Mabengnong catchment in the southeast Tibet with support of short term intensive precipitation observation

    Science.gov (United States)

    Wang, L.; Zhang, F.; Zhang, H.; Scott, C. A.; Zeng, C.; SHI, X.

    2017-12-01

    Precipitation is one of the crucial inputs for models used to better understand hydrological processes. In high mountain areas, it is a difficult task to obtain a reliable precipitation data set describing the spatial and temporal characteristic due to the limited meteorological observations and high variability of precipitation. This study carries out intensive observation of precipitation in a high mountain catchment in the southeast of the Tibet during July to August 2013. According to the rain gauges set up at different altitudes, it is found that precipitation is greatly influenced by altitude. The observed precipitation is used to depict the precipitation gradient (PG) and hourly distribution (HD), showing that the average duration is around 0.1, 0.8 and 6.0 hours and the average PG is 0.10, 0.28 and 0.26 mm/d/100m for trace, light and moderate rain, respectively. Based on the gridded precipitation derived from the PG and HD and the nearby Linzhi meteorological station at lower altitude, a distributed biosphere hydrological model based on water and energy budgets (WEB-DHM) is applied to simulate the hydrological processes. Beside the observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are also used for model calibration and validation. The resulting runoff, SCA and LST simulations are all reasonable. Sensitivity analyses indicate that runoff is greatly underestimated without considering PG, illustrating that short-term intensive precipitation observation contributes to improving hydrological modelling of poorly gauged high mountain catchments.

  14. The Many Faces of Mitochondrial Autophagy: Making Sense of Contrasting Observations in Recent Research

    Science.gov (United States)

    May, Alexander I.; Devenish, Rodney J.; Prescott, Mark

    2012-01-01

    Research into the selective autophagic degradation of mitochondria—mitophagy—has intensified in recent years, yielding significant insights into the function, mechanism, and regulation of this process in the eukaryotic cell. However, while some molecular players in budding yeast, such as Atg32p, Uth1p, and Aup1p, have been identified, studies further interrogating the mechanistic and regulatory features of mitophagy have yielded inconsistent and sometimes conflicting results. In this review, we focus on the current understanding of mitophagy mechanism, induction, and regulation in yeast, and suggest that differences in experimental conditions used in the various studies of mitophagy may contribute to the observed discrepancies. Consideration and understanding of these differences may help place the mechanism and regulation of mitophagy in context, and further indicate the intricate role that this essential process plays in the life and death of eukaryotic cells. PMID:22550491

  15. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers

    International Nuclear Information System (INIS)

    Wang, J.R.

    1985-01-01

    The microwave radiometric measurements made by the Skylab 1.4 GHz radiometer and by the 6.6 GHz and 10.7 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer were analyzed to study the large-area soil moisture variations of land surfaces. Two regions in Texas, one with sparse and the other with dense vegetation covers, were selected for the study. The results gave a confirmation of the vegetation effect observed by ground-level microwave radiometers. Based on the statistics of the satellite data, it was possible to estimate surface soil moisture in about five different levels from dry to wet conditions with a 1.4 GHz radiometer, provided that the biomass of the vegetation cover could be independently measured. At frequencies greater than about 6.6 GHz, the radiometric measurements showed little sensitivity to moisture variation for vegetation-covered soils. The effects of polarization in microwave emission were studied also. (author)

  16. The SENSE-Isomorphism Theoretical Image Voxel Estimation (SENSE-ITIVE) Model for Reconstruction and Observing Statistical Properties of Reconstruction Operators

    Science.gov (United States)

    Bruce, Iain P.; Karaman, M. Muge; Rowe, Daniel B.

    2012-01-01

    The acquisition of sub-sampled data from an array of receiver coils has become a common means of reducing data acquisition time in MRI. Of the various techniques used in parallel MRI, SENSitivity Encoding (SENSE) is one of the most common, making use of a complex-valued weighted least squares estimation to unfold the aliased images. It was recently shown in Bruce et al. [Magn. Reson. Imag. 29(2011):1267–1287] that when the SENSE model is represented in terms of a real-valued isomorphism, it assumes a skew-symmetric covariance between receiver coils, as well as an identity covariance structure between voxels. In this manuscript, we show that not only is the skew-symmetric coil covariance unlike that of real data, but the estimated covariance structure between voxels over a time series of experimental data is not an identity matrix. As such, a new model, entitled SENSE-ITIVE, is described with both revised coil and voxel covariance structures. Both the SENSE and SENSE-ITIVE models are represented in terms of real-valued isomorphisms, allowing for a statistical analysis of reconstructed voxel means, variances, and correlations resulting from the use of different coil and voxel covariance structures used in the reconstruction processes to be conducted. It is shown through both theoretical and experimental illustrations that the miss-specification of the coil and voxel covariance structures in the SENSE model results in a lower standard deviation in each voxel of the reconstructed images, and thus an artificial increase in SNR, compared to the standard deviation and SNR of the SENSE-ITIVE model where both the coil and voxel covariances are appropriately accounted for. It is also shown that there are differences in the correlations induced by the reconstruction operations of both models, and consequently there are differences in the correlations estimated throughout the course of reconstructed time series. These differences in correlations could result in meaningful

  17. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-12-01

    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.

  18. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    Science.gov (United States)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  19. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations

    Science.gov (United States)

    Patil, Amol; Ramsankaran, RAAJ

    2017-12-01

    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  20. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations

    Science.gov (United States)

    Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.

    1977-01-01

    The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.

  1. The influence of canopy strata on remotely sensed observations of savanna-woodlands

    International Nuclear Information System (INIS)

    Fuller, D.O.; Prince, S.D.; Astle, W.L.

    1997-01-01

    Upwelling radiance from savanna woodlands may originate from two separate layers: (1) the field layer, which is a mixture of soil, litter and herbs, and (2) the tree layer composed of woody parts and leaves. Unless detailed field data are available for a particular savanna location, it is unknown how the individual layers may influence the red and near-infrared signals and whether radiative interactions between layers are important. We employed an existing radiative transfer model (SAIL) in conjunction with a simple, single-scattering model to analyse the variation in Advanced Very High Resolution Radiometer (AVHRR) channel 1 and 2 response as well as NDVI for savanna-woodland vegetation in eastern Zambia. Linear fits between predicted and observed values of reflectance and NDVI were significant ( p 0.05) in the red and in NDVI, however, the model failed to explain a high proportion of the variation in near-infrared. Red and NDVI in sites where tree cover was high were also poorly modelled, which suggests that multiple interactions between canopy layers make a single-scattering model unreliable, particularly in the near-infrared. Modelled results were also compared to aircraft radiometer measurements provided by the integrated camera and radiometer instrument (ICAR). Simulations parameterized with field data suggest that the model may be used to infer tree and field layer influences at different points during the seasonal cycle. Results also suggest that the field layer dominated the signal in our savanna woodland sites throughout most points of the seasonal cycle, which is consistent with other canopy radiative-transfer studies. Simulations indicated that the tree layer was a relatively more important component of NDVI during the dry season when the field layer was largely senescent, accounting for 20-40 per cent of the satellite signal. (author)

  2. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  3. An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-03-01

    Full Text Available An accurate and comprehensive representation of an observation task is a prerequisite in disaster monitoring to achieve reliable sensor observation planning. However, the extant disaster event or task information models do not fully satisfy the observation requirements for the accurate and efficient planning of remote-sensing satellite sensors. By considering the modeling requirements for a disaster observation task, we propose an observation task chain (OTChain representation model that includes four basic OTChain segments and eight-tuple observation task metadata description structures. A prototype system, namely OTChainManager, is implemented to provide functions for modeling, managing, querying, and visualizing observation tasks. In the case of flood water monitoring, we use a flood remote-sensing satellite sensor observation task for the experiment. The results show that the proposed OTChain representation model can be used in modeling process-owned flood disaster observation tasks. By querying and visualizing the flood observation task instances in the Jinsha River Basin, the proposed model can effectively express observation task processes, represent personalized observation constraints, and plan global remote-sensing satellite sensor observations. Compared with typical observation task information models or engines, the proposed OTChain representation model satisfies the information demands of the OTChain and its processes as well as impels the development of a long time-series sensor observation scheme.

  4. Combining Hydrological Modeling and Remote Sensing Observations to Enable Data-Driven Decision Making for Devils Lake Flood Mitigation in a Changing Climate

    Science.gov (United States)

    Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams

    2010-01-01

    This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.

  5. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions.

    Science.gov (United States)

    Knoblauch, Christoph; Watson, Conor; Berendonk, Clara; Becker, Rolf; Wrage-Mönnig, Nicole; Wichern, Florian

    2017-06-23

    The sustainable use of grasslands in intensive farming systems aims to optimize nitrogen (N) inputs to increase crop yields and decrease harmful losses to the environment at the same time. To achieve this, simple optical sensors may provide a non-destructive, time- and cost-effective tool for estimating plant biomass in the field, considering spatial and temporal variability. However, the plant growth and related N uptake is affected by the available N in the soil, and therefore, N mineralization and N losses. These soil N dynamics and N losses are affected by the N input and environmental conditions, and cannot easily be determined non-destructively. Therefore, the question arises: whether a relationship can be depicted between N fertilizer levels, plant biomass and N dynamics as indicated by nitrous oxide (N₂O) losses and inorganic N levels. We conducted a standardized greenhouse experiment to explore the potential of spectral measurements for analyzing yield response, N mineralization and N₂O emissions in a permanent grassland. Ryegrass was subjected to four mineral fertilizer input levels over 100 days (four harvests) under controlled environmental conditions. The soil temperature and moisture content were automatically monitored, and the emission rates of N₂O and carbon dioxide (CO₂) were detected frequently. Spectral measurements of the swards were performed directly before harvesting. The normalized difference vegetation index (NDVI) and simple ratio (SR) were moderately correlated with an increasing biomass as affected by fertilization level. Furthermore, we found a non-linear response of increasing N₂O emissions to elevated fertilizer levels. Moreover, inorganic N and extractable organic N levels at the end of the experiment tended to increase with the increasing N fertilizer addition. However, microbial biomass C and CO₂ efflux showed no significant differences among fertilizer treatments, reflecting no substantial changes in the soil

  6. Observations of Fe XIV Line Intensity Variations in the Solar Corona During the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Johnson, Payton; Ladd, Edwin

    2018-01-01

    We present time- and spatially-resolved observations of the inner solar corona in the 5303 Å line of Fe XIV, taken during the 21 August 2017 solar eclipse from a field observing site in Crossville, TN. These observations are used to characterize the intensity variations in this coronal emission line, and to compare with oscillation predictions from models for heating the corona by magnetic wave dissipation.The observations were taken with two Explore Scientific ED 102CF 102 mm aperture triplet apochromatic refractors. One system used a DayStar custom-built 5 Å FWHM filter centered on the Fe XIV coronal spectral line and an Atik Titan camera for image collection. The setup produced images with a pixel size of 2.15 arcseconds (~1.5 Mm at the distance to the Sun), and a field of view of 1420 x 1060 arcseconds, covering approximately 20% of the entire solar limb centered near the emerging sunspot complex AR 2672. We obtained images with an exposure time of 0.22 seconds and a frame rate of 2.36 Hz, for a total of 361 images during totality.An identical, co-aligned telescope/camera system observed the same portion of the solar corona, but with a 100 Å FWHM Baader Planetarium solar continuum filter centered on a wavelength of 5400 Å. Images with an exposure time of 0.01 seconds were obtained with a frame rate of 4.05 Hz. These simultaneous observations are used as a control to monitor brightness variations not related to coronal line oscillations.

  7. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  8. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    Science.gov (United States)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  9. Data Assimilation using observed streamflow and remotely-sensed soil moisture for improving sub-seasonal-to-seasonal forecasting

    Science.gov (United States)

    Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.

    2017-12-01

    Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.

  10. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    International Nuclear Information System (INIS)

    Karoff, C.; Campante, T. L.; Ballot, J.; Kallinger, T.; Gruberbauer, M.; García, R. A.; Caldwell, D. A.; Christiansen, J. L.; Kinemuchi, K.

    2013-01-01

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars—while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures—comparable to what is seen in the Sun.

  11. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Karoff, C. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Campante, T. L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400, Toulouse (France); Kallinger, T. [Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Gruberbauer, M. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary' s University, B3H 3C3 Halifax (Canada); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Universit Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Caldwell, D. A.; Christiansen, J. L. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kinemuchi, K., E-mail: karoff@phys.au.dk [Bay Area Environmental Research Inst./NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.

  12. Experimental Observation of Generation of Superradiance Pulses in the Process of Backscattering of Pump Wave on the Intense Electron Bunch

    CERN Document Server

    Ginzburg, N S; Denisov, G G; Rozental, R M; Sergeev, A; Zotova, I V

    2005-01-01

    Recently significant progress was archived in the generation of multimegawatt subnanosecond pulses in millimeter wave band utilizing the cyclotron and Cherenkov mechanisms of superradiance (SR) [1,2]. We study the novel mechanism of SR when the powerful pumping wave undergoes the stimulated back scattering on the intense electron bunch. Due to the Doppler up shift the radiation frequency can significantly exceed the frequency of the pumping wave. With the relativistic microwave generator as a pumping wave source such a mechanism can be used for generation of the powerful pulse radiation in the short millimeter and submillimeter wave bands. Experiments on the observation of the stimulated scattering in the superradiance regime were carried out at Institute of Electrophysics RAS with two synchronized accelerators. The 4 ns electron beam from the first accelerator is used for generation of the 38 GHz 100 MW pumping wave which subsequently scattered on the subnanosecond 250 keV 1 kA electron bunch produced by the...

  13. The spatial intensity distribution of selected emission lines for Herbig-Haro 1 - Comparison between theory and observations

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1989-01-01

    In this paper, it is shown that most of the spatial intensity distribution of 11 selected emission lines for Herbig-Haro 1 (including the forbidden S II emission lines at 6731 A and 4069 A, the forbidden O III line at 5007 A, and the forbidden O II line at 3727 A) can be explained by a bow shock with a shock velocity of about 150-200 km/sec at the stagnation point, and under the assumption that the gas entering the shock is fully preionized. The results are based on three spectrograms (with a total exposure time of 180 min) obtained consecutively. Specifically, the ratios of each of the forbidden lines to H-alpha were studied, which permitted a critical test of the model. The agreement between the theoretical predictions and the observations was found to be remarkable, considering the complex geometry that a bow shock could have. 38 refs

  14. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans.

    Science.gov (United States)

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W; Griffiths, Roland R; Riba, Jordi

    2015-06-05

    Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  15. Treatment and follow-up results of children with electrical burn who observed in burn intensive care unit

    Directory of Open Access Journals (Sweden)

    Çiğdem Aliosmanoğlu

    2011-06-01

    Full Text Available Electrical burns are infrequent relative to other injuries, but they are associated with high morbidity and mortality. The aim of this study was to assess management and follow-up results of pediatric patients’ who observed in intensive care unit and also review the precautions for preventing electrical burns.Materials and methods: Totally 22 patients aged under 17 years who were observed in the burn intensive care unit of Şanlıurfa Education and Research Hospital during the period between July 2009-October 2010. Cases were investigated retrospectively. The patients’ age, gender, total burn surface area, length of stay in hospital, musculo-skeletal system complication, cardiovascular system complication, kidney damage and attempts were recorded.Results: Of the 22 cases, 19 (86.3% were male and 3 (13.7% were female. The mean age of the patients was 11.5 years. In 10 (45.4% children burns were occurred in workplace and working area and 12 (54.6% were occurred in the home environment. Depth of burns were third degree in 10 (45.4% children and second degree in 12 (54.6%. The mean percentage of burn surface area was 25.9%. The mean length of stay in hospital was 17 days. Debridement and grafting were performed to 12 (54.6% cases and 10 (45.4% children were treated with dressings. No patient had increased creatinine kinase levels, oliguria, myoglobuinuria and arrhythmia. The mean hospitalization time was 17 days.Conclusion: Nearly half of patients underwent debridement plus grafting. None of our patients developed renal failure other severe system dysfunction.

  16. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    Science.gov (United States)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  17. Medication Errors in an Internal Intensive Care Unit of a Large Teaching Hospital: A Direct Observation Study

    Directory of Open Access Journals (Sweden)

    Saadat Delfani

    2012-06-01

    Full Text Available Medication errors account for about 78% of serious medical errors in intensive care unit (ICU. So far no study has been performed in Iran to evaluate all type of possible medication errors in ICU. Therefore the objective of this study was to reveal the frequency, type and consequences of all type of errors in an ICU of a large teaching hospital. The prospective observational study was conducted in an 11 bed internal ICU of a university hospital in Shiraz. In each shift all processes that were performed on one selected patient was observed and recorded by a trained pharmacist. Observer would intervene only if medication error would cause substantial harm. The data was evaluated and then were entered in a form that was designed for this purpose. The study continued for 38 shifts. During this period, a total of 442 errors per 5785 opportunities for errors (7.6% occurred. Of those, there were 9.8% administration errors, 6.8% prescribing errors, 3.3% transcription errors and, 2.3% dispensing errors. Totally 45 interventions were made, 40% of interventions result in the correction of errors. The most common causes of errors were observed to be: rule violations, slip and memory lapses and lack of drug knowledge. According to our results, the rate of errors is alarming and requires implementation of a serious solution. Since our system lacks a well-organize detection and reporting mechanism, there is no means for preventing errors in the first place. Hence, as the first step we must implement a system where errors are routinely detected and reported.

  18. Periodic variations of cosmic ray intensity with period of -37 minute observed on April 25th, 1984

    International Nuclear Information System (INIS)

    Sakai, Takasuke; Kato, Masahito; Takei, Ryoji; Tamai, Eiji

    1985-01-01

    Existence of cosmic ray variation with period ranging from a few hours to seconds during geomagnetically quiet and perturb period at different altitude with different detector, was reported previously. As short period variation is thought to be transient with small amplitude fluctuation, consequently high counting rate of cosmic ray and appropriate method for finding short periodicity, is required. Further, there is similar phenomenon in which short variation, followed by storm sudden commencement (SSC) and/or Forbush decrease (FD) occurs. In 1979, Kato et al. used 3 minutes data at Mt. Norikura and obtained -6 x 10 5 count/min, and tried to find out short periodicity of cosmic ray around SSC, but no clear conclusion was obtained. T. Sakai, et al., used plastic scintillation counter of Akeno observatory, following their preceding work. The counter has an area about 154 m 2 . High counting rate of -2 x 10 6 counts/min. was observed at Akeno which revealed the existence of -37 minute periodical oscillation with an amplitude of 0.1 % in p-p during the time period of 1300 - 1900 UT on April 25th 1984, one day before FD. Observed periodical oscillation of cosmic ray counting rate may be the result of the changes in magnetic field. But, it must be noted that there remains possibility of oscillation of cosmic ray intensity in the interplanetary space during the period, independent of geomagnetic field. (author)

  19. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

    Science.gov (United States)

    Vantrepotte, Vincent; Danhiez, François-Pierre; Loisel, Hubert; Ouillon, Sylvain; Mériaux, Xavier; Cauvin, Arnaud; Dessailly, David

    2015-01-12

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the a(cdom)(412) to DOC ratio (a*(cdom)(412)) can be depicted from the CDOM spectral slope in the UV domain (S(275-295)). They also evidenced that regional first order variation in both a*(cdom)(412) and S(275-295) are highly correlated to variation in a(cdom)(412). From these observations, generalized relationships for estimating a*(cdom)(412) from S(275-295) or a(cdom)(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L(-1)). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S(275-295)-based formulations and the potential for a(cdom)-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

  20. Process monitoring in intensive care with the use of cumulative expected minus observed mortality and risk-adjusted P charts.

    Science.gov (United States)

    Cockings, Jerome G L; Cook, David A; Iqbal, Rehana K

    2006-02-01

    A health care system is a complex adaptive system. The effect of a single intervention, incorporated into a complex clinical environment, may be different from that expected. A national database such as the Intensive Care National Audit & Research Centre (ICNARC) Case Mix Programme in the UK represents a centralised monitoring, surveillance and reporting system for retrospective quality and comparative audit. This can be supplemented with real-time process monitoring at a local level for continuous process improvement, allowing early detection of the impact of both unplanned and deliberately imposed changes in the clinical environment. Demographic and UK Acute Physiology and Chronic Health Evaluation II (APACHE II) data were prospectively collected on all patients admitted to a UK regional hospital between 1 January 2003 and 30 June 2004 in accordance with the ICNARC Case Mix Programme. We present a cumulative expected minus observed (E-O) plot and the risk-adjusted p chart as methods of continuous process monitoring. We describe the construction and interpretation of these charts and show how they can be used to detect planned or unplanned organisational process changes affecting mortality outcomes. Five hundred and eighty-nine adult patients were included. The overall death rate was 0.78 of predicted. Calibration showed excess survival in ranges above 30% risk of death. The E-O plot confirmed a survival above that predicted. Small transient variations were seen in the slope that could represent random effects, or real but transient changes in the quality of care. The risk-adjusted p chart showed several observations below the 2 SD control limits of the expected mortality rate. These plots provide rapid analysis of risk-adjusted performance suitable for local application and interpretation. The E-O chart provided rapid easily visible feedback of changes in risk-adjusted mortality, while the risk-adjusted p chart allowed statistical evaluation. Local analysis of

  1. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    Science.gov (United States)

    Tsuboki, Kazuhisa

    2017-04-01

    Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar

  2. Evaluating team-based inter-professional advanced life support training in intensive care-a prospective observational study.

    Science.gov (United States)

    Brewster, D J; Barrett, J A; Gherardin, E; O'Neill, J A; Sage, D; Hanlon, G

    2017-01-01

    Recent focus on national standards within Australian hospitals has prompted a focus on the training of our staff in advanced life support (ALS). Research in critical care nursing has questioned the traditional annual certification of ALS competence as the best method of delivering this training. Simulation and team-based training may provide better ALS education to intensive care unit (ICU) staff. Our new inter-professional team-based advanced life support program involved ICU staff in a large private metropolitan ICU. A prospective observational study using three standardised questionnaires and two multiple choice questionnaire assessments was conducted. Ninety-nine staff demonstrated a 17.8% (95% confidence interval 4.2-31, P =0.01) increase in overall ICU nursing attendance at training sessions. Questionnaire response rates were 93 (94%), 99 (100%) and 60 (61%) respectively; 51 (52%) staff returned all three. Criteria were assessed by scores from 0 to 10. Nurses reported improved satisfaction with the education program (9.4 to 7.1, P versus 7.9 and 8.2, P versus 7.4 and 7.8, P versus 8.1, P =0.04). The new program cost approximately an extra $16,500 in nursing salaries. We concluded that team-based, inter-professional ALS training produced statistically significant improvements in nursing attendance, satisfaction with ALS education, confidence and role understanding compared to traditional ALS training.

  3. External Validation of Risk Prediction Scores for Invasive Candidiasis in a Medical/Surgical Intensive Care Unit: An Observational Study

    Science.gov (United States)

    Ahmed, Armin; Baronia, Arvind Kumar; Azim, Afzal; Marak, Rungmei S. K.; Yadav, Reema; Sharma, Preeti; Gurjar, Mohan; Poddar, Banani; Singh, Ratender Kumar

    2017-01-01

    Background: The aim of this study was to conduct external validation of risk prediction scores for invasive candidiasis. Methods: We conducted a prospective observational study in a 12-bedded adult medical/surgical Intensive Care Unit (ICU) to evaluate Candida score >3, colonization index (CI) >0.5, corrected CI >0.4 (CCI), and Ostrosky's clinical prediction rule (CPR). Patients' characteristics and risk factors for invasive candidiasis were noted. Patients were divided into two groups; invasive candidiasis and no-invasive candidiasis. Results: Of 198 patients, 17 developed invasive candidiasis. Discriminatory power (area under receiver operator curve [AUROC]) for Candida score, CI, CCI, and CPR were 0.66, 0.67, 0.63, and 0.62, respectively. A large number of patients in the no-invasive candidiasis group (114 out of 181) were exposed to antifungal agents during their stay in ICU. Subgroup analysis was carried out after excluding such patients from no-invasive candidiasis group. AUROC of Candida score, CI, CCI, and CPR were 0.7, 0.7, 0.65, and 0.72, respectively, and positive predictive values (PPVs) were in the range of 25%–47%, along with negative predictive values (NPVs) in the range of 84%–96% in the subgroup analysis. Conclusion: Currently available risk prediction scores have good NPV but poor PPV. They are useful for selecting patients who are not likely to benefit from antifungal therapy. PMID:28904481

  4. [Changes observed in three quality indicators after the implementation of improvement strategies in the respiratory intensive care unit].

    Science.gov (United States)

    Álvarez Maldonado, Pablo; Cueto Robledo, Guillermo; Cicero Sabido, Raúl

    2015-04-01

    To compare the results of quality monitoring after the implementation of improvement strategies in the respiratory intensive care unit (RICU). A prospective, comparative, longitudinal and interventional study was carried out. The RICU of Hospital General de México (Mexico). All patients admitted to the RICU from March 2012 to March 2013. An evidence-based bundle of interventions was implemented in order to reduce the ratios of three quality indicators: non-planned extubation (NPE), reintubation, and ventilator-associated pneumonia (VAP). NPE, reintubation and VAP ratios. A total of 232 patients were admitted, with a mean age of 49.5±17.8years; 119 (50.5%) were woman. The mean Simplified Acute Physiology Score (SAPS-3) was 49.8±17, and the mean Sequential Organ Failure Assessment (SOFA) score was 5.3±4.1. The mortality rate in the RICU was 38.7%. The standardized mortality ratio was 1.50 (95%CI: 1.20-1.84). An improved ratio was observed for reintubation and NPE indicators compared to the ratios of the previous 2011 cohort: 1.6% vs. 7% (P=.02) and 8.1 vs. 17 episodes per 1000 days of mechanical ventilation (P=.04), respectively. A worsened VAP ratio was observed: 18.4 vs. 15.1 episodes per 1000 days of mechanical ventilation (P=.5). Quality improvement is feasible with the identification of areas of opportunity and the implementation of strategies. Nevertheless, the implementation of a bundle of preventive measures in itself does not guarantee improvements. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  5. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    Science.gov (United States)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  6. Observation of Hydrological Processes Using Remote Sensing. Chapter 2.14; Volume 2: The Science of Hydrology

    Science.gov (United States)

    Wilder, Peter (Editor); Su, Z.; Robeling, R. A.; Schulz, J.; Holleman, I.; Levizzani, V.; Timmermans, W. J.; Rott, H.; Mognard-Campbell, N.; de Jeu, R.; hide

    2011-01-01

    Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as

  7. Observation of intensity of cosmic rays and daily magnetic shifts near meridian 70° in the South America

    Science.gov (United States)

    Cordaro, E. G.; Gálvez, D.; Laroze, D.

    2016-05-01

    In analysis of experiments carried during September 2008 using secondary cosmic ray detectors located in Chacaltaya (Bolivia) and Niteroi (Brazil), Augusto et al. (2010) showed an increase in the intensity of charged particles which takes place 3 h after sunrise and lasts until 1 h after sunset, furthermore they said that during this period the solar magnetic field lines overtake the Earth‧s surface. These stations are located within the South Atlantic Magnetic Anomaly (SAMA), having both different magnetic rigidities. To reproduce data from the Niteroi and Chacaltaya stations, we record data during the same hours and days using our neutron monitors, muon telescopes and magnetometers within the stations Putre and Los Cerrillos. Our observation stations in Putre and Cerrillos are located at 18°11‧47.8″S, 69°33‧10.9″W at an altitude of 3600 m and 33°29‧42.3″S, 70°42‧59.81″W with 570 m height above sea level, respectively. These stations are located within the South Atlantic Anomaly (SAMA) and are separated approximately 1700 km from each other and 1700 km from the center of the anomaly. Our network is composed furthermore by two auxiliary Cosmic Ray and/or Geomagnetic stations located at different latitudes along 70°W meridian, LARC and O'Higgins stations, which are located within Antarctic territory, covering a broad part of the Southern Hemisphere. Our magnetometer data shows that for each of the components, shifts in the magnetic field intensity for every station (even for those out of the SAMA) lasted between 3 and 4 h after sunrise and 1 and 2 h past sunset, which are the periods when the geomagnetic field is modulated by the transit of the dayside to nightside and nightside to dayside. We believe that, although the magnetometric data indicates the magnetic reconnection for the Chilean region, there is no direct influence from the SAMA other than the lower rigidity cut-off that leads to an increased count rate. Other details about the

  8. Assessing and evaluating urban VOC emissions in mid-latitude megacities from intensive observations in Paris and Los Angeles

    Science.gov (United States)

    Borbon, A.; Gilman, J. B.; Kuster, W. C.; McKeen, S. A.; Holloway, J. S.; Gros, V.; Gaimoz, C.; Beekmann, M.; De Gouw, J. A.

    2011-12-01

    Volatile Organic Compounds (VOC) affect urban air quality and regional climate change by contributing to ozone formation and the build-up of Secondary Organic Aerosols (SOA). Quantification of VOC emissions is a first critical step to predict VOC environmental impacts and to design effective abatement strategies. Indeed, the quality of ozone and SOA forecasts strongly depends on an accurate knowledge of the primary VOC emissions. However, commonly used bottom-up approaches are highly uncertain due to source multiplicity (combustion processes, storage and distribution of fossil fuels, solvent use, etc.) because of numerous controlling factors (driving conditions, fuel type, temperature, radiation, etc.), and their great variability in time and space. Field observations of VOC and other trace gases can provide valuable top-down constraints to evaluate VOC emission inventories at urban scales. In addition, the implementation of emission reduction measures raises the question of the increasing importance of VOC sources other than traffic. Here, we will evaluate VOC emissions of two mid-latitude megacities in the Northern Hemisphere: the Greater Paris area (Europe) and Los Angeles (USA). In 2009 and 2010, three intensive field campaigns took place in Paris and Los Angeles in the framework of the MEGAPOLI (EU FP7) and CalNex-2010 projects, respectively. Very detailed measurements of aerosol composition and properties, and their gaseous VOC precursors were carried out at ground-based sites (urban center and suburban) and on various mobile platforms. This contribution uses a comprehensive suite of VOC measurements collected by GC-MS/FID techniques at ground-based sites in both cities by a source-receptor methodology. First, emission ratios were estimated from the observations (uncertainty of ± 20%) and compared regarding regional characteristics and European vs. Californian control policies. Then, determined emission ratios were used to assess the accuracy of up

  9. Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals

    Directory of Open Access Journals (Sweden)

    T. Zinner

    2010-10-01

    Full Text Available Remote sensing of cloud effective particle size with passive sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave and midwave infrared channels. In practice, retrieved effective radii from these combinations can be quite different. This difference is perhaps indicative of different penetration depths and path lengths for the spectral reflectances used. In addition, operational liquid water cloud retrievals are based on the assumption of a relatively narrow distribution of droplet sizes; the role of larger precipitation particles in these distributions is neglected. Therefore, possible explanations for the discrepancy in some MODIS spectral size retrievals could include 3-D radiative transport effects, including sub-pixel cloud inhomogeneity, and/or the impact of drizzle formation.

    For three cloud cases the possible factors of influence are isolated and investigated in detail by the use of simulated cloud scenes and synthetic satellite data: marine boundary layer cloud scenes from large eddy simulations (LES with detailed microphysics are combined with Monte Carlo radiative transfer calculations that explicitly account for the detailed droplet size distributions as well as 3-D radiative transfer to simulate MODIS observations. The operational MODIS optical thickness and effective radius retrieval algorithm is applied to these and the results are compared to the given LES microphysics.

    We investigate two types of marine cloud situations each with and without drizzle from LES simulations: (1 a typical daytime stratocumulus deck at two times in the diurnal cycle and (2 one scene with scattered cumulus. Only small impact of drizzle formation on the retrieved domain average and on the differences between the three

  10. Evaluation of Fourier and Response Spectra at Ichihasama and Koromogawa Seismic Intensity Observation Sites During the Iwate-Miyagi Nairiku Earthquake in 2008

    Science.gov (United States)

    Nishikawa, Hayato; Miyajima, Masakatsu

    In this study, we evaluate an acceleration Fourier and response spectra at Ichihasama and Koromogawa seismic intensity observation sites which observed JMA seismic intensity of 6 upper but seismic waveform records don't exist during the Iwate-Miyagi Nairiku earthquake in 2008. Firstly, formula to evaluate acceleration Fourier and response spectra are developed using peak ground acceleration, JMA seismic intensity and predominant period of earthquake spectra based on records obtained from crustal earthquakes with Magnitude of 6 to 7. Acceleration Fourier and response spectra are evaluated for another local government site which are not chosen for development of the formula. The evaluated values mostly agree with the observed ones. Finally, acceleration Fourier and response spectra are evaluated for Ichihasama and Koromogawa observation sites. It is clarified that short period below 1 second was predominated in the evaluated spectra.

  11. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  12. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    Science.gov (United States)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  13. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan

    2004-09-01

    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these

  14. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan

    2004-09-01

    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar

  15. A two year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus.

    Science.gov (United States)

    Crinó, A; Schiaffini, R; Ciampalini, P; Suraci, M C; Manfrini, S; Visalli, N; Matteoli, M C; Patera, P; Buzzetti, R; Guglielmi, C; Spera, S; Costanza, F; Fioriti, E; Pitocco, D; Pozzilli, P

    2005-08-01

    A number of trials have evaluated residual beta-cell function in patients with recent onset type 1 diabetes mellitus (DM1) treated with nicotinamide in addition to intensive insulin therapy (IIT). In most studies, only a slight decline of C-peptide secretion was observed 12 months after diagnosis; however, no data is available on C-peptide secretion and metabolic control in patients continuing nicotinamide and IIT for up to 2 years after diagnosis. We retrospectively analysed data from 25 patients (mean age 14.7 years +/- 5 SD) with DM1 in whom nicotinamide at a dose of 25 mg/kg b. wt. was added from diagnosis (< 4 weeks) to IIT (three injections of regular insulin at meals + one NPH at bed time) and continued for up to 2 years after diagnosis. Data were also analysed from patients (n = 27) in whom IIT was introduced at diagnosis and who were similarly followed for 2 years. Baseline C-peptide as well as insulin dose and HbA1c levels were evaluated at 12 and 24 months after diagnosis. In the course of the follow-up, patients on nicotinamide + IIT or IIT alone did not significantly differ in terms of C-peptide secretion (values at 24 months in the two groups were 0.19 +/- 0.24 nM vs 0.19 +/- 0.13 nM, respectively). Insulin requirement (0.6 +/- 0.3 U/kg/day vs 0.7 +/- 0.2 U/kg/day at 24 months, respectively) did not differ between the two groups. However, HbA1c was significantly lower 2 years after diagnosis in patients treated with nicotinamide + IIT (6.09 +/- 0.9% vs 6.98 +/- 0.9%, respectively, p < 0.01). No adverse effects were observed in patients receiving nicotinamide for 2 years. Implementation of IIT with the addition of nicotinamide at diagnosis continued for 2 years improves metabolic control as assessed by HbA1c. In both nicotinamide and control patients, no decline in C-peptide was detected 2 years after diagnosis, indicating that IIT preserves C-peptide secretion. We conclude that nicotinamide + IIT at diagnosis of DM1 prolonged for up to 2 years can be

  16. Remote sensing of selective logging in Amazonia Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis.

    Science.gov (United States)

    Gregory P. Asner; Michael Keller; Rodrigo Pereira; Johan C. Zweede

    2002-01-01

    We combined a detailed field study of forest canopy damage with calibrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) reflectance data and texture analysis to assess the sensitivity of basic broadband optical remote sensing to selective logging in Amazonia. Our field study encompassed measurements of ground damage and canopy gap fractions along a chronosequence of...

  17. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study.

    Science.gov (United States)

    Machado, Flavia R; Cavalcanti, Alexandre Biasi; Bozza, Fernando Augusto; Ferreira, Elaine M; Angotti Carrara, Fernanda Sousa; Sousa, Juliana Lubarino; Caixeta, Noemi; Salomao, Reinaldo; Angus, Derek C; Pontes Azevedo, Luciano Cesar

    2017-11-01

    The sepsis burden on acute care services in middle-income countries is a cause for concern. We estimated incidence, prevalence, and mortality of sepsis in adult Brazilian intensive care units (ICUs) and association of ICU organisational factors with outcome. We did a 1-day point prevalence study with follow-up of patients in ICU with sepsis in a nationally representative pseudo-random sample. We produced a sampling frame initially stratified by geographical region. Each stratum was then stratified by hospitals' main source of income (serving general public vs privately insured individuals) and ICU size (ten or fewer beds vs more than ten beds), finally generating 40 strata. In each stratum we selected a random sample of ICUs so as to enrol the total required beds in 1690 Brazilian adult ICUs. We followed up patients until hospital discharge censored at 60 days, estimated incidence from prevalence and length of stay, and generated national estimates. We assessed mortality prognostic factors using random-effects logistic regression models. On Feb 27, 2014, 227 (72%) of 317 ICUs that were randomly selected provided data on 2632 patients, of whom 794 had sepsis (30·2 septic patients per 100 ICU beds, 95% CI 28·4-31·9). The ICU sepsis incidence was 36·3 per 1000 patient-days (95% CI 29·8-44·0) and mortality was observed in 439 (55·7%) of 788 patients (95% CI 52·2-59·2). Low availability of resources (odds ratio [OR] 1·67, 95% CI 1·02-2·75, p=0·045) and adequacy of treatment (OR 0·56, 0·37-0·84, p=0·006) were independently associated with mortality. The projected incidence rate is 290 per 100 000 population (95% CI 237·9-351·2) of adult cases of ICU-treated sepsis per year, which yields about 420 000 cases annually, of whom 230 000 die in hospital. The incidence, prevalence, and mortality of ICU-treated sepsis is high in Brazil. Outcome varies considerably, and is associated with access to adequate resources and treatment. Our results show the

  18. Exploring changes in rainfall intensity and seasonal variability in the Southeastern U.S.: Stakeholder engagement, observations, and adaptation

    Directory of Open Access Journals (Sweden)

    Daniel R. Dourte

    2015-01-01

    Full Text Available The distribution of rainfall has major impacts in agriculture, affecting the soil, hydrology, and plant health in agricultural systems. The goal of this study was to test for recent changes in rainfall intensity and seasonal rainfall variability in the Southeastern U.S. by exploring the data collaboratively with agricultural stakeholders. Daily rainfall records from the Global Historical Climatology Network were used to analyze changes in rain intensity and seasonal rainfall variability. During the last 30 years (1985–2014, there has been a significant change (53% increase in the number of extreme rainfall days (>152.4 mm/day and there have been significant decreases in the number of moderate intensity (12.7–25.4 mm/day and heavy (25.4–76.2 mm/day rainfall days in the Southeastern U.S., when compared to the previous 30-year period (1955–1984. There have also been significant decreases in the return period of months in which greater than half of the monthly total rain occurred in a single day; this is an original, stakeholder-developed rainfall intensity metric. The variability in spring and summer rainfall increased during the last 30 years, but winter and fall showed less variability in seasonal totals in the last 30 years. In agricultural systems, rainfall is one of the leading factors affecting yield variability; so it can be expected that more variable rainfall and more intense rain events could bring new challenges to agricultural production. However, these changes can also present opportunities for producers who are taking measures to adjust management strategies to make their systems more resilient to increased rain intensity and variability.

  19. Do relationships exist between the scope and intensity of quality improvement activities and hospital operation performance? A 10-year observation in Taiwan.

    Science.gov (United States)

    Chung, Kuo-Piao; Yu, Tsung-Hsien

    2015-08-14

    The relationship between the scope and intensity of quality improvement (QI) activities and hospital performance remains unclear. This study investigated the relationship between performance, external environment, and the scope and intensity of QI activities in hospitals. The study used a longitudinal observation. Data regarding the scope and intensity of QI activities were collected using a questionnaire survey among the administrative deputy superintendents / directors of quality management center in 139 hospitals. Hospital performance indicators were abstracted from the 2000-2009 national hospitals profiles. We adopted year 2000 as the baseline, and divided the study period into three 3-year periods. The Generalized Estimating Equations (GEE) model was used for the statistical analysis. Seventy-two hospitals responded to the survey, giving a response rate of 52%. The results showed a significant increase in the scope and intensity of QI activities between 2000 and 2009. The results also showed that the scope and intensity of a hospital's QI activities were associated with the scope and intensity of its competitors' QI activities in the previous period and its own prior performance. The scope of QI activities in the previous period was not significantly related to the selected hospital performance measures. However, the intensity of QI activities in the previous period showed a significant and positive relationship with the number of inpatients and the turnover of beds. The study demonstrates that the intensity of QI activities is associated with the external environment and the hospital's own performance in the previous period. Furthermore, some performance measures are associated with the intensity of the QI activities in the previous period.

  20. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    Science.gov (United States)

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  1. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2018-05-01

    Full Text Available Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA ontology model that is resolved around the task-sensor-observation capability (TSOC ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  2. Validation and Evaluation of Two Observational Pain Assessment Tools in a Trauma and Neurosurgical Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Jane Topolovec-Vranic

    2013-01-01

    Full Text Available BACKGROUND: Studies have demonstrated that patients in the intensive care unit experience high levels of pain. While many of these patients are nonverbal at some point during their stay, there are few valid tools available to assess pain in this group.

  3. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    Science.gov (United States)

    We used a combination of data from USDA Forest Service inventories, intensivechronosequences, extensive sites, and satellite remote sensing, to estimate biomassand net primary production (NPP) for the forested region of western Oregon. Thestudy area was divided int...

  4. [Sense of Coherence Scale according to Antonovsky as a possible predictor for return to work for cardiac surgery intensive care patients].

    Science.gov (United States)

    Benstoem, C; Wübker, R; Lüngen, M; Breuer, T; Marx, G; Autschbach, R; Goetzenich, A; Schnoering, H

    2018-05-14

    For cardiac surgery patients who were employed prior to surgery, the return to their professional life is of special importance. In addition to medical reasons, such as pre-existing conditions, the success of the operation or postoperative course and patient-intrinsic reasons, which can be assessed with the Sense of Coherence (SOC) scale by Antonovsky, may also play a role in the question of a possible return into working life. In this study 278 patients (invasive coronary artery bypass graft surgery and/or surgery on heart valves, age work. The cohort was stratified according to the time of return to work. Subsequently, the point of maximum sensitivity and specificity was determined for the total SOC score and the prediction power was considered. Of the 278 patients, 61 questionnaires (22%) were considered as eligible and included in the analysis. Of these, 47 participants had returned to work after undergoing cardiac surgery and 14 participants had not. We observed significant differences in SOC values between both groups (146.07 ± 29.76 versus 124.29 ± 28.8, p = 0.020). Patients that returned to work within the first 6 months after surgery showed even higher SOC scores (148.56 ± 28.98, p = 0.034). Patients with an SOC score life after cardiac surgery. The SOC is an easily obtainable score that reliably predicts the probability of return to work after cardiac surgery.

  5. People and pixels in the Sahel: a study linking coarse-resolution remote sensing observations to land users' perceptions of their changing environment in Senegal

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2014-09-01

    Full Text Available Mounting evidence from satellite observations of a re-greening across much of the Sahel and Sudan zones over the past three decades has raised questions about the extent and reversibility of desertification. Historical ground data that could help in interpreting the re-greening are scarce. To fill that void, we tapped into the collective memories of local land users from central and western Senegal in 39 focus groups and assessed the spatial association between their perceptions of vegetation changes over time and remote sensing-derived trends. To provide context to the vegetation changes, we also explored the land users' perspective on the evolution of other environmental and human variables that are potentially related to the greening, using participatory research methods. While increases in vegetation were confirmed by the study participants for certain areas, which spatially corresponded to satellite-observed re-greening, vegetation degradation dominated their perceptions of change. This degradation, although spatially extensive according to land users, flies under the radar of coarse-resolution remote sensing data because it is not necessarily associated with a decrease in biomass but rather with undesired changes in species composition. Few significant differences were found in the perceived trends of population pressure, environmental, and livelihood variables between communities that have greened up according to satellite data and those that have not. Our findings challenge the prevailing chain of assumptions of the satellite-observed greening trend indicating an improvement of environmental conditions in the sense of a rehabilitation of the vegetation cover after the great droughts of the 1970s and 1980s, and the improvement of environmental conditions possibly translating into more stable livelihoods and greater well-being of the populations. For monitoring desertification and rehabilitation, there is a need to develop remote sensing

  6. Observational Estimates of the Horizontal Eddy Diffusivity and Mixing Length in the Low-Level Region of Intense Hurricanes

    Science.gov (United States)

    2011-11-01

    flight-level data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo (1989), Category 4 Hurricane Allen (1980) and...data collected by research aircraft that penetrated the eyewalls of Category 5 Hurricane Hugo 42 (1989), Category 4 Hurricane Allen (1980) and Category...understood. 87 Using the data from the periods of eyewall penetrations in the intense Hurricanes Hugo 88 (1989) and Allen (1980), Zhang et al. (2011a

  7. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    International Nuclear Information System (INIS)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C.; Aran, A.; Gómez-Herrero, R.; Dresing, N.; Heber, B.

    2013-01-01

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ – (φ – φ 0 ) 2 /2σ 2 ], where φ is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, φ 0 is the distribution centroid, and σ determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R –α with α 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  8. Mineralogy and chemistry of Ti-bearing lunar soils: Effects on reflectance spectra and remote sensing observations

    Science.gov (United States)

    Coman, Ecaterina O.; Jolliff, Bradley L.; Carpenter, Paul

    2018-05-01

    This paper presents results of coordinated ultraviolet and visible wavelength reflectance measurements, X-ray diffraction analyses of mineral components, and micro X-ray fluorescence analyses of Ti concentrations of 13 lunar soil samples (Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) spectral data for the 321/415 ratio of Apollo ground-truth sites. The correlation between lab-derived 321/415 ratios and TiO2 content for measured samples improves when low-maturity samples are excluded from the dataset, implying that the LROC WAC spectra at 400 m/pix spatial resolution senses mostly mature soil.

  9. ON THE ANTI-CORRELATION BETWEEN SPECTRAL LINE BROADENING AND INTENSITY IN CORONAL STRUCTURES OBSERVED WITH EIS

    International Nuclear Information System (INIS)

    Scott, J. T.; Martens, P. C. H.

    2011-01-01

    The advance in spectral resolution of the Extreme Ultraviolet Imaging (EIS) spectrometer on board Hinode has allowed for more detailed analysis of coronal spectral lines. Large line broadening and blueshifted velocities have been found in the periphery of active region (AR) cores and near the footpoints of coronal loops. This line broadening is yet to be understood. We study the correlation of intensity and line width for entire ARs and sub-regions selected to include coronal features. The results show that although a slight positive correlation can be found when considering whole images, many sub-regions have a negative correlation between intensity and line width. Sections of a coronal loop display some of the largest anti-correlations found for this study with the increased line broadening occurring directly adjacent to the footpoint section of the loop structure, not at the footpoint itself. The broadened lines may be due to a second Doppler-shifted component that is separate from the main emitting feature such as a coronal loop, but related in their excitation. The small size of these features forces the considerations of investigator and instrumental effects. Preliminary analyses are shown that indicate the possibility of a point-spread function that is not azimuthally symmetric and may affect velocity and line profile measurements.

  10. Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires - RxCADRE 2012

    Science.gov (United States)

    Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin. Hiers

    2016-01-01

    The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...

  11. Application of Cherenkov light observation to reactor measurements (1). Estimation of reactor power from Cherenkov light intensity

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Kimura, Nobuaki; Ohtsuka, Noriaki; Tsuchiya, Kunihiko; Sano, Tadafumi; Nakajima, Ken; Homma, Ryohei; Kosuge, Fumiaki

    2015-01-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. The calculation and the observation were performed to obtain the quantity of the Cherenkov light caused by the gamma and beta rays emitted from the fuels in the core of Kyoto University Research Reactor. The results indicate that the real-time reactor power can be estimated from the brightness of the Cherenkov light observed by a CCD camera. This method can also work for the estimation of the burn-up of spent fuels at commercial reactors. Since the observed brightness value of the Cherenkov light was influenced by the camera position, the optical observation method should be improved to achieve high accuracy observation. (author)

  12. Development and validation of an observation tool for the assessment of nursing pain management practices in intensive care unit in a standardized clinical simulation setting.

    Science.gov (United States)

    Gosselin, Emilie; Bourgault, Patricia; Lavoie, Stephan; Coleman, Robin-Marie; Méziat-Burdin, Anne

    2014-12-01

    Pain management in the intensive care unit is often inadequate. There is no tool available to assess nursing pain management practices. The aim of this study was to develop and validate a measuring tool to assess nursing pain management in the intensive care unit during standardized clinical simulation. A literature review was performed to identify relevant components demonstrating optimal pain management in adult intensive care units and to integrate them in an observation tool. This tool was submitted to an expert panel and pretested. It was then used to assess pain management practice during 26 discrete standardized clinical simulation sessions with intensive care nurses. The Nursing Observation Tool for Pain Management (NOTPaM) contains 28 statements grouped into 8 categories, which are grouped into 4 dimensions: subjective assessment, objective assessment, interventions, and reassessment. The tool's internal consistency was calculated at a Cronbach's alpha of 0.436 for the whole tool; the alpha varies from 0.328 to 0.518 for each dimension. To evaluate the inter-rater reliability, intra-class correlation coefficient was used, which was calculated at 0.751 (p nurses' pain management in a standardized clinical simulation. The NOTPaM is the first tool created for this purpose. Copyright © 2014 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  13. Features of time–intensity curve parameters of colorectal adenocarcinomas evaluated by double-contrast enhanced ultrasonography: Initial observation

    International Nuclear Information System (INIS)

    Zhuang Hua; Yang Zhigang; Wang Ziqiang; Wang Xiaodong; Chen Huijiao; Zhang Yuanchuan; Luo Yan

    2012-01-01

    Purpose: This study is to investigate the value of double contrast-enhanced ultrasonography (DCEU) in assessing microcirculation of colorectal adenocarcinomas and to describe the perfusion features of the tumours. Material and methods: DCEUS was performed in 42 patients with adenocarcinoma. The time–intensity curve parameters (arrival time (AT), time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC)) within the tumours were extracted. The parameters were compared among the tumours with different CEUS features and stages. Results: The mean values of AT, TTP, PI and AUC of the colorectal adenocarcinomas were 13.68 ± 13.36 s, 32.61 ± 19.56 s, 19.82 ± 16.54 dB and 271.10 ± 159.19 dB s, respectively. In the adenocarcinomas with necrosis, the mean values of AUC was significantly lower than that of the adenocarcinomas without (231.10 ± 219.27 dB s, 278.10 ± 123.20 dB s, p = 0.004). In the adenocarcinomas with necrosis, the AUC and PI of the non-necrotic part were significantly higher than that of the necrotic part (p = 0.007, 0.0025, respectively). AUC increased progressively in the subgroups of T2, T3 and T4 and the difference of AUC between T2 and T4 subgroup was significant (p = 0.008). Conclusions: Double contrast-enhanced ultrasonography is a valuable technique for quantifying tumour vascularity of colorectal adenocarcinomas. AUC was significantly different in the subgroups of different T stage. AUC and PI could reflect the different perfusion status of tumours with or without necrosis.

  14. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  15. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra - coupling field observations with remote sensing data

    Science.gov (United States)

    Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika

    2018-05-01

    Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI

  16. Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2010-03-01

    Full Text Available The Aerosol Optical Depth (AOD and Angstrom Coefficient (AC predictions in the GISS-TOMAS model of global aerosol microphysics are evaluated against remote sensing data from MODIS, MISR, and AERONET. The model AOD agrees well (within a factor of two over polluted continental (or high sulfate, dusty, and moderate sea-salt regions but less well over the equatorial, high sea-salt, and biomass burning regions. Underprediction of sea-salt in the equatorial region is likely due to GCM meteorology (low wind speeds and high precipitation. For the Southern Ocean, overprediction of AOD is very likely due to high sea-salt emissions and perhaps aerosol water uptake in the model. However, uncertainties in cloud screening at high latitudes make it difficult to evaluate the model AOD there with the satellite-based AOD. AOD in biomass burning regions is underpredicted, a tendency found in other global models but more severely here. Using measurements from the LBA-SMOCC 2002 campaign, the surface-level OC concentration in the model are found to be underpredicted severely during the dry season while much less severely for EC concentration, suggesting the low AOD in the model is due to underpredictions in OM mass. The potential for errors in emissions and wet deposition to contribute to this bias is discussed.

  17. Principal component analysis of the main factors of line intensity enhancements observed in oscillating direct current plasma

    International Nuclear Information System (INIS)

    Stoiljkovic, Milovan M.; Pasti, Igor A.; Momcilovic, Milos D.; Savovic, Jelena J.; Pavlovic, Mirjana S.

    2010-01-01

    Enhancement of emission line intensities by induced oscillations of direct current (DC) arc plasma with continuous aerosol sample supply was investigated using multivariate statistics. Principal component analysis (PCA) was employed to evaluate enhancements of 34 atomic spectral lines belonging to 33 elements and 35 ionic spectral lines belonging to 23 elements. Correlation and classification of the elements were done not only by a single property such as the first ionization energy, but also by considering other relevant parameters. Special attention was paid to the influence of the oxide bond strength in an attempt to clarify/predict the enhancement effect. Energies of vaporization, atomization, and excitation were also considered in the analysis. In the case of atomic lines, the best correlation between the enhancements and first ionization energies was obtained as a negative correlation, with weak consistency in grouping of elements in score plots. Conversely, in the case of ionic lines, the best correlation of the enhancements with the sum of the first ionization energies and oxide bond energies was obtained as a positive correlation, with four distinctive groups of elements. The role of the gas-phase atom-oxide bond energy in the entire enhancement effect is underlined.

  18. Low intensity areas observed T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Imon, Yukari [Hiroshima Univ. (Japan). School of Medicine

    1996-02-01

    We retrospectively studied magnetic resonance images of the brain in 158 patients (8 cases of amyotrophic lateral sclerosis, 16 cases of Alzheimer`s disease, 8 cases of Parkinson`s disease, 53 cases of multiple cerebral infarct, 20 cases of other central nervous system (CNS) diseases, and 53 cases without any CNS disease) to examine the appearance of T2-weighted low signal intensity areas (LIA) in the cerebral cortex. The age of subjects ranged from 36 to 85 years with the mean 65.0 and SD 9.9 years. LIA in the motor and sensory cortices, and brain atrophy were evaluated visually on axial images of the spin-echo sequence obtained with a 1.5 tesla system. The incidence of LIA in the motor cortex was significantly higher in all CNS diseases than in cases without any CNS disease, but not significantly different among CNS diseases. LIA in the motor cortex showed a correlation with age, temporal and parietal atrophy. The appearance of LIA in the sensory cortex correlated with that of LIA in the motor cortex, and parietal atrophy. These results suggest that LIA may appear according to age and be associated with the accumulation of nonheme iron in the cortex, especially in patients with CNS diseases. (author)

  19. Incidence and Risk Factors for Delirium among Mechanically Ventilated Patients in an African Intensive Care Setting: An Observational Multicenter Study

    Directory of Open Access Journals (Sweden)

    Arthur Kwizera

    2015-01-01

    Full Text Available Aim. Delirium is common among mechanically ventilated patients in the intensive care unit (ICU. There are little data regarding delirium among mechanically ventilated patients in Africa. We sought to determine the burden of delirium and associated factors in Uganda. Methods. We conducted a multicenter prospective study among mechanically ventilated patients in Uganda. Eligible patients were screened daily for delirium using the confusional assessment method (CAM-ICU. Comparisons were made using t-test, chi-squares, and Fisher’s exact test. Predictors were assessed using logistic regression. The level of statistical significance was set at P<0.05. Results. Of 160 patients, 81 (51% had delirium. Median time to onset of delirium was 3.7 days. At bivariate analysis, history of mental illness, sedation, multiorgan dysfunction, neurosurgery, tachypnea, low mean arterial pressure, oliguria, fevers, metabolic acidosis, respiratory acidosis, anaemia, physical restraints, marital status, and endotracheal tube use were significant predictors. At multivariable analysis, having a history of mental illness, sedation, respiratory acidosis, higher PEEP, endotracheal tubes, and anaemia predicted delirium. Conclusion. The prevalence of delirium in a young African population is lower than expected considering the high mortality. A history of mental illness, anaemia, sedation, endotracheal tube use, and respiratory acidosis were factors associated with delirium.

  20. Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network

    International Nuclear Information System (INIS)

    Zolina, Olga

    2014-01-01

    Precipitation durations and intensities over the period 1950–2008 are analysed using daily rain gauge data from the Deutsche Wetterdienst raingauge network—one of the densest and most properly maintained precipitation observational networks in Europe. Truncated geometric distribution of the family of discrete distributions was applied for quantifying probability distribution of the durations of wet spells. Further intensities of wet spells of different durations were analysed along with wet spell lengths. During the cold season (October–March) wet periods over the whole of Germany demonstrate a robust pattern of lengthening by about 2–3% for the mean durations of wet spells and up to 6% for extremely long wet periods. This tendency is clearly associated with growing (up to 10% per decade in Eastern Germany) intensity of precipitation during long wet periods (more than 5 days) and the weakening of precipitation events associated with short and moderately long wet periods with both signals being statistically significant. Trends are superimposed with interdecadal variability, which is the strongest in Northern and Central Germany. In the warm season (April–September) there is no robust pan-German trend pattern in the wet spell durations and associated precipitation intensities. Strong structural changes in winter precipitation over Germany potentially imply growing rates of winter ground water recharge over Germany and increasing probability of winter flash and river flooding. (paper)

  1. Seismic Intensity Map Triggered by Observed Strong Motion Records Considering Site Amplification and its service based on Geo-spatial International Standard

    International Nuclear Information System (INIS)

    Matsuoka, Masashi

    2014-01-01

    Instrumental seismic intensity measurement is carried out at approximately 4,200 points in Japan, but the correct values at points without seismometers cannot always be provided because seismic motion depends on geologic and geomorphologic features. Quick provision of accurate information on seismic intensity distribution over wide areas is required for disaster mitigation. To estimate seismic intensity at specific points, it is important to prepare ground amplification characteristics for local areas beforehand and use an interpolation algorithm. The QuiQuake system (quick estimation system for earthquake maps triggered by using observation records from K-NET and KiK-net that have been released by the National Research Institute for Earth Science and Disaster Prevention), which uses these, was developed; it can be started up automatically using seismograms and can immediately display a seismic intensity distribution map. The calculation results are sent to IAEA and JNES in the form of strong motion evaluation maps with a mesh size of 250 x 250 m. These maps are also sent to the general public via social networking web sites. (author)

  2. The accuracy of the general practitioner's sense of alarm when confronted with dyspnoea and/or thoracic pain: protocol for a prospective observational study.

    Science.gov (United States)

    Barais, Marie; Barraine, Pierre; Scouarnec, Florie; Mauduit, Anne Sophie; Le Floc'h, Bernard; Van Royen, Paul; Liétard, Claire; Stolper, Erik

    2015-03-10

    Dyspnoea and chest pain are signs shared with multiple pathologies ranging from the benign to life-threatening diseases. Gut feelings such as the sense of alarm and the sense of reassurance are known to play a substantial role in the diagnostic reasoning of general practitioners (GPs). A Gut Feelings Questionnaire (GFQ) has been validated to measure the GP's sense of alarm. A French version of the GFQ is available following a linguistic validation procedure. The aim of the study is to calculate the diagnostic test accuracy of a GP's sense of alarm when confronted with dyspnoea and chest pain. Prospective observational study. Patients aged between 18 and 80 years, consulting their GP for dyspnoea and/or thoracic pain will be considered for enrolment in the study. These GPs will have to complete the questionnaire immediately after the consultation for dyspnoea and/or thoracic pain. The follow-up and the final diagnosis will be collected 4 weeks later by phone contact with the GP or with the patient if their GP has no information. Life-threatening and non-life-threatening diseases have previously been defined according to the pathologies or symptoms in the (ICPC2) International Collegiate Programming Contest classification. Members of the research team, blinded to the actual outcomes shown on the index questionnaire, will judge each case in turn and will, by consensus, classify the expected outcomes as either life-threatening or non-life-threatening diseases. The sensitivity, the specificity, the positive and negative likelihood ratio of the sense of alarm will be calculated from the constructed contingency table. This study was approved by the ethical committee of the University de Bretagne Occidentale. A written informed consent form will be signed and dated by GPs and patients at the beginning of the study. The results will be published in due course. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  3. Are trends in billing for high-intensity emergency care explained by changes in services provided in the emergency department? An observational study among US Medicare beneficiaries

    Science.gov (United States)

    Burke, Laura G; Wild, Robert C; Orav, E John; Hsia, Renee Y

    2018-01-01

    Objective There has been concern that an increase in billing for high-intensity emergency care is due to changes in coding practices facilitated by electronic health records. We sought to characterise the trends in billing for high-intensity emergency care among Medicare beneficiaries and to examine the degree to which trends in high-intensity billing are explained by changes in patient characteristics and services provided in the emergency department (ED). Design, setting and participants Observational study using traditional Medicare claims to identify ED visits at non-federal acute care hospitals for elderly beneficiaries in 2006, 2009 and 2012. Outcomes measures Billing intensity was defined by emergency physician evaluation and management (E&M) codes. We tested for overall trends in high-intensity billing (E&M codes 99285, 99291 and 99292) and in services provided over time using linear regression models, adjusting for patient characteristics. Additionally, we tested for time trends in rates of admission to the hospital and to the intensive care unit (ICU). Next, we classified outpatient visits into 39 diagnosis categories and analysed the change in proportion of high-intensity visits versus the change in number of services. Finally, we quantified the extent to which trends in high-intensity billing are explained by changes in patient demographics and services provided in the ED using multivariable modelling. Results High-intensity visits grew from 45.8% of 671 103 visits in 2006 to 57.8% of 629 010 visits in 2012 (2.0% absolute increase per year; 95% CI 1.97% to 2.03%) as did the mean number of services provided for admitted (1.28 to 1.41; +0.02 increase in procedures per year; 95% CI 0.018 to 0.021) and discharged ED patients (7.1 to 8.6; +0.25 increase in services per year; 95% CI 0.245 to 0.255). There was a reduction in hospital admission rate from 40.1% to 35.9% (−0.68% per year; 95% CI −0.71% to −0.65%; Pbilled as high intensity

  4. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    Science.gov (United States)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to

  5. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    Science.gov (United States)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  6. EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    SONG, H. Q.; CHEN, Y.; Wang, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); ZHANG, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); CHENG, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); HU, Q.; LI, G. [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); WANG, Y. M., E-mail: hqsong@sdu.edu.cn [Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences (CAS), Hefei, Anhui 230026 (China)

    2015-07-20

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  7. Evidence of the Solar EUV Hot Channel as a Magnetic Flux Rope from Remote-sensing and in situ Observations

    Science.gov (United States)

    Song, H.

    2015-12-01

    Hot channels (HCs), high-temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to provide definitive proof given the fact that there is no direct measurement of the magnetic field in the corona. An alternative method is to use the magnetic field measurement in the solar wind from in situ instruments. On 2012 July 12, an HC was observed prior to and during a coronal mass ejection (CME) by the Atmospheric Imaging Assembly high-temperature images. The HC is invisible in the EUVI low-temperature images, which only show the cooler leading front (LF). However, both the LF and an ejecta can be observed in the coronagraphic images. These are consistent with the high temperature and high density of the HC and support that the ejecta is the erupted HC. Meanwhile, the associated CME shock was identified ahead of the ejecta and the sheath through the COR2 images, and the corresponding ICME was detected by the Advanced Composition Explorer, showing the shock, sheath, and magnetic cloud (MC) sequentially, which agrees with the coronagraphic observations. Further, the MC average Fe charge state is elevated, containing a relatively low-ionization-state center and a high-ionization-state shell, consistent with the preexisting HC observation and its growth through magnetic reconnection. All of these observations support that the MC detected near the Earth is the counterpart of the erupted HC in the corona for this event. The study provides strong observational evidence of the HC as an MFR.

  8. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    Science.gov (United States)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  9. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be

  10. Monitoring the hand hygiene compliance of health care workers in a general intensive care unit: Use of continuous closed circle television versus overt observation.

    Science.gov (United States)

    Brotfain, Evgeni; Livshiz-Riven, Ilana; Gushansky, Alexander; Erblat, Alexander; Koyfman, Leonid; Ziv, Tomer; Saidel-Odes, Lisa; Klein, Moti; Borer, Abraham

    2017-08-01

    A variety of hand hygiene monitoring programs (HHMPs) have come into use in hospitals throughout the world. In the present study, we compare continuous closed circle television (CCTV) with overt observation for monitoring the hand hygiene compliance of health care workers (HCWs) in a general intensive care unit (GICU). This is a cross-sectional and comparative study. In this study, we use a novel hand hygiene CCTV monitoring system for hand hygiene performance monitoring. The study population incorporated all the GICU HCWs, including registered nurses, staff physicians, and auxiliary workers. All HCWs of our GICU were observed, including ICU registered nurses, ICU staff physicians, and auxiliary workers participated in the present study. Overall, each observer team did 50 sessions in each arm of the study. Total number of hand hygiene opportunities was approaching 500 opportunities. The compliance rates when only overt observations were performed was higher than when only covert observations were performed with a delta of approximately 10% (209 out of 590 [35.43%] vs 130 out of 533 [24.39%]; P hand hygiene. However, there is no clear basis for incorporating a CCTV observation modality into a health care system that already operates an overt observation program. We have shown that CCTV methodology records a different distribution of opportunities for performing hand hygiene and of actual performances of hand hygiene compared with overt observation. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Analysis of the isoprene chemistry observed during the New England Air Quality Study (NEAQS) 2002 intensive experiment

    Science.gov (United States)

    Roberts, James M.; Marchewka, Mathew; Bertman, Steven B.; Goldan, Paul; Kuster, William; de Gouw, Joost; Warneke, Carsten; Williams, Eric; Lerner, Brian; Murphy, Paul; Apel, Eric; Fehsenfeld, Fred C.

    2006-12-01

    Isoprene and its first and second generation photochemical products, methyl vinyl ketone (MVK), methacrolein (MACR), and peroxymethacrylic nitric anhydride (MPAN), were measured off the coast of New England during the 2002 New England Air Quality Study (NEAQS) on board the NOAA Research Vessel Ronald H. Brown. The results of these measurements were analyzed using a simple sequential reaction model that has been used previously to examine regional oxidant chemistry. The highest isoprene impact was observed in air masses that had passed over an area of high isoprene emission WSW of Boston. The relative concentrations of isoprene and its first generation products show that the photochemistry is consistently "older" than the isoprene photochemistry observed at continental sites. The sequential reaction model was also applied to the aldehyde-PANs (Peroxycarboxylic nitric anhydride) system, and the resulting PPN (peroxypropionic nitric anhydride)/propanal and PAN (peroxyacetic nitric anhydride)/acetaldehyde relationships were consistent with additional sources of PAN in this environment, e.g., isoprene photochemistry. This isoprene source was estimated to result in approximately 1.6 to 4 times more PAN in this environment relative to that produced from anthropogenic VOCs (volatile organic compounds) alone.

  12. Science informed water resources decision-making: Examples using remote sensing observations in East Africa, the Lower Mekong Basin and the western United States

    Science.gov (United States)

    Granger, S. L.; Andreadis, K.; Das, N.; Farr, T. G.; Ines, A. V. M.; Jayasinghe, S.; Jones, C. E.; Melton, F. S.; Ndungu, L. W.; Lai-Norling, J.; Painter, T. H.

    2017-12-01

    Across the globe, planners and decision makers are often hampered by organizational and data silos and/or a lack of historic data or scant in situ observations on which to base policy and action plans. The end result is a complex interaction of responsibilities, legal frameworks, and stakeholder needs guided by uncertain information that is essentially bounded by how climate extremes are defined and characterized. Because of the importance of water, considerable resources in the developing and developed world are invested in data and tools for managing water. However, the existing paradigm of water management around the world faces significant challenges including inadequate funding to install, maintain or upgrade monitoring networks, lack of resources to integrate new science and data sources into existing tools, and demands for improved spatial coverage of observations. Add to this, a changing hydrology that is so complex it requires measurements and analyses that have never been done before. Interest in applying remote sensing science and observations into the decision making process is growing the world over, but in order to succeed, it is essential to form partnerships with stakeholder organizations and decision makers at the outset. In this talk, we describe examples of succesful decision-maker and science partnering based on projects that apply remote sensing science and observations in East Africa and the Lower Mekong Basin supported by the SERVIR Initiative, a joint United States Agency for International Development (USAID) and National Aeronautics and Space Administration (NASA) program, and projects in the western United States supported by NASA's Jet Propulsion Laboratory and the Western Water Applications Office (WWAO). All of these examples have benefitted from strong, committed partnerships with end user agencies. Best practices and lessons learned in connecting science to decision making amongst these examples are explored.

  13. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  14. The Ship Tethered Aerostat Remote Sensing System (STARRS): Observations of Small-Scale Surface Lateral Transport During the LAgrangian Submesoscale ExpeRiment (LASER)

    Science.gov (United States)

    Carlson, D. F.; Novelli, G.; Guigand, C.; Özgökmen, T.; Fox-Kemper, B.; Molemaker, M. J.

    2016-02-01

    The Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) will observe small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) was developed to produce observational estimates of small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Thousands of drift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-500 m) surface dispersion in the open ocean. The STARRS imagery will be combined with GPS-tracked surface drifter trajectories, shipboard observations, and aerial surveys of sea surface temperature in the DeSoto Canyon. In addition to obvious applications to oil spill modelling, the STARRS observations will provide essential benchmarks for high resolution numerical modelsDrift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-100 m) surface dispersion in the open ocean. The STARRS

  15. Integration of observations, modelling approaches and remote sensing to address ecosystem response to climate change and disturbance in Africa

    Science.gov (United States)

    Falge, Eva; Brümmer, Christian

    2017-04-01

    Park, South Africa, Setting up individual-based models to predict ecosystem dynamics under (post-) disturbance management, Monitoring vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change, and Investigations of livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Despite recent advances, major innovations in understanding carbon cycle, greenhouse gases, air quality and measures of adaptation to and mitigation of climate change are still limited by the lack of global accessibility and comparability of relevant data (open data issues), long-term and sustainable interdisciplinary and trans-institutional research collaborations, and ongoing effective dialogues on multiple levels (policy, science, society).

  16. Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations

    Directory of Open Access Journals (Sweden)

    Lei Fan

    2015-10-01

    Full Text Available High spatial resolution soil moisture (SM data are crucial in agricultural applications, river-basin management, and understanding hydrological processes. Merging multi-resource observations is one of the ways to improve the accuracy of high spatial resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum Entropy (BME methodology is implemented to merge the following four types of observed data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by wireless sensor network (WSN, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER-derived soil evaporative efficiency (SEE, irrigation statistics, and Polarimetric L-band Multi-beam Radiometer (PLMR-derived SM products (~700 m. From the poor BME predictions obtained by merging only WSN and SEE data, we observed that the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to the merged datasets, the overall RMSD of the BME predictions during the low-vegetated periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of determination (R2 and slope between the predicted and in situ measured SM data increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and the slope = 0.41. Further adding the downscaled SM information from PLMR SM products to the merged datasets, the predictions were satisfactorily accurate with an RMSD of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. Overall, the results demonstrated that merging multi-resource observations into SM estimations can yield improved accuracy in heterogeneous cropland.

  17. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  18. Biomass production of intensively grown poplars in the southernmost part of Sweden: Observations of characters, traits and growth potential

    International Nuclear Information System (INIS)

    Christersson, Lars

    2006-01-01

    Observation of possibilities and problems was performed when trying to optimise growing conditions for high biomass production by irrigation and fertilisation in a clone test of poplar on sandy soil in the south of Sweden. One hundred and eight clones of pure Populus trichocarpa and hybrids between P. trichocarpa and P. deltoides were evaluated for growth rate, phenology, quality, frost hardiness and pest resistance. Some fertilisation experiments were performed. In some years, some unfertilised clones produced up to 2 kg m -2 of woody dry biomass. Some fertilised clones produced almost twice as much in the years following fertilisation. Stem canker was the main cause of serious injuries in all hybrids, but pure P. trichocarpa stems were not affected. The cimbicid sawfly (Cimbex lutea) caused damage to the quality of the trees in the form of curved stems of some clones. Winter frost killed top shoots of the hybrids in a year with particularly low winter temperatures with long duration. Summer frost (in June) killed up to 1 m of some young top shoots in some clones in the first 3-4 years. The results are discussed in terms of radiation utilisation efficiency, energy efficient ratio, and water and nutrient use efficiency. The discussion finishes with the conclusion that fertilisation, but not irrigation, can be economically motivated. If irrigation is to be economic, then the main objective of the whole operation should be to produce drinkable water from water polluted by society. Biomass production would then be a bonus

  19. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations

    Directory of Open Access Journals (Sweden)

    Behara Satyanarayana

    2018-02-01

    Full Text Available Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite—ALOS and ground-truth (Point-Centred Quarter Method—PCQM observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%, followed by Sundar (27% and Limbang (15%. The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%. The PCQM estimates found a higher basal area at Limbang and Menumbok—suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.

  20. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations

    Science.gov (United States)

    Izzaty Horsali, Nurul Amira; Mat Zauki, Nurul Ashikin; Otero, Viviana; Nadzri, Muhammad Izuan; Ibrahim, Sulong; Husain, Mohd-Lokman; Dahdouh-Guebas, Farid

    2018-01-01

    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite—ALOS) and ground-truth (Point-Centred Quarter Method—PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans, Rhizophora apiculata, Sonneratia caseolaris, S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok—suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present. PMID:29479500

  1. Status of the undisturbed mangroves at Brunei Bay, East Malaysia: a preliminary assessment based on remote sensing and ground-truth observations.

    Science.gov (United States)

    Satyanarayana, Behara; M Muslim, Aidy; Izzaty Horsali, Nurul Amira; Mat Zauki, Nurul Ashikin; Otero, Viviana; Nadzri, Muhammad Izuan; Ibrahim, Sulong; Husain, Mohd-Lokman; Dahdouh-Guebas, Farid

    2018-01-01

    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite-ALOS) and ground-truth (Point-Centred Quarter Method-PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such as Nypa fruticans , Rhizophora apiculata , Sonneratia caseolaris , S. alba and Xylocarpus granatum in the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok-suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution of Sonneratia spp. as pioneer vegetation at shallow river mouths, N. fruticans in the areas of strong freshwater discharge, R. apiculata in the areas of strong neritic incursion and X. granatum at interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.

  2. Remote sensing of atomic oxygen: Some observational difficulties in the use of the forbidden O I λ 1173-angstrom and O I λ 1641-angstrom transitions

    International Nuclear Information System (INIS)

    Erdman, P.W.; Zipf, E.C.

    1987-01-01

    Recent sounding rocket and satellite studies suggest that simultaneous measurements of the O I λ989-angstrom and λ1,304-angstrom resonance lines and of the forbidden λ1,172.6-angstrom and λ1641.3-angstrom transitions which also originate from the 3s'3D degree and 3s 3S degree states would form the basis of a useful remote sensing technique for measuring the O I density and optical of a planetary or stellar atmosphere. Because the λ1,172.6-angstrom and λ1641.3-angstrom emissions are weak lines and are emitted in a wavelength region rich in spectral features, it is important to determine whether typical flight instruments can make measurements with sufficient spectral purity so that the remote sensing observations will yield accurate results. We have made a detailed, high-resolution study of the far ultraviolet emission features in the regions surrounding the atomic oxygen transitions at λ1,172.6-angstrom and λ1,641.3-angstrom. These spectra, which were excited by electron impact on O 2 and N 2 , are presented in an attempt to display some potential sources of interference in aeronomical measurements of these O I lines. Both atomic and molecular emissions are found, and the spectral resolution necessary to make unambiguous measurements is discussed

  3. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  4. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Science.gov (United States)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  5. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Science.gov (United States)

    Düsing, Sebastian; Wehner, Birgit; Seifert, Patric; Ansmann, Albert; Baars, Holger; Ditas, Florian; Henning, Silvia; Ma, Nan; Poulain, Laurent; Siebert, Holger; Wiedensohler, Alfred; Macke, Andreas

    2018-01-01

    This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL) and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System) provided measurements of the aerosol particle number size distribution (PNSD), the aerosol particle number concentration (PNC), the number concentration of cloud condensation nuclei (CCN-NC), and meteorological atmospheric parameters (e.g., temperature and relative humidity). These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc) for three wavelengths (355, 532, and 1064 nm). Particle extinction coefficient (σext) profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR). A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908), optical aerosol properties under ambient conditions for

  6. Helicopter-borne observations of the continental background aerosol in combination with remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    S. Düsing

    2018-01-01

    Full Text Available This paper examines the representativeness of ground-based in situ measurements for the planetary boundary layer (PBL and conducts a closure study between airborne in situ and ground-based lidar measurements up to an altitude of 2300 m. The related measurements were carried out in a field campaign within the framework of the High-Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP2 Observational Prototype Experiment (HOPE in September 2013 in a rural background area of central Europe.The helicopter-borne probe ACTOS (Airborne Cloud and Turbulence Observation System provided measurements of the aerosol particle number size distribution (PNSD, the aerosol particle number concentration (PNC, the number concentration of cloud condensation nuclei (CCN-NC, and meteorological atmospheric parameters (e.g., temperature and relative humidity. These measurements were supported by the ground-based 3+2 wavelength polarization lidar system PollyXT, which provided profiles of the particle backscatter coefficient (σbsc for three wavelengths (355, 532, and 1064 nm. Particle extinction coefficient (σext profiles were obtained by using a fixed backscatter-to-extinction ratio (also lidar ratio, LR. A new approach was used to determine profiles of CCN-NC for continental aerosol. The results of this new approach were consistent with the airborne in situ measurements within the uncertainties.In terms of representativeness, the PNSD measurements on the ground showed a good agreement with the measurements provided with ACTOS for lower altitudes. The ground-based measurements of PNC and CCN-NC are representative of the PBL when the PBL is well mixed. Locally isolated new particle formation events on the ground or at the top of the PBL led to vertical variability in the cases presented here and ground-based measurements are not entirely representative of the PBL. Based on Mie theory (Mie, 1908, optical aerosol properties under ambient

  7. Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the ‘Small’ Lake Chad

    Science.gov (United States)

    Leblanc, M.; Lemoalle, J.; Bader, J.-C.; Tweed, S.; Mofor, L.

    2011-06-01

    SummaryLake Chad at the border of the Sahara desert in central Africa, is well known for its high sensitivity to hydroclimatic events. Gaps in in situ data have so far prevented a full assessment of the response of Lake Chad to the ongoing prolonged drought that started in the second half of the 20th century. Like many other wetlands and shallow lakes, the 'Small' Lake Chad includes large areas of water under aquatic vegetation which needs to be accounted for to obtain the total inundated area. In this paper, a methodology is proposed that uses Meteosat thermal maximum composite data (Tmax) to account for water covered by aquatic vegetation and provide a consistent monthly time series of total inundated area estimates for Lake Chad. Total inundation patterns in Lake Chad were reconstructed for a 15-yr period (1986-2001) which includes the peak of the drought (86-91) and therefore provides new observations on the hydrological functioning of the 'Small' Lake Chad. During the study period, Lake Chad remained below 16,400 km 2 (third quartile ˜8800 km 2). The variability of the inundated area observed in the northern pool (standard deviation σnorthern pool = 1980 km 2) is about 60% greater than that of the southern pool ( σsouthern pool = 1250 km 2). The same methodology could be applied to other large wetlands and shallow lakes in semi-arid or arid regions elsewehere using Meteosat (e.g. Niger Inland Delta, Sudd in Sudan, Okavango Delta) and other weather satellites (e.g., floodplains of the Lake Eyre Basin in Australia and Andean Altiplano Lakes in South America).

  8. Detecting Patterns of Changing Carbon Uptake in Alaska Using Sustained In Situ and Remote Sensing CO2 Observations

    Science.gov (United States)

    Parazoo, N.; Miller, C. E.; Commane, R.; Wofsy, S. C.; Koven, C.; Lawrence, D. M.; Lindaas, J.; Chang, R. Y. W.; Sweeney, C.

    2015-12-01

    The future trajectory of Arctic ecosystems as a carbon sink or source is of global importance due to vast quantities of carbon in permafrost soils. Over the last few years, a sustained set of airborne (NOAA-PFA, NOAA-ACG, and CARVE) and satellite (OCO-2 and GOSAT) atmospheric CO2 mole fraction measurements have provided unprecedented space and time scale sampling density across Alaska, making it possible to study the Arctic carbon cycle in more detail than ever before. Here, we use a synthesis of airborne and satellite CO2 over the 2009-2013 period with simulated concentrations from CLM4.5 and GEOS-Chem to examine the extent to which regional-scale carbon cycle changes in Alaska can be distinguished from interannual variability and long-range transport. We show that observational strategies focused on sustained profile measurements spanning continental interiors provide key insights into magnitude, duration, and variability of Summer sink activity, but that cold season sources are currently poorly resolved due to lack of sustained spatial sampling. Consequently, although future CO2 budgets dominated by enhanced cold season emission sources under climate warming and permafrost thaw scenarios are likely to produce substantial changes to near-surface CO2 gradients and seasonal cycle amplitude, they are unlikely to be detected by current observational strategies. We conclude that airborne and ground-based networks that provide more spatial coverage in year round profiles will help compensate for systematic sampling gaps in NIR passive satellite systems and provide essential constraints for Arctic carbon cycle changes.

  9. Object-based change detection in rapid urbanization regions with remotely sensed observations: a case study of Shenzhen, China

    Science.gov (United States)

    He, Lihuang; Dong, Guihua; Wang, Wei-Min; Yang, Lijun; Liang, Hong

    2013-10-01

    China, the most populous country on Earth, has experienced rapid urbanization which is one of the main causes of many environmental and ecological problems. Therefore, the monitoring of rapid urbanization regions and the environment is of critical importance for their sustainable development. In this study, the object-based classification is employed to detect the change of land cover in Shenzhen, which is located in South China and has been urbanized rapidly in recent three decades. First, four Landsat TM images, which were acquired on 1990, 2000 and 2010, respectively, are selected from the image database. Atmospheric corrections are conducted on these images with improved dark-object subtraction technique and surface meteorological observations. Geometric correction is processed with ground control points derived from topographic maps. Second, a region growing multi-resolution segmentation and a soft nearest neighbour classifier are used to finish object-based classification. After analyzing the fraction of difference classes over time series, we conclude that the comparison of derived land cover classes with socio-economic statistics demonstrates the strong positive correlation between built-up classes and urban population as well as gross GDP and GDPs in second and tertiary industries. Two different mechanisms of urbanization, namely new land development and redevelopment, are revealed. Consequently, we found that, the districts of Shenzhen were urbanized through different mechanisms.

  10. Characterizing the Effects of Irrigation in the Middle East and North Africa Using Remotely Sensed Vegetation and Water Cycle Observations

    Science.gov (United States)

    Bolten, John; Ozdogan, Mutlu; Beaudoing, Hiroko; Rodell, Matthew

    2012-01-01

    A majority of the countries in the Middle East and North Africa (MENA) region suffer from water scarcity due in part to widespread rainfall deficits, unprecedented levels of water demand, and the inefficient use of renewable freshwater resources. Since a majority of the water withdrawal in the MENA is used for irrigation, there is a desperate need for improved understanding of irrigation practices and agricultural water use in the region. Here, satellite-derived irrigation maps and crop-type agricultural data are applied to the Land Data Assimilation System for the MENA region (MENA LDAS), designed to provide regional, gridded fields of hydrological states and fluxes relevant for water resources assessments. Within MENA-LDAS, the Catchment Land Surface Model (CLSM) simulates the location, timing, and amount of water applied through agricultural irrigation practices over the region from 2002-2012. In addition to simulating the irrigation impact on evapotranspiration, soil moisture, and runoff, we also investigate regional changes in terrestrial water storage (TWS) observed from the Gravity Recovery and Climate Experiment (GRACE) and simulated by CLSM.

  11. Remote sensing observations of the coherent and non-coherent ring structures in the vicinity of Lesser Antilles

    Directory of Open Access Journals (Sweden)

    R. C. Cruz Gómez

    2007-03-01

    Full Text Available The North Brazil Current Rings (NBCR penetration into the Caribbean Sea is being investigated by employing a merged altimeter-derived sea height anomaly (TOPEX/Poseidon, Jason-1 and ERS-1, 2, the ocean surface color data (SeaWiFS and Global Drifter Program information. Four strategies are being applied to process the data: (1 calculations of the Okubo-Weiss parameter for NBCR identification, (2 longitude-time plots (also known as Hovmöller diagrams, (3 two-dimensional Radon transforms and (4 two-dimensional Fourier transforms.

    A twofold NBCR structure has been detected in the region under investigation. The results have shown that NBC rings mainly propagate into the Caribbean Sea along two principal pathways (near 12° N and 17° N in the ring translation corridor. Thus, rings following the southern pathway in the fall-winter period can enter through very shallow southern straits as non-coherent structures. A different behavior is observed near the northern pathway (~17° N, where NBC rings are thought to have a coherent structure during their squeezing into the eastern Caribbean, i.e. conserving the principal characteristics of the incident rings. We attribute this difference in the rings' behavior to the vertical scales of the rings and to the bottom topography features in the vicinity of the Lesser Antilles.

  12. LOCAL SITE CONDITIONS INFLUENCING EARTHQUAKE INTENSITIES AND SECONDARY COLLATERAL IMPACTS IN THE SEA OF MARMARA REGION - Application of Standardized Remote Sensing and GIS-Methods in Detecting Potentially Vulnerable Areas to Earthquakes, Tsunamis and Other Hazards.

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2011-01-01

    Full Text Available The destructive earthquake that struck near the Gulf of Izmit along the North Anatolian fault in Northwest Turkey on August 17, 1999, not only generated a local tsunami that was destructive at Golcuk and other coastal cities in the eastern portion of the enclosed Sea of Marmara, but was also responsible for extensive damage from collateral hazards such as subsidence, landslides, ground liquefaction, soil amplifications, compaction and underwater slumping of unconsolidated sediments. This disaster brought attention in the need to identify in this highly populated region, local conditions that enhance earthquake intensities, tsunami run-up and other collateral disaster impacts. The focus of the present study is to illustrate briefly how standardized remote sensing techniques and GIS-methods can help detect areas that are potentially vulnerable, so that disaster mitigation strategies can be implemented more effectively. Apparently, local site conditions exacerbate earthquake intensities and collateral disaster destruction in the Marmara Sea region. However, using remote sensing data, the causal factors can be determined systematically. With proper evaluation of satellite imageries and digital topographic data, specific geomorphologic/topographic settings that enhance disaster impacts can be identified. With a systematic GIS approach - based on Digital Elevation Model (DEM data - geomorphometric parameters that influence the local site conditions can be determined. Digital elevation data, such as SRTM (Shuttle Radar Topography Mission, with 90m spatial resolution and ASTER-data with 30m resolution, interpolated up to 15 m is readily available. Areas with the steepest slopes can be identified from slope gradient maps. Areas with highest curvatures susceptible to landslides can be identified from curvature maps. Coastal areas below the 10 m elevation susceptible to tsunami inundation can be clearly delineated. Height level maps can also help locate

  13. Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon & Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Beverly Law; David Turner; Warren Cohen; Mathias Goeckede

    2008-05-22

    The goal is to quantify and explain the carbon (C) budget for Oregon and N. California. The research compares "bottom -up" and "top-down" methods, and develops prototype analytical systems for regional analysis of the carbon balance that are potentially applicable to other continental regions, and that can be used to explore climate, disturbance and land-use effects on the carbon cycle. Objectives are: 1) Improve, test and apply a bottom up approach that synthesizes a spatially nested hierarchy of observations (multispectral remote sensing, inventories, flux and extensive sites), and the Biome-BGC model to quantify the C balance across the region; 2) Improve, test and apply a top down approach for regional and global C flux modeling that uses a model-data fusion scheme (MODIS products, AmeriFlux, atmospheric CO2 concentration network), and a boundary layer model to estimate net ecosystem production (NEP) across the region and partition it among GPP, R(a) and R(h). 3) Provide critical understanding of the controls on regional C balance (how NEP and carbon stocks are influenced by disturbance from fire and management, land use, and interannual climate variation). The key science questions are, "What are the magnitudes and distributions of C sources and sinks on seasonal to decadal time scales, and what processes are controlling their dynamics? What are regional spatial and temporal variations of C sources and sinks? What are the errors and uncertainties in the data products and results (i.e., in situ observations, remote sensing, models)?

  14. An intervention to improve the catheter associated urinary tract infection rate in a medical intensive care unit: Direct observation of catheter insertion procedure.

    Science.gov (United States)

    Galiczewski, Janet M; Shurpin, Kathleen M

    2017-06-01

    Healthcare associated infections from indwelling urinary catheters lead to increased patient morbidity and mortality. The purpose of this study was to determine if direct observation of the urinary catheter insertion procedure, as compared to the standard process, decreased catheter utilization and urinary tract infection rates. This case control study was conducted in a medical intensive care unit. During phase I, a retrospective data review was conducted on utilsiation and urinary catheter infection rates when practitioners followed the institution's standard insertion algorithm. During phase II, an intervention of direct observation was added to the standard insertion procedure. The results demonstrated no change in utilization rates, however, CAUTI rates decreased from 2.24 to 0 per 1000 catheter days. The findings from this study may promote changes in clinical practice guidelines leading to a reduction in urinary catheter utilization and infection rates and improved patient outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Understanding Regolith Physical Properties of Atmosphereless Solar System Bodies Based on Remote Sensing Photopolarimetric Observations: Evidence for Europa's Porous Surface

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.

    2017-12-01

    We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order landing on Europa's surface would require wheel or footpads that would protect it from settling deeply into the surface. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth's radiation balance by injecting high albedo Al2O3 particulates into Earth's atmosphere for the purpose of Solar Radiation Management by reflecting sunlight back into space hence, offsetting the global warming effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.

  16. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    Science.gov (United States)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    , including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.

  17. Historical analysis of interannual rainfall variability and trends in southeastern Brazil based on observational and remotely sensed data

    Science.gov (United States)

    Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa

    2018-02-01

    The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.

  18. Earth Observation and Life Cycle Assessment in Support of a Sustainable and Innovative Water Sector. RESEWAM-O, Remote Sensing for Water Management Optimisation

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    2016-07-01

    facilitate their decision whether the necessary expenditure and investment would be worthwhile and rewarding. In this paper, RESEWAM-O will show the use of current remote sensing technology and Earth Observation data and products to identify sensitive areas and evaluate their potential productivity in different parts of the world, namely Spain, Brazil, Colombia, Iran. The methodology is being developed to be compatible and continued real-time with the close forthcoming ESA Sentinel missions, mainly Sentinel-3, within the joint ESA/EU Copernicus Programme. Soil moisture is also monitored with the current ESA (SMOS, Soil Moisture and Ocean Salinity) and NASA (SMAP, Soil Moisture Active and Passive) missions. Complementary to Earth Observation, life cycle thinking perspective seems to be the correct approach to drive sustainability within the different human activities, also addressing the potential burdens on environment. The Life Cycle Assessment (LCA) methodology and its holistic perspective are useful tools to support both the screening and decision making procedures. With the aim of incorporating LCA to the RESEWAM-O's methodology, a first analysis has been carried out to identify the water and carbon footprints due to different organic agricultural practices over two organic vineyards of the Utiel-Requena Plateau natural region, Valencia (Spain), during the years 2014 and 2015. A cradle-to-gate analysis, from the raw material extraction up to the grapes production, was carried out using primary data (furnished by the wineries) and literature information (peer-review and database). LCA results were used to evaluate the environmental repercussions associated with different agricultural practices (e.g. manure spreading and the use of other fertilizer), as a consequence of the reduced rain abundance, and support the wineries in the decision making procedure by helping to identify operationally inefficient practices and quantify the environmental benefits of moving towards

  19. Norm-Minimized Scattering Data from Intensity Spectra

    Directory of Open Access Journals (Sweden)

    Alexander Seel

    2016-01-01

    Full Text Available We apply the l1 minimizing technique of compressive sensing (CS to nonlinear quadratic observations. For the example of coherent X-ray scattering we provide the formulas for a Kalman filter approach to quadratic CS and show how to reconstruct the scattering data from their spatial intensity distribution.

  20. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study.

    Science.gov (United States)

    Brearley, Amanda L; Sherburn, Margaret; Galea, Mary P; Clarke, Sandy J

    2015-10-01

    What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? An observational study. One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Tympanic temperature was measured at rest pre-immersion (T1), after 35minutes of moderate-intensity aqua-aerobic exercise (T2), after a further 10minutes of light exercise while still in the water (T3) and finally on departure from the facility (T4). The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, ptemperature response was not related to the water temperature (T2 r = -0.01, p = 0.9; T3 r = -0.02, p=0.9; T4 r=0.03, p=0.8). Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F=0.94, p=0.40; T3 F=0.93, p=0.40; T4 F=0.70, p=0.50). Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  1. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  2. WHEN SENSING TEACHES MORE THAN TEXT BOOKS: REVITALIZING TEAM, ICT AND OBSERVATIONAL LEARNING TO THRIVE SOCIO-AFFECTIVE CONSCIOUSNESS IN LANGUAGE CLASSROOM

    Directory of Open Access Journals (Sweden)

    Adi Suryani

    2017-04-01

    Full Text Available The flourish of ICT and complexity of today‘s social-cultural and technological issues entails a strong need for a change in education. Today‘s education should be more directed outward by observing what happens in the society instead of just inward by indoctrinating certain perspectives and memorizing facts. Thus, it is not classroomcentred education anymore, but it is now becoming society-centred and being the miniature of society. Today‘s classrooms are expected to facilitate broader and various learning process, dynamic mental process and provide autonomy and creativity for students to construct their own knowledge by observing, sensing and learning from society. Through this process, students can see society as place and source of learning. Learning from society can also trigger social learning. Together, the aspect of observing issues emerging in society and being able to accommodate various perspectives in jointlearning lay the foundation for creating socio-affective conscious learners. This study aims to explore how and what the students can learn by observing, thinking, feeling and proposing problem solving for social, cultural and technological issues in joint-learning and what challenges they encounter during their learning process. The data is grounded on students‘ reflective notes and the result of collaborated problem solving in groups in language classroom. The data shows that the students learn some constellations of socioaffective learning aspects. Those are the exercises of multiple sensory, social learning (awareness, coordination, affinity, sharing, respect, communication, emotional learning (regulation, awareness, positive emotional contagion in group, adaptive. Their sensory, social and affective learning are enhanced by ICT.

  3. Amino-terminal pro-brain natriuretic peptide as a predictor of outcome in patients admitted to intensive care. A prospective observational study.

    Science.gov (United States)

    De Geer, Lina; Fredrikson, Mats; Oscarsson, Anna

    2012-06-01

    Amino-terminal pro-brain-type natriuretic peptide is known to predict outcome in patients with heart failure, but its role in an intensive care setting is not yet fully established. To assess the incidence of elevated amino-terminal pro-brain natriuretic peptide (NT-pro-BNP) on admission to intensive care and its relation to death in the ICU and within 30 days. Prospective, observational cohort study. A mixed non-cardiothoracic tertiary ICU in Sweden. NT-pro-BNP was collected from 481 consecutive patients on admission to intensive care, in addition to data on patient characteristics and outcome. A receiver-operating characteristic curve was used to identify a discriminatory level of significance, a stepwise logistic regression analysis to correct for other clinical factors and a Kaplan-Meier analysis to assess survival. The correlation between Simplified Acute Physiology Score (SAPS) 3, Sequential Organ Failure Assessment score (SOFA) and NT-pro-BNP was analysed using Spearman's correlation test. Quartiles of NT-pro-BNP elevation were compared for baseline data and outcome using a logistic regression model. An NT-pro-BNP more than 1380 ng -l on admission was an independent predictor of death in the ICU and within 30 days [odds ratio (OR) 2.6; 95% confidence interval (CI), 1.5 to 4.4] and was present in 44% of patients. Thirty-three percent of patients with NT-pro-BNP more than 1380 ng -1, and 14.6% of patients below that threshold died within 30 days (log rank P=0.005). NT-pro-BNP correlated moderately with SAPS 3 and with SOFA on admission (Spearman's ρ 0.5552 and 0.5129, respectively). In quartiles of NT-pro-BNP elevation on admission, severity of illness and mortality increased significantly (30-day mortality 36.1%; OR 3.9; 95% CI, 2.0 to 7.3 in the quartile with the highest values, vs. 12.8% in the lowest quartile). We conclude that NT-pro-BNP is commonly elevated on admission to intensive care, that it increases with severity of illness and that it is an

  4. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  5. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  6. The Influence of Synoptic Meteorology on Convective Boundary Layer Characteristics and the Observed Chemical Response During PROPHET 2000 and 2001 Summer Intensives

    Science.gov (United States)

    Lilly, M. A.; Moody, J. L.; Carroll, M.; Brown, W. O.; Cohn, S. A.

    2002-12-01

    PROPHET conducted atmospheric chemistry intensives that were coordinated with continuous measurements of the atmospheric boundary layer at the University of Michigan Biological Station (UMBS) during July and August of 2000 and 2001. Observations of ozone and trace gas precursors were made on a 31-meter tower within a mixed hardwood forest. A National Center for Atmospheric Research (NCAR) integrated sounding system (915-MHz Doppler wind profiler, radio acoustic sounder, surface meteorological tower, and rawinsonde system) was deployed in a nearby clearing. This facility provided detailed measurements of atmospheric boundary layer structure. The site is located at the northern tip of the Michigan's lower peninsula. Typically, a contaminated maritime-subtropical air mass lies to the south, while a relatively clean continental-polar air mass lies to the north, resulting in two distinct synoptic transport regimes. Published work, based on analyses of back trajectories and 1998 chemical data, has shown the influence of air mass origin on trace gas mixing ratios and the same trends are observed in 2000 and 2001 chemical data. Besides directly affecting the chemistry observed at the site, the large-scale synoptic meteorology has a major influence on convective boundary layer (CBL) characteristics. CBL data were obtained from the range corrected signal-to-noise ratio, derived from the Doppler spectra measured by the wind profiler. Distinct differences between CBL characteristics, such as growth rates, time period of maximum growth, average height throughout evolution, and maximum height, are illustrated for differing synoptic patterns. Typically, dry northerly flow results when UMBS is positioned on the leading edge of surface anticyclones moving out of Canada after frontal passages. The dry air mass accompanied with relatively clear skies allows intense solar radiation to go directly into surface heating; the result is rapid CBL development. By contrast, warm, moist air

  7. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  8. Urban Heat Islands of the World's Major Cities Revealed at Multiple Scales Using Both Station Observations and Complementary Remotely Sensed Data Products

    Science.gov (United States)

    Nguyen, L. H.; Krehbiel, C.; Henebry, G. M.

    2016-12-01

    Urban heat islands (UHIs) have long been studied using both ground-based observations of air temperature and remotely sensed data. In the rapidly urbanizing world, cross-comparison between various datasets will allow us to characterize and model UHI effects more generally. Here we analyze UHIs of the world's major cities using station observations from the Global Historical Climate Network (GHCN), surface air temperatures derived from Advanced Microwave Scanning Radiometers (AMSRs), and land surface temperatures (LST) estimated from Moderate-resolution Imaging Spectroradiometer (MODIS). We compute the two measurements of thermal time (accumulated diurnal degree-days or ADDD and nocturnal degree-days or ANDD) and the normalized difference accumulated thermal time index (NDATTI) to characterize urban and rural thermal differences and day-night dynamics over multiple growing seasons. Our preliminary results for 27 major cities and 83 urban-rural groupings in the USA and Canada indicate that daytime urban thermal accumulations from the passive microwave data (AMSRs) were generally lower than in adjacent rural areas, with only 18% of urban-rural groupings showing higher thermal accumulations in cities. In contrast, station observations and MODIS LST showed consistently higher ADDD in cities (82% and 93% for GHCN and MODIS data respectively). UHIs are more pronounced at night, with 55% (AMSR), 93% (GHCN) and 100% (MODIS) of urban-rural groupings showing higher ANDD in cities. Humidity appears to be a common factor driving the day-night thermal dynamics throughout all three datasets (Figure 1). Normalized day-night differences in thermal time metrics were consistently lower (>90% of urban-rural groupings) in urban than rural areas for both air temperature datasets (GHCN and AMSRs). With MODIS LST, only 70% of urban-rural groupings show lower NDATTI in cities. We will present results for the rest of the globe.

  9. Nature and Intensity of the 22-23 April 2015 Eruptions of Volcán Calbuco, Chile, from Satellite, Lightning, and Field Observations

    Science.gov (United States)

    Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.

    2015-12-01

    On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning

  10. On the Ability of Space-Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    Science.gov (United States)

    Crowell, Sean M. R.; Randolph Kawa, S.; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.

  11. Rainfall and runoff Intensity-Duration-Frequency Curves for Washington State considering the change and uncertainty of observed and anticipated extreme rainfall and snow events

    Science.gov (United States)

    Demissie, Y. K.; Mortuza, M. R.; Li, H. Y.

    2015-12-01

    The observed and anticipated increasing trends in extreme storm magnitude and frequency, as well as the associated flooding risk in the Pacific Northwest highlighted the need for revising and updating the local intensity-duration-frequency (IDF) curves, which are commonly used for designing critical water infrastructure. In Washington State, much of the drainage system installed in the last several decades uses IDF curves that are outdated by as much as half a century, making the system inadequate and vulnerable for flooding as seen more frequently in recent years. In this study, we have developed new and forward looking rainfall and runoff IDF curves for each county in Washington State using recently observed and projected precipitation data. Regional frequency analysis coupled with Bayesian uncertainty quantification and model averaging methods were used to developed and update the rainfall IDF curves, which were then used in watershed and snow models to develop the runoff IDF curves that explicitly account for effects of snow and drainage characteristic into the IDF curves and related designs. The resulted rainfall and runoff IDF curves provide more reliable, forward looking, and spatially resolved characteristics of storm events that can assist local decision makers and engineers to thoroughly review and/or update the current design standards for urban and rural storm water management infrastructure in order to reduce the potential ramifications of increasing severe storms and resulting floods on existing and planned storm drainage and flood management systems in the state.

  12. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    Science.gov (United States)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  13. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    International Nuclear Information System (INIS)

    Smith, Craig M; Barthelmie, R J; Pryor, S C

    2013-01-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m. (letter)

  14. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  15. On the Ability of Space- Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    Science.gov (United States)

    Crowell, Sean M. R.; Kawa, S. Randolph; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.

  16. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Science.gov (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  17. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Claustre, H.; Bishop, J.; Boss, E.; Bernard, S.; Berthon, J.-F.; Coatanoan, C.; Johnson, K.; Lotiker, A.; Ulloa, O.; Perry, M.J.; D' Ortenzio, F.; D' andon, O.H.F.; Uitz, J.

    2009-10-01

    Profiling floats now represent a mature technology. In parallel with their emergence, the field of miniature, low power bio-optical and biogeochemical sensors is rapidly evolving. Over recent years, the bio-geochemical and bio-optical community has begun to benefit from the increase in observational capacities by developing profiling floats that allow the measurement of key biooptical variables and subsequent products of biogeochemical and ecosystem relevance like Chlorophyll a (Chla), optical backscattering or attenuation coefficients which are proxies of Particulate Organic Carbon (POC), Colored Dissolved Organic Matter (CDOM). Thanks to recent algorithmic improvements, new bio-optical variables such as backscattering coefficient or absorption by CDOM, at present can also be extracted from space observations of ocean color. In the future, an intensification of in situ measurements by bio-optical profiling floats would permit the elaboration of unique 3D/4D bio-optical climatologies, linking surface (remotely detected) properties to their vertical distribution (measured by autonomous platforms), with which key questions in the role of the ocean in climate could be addressed. In this context, the objective of the IOCCG (International Ocean Color Coordinating Group) BIO-Argo working group is to elaborate recommendations in view of a future use of bio-optical profiling floats as part of a network that would include a global array that could be 'Argo-relevant', and specific arrays that would have more focused objectives or regional targets. The overall network, realizing true multi-scale sustained observations of global marine biogeochemistry and biooptics, should satisfy the requirements for validation of ocean color remote sensing as well as the needs of a wider community investigating the impact of global change on biogeochemical cycles and ecosystems. Regarding the global profiling float array, the recommendation is that Chla as well as POC should be the

  18. Information structure and organisation in change of shift reports: An observational study of nursing hand-offs in a Paediatric Intensive Care Unit.

    Science.gov (United States)

    Foster-Hunt, Tara; Parush, Avi; Ellis, Jacqueline; Thomas, Margot; Rashotte, Judy

    2015-06-01

    Patient hand-offs involve the exchange of critical information. Ineffective hand-offs can result in reduced patient safety by leading to wrong treatment, delayed diagnoses or other outcomes that can negatively affect the healthcare system. The objectives of this study were to uncover the structure of the information conveyed during patient hand-offs and look for principles characterising the organisation of the information. With an observational study approach, data was gathered during the morning and evening nursing change of shift hand-offs in a Paediatric Intensive Care Unit. Content analysis identified a common meta-structure used for information transfer that contained categories with varying degrees of information integration and the repetition of high consequence information. Differences were found in the organisation of the hand-off structures, and these varied as a function of nursing experience. The findings are discussed in terms of the potential benefits of computerised tools which utilise standardised structure for information transfer and the implications for future education and critical care skill acquisition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. What impact did a Paediatric Early Warning system have on emergency admissions to the paediatric intensive care unit? An observational cohort study.

    Science.gov (United States)

    Sefton, G; McGrath, C; Tume, L; Lane, S; Lisboa, P J G; Carrol, E D

    2015-04-01

    The ideology underpinning Paediatric Early Warning systems (PEWs) is that earlier recognition of deteriorating in-patients would improve clinical outcomes. To explore how the introduction of PEWs at a tertiary children's hospital affects emergency admissions to the Paediatric Intensive Care Unit (PICU) and the impact on service delivery. To compare 'in-house' emergency admissions to PICU with 'external' admissions transferred from District General Hospitals (without PEWs). A before-and-after observational study August 2005-July 2006 (pre), August 2006-July 2007 (post) implementation of PEWs at the tertiary children's hospital. The median Paediatric Index of Mortality (PIM2) reduced; 0.44 vs 0.60 (pemergency admissions to PICU. A 39% reduction in emergency admission total beds days reduced cancellation of major elective surgical cases and refusal of external PICU referrals. Following introduction of PEWs at a tertiary children's hospital PIM2 was reduced, patients required less PICU interventions and had a shorter length of stay. PICU service delivery improved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Burnout and job satisfaction of intensive care personnel and the relationship with personality and religious traits: An observational, multicenter, cross-sectional study.

    Science.gov (United States)

    Ntantana, Asimenia; Matamis, Dimitrios; Savvidou, Savvoula; Giannakou, Maria; Gouva, Mary; Nakos, George; Koulouras, Vasilios

    2017-08-01

    To investigate if burnout in the Intensive Care Unit (ICU) is influenced by aspects of personality, religiosity and job satisfaction. Cross-sectional study, designed to assess burnout in the ICU and to investigate possible determinants. Three different questionnaires were used: the Malach Burnout Inventory, the Eysenck Personality Questionnaire and the Spiritual/Religious Attitudes Questionnaire. Predicting factors for high burnout were identified by multivariate logistic regression analysis. This national study was addressed to physicians and nurses working full-time in 18 Greek ICU departments from June to December 2015. The participation rate was 67.9% (n=149) and 65% (n=320) for ICU physicians and nurses, respectively). High job satisfaction was recorded in both doctors (80.8%) and nurses (63.4%). Burnout was observed in 32.8% of the study participants, higher in nurses compared to doctors (pJob satisfaction (OR 0.26, 95%CI 0.14-0.48, psatisfaction with current End-of-Life care (OR 0.41, 95%CI 0.23-0.76, p=0.005) and isolation feelings after decisions to forego life sustaining treatments (OR 3.48, 95%CI 1.25-9.65, p=0.017). Personality traits, job satisfaction and the way End-of-Life care is practiced influence burnout in the ICU. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Directory of Open Access Journals (Sweden)

    C. Shu

    2009-07-01

    Full Text Available The change pattern and trend of soil moisture (SM in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET, leaf area index (LAI, and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1 and increasing tendency of temperature (α=0.01. The decreasing tendency of runoff has higher significance level (α=0.001. Because of SM's decreasing tendency, soil evaporation (ES is also decreasing (α=0.05. The tendency of net radiation (Rn, evapotranspiration (ET, transpiration (EC, canopy intercept (EI is not obvious. Net primary productivity (NPP, of which the significance level is lower than α=0.1, and gross primary productivity (GPP at α=0.01 are in increasing tendency.

  2. Incidence, Microbiological Profile and Risk Factors of Healthcare-Associated Infections in Intensive Care Units: A 10 Year Observation in a Provincial Hospital in Southern Poland

    Science.gov (United States)

    Kołpa, Małgorzata; Wałaszek, Marta; Gniadek, Agnieszka; Wolak, Zdzisław; Dobroś, Wiesław

    2018-01-01

    Healthcare-associated infections (HAIs) occurring in patients treated in an intensive care unit (ICU) are serious complications in the treatment process. Aetiological factors of these infections can have an impact on treatment effects, treatment duration and mortality. The aim of the study was to determine the prevalence and microbiological profile of HAIs in patients hospitalized in an ICU over a span of 10 years. The active surveillance method was used to detect HAIs in adult patients who spent over 48 h in a general ICU ward located in southern Poland between 2007 and 2016. The study was conducted in compliance with the methodology recommended by the Healthcare-associated Infections Surveillance Network (HAI-Net) of the European Centre for Disease Prevention and Control (ECDC). During the 10 years of the study, 1849 patients hospitalized in an ICU for a total of 17,599 days acquired 510 with overall HAIs rates of 27.6% and 29.0% infections per 1000 ICU days. Intubation-associated pneumonia (IAP) posed the greatest risk (15.2 per 1000 ventilator days), followed by CLA-BSI (8.0 per 1000 catheter days) and CA-UTI (3.0 per 1000 catheter days). The most common isolated microorganism was Acinetobacter baumannii (25%) followed by Coagulaase-negativ staphylococci (15%), Escherichia coli (9%), Pseudomonas aeruginosa (8%), Klebsiella pneumoniae (7%), Candida albicans (6%). Acinetobacter baumannii in 87% and were classified as extensive-drug resistant (XDR). In summary, in ICU patients pneumonia and bloodstream infections were the most frequently found. Acinetobacter baumannii strains were most often isolated from clinical materials taken from HAI patients and showed resistance to many groups of antibiotics. A trend of increasing resistance of Acinetobacter baumannii to carbapenems was observed. PMID:29324651

  3. Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: a prospective observational cohort study.

    Science.gov (United States)

    Widerström, Micael; Wiström, Johan; Edebro, Helén; Marklund, Elisabeth; Backman, Mattias; Lindqvist, Per; Monsen, Tor

    2016-12-09

    During the last decades, healthcare-associated genotypes of methicillin-resistant Staphylococcus epidermidis (HA-MRSE) have been established as important opportunistic pathogens. However, data on potential reservoirs on HA-MRSE is limited. The aim of the present study was to investigate the dynamics and to which extent HA-MRSE genotypes colonize patients, healthcare workers (HCWs) and the environment in an intensive care unit (ICU). Over 12 months in 2006-2007, swab samples were obtained from patients admitted directly from the community to the ICU and patients transferred from a referral hospital, as well as from HCWs, and the ICU environment. Patients were sampled every third day during hospitalization. Antibiotic susceptibility testing was performed according to EUCAST guidelines. Pulsed-field gel electrophoresis and multilocus sequence typing were used to determine the genetic relatedness of a subset of MRSE isolates. We identified 620 MRSE isolates from 570 cultures obtained from 37 HCWs, 14 patients, and 14 environmental surfaces in the ICU. HA-MRSE genotypes were identified at admission in only one of the nine patients admitted directly from the community, of which the majority subsequently were colonized by HA-MRSE genotypes within 3 days during hospitalization. Almost all (89%) of HCWs were nasal carriers of HA-MRSE genotypes. Similarly, a significant proportion of patients transferred from the referral hospital and fomites in the ICU were widely colonized with HA-MRSE genotypes. Patients transferred from a referral hospital, HCWs, and the hospital environment serve as important reservoirs for HA-MRSE. These observations highlight the need for implementation of effective infection prevention and control measures aiming at reducing HA-MRSE transmission in the healthcare setting.

  4. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  5. New Modalities for the Administration of Inhaled Nitric Oxide in Intensive Care Units After Cardiac Surgery or for Neonatal Indications: A Prospective Observational Study.

    Science.gov (United States)

    Gaudard, Philippe; Barbanti, Claudio; Rozec, Bertrand; Mauriat, Philippe; M'rini, Mimoun; Cambonie, Gilles; Liet, Jean Michel; Girard, Claude; Leger, Pierre Louis; Assaf, Ziad; Damas, Pierre; Loron, Gauthier; Lecourt, Laurent; Amour, Julien; Pouard, Philippe

    2018-04-01

    Nitric oxide (NO) has a well-known efficacy in pulmonary hypertension (PH), with wide use for 20 years in many countries. The objective of this study was to describe the current use of NO in real life and the gap with the guidelines. This is a multicenter, prospective, observational study on inhaled NO administered through an integrated delivery and monitoring device and indicated for PH according to the market authorizations. The characteristics of NO therapy and ventilation modes were observed. Concomitant pulmonary vasodilator treatments, safety data, and outcome were also collected. Quantitative data are expressed as median (25th, 75th percentile). Over 1 year, 236 patients were included from 14 equipped and trained centers: 117 adults and 81 children with PH associated with cardiac surgery and 38 neonates with persistent PH of the newborn. Inhaled NO was initiated before intensive care unit (ICU) admission in 57%, 12.7%, and 38.9% with an initial dose of 10 (10, 15) ppm, 20 (18, 20) ppm, and 17 (11, 20) ppm, and a median duration of administration of 3.9 (1.9, 6.1) days, 3.8 (1.8, 6.8) days, and 3.1 (1.0, 5.7) days, respectively, for the adult population, pediatric cardiac group, and newborns. The treatment was performed using administration synchronized to the mechanical ventilation. The dose was gradually decreased before withdrawal in 86% of the cases according to the usual procedure of each center. Adverse events included rebound effect for 3.4% (95% confidence interval [CI], 0.9%-8.5%) of adults, 1.2% (95% CI, 0.0%-6.7%) of children, and 2.6% (95% CI, 0.1%-13.8%) of neonates and methemoglobinemia exceeded 2.5% for 5 of 62 monitored patients. Other pulmonary vasodilators were associated with NO in 23% of adults, 95% of children, and 23.7% of neonates. ICU stay was respectively 10 (6, 22) days, 7.5 (5.5, 15) days, and 9 (8, 15) days and ICU mortality was 22.2%, 6.2%, and 7.9% for adults, children, and neonates, respectively. This study confirms the safety

  6. Intensive Case Management for Addiction to promote engagement with care of people with severe mental and substance use disorders: an observational study.

    Science.gov (United States)

    Morandi, Stéphane; Silva, Benedetta; Golay, Philippe; Bonsack, Charles

    2017-05-25

    Co-occurring severe mental and substance use disorders are associated with physical, psychological and social complications such as homelessness and unemployment. People with severe mental and substance use disorders are difficult to engage with care. The lack of treatment worsens their health and social conditions and increases treatment costs, as emergency department visits arise. Case management has proved to be effective in promoting engagement with care of people with severe mental and substance use disorders. However, this impact seemed mainly related to the case management model. The Intensive Case Management for Addiction (ICMA) aimed to improve engagement with care of people with severe mental and substance use disorders, insufficiently engaged with standard treatment. This innovative multidisciplinary mobile team programme combined Assertive Community Treatment and Critical Time Intervention methodologies. The aim of the study was to observe the impact of ICMA upon service use, treatment adherence and quality of support networks. Participants' psychosocial and mental functioning, and substance use were also assessed throughout the intervention. The study was observational. Eligible participants were all the people entering the programme during the first year of implementation (April 2014-April 2015). Data were collected through structured questionnaires and medical charts. Assessments were conducted at baseline and at 12 months follow-up or at the end of the programme if completed earlier. McNemar-Bowker's Test, General Linear Model repeated-measures analysis of variance and non-parametric Wilcoxon Signed Rank tests were used for the analysis. A total of 30 participants took part in the study. Results showed a significant reduction in the number of participants visiting the general emergency department compared to baseline. A significantly decreased number of psychiatric emergency department visits was also registered. Moreover, at follow-up participants

  7. Predictors for replanning in loco-regionally advanced nasopharyngeal carcinoma patients undergoing intensity-modulated radiation therapy: a prospective observational study

    International Nuclear Information System (INIS)

    Yan, DanFang; Yan, SenXiang; Wang, QiDong; Liao, XinBiao; Lu, ZhongJie; Wang, YiXiang

    2013-01-01

    Replanning in intensity-modulated radiotherapy (IMRT) has been reported to improve quality of life and loco-regional control in patients with nasopharyngeal cancer (NPC). Determination of the criteria for replanning is, however, urgently needed. We conducted a prospective study to determine when and for what type of patients is replanning preferred through weekly repeat computed tomography (CT) imaging during the course of IMRT. We recruited 20 patients who were diagnosed as having loco-regionally advanced, non-metastatic stage III or IVa NPC and treated with concurrent platinum-based chemoradiotherapy (CRT) using IMRT. Patients received CT simulation (sim-CT) and plain magnetic resonance imaging (MRI) plus diffusion-weighted imaging (DWI) weekly for five consecutive weeks. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated and recorded weekly based on the CT-CT fusion. The relationship between GTV/CTV reduction and clinical characteristics of the patients were assessed using Pearson correlation test. GTV and CTV decreased during the treatment by 36.03 mL (range, 10.91–98.82 mL) and 76.79 mL (range, 33.94–125.14 mL), respectively, after 25 fractions of treatment. The percentage reductions from their initial volume were 38.4% (range, 25.3–50.7%) and 11.8% (range, 6.7–18.3%), respectively. The greatest reductions in GTV and CTV were observed at the fourth week (i.e., upon completion of 20 fractions), compared to pre-treatment sim-CT. Weight loss and CTV reduction were significantly correlated with pre-treatment body mass index (BMI) (r = 0.58, P = 0.012, and r = 0.48, P = 0.046, respectively). However, no significant correlation was observed between CTV reduction and initial tumor volume. In addition, GTV reduction was not significantly correlated with pre-treatment tumor volume (P = 0.65), but negatively correlated with pre-treatment tumor apparent diffusion coefficient (ADC) values (r = −0.46, P = 0.042). Our results indicate

  8. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  9. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  10. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surf...

  11. Comparison study to the use of geophysical methods at archaeological sites observed by various remote sensing techniques in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Roman

    2017-01-01

    Roč. 7, č. 3 (2017), č. článku 81. ISSN 2076-3263 Grant - others:AV ČR(CZ) R300021421 Institutional support: RVO:67985912 Keywords : archaeological prospection * remote sensing * non-destructive archaeology * geophysical survey Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.mdpi.com/2076-3263/7/3/81/pdf

  12. High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters' athletes: an observational study.

    Science.gov (United States)

    Herbert, Peter; Hayes, Lawrence D; Sculthorpe, Nicholas; Grace, Fergal M

    2017-03-01

    The aim of this investigation was to examine the impact high-intensity interval training (HIIT) on serum insulin-like growth factor-I (IGF-I) in active compared with sedentary aging men. 22 lifetime sedentary (SED; 62 ± 2 years) and 17 masters' athletes (LEX; 60 ± 5 years) were recruited to the study. As HIIT requires preconditioning exercise in sedentary cohorts, the study required three assessment phases; enrollment (phase A), following preconditioning exercise (phase B), and post-HIIT (phase C). Serum IGF-I was determined by electrochemiluminescent immunoassay. IGF-I was higher in LEX compared to SED at baseline (p = 0.007, Cohen's d = 0.91), and phase B (p = 0.083, Cohen's d = 0.59), with only a small difference at C (p = 0.291, Cohen's d = 0.35). SED experienced a small increase in IGF-I following preconditioning from 13.1 ± 4.7 to 14.2 ± 6.0 μg·dl -1 (p = 0.376, Cohen's d = 0.22), followed by a larger increase post-HIIT (16.9 ± 4.4 μg·dl -1 ), which was significantly elevated compared with baseline (p = 0.002, Cohen's d = 0.85), and post-preconditioning (p = 0.005, Cohen's d = 0.51). LEX experienced a trivial changes in IGF-I from A to B (18.2 ± 6.4 to 17.2 ± 3.7 μg·dl -1 [p = 0.538, Cohen's d = 0.19]), and a small change post-HIIT (18.4 ± 4.1 μg·dl -1 [p = 0.283, Cohen's d = 0.31]). Small increases were observed in fat-free mass in both groups following HIIT (p HIIT with preconditioning exercise abrogates the age associated difference in IGF-I between SED and LEX, and induces small improvements in fat-free mass in both SED and LEX.

  13. How labour intensive is a doctor-based delivery model for antiretroviral treatment (ART)? Evidence from an observational study in Siem Reap, Cambodia.

    Science.gov (United States)

    Van Damme, Wim; Kheang, Soy Ty; Janssens, Bart; Kober, Katharina

    2007-05-01

    Funding for scaling-up antiretroviral treatment (ART) in low-income countries has increased substantially, but the lack of human resources for health (HRH) is increasingly being identified as an important constraint for scaling-up ART. In a clinic run by Médecins Sans Frontières in Siem Reap, Cambodia, we documented the use of doctor-time for ART in September 2004 and in August 2005, for different phases in ART (pre-ART, ART initiation, ART follow-up Year 1, & ART follow-up Year 2). Based on these observations and using a variety of assumptions for survival of patients on ART (between 90 and 95% annually) and for further reductions in doctor-time per patient (between 0 and 10% annually), we estimated the need for doctors for the period 2004 till 2013 in the Siem Reap clinic, and in a hypothetical district in sub-Saharan Africa. In the Siem Reap clinic, we found that from 2004 to 2005 the doctor-time needed per patient was reduced by between 14% and 33%, thanks to a reduction in number of visits per patient and shorter consultation times. In 2004, 2.06 full-time equivalent (FTE) doctors were needed for 522 patients on ART, and in 2005 this was slightly reduced to 1.97 FTE doctors for 911 patients on ART. By 2013, Siem Reap clinic will need between 2 and 5 FTE doctors for ART. In a district in sub-Saharan Africa with 200,000 inhabitants and 20% adult HIV prevalence, using a similar doctor-based ART delivery model, between 4 and 11 FTE doctors would be needed to cover 50% of ART needs. ART is labour intensive. Important reductions in doctor-time per patient can be realized during scaling-up. The doctor-based ART delivery model analysed seems adequate for Cambodia. However, for many districts in sub-Saharan Africa a doctor-based ART delivery model may be incompatible with their HRH constraints.

  14. How labour intensive is a doctor-based delivery model for antiretroviral treatment (ART? Evidence from an observational study in Siem Reap, Cambodia

    Directory of Open Access Journals (Sweden)

    Janssens Bart

    2007-05-01

    Full Text Available Abstract Background Funding for scaling-up antiretroviral treatment (ART in low-income countries has increased substantially, but the lack of human resources for health (HRH is increasingly being identified as an important constraint for scaling-up ART. Methods In a clinic run by Médecins Sans Frontières in Siem Reap, Cambodia, we documented the use of doctor-time for ART in September 2004 and in August 2005, for different phases in ART (pre-ART, ART initiation, ART follow-up Year 1, & ART follow-up Year 2. Based on these observations and using a variety of assumptions for survival of patients on ART (between 90 and 95% annually and for further reductions in doctor-time per patient (between 0 and 10% annually, we estimated the need for doctors for the period 2004 till 2013 in the Siem Reap clinic, and in a hypothetical district in sub-Saharan Africa. Results In the Siem Reap clinic, we found that from 2004 to 2005 the doctor-time needed per patient was reduced by between 14% and 33%, thanks to a reduction in number of visits per patient and shorter consultation times. In 2004, 2.06 full-time equivalent (FTE doctors were needed for 522 patients on ART, and in 2005 this was slightly reduced to 1.97 FTE doctors for 911 patients on ART. By 2013, Siem Reap clinic will need between 2 and 5 FTE doctors for ART. In a district in sub-Saharan Africa with 200,000 inhabitants and 20% adult HIV prevalence, using a similar doctor-based ART delivery model, between 4 and 11 FTE doctors would be needed to cover 50% of ART needs. Conclusion ART is labour intensive. Important reductions in doctor-time per patient can be realized during scaling-up. The doctor-based ART delivery model analysed seems adequate for Cambodia. However, for many districts in sub-Saharan Africa a doctor-based ART delivery model may be incompatible with their HRH constraints.

  15. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  16. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  17. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  18. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  19. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  20. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  1. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S., Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law

    2011-10-05

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  2. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    Science.gov (United States)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  3. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Warren [USDA Forest Service

    2014-07-03

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  4. Comparison Study to the Use of Geophysical Methods at Archaeological Sites Observed by Various Remote Sensing Techniques in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Roman Křivánek

    2017-09-01

    Full Text Available A combination of geophysical methods could be very a useful and a practical way of verifying the origin and precise localisation of archaeological situations identified by different remote sensing techniques. The results of different methods (and scales of monitoring these fully non-destructive methods provide distinct data and often complement each other. The presented examples of combinations of these methods/techniques in this study (aerial survey, LIDAR-ALS and surface magnetometer or resistivity survey could provide information on some specifics and may also be limitations in surveying different archaeological terrains, types of archaeological situations and activities. The archaeological site in this contribution is considered to be a material of this study. In case of Neolithic ditch enclosure near Kolín were compared aerial prospection data, magnetometer survey and aerial photo-documentation of excavated site. In the case of hillforts near Levousy we compared LIDAR data with aerial photography and large-scale magnetometer survey. In the case of the medieval castle Liběhrad we compared LIDAR data with geoelectric resistivity measurement. In case of a burial mound cemetery we combined LIDAR data with magnetometer survey. In the case of the production area near Rynartice we combined LIDAR data with magnetometer and resistivity measurements and result of archaeological excavation. Fortunately for successful combination of geophysical and remote sensing results, their conditions and factors for efficient use in archaeology are not the same. On the other hand, the quality and state of many prehistoric, early medieval, medieval and also modern archaeological sites is rapidly changing over time and both groups of techniques represent important support for their comprehensive and precise documentation and protection.

  5. Multi-Year Estimates of Regional Alaskan Net CO2 Exchange: Constraining a Remote-Sensing Based Model with Aircraft Observations

    Science.gov (United States)

    Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2014-12-01

    The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.

  6. Application of low current intensity electrolytic treatment for the chlorides extraction in underwater archaeological objects of iron. Observation of the mineralogical phases evolution through XRD-Rietveld

    International Nuclear Information System (INIS)

    Bethencourt, M.; Gil, M. L. A.; Fernandez-Lorenzo, C.; Santos, A.

    2004-01-01

    With the purpose of optimising a suitable methodology for the conservation of an archaeological object of iron, a low current intensities electrolytic treatment has been applied, to a piece of cast iron, proving to be effective in the extraction of chloride ions from the structure of akaganeite, principal corrosion product of iron in the marine medium. The monitoring of the electrolytic treatment has been proven by applying the Rietveld method to the patterns XRD of samples extracted from the corroded surface before and after the treatment. This method has permitted the unequivocal determination of the akaganeite and its chemical composition. This identification has been corroborated by means of SEM and EDS. After the electrolytic treatment, akaganeite was not present in the sample. (Author) 9 refs

  7. Recruiting intensity

    OpenAIRE

    R. Jason Faberman

    2014-01-01

    To hire new workers, employers use a variety of recruiting methods in addition to posting a vacancy announcement. The intensity with which employers use these alternative methods can vary widely with a firm’s performance and with the business cycle. In fact, persistently low recruiting intensity helps to explain the sluggish pace of US job growth following the Great Recession.

  8. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data

    Directory of Open Access Journals (Sweden)

    J. Mikola

    2018-05-01

    Full Text Available Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm−3 in bare soil and lichen tundra and 89 g dm−3 in other LCTs. Total moss biomass varied from 0 to 820 g m−2, total vascular shoot mass from 7 to 112 g m−2 and vascular leaf area index (LAI from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14–34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer

  9. Near Real-Time Ground-to-Ground Infrared Remote-Sensing Combination and Inexpensive Visible Camera Observations Applied to Tomographic Stack Emission Measurements

    Directory of Open Access Journals (Sweden)

    Philippe de Donato

    2018-04-01

    Full Text Available Evaluation of the environmental impact of gas plumes from stack emissions at the local level requires precise knowledge of the spatial development of the cloud, its evolution over time, and quantitative analysis of each gaseous component. With extensive developments, remote-sensing ground-based technologies are becoming increasingly relevant to such an application. The difficulty of determining the exact 3-D thickness of the gas plume in real time has meant that the various gas components are mainly expressed using correlation coefficients of gas occurrences and path concentration (ppm.m. This paper focuses on a synchronous and non-expensive multi-angled approach combining three high-resolution visible cameras (GoPro-Hero3 and a scanning infrared (IR gas system (SIGIS, Bruker. Measurements are performed at a NH3 emissive industrial site (NOVACARB Society, Laneuveville-devant-Nancy, France. Visible data images were processed by a first geometrical reconstruction gOcad® protocol to build a 3-D envelope of the gas plume which allows estimation of the plume’s thickness corresponding to the 2-D infrared grid measurements. NH3 concentration data could thereby be expressed in ppm and have been interpolated using a second gOcad® interpolation algorithm allowing a precise volume visualization of the NH3 distribution in the flue gas steam.

  10. Inter-observer reliability of high-resolution ultrasonography in the assessment of bone erosions in patients with rheumatoid arthritis: experience of an intensive dedicated training programme.

    Science.gov (United States)

    Gutierrez, Marwin; Filippucci, Emilio; Ruta, Santiago; Salaffi, Fausto; Blasetti, Patrizia; Di Geso, Luca; Grassi, Walter

    2011-02-01

    The present study was aimed at testing the ability of a rheumatologist without experience in ultrasound (US) who attended an intensive 4-week training programme focused on US assessing bone erosions in the hands and feet in patients with RA. Twenty patients diagnosed with RA according to the ACR criteria were included in the study. All US examinations were performed bilaterally by two investigators (with different experience in the field of musculoskeletal US) at the following sites: the dorsal, lateral and volar aspect of the second metacarpal, ulnar and fifth metatarsal head; and the dorsal and volar aspect of the third metacarpal and second proximal heads. Each quadrant was scanning in longitudinal and transverse scans for assessing the qualitative, semiquantitative and quantitative US findings indicative of bone erosions according the OMERACT preliminary definition. Both κ-values and overall agreement percentages of qualitative and semiquantitative assessments showed moderate to excellent agreement between the two investigators. Similar results were obtained for the quantitative assessment with the concordance correlation coefficient value always significant. The only exception was the volar aspects, in particular those of the fifth metatarsal head. Our study suggests that after a 4-week dedicated training programme, a rheumatologist without experience in US is able to detect and score bone erosions in the hands and feet of patients with RA.

  11. Trends in nitrogen concentrations and load in 48 minor streams draining intensively farmed Danish catchments, 1990-2014. How can the observed trend be explained?

    Science.gov (United States)

    Windolf, Jørgen; Børgesen, Christen; Blicher-Mathiesen, Gitte; Kronvang, Brian; Larsen, Søren E.; Tornbjerg, Henrik

    2016-04-01

    The total land-based nitrogen load to Danish coastal waters has decreased by 50% since 1990 through a reduction of the outlet of nitrogen from sewage point sources and diffuse sources. On a national scale nitrogen load from diffuse sources, has been reduced by 43% , mainly due to limitation of the amount of N input to different crops, rules for timing and application of manure, mandatory demands for catch crops and restoration of wetlands. The latter increasing the nitrogen retention capacity in surface waters. However, on a local scale huge variations exist in the reduction of the diffuse nitrogen load. Since 1990, an important part of the Danish national monitoring program on the aquatic environment (NOVANA) has been directed at quantifying the nitrogen concentrations and load in 48 minor streams draining small intensively farmed catchments. The 48 catchments have a mean size of 18 km2, farmed area constitutes more than 60% of the catchment area and the catchments have no significant outlets of sewage to the streams. The statistical trend results (based on a seasonal Mann-Kendall) from these 48 streams show a 9-65% reduction in the diffuse nitrogen load (mean: 48%). The large differences in trends in the diffuse N load are related to differences in catchment-specific variables such as nitrogen surpluses, nitrogen leaching from the root zone, hydrogeology and nitrogen retention in ground and surface waters.

  12. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  13. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2016-11-01

    Full Text Available The largest 7 Southeast Asian Studies (7SEAS operations period within the Maritime Continent (MC occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC, and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3–12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and

  14. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  15. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite

  16. Polymorphisms of Vitamin D Signaling Pathway Genes and Calcium-Sensing Receptor Gene in respect to Survival of Hemodialysis Patients: A Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Alicja E. Grzegorzewska

    2016-01-01

    Full Text Available We evaluated in the 7-year prospective study whether variants in vitamin D pathway genes and calcium-sensing receptor gene (CASR are determinants of mortality in hemodialysis (HD patients (n=532. HRM analysis was used for GC rs2298849, GC rs1155563, RXRA rs10776909, RXRA rs10881578, and CASR rs7652589 genotyping. GC rs7041, RXRA rs749759, VDR rs2228570, and VDR rs1544410 were genotyped using PCR-RFLP analysis. The minor allele in GC rs2298849 was associated with all-cause mortality in univariate analysis (HR 1.330, 95% CI 1.046–1.692, P=0.020. Bearers of the minor allele in GC rs2298849 demonstrated higher infection/neoplasm mortality than major allele homozygotes also in multivariate analysis (HR 2.116, 95% CI 1.096–4.087, P=0.026. Cardiovascular mortality was associated with major homozygosity (CC in VDR rs2228570 (HR 1.896, 95% CI 1.163–3.091, P=0.010. CC genotype patients were more often dyslipidemic than TT genotype subjects (46.1% versus 31.9%, P=0.047. Dyslipidemics showed higher frequency of rs1544410_rs2228570 haplotype AC than nondyslipidemics (26 versus 18%, Pcorr=0.005, whereas TT genotype patients were at lower risk of dyslipidemia compared with CC/CT genotype patients (HR 0.59, 95% CI 0.37–0.96, P=0.04. In conclusion, GC rs2298849 and VDR rs2228570 SNPs are associated with survival on HD. VDR-related cardiovascular mortality may occur due to connections of rs2228570 with dyslipidemia.

  17. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  18. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  19. Validity and reliability of a tool for determining appropriateness of days of stay: an observational study in the orthopedic intensive rehabilitation facilities in Italy.

    Directory of Open Access Journals (Sweden)

    Aida Bianco

    Full Text Available OBJECTIVES: To test the validity and reliability of a tool specifically developed for the evaluation of appropriateness in rehabilitation facilities and to assess the prevalence of appropriateness of the days of stay. METHODS: The tool underwent a process of cross-cultural translation, content validity, and test-retest validity. Two hospital-based rehabilitation wards providing intensive rehabilitation care located in the Region of Calabria, Southern Italy, were randomly selected. A review of medical records on a random sample of patients aged 18 or more was performed. RESULTS: The process of validation resulted in modifying some of the criteria used for the evaluation of appropriateness. Test-retest reliability showed that the agreement and the k statistic for the assessment of the appropriateness of days of stay were 93.4% and 0.82, respectively. A total of 371 patient days was reviewed, and 22.9% of the days of stay in the sample were judged to be inappropriate. The most frequently selected appropriateness criterion was the evaluation of patients by rehabilitation professionals for at least 3 hours on the index day (40.8%; moreover, the most frequent primary reason accounting for the inappropriate days of stay was social and/or family environment issues (34.1%. CONCLUSIONS: The findings showed that the tool used is reliable and have adequate validity to measure the extent of appropriateness of days of stay in rehabilitation facilities and that the prevalence of inappropriateness is contained in the investigated settings. Further research is needed to expand appropriateness evaluation to other rehabilitation settings, and to investigate more thoroughly internal and external causes of inappropriate use of rehabilitation services.

  20. Delirium and coma evaluated in mechanically ventilated patients in the intensive care unit in Japan: a multi-institutional prospective observational study.

    Science.gov (United States)

    Tsuruta, Ryosuke; Oda, Yasutaka; Shintani, Ayumi; Nunomiya, Shin; Hashimoto, Satoru; Nakagawa, Takashi; Oida, Yasuhisa; Miyazaki, Dai; Yabe, Shigemi

    2014-06-01

    The object of this study is to evaluate the prevalence and effects of delirium on 28-day mortality in critically ill patients on mechanical ventilation in Japan. Prospective cohort study was conducted in medical and surgical intensive care units (ICUs) of 24 medical centers. Patients were followed up daily for delirium during ICU stay after enrollment. Coma was defined with the Richmond Agitation Sedation Scale score of -4 or -5. Delirium was diagnosed using the Confusion Assessment Method for the ICU. The Cox proportional hazards regression model was used to assess the effects of delirium and coma on 28-day mortality, time to extubation, and time to ICU discharge; delirium and coma were included as time-varying covariates after controlling for age, Acute Physiology and Chronic Health Evaluation II score, ventilator-associated pneumonia, and the reason for intubation with infection. Of 180 patients, 115 patients (64%) developed delirium. Moreover, 15 patients (8%) died within 28 days after ICU admission, including 7 patients who experienced coma and 8 patients who experienced both coma and delirium. There were no deaths among patients who did not experience coma. Delirium was associated with a shorter time to extubation (hazard ratio [HR], 2.52; 95% confidence interval [CI], 1.65-3.85; Pcoma, although statistical significance was not detected due to limited analytical power (HR, 0.62; 95% CI, 0.34-1.12; P=.114). Delirium during ICU stay was not associated with higher mortality. Further study is needed to investigate the discrepancy between these and previous data. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Shreerang A [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Davies, Mark; Burke, Kevin; McNair, Helen A; Hansen, Vibeke [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Barbachano, Y [Department of Statistics, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); El-Hariry, I A [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Newbold, Kate [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Harrington, Kevin J [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Nutting, Christopher M., E-mail: chris.nutting@rmh.nhs.u [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom)

    2010-04-15

    Purpose: The aim of this study was to investigate prospectively the weekly volume changes in the target volumes and organs at risk and the resulting dosimetric changes during induction chemotherapy followed by chemoradiotherapy with intensity-modulated radiation therapy (C-IMRT) for head-and-neck cancer patients. Methods and Materials: Patients receiving C-IMRT for head-and-neck cancer had repeat CT scans at weeks 2, 3, 4, and 5 during radiotherapy. The volume changes of clinical target volume 1 (CTV1) and CTV2 and the resulting dosimetric changes to planning target volume 1 (PTV1) and PTV2 and the organs at risk were measured. Results: The most significant volume differences were seen at week 2 for CTV1 and CTV2. The reductions in the volumes of CTV1 and CTV2 at week 2 were 3.2% and 10%, respectively (p = 0.003 and p < 0.001). The volume changes resulted in a significant reduction in the minimum dose to PTV1 and PTV2 (2 Gy, p = 0.002, and 3.9 Gy, p = 0.03, respectively) and an increased dose range across PTV1 and PTV2 (2.5 Gy, p < 0.001, and 5.1 Gy, p = 0.008, respectively). There was a 15% reduction in the parotid volumes by week 2 (p < 0.001) and 31% by week 4 (p < 0.001). There was a statistically significant increase in the mean dose to the ipsilateral parotid only at week 4 (2.7 Gy, p = 0.006). The parotid glands shifted medially by an average of 2.3 mm (p < 0.001) by week 4. Conclusion: The most significant volumetric changes and dosimetric alterations in the tumor volumes and organs at risk during a course of C-IMRT occur by week 2 of radiotherapy. Further adaptive radiotherapy with replanning, if appropriate, is recommended.

  2. Observations of a cold front with strong vertical undulations during the ARM RCS-IOP

    Energy Technology Data Exchange (ETDEWEB)

    Starr, D.O`C.; Whiteman, D.N. [Goddard Space Flight Center, Greenbelt, MD (United States); Melfi, S.H. [Univ. of Maryland, Baltimore, MD (United States)] [and others

    1996-04-01

    Passage of a cold front was observed on the night of April 14-15, 1994, during the Atmospheric Radiation Measurement (ARM) Remote Cloud Sensing (RCS) Intensive Observatios Period (IOP) at the Southern Great Plains Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. The observations are described.

  3. Earth and Space Science Electronic Theater: State-of-the-Art Visualization from the Latest Remote Sensing Observations. High Definition Television on the SMM IMAX Screen with Ultra High Performance Projector

    Science.gov (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data to Washington, NYC, Chicago, and LA. You will see animations using the new 1 km global datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See the latest animations of the super hurricanes like, Floyd, Luis, and Mitch, from GOES & TRMM. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.

  4. Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods

    Directory of Open Access Journals (Sweden)

    Hamideh Nouri

    2016-06-01

    Full Text Available Despite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications, highly treated drinking water is used for nearly all of Australia’s urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, particularly urban parklands, is of growing concern. The estimation of evapotranspiration (ET and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water, and climate characteristics. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia. In this paper, two practical ET estimation approaches are compared to a detailed Soil Water Balance (SWB analysis over a one year period. One approach is the Water Use Classification of Landscape Plants (WUCOLS method, which is based on expert opinion on the water needs of different classes of landscape plants. The other is a remote sensing approach based on the Enhanced Vegetation Index (EVI from Moderate Resolution Imaging Spectroradiometer (MODIS sensors on the Terra satellite. Both methods require knowledge of reference ET calculated from meteorological data. The SWB determined that plants consumed 1084 mm·yr−1 of water in ET with an additional 16% lost to drainage past the root zone, an amount sufficient to keep salts from accumulating in the root zone. ET by MODIS EVI was 1088 mm·yr−1, very close to the SWB estimate, while WUCOLS estimated the total water requirement at only 802 mm·yr−1, 26% lower than the SWB estimate and 37% lower than the amount actually added including the drainage fraction. Individual monthly ET by MODIS was not accurate, but these errors were cancelled out to give good agreement on an annual time step. We

  5. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  6. An Intense Traveling Airglow Front in the Upper Mesosphere-Lower Thermosphere with Characteristic of a Turbulent Bore Observed over Alice Springs, Australia

    Science.gov (United States)

    Walterscheid, R. L.; Hecht, J. H.; Hickey, M. P.; Gelinas, L. J.; Vincent, R. A.; Reid, I. M.; Woithe, J.

    2010-12-01

    The Aerospace Corporation’s Nightglow Imager observed a large step-function change in airglow in the form of a traveling front in the OH and O2 airglow emissions over Alice Springs Australia on February 2, 2003. The front exhibited a stepwise increase of nearly a factor two in the OH brightness and a stepwise decrease in the O2 brightness. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. The OH airglow brightness behind the front was the brightness night for 02 at Alice Springs that we have measured in seven years of observations. The OH brightness was among the five brightest. The event was associated with a strong phase-locked two-day wave (TDW).We have analyzed the stability conditions for the upper mesosphere and lower thermosphere and found that the airglow layers were found in a region of strong ducting. The thermal structure was obtained from combining data from the SABER instrument on the TIMED satellite and the NRLMSISE-00 model. The wind profile was obtained by combining the HWM07 model and MF radar winds from Buckland Park Australia. We found that the TDW-disturbed profile was significantly more effective in supporting a high degree of ducting than a profile based only on HWM07 winds. Dramatic wall events have been interpreted as manifestations of undular bores (e.g., Smith et al. [2003]). Undular bores are nonlinear high Froude number events that must generate an ever increasing train of waves to carry the excess energy away from the bore front. Only a very weak wave train behind the initial disturbance was seen for the Alice Springs event. The form of the amplitude ordering was not typical of a nonlinear wave train. Therefore a bore interpretation requires another means of energy dissipation, namely turbulent dissipation. We suggest that a reasonable interpretation of the observed event is a turbulent bore. We are unaware of any previous event having

  7. Transfusão de sangue em terapia intensiva: um estudo epidemiológico observacional Blood transfusion in intensive care: an epidemiological observational study

    Directory of Open Access Journals (Sweden)

    José Rodolfo Rocco

    2006-09-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A transfusão de concentrado de hemácias (CHA é muito freqüente no centro de tratamento intensivo (CTI, mas as conseqüências da anemia nos pacientes gravemente enfermos ainda são obscuras. Os objetivos desse estudo foram avaliar a freqüência, as indicações, os limiares transfusionais e o prognóstico dos pacientes criticamente enfermos que receberam CHA. MÉTODO: Estudo prospectivo de coorte realizado no CTI médico-cirúrgico de um Hospital Universitário durante 16 meses. Foram coletados dados demográficos, clínicos e os relacionados a transfusão de CHA. Regressão logística binária foi utilizada após as análises univariadas. RESULTADOS: Dos 698 pacientes internados, 244 (35% foram transfundidos com CHA. Os pacientes clínicos e em pós-operatório de urgência foram mais transfundidos. Os limiares transfusionais foram: hematócrito = 22,8% ± 4,5% e hemoglobina = 7,9 ± 1,4 g/dL. Os pacientes transfundidos receberam em média 4,4 ± 3,7 CHA e apresentaram maior letalidade no CTI (39,8% versus 13,2%; p 5 unidades e escore SAPS II. CONCLUSÕES: A transfusão de CHA é freqüente no CTI, particularmente nos pacientes internados por problemas clínicos e após cirurgias de emergência, com internação prolongada, em VM e com cirrose hepática. O limiar transfusional observado foi mais baixo que aquele assinalado pela literatura. A transfusão de CHA foi associada com maior letalidade.BACKGROUND AND OBJECTIVES: Packed red blood cell (PRBC transfusion is frequent in intensive care unit (ICU. However, the consequences of anemia in ICU patients are poorly understood. Our aim was to evaluate the prevalence, indications, pre-transfusion hematocrit and hemoglobin levels, and outcomes of ICU patients transfused with PRBC. METHODS: Prospective cohort study conducted at a medical-surgical ICU of a teaching hospital during a 16-month period. Patients' demographic, clinical, laboratory and transfusion-related data

  8. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  9. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Science.gov (United States)

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    The Holuhraun eruption (Aug 2014- Feb 2015) is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.6 km3 covering an area of ~83 km2. The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) Morphological transitions iii) the transition from open to closed lava pathways and iv) the implication of lava pond formation. This study is based on three different categories of data; field data, airborne data and satellite data. The field data include tracking of the lava advancement by Global Positioning System (GPS) measurements and georeferenced GoPro cameras allowing classification of the lava margin morphology. Furthermore, video footage on-site documented lava emplacement. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne Synthetic Aperture Radar (SAR) images (x-band), as well as SAR data from TerraSAR-X and COSMO-SkyMed satellites. The Holuhraun lava field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied temporally and spatially. Shelly pāhoehoe lava was the first morphology to be observed (08-29). Spatially, this lava type was not widely distributed, but was emplaced throughout the eruption close to the vent area and the lava channels. Slabby pāhoehoe lava was initially observed the 08-31 and was observed throughout most of the eruption during the high-lava-flux phase of new lava lobe emplacement. 'A'ā lavas were the dominating morphology the first three months of the eruption and was first observed 09-01 like Rubbly pāhoehoe lava. Finally, Spiny pāhoehoe lava was first observed the 09-05 as a few marginal outbreaks along the fairly inactive parts of the 'a'ā lava lobe. However, throughout the eruption this morphology became more important and from mid-November/beginning of December the

  10. Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California

    KAUST Repository

    Seegers, Bridget N.

    2015-04-01

    An observational study was performed in the central Southern California Bight in Spring 2010 to understand the relationship between seasonal spring phytoplankton blooms and coastal processes that included nutrient input from upwelling, wastewater effluent plumes, and other processes. Multi-month Webb Slocum glider deployments combined with MBARI environmental sample processors (ESPs), weekly pier sampling, and ocean color data provided a multidimensional characterization of the development and evolution of harmful algal blooms (HABs). Results from the glider and ESP observations demonstrated that blooms of toxic Pseudo-nitzschia sp. can develop offshore and subsurface prior to their manifestation in the surface layer and/or near the coast. A significant outbreak and surface manifestation of the blooms coincided with periods of upwelling, or other processes that caused shallowing of the pycnocline and subsurface chlorophyll maximum. Our results indicate that subsurface populations can be an important source for “seeding” surface Pseudo-nitzschia HAB events in southern California.

  11. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  12. Integration of X-SAR observations with data of other remote sensing techniques: preliminary results achieved with Cosmo/SkyMed announcement of opportunity projects

    Science.gov (United States)

    Vespe, Francesco; Baldini, Luca; Notarnicola, Claudia; Prati, Claudio; Zerbini, Susanna; Celidonio, G.

    2011-11-01

    The Italian Space Agency is funding 27 scientific projects in the framework of Cosmo/Skymed program (hereafter CSK) . A subset of them are focusing on the improvements of the quality and quantity of information which can be extracted from X-SAR data if integrated with other independent techniques like GPS or SAR imagery in L and C bands. The GPS observations, namely zenith total delays estimated by means of GPS ground stations, could be helpful to estimate the troposphere bias to remove from IN-SAR imagery. Another contribution of GPS could be the improvements of the orbits of Cosmo/SkyMed satellites. In particular the GPS navigation data of the CSK satellites could serve to improve the atmospheric drag models acting on them. The integration of SAR data in L and C bands on the other hand are helpful to investigate land hydrogeology parameters as well as to improve global precipitation observations. The combined use of L, C and X SAR data with different penetration depth could give profiles of land surface properties, especially in forest and snow/ice-packs. For what concern the use of X-SAR imagery for rain precipitation monitoring, particular attention will be paid to its polarimetric properties that we plan to determine aligning the CSK observations with those obtained with ground L and C radars. Anyway the study goals, the approaches proposed, the test sites identified and the external data selected for the development and validation will be described for each project. Particular attention will be paid to single the advantages that the research activities can benefit from the added potentials of CSK system: the more frequent revisiting time and the higher resolution capabilities.

  13. Clustered multistate models with observation level random effects, mover-stayer effects and dynamic covariates: modelling transition intensities and sojourn times in a study of psoriatic arthritis.

    Science.gov (United States)

    Yiu, Sean; Farewell, Vernon T; Tom, Brian D M

    2018-02-01

    In psoriatic arthritis, it is important to understand the joint activity (represented by swelling and pain) and damage processes because both are related to severe physical disability. The paper aims to provide a comprehensive investigation into both processes occurring over time, in particular their relationship, by specifying a joint multistate model at the individual hand joint level, which also accounts for many of their important features. As there are multiple hand joints, such an analysis will be based on the use of clustered multistate models. Here we consider an observation level random-effects structure with dynamic covariates and allow for the possibility that a subpopulation of patients is at minimal risk of damage. Such an analysis is found to provide further understanding of the activity-damage relationship beyond that provided by previous analyses. Consideration is also given to the modelling of mean sojourn times and jump probabilities. In particular, a novel model parameterization which allows easily interpretable covariate effects to act on these quantities is proposed.

  14. Impact of harmful use of alcohol on the sedation of critical patients on mechanical ventilation: A multicentre prospective, observational study in 8 Spanish intensive care units.

    Science.gov (United States)

    Sandiumenge, A; Torrado, H; Muñoz, T; Alonso, M Á; Jiménez, M J; Alonso, J; Pardo, C; Chamorro, C

    2016-05-01

    To evaluate the impact of a history of harmful use of alcohol (HUA) on sedoanalgesia practices and outcomes in patients on mechanical ventilation (MV). A prospective, observational multicentre study was made of all adults consecutively admitted during 30 days to 8 Spanish ICUs. Patients on MV >24h were followed-up on until discharge from the ICU or death. Data on HUA, smoking, the use of illegal (IP) and medically prescribed psychotropics (MPP), sedoanalgesia practices and their related complications (sedative failure [SF] and sedative withdrawal [SW]), as well as outcome, were prospectively recorded. A total of 23.4% (119/509) of the admitted patients received MV >24h; 68.9% were males; age 57.0 (17.9) years; APACHE II score 18.8 (7.2); with a medical cause of admission in 53.9%. Half of them consumed at least one psychotropic agent (smoking 27.7%, HUA 25.2%; MPP 9.2%; and IP 7.6%). HUA patients more frequently required PS (86.7% vs. 64%; p2 sedatives (56.7% vs. 28.1%; p<0.02). HUA was associated to an eightfold (p<0.001) and fourfold (p<0.02) increase in SF and SW, respectively. In turn, the duration of MV and the stay in the ICU was increased by 151h (p<0.02) and 4.4 days (p<0.02), respectively, when compared with the non-HUA group. No differences were found in terms of mortality. HUA may be associated to a higher risk of SF and WS, and can prolong MV and the duration of stay in the ICU in critical patients. Early identification could allow the implementation of specific sedation strategies aimed at preventing these complications. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  15. Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015

    Science.gov (United States)

    Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.

    2018-06-01

    Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected

  16. Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010

    Directory of Open Access Journals (Sweden)

    L. Mei

    2011-12-01

    Full Text Available A series of wildfires broke out in Western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS data. In addition, we used trace gases (NO2 and SO2 and CO2 products measured using Ozone Monitoring Instrument (OMI data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent data and PM2.5. First, an Optimal Smoothing (OS scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem, and the integrated AOD and visibility data were related using the 6S radiative transfer code. The results show that the PM2.5 concentration is enhanced by a factor of 3–5 as determined from both satellite and in situ observations with peak daily mean concentrations of approximately 500 μg m3. Also, the visibility in many parts of Russia, for instance in Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to long-transport was analysed for 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in Western Russian had little impact on most

  17. MOD2SEA: A Coupled Atmosphere-Hydro-Optical Model for the Retrieval of Chlorophyll-a from Remote Sensing Observations in Complex Turbid Waters

    Directory of Open Access Journals (Sweden)

    Behnaz Arabi

    2016-09-01

    Full Text Available An accurate estimation of the chlorophyll-a (Chla concentration is crucial for water quality monitoring and is highly desired by various government agencies and environmental groups. However, using satellite observations for Chla estimation remains problematic over coastal waters due to their optical complexity and the critical atmospheric correction. In this study, we coupled an atmospheric and a water optical model for the simultaneous atmospheric correction and retrieval of Chla in the complex waters of the Wadden Sea. This coupled model called MOD2SEA combines simulations from the MODerate resolution atmospheric TRANsmission model (MODTRAN and the two-stream radiative transfer hydro-optical model 2SeaColor. The accuracy of the coupled MOD2SEA model was validated using a matchup data set of MERIS (MEdium Resolution Imaging SpectRometer observations and four years of concurrent ground truth measurements (2007–2010 at the NIOZ jetty location in the Dutch part of the Wadden Sea. The results showed that MERIS-derived Chla from MOD2SEA explained the variations of measured Chla with a determination coefficient of R2 = 0.88 and a RMSE of 3.32 mg·m−3, which means a significant improvement in comparison with the standard MERIS Case 2 regional (C2R processor. The proposed coupled model might be used to generate a time series of reliable Chla maps, which is of profound importance for the assessment of causes and consequences of long-term phenological changes of Chla in the turbid Wadden Sea area.

  18. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  19. Constraining Aggregate-Scale Solar Energy Partitioning in Arctic Sea Ice Through Synthesis of Remote Sensing and Autonomous In-Situ Observations.

    Science.gov (United States)

    Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.

    2015-12-01

    One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.

  20. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    Science.gov (United States)

    Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Dunlea, E. J.; Roberts, G. C.; Tomlinson, J. M.; Collins, D. R.; Howell, S. G.; Kapustin, V. N.; McNaughton, C. S.; Zhou, J.

    2009-09-01

    Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF) as 0.34-0.20×OMF over Central Mexico and 0.47-0.43×OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(-1/3), within measurement uncertainty (~20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70×OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

  1. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  2. Intensive mobilities

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience......This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory...

  3. Assessing Spatiotemporal Variability in NO2 and O3 Along the Korean Peninsula Using Remote Sensing and Ground-Based Observations

    Science.gov (United States)

    Li, C. Y. R.; Parker, O.; Tzortziou, M.

    2017-12-01

    Our research sought to use ground-based and satellite products to study the spatiotemporal variability of NO2 and O­3 in urban and coastal South Korea. Our data set was derived from direct-sun irradiance measurements of TCNO2 and TCO3 using Pandora spectrometers located at 8 ground sites and 1 boat-mounted sensor, as well as satellite observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite. Our analysis focuses on the dates of the KORUSA campaign, which took place between May 18, 2016 through June 2, 2016, and provided our off-shore measurements. The Pandora instrument offered us continuous coverage of the local area, providing a detailed understanding of NO2 and O3 temporal variability. Ground stations allowed us to compare small-scale diurnal variability in urban and near-urban environments, while the Pandora mounted on the Onnuri research vessel permitted us to gain valuable insight into off-shore behavior of trace gases. By overlaying and comparing these measurements with TCO3/TCNO2 products from the Aura-OMI sensor, we were able to form a relatively complete picture of trace gas behavior above, and off-shore from, the Korean Peninsula. Our data was then subjected to statistical and GIS (Geographic Information System) analysis, quantifying and mapping (respectively) the spatial and temporal variability of total column amounts of NO2 and O3 along the Korean Peninsula. Results are shown for the eight sites where different Pandora instruments were used. There was a notable difference in TCNO2 variability which correlates with population and land use.

  4. Using Remote Sensing and Field Observations of Colored Dissolved Organic Material (CDOM) to Improve Understanding of Carbon Dynamics at the Land-Ocean Interface

    Science.gov (United States)

    Lai, L.; Tzortziou, M.; Gilerson, A.; Foster, R.

    2013-12-01

    Dissolved Organic Matter (DOM) and its colored component, (CDOM) are sensitive indicators of environmental pollution, nutrient enrichment, water quality and plays a key role in a broad range of processes and climate-related biogeochemical cycles in estuarine and coastal ecosystems. Because of its strong influence on how ocean color is viewed, CDOM can provide an invaluable optical tool for coastal zone environmental assessment and from space. There is a continuous cycle of sources and sinks of CDOM from terrestrial sources to the wetlands to the estuaries and to the ocean waters. Terrestrial inputs from natural processes, anthropogenic activities, exchanges with the atmosphere, rich biodiversity and high primary productivity, physical, photochemical and microbial processes affect not only the amount but also the quality and optical signature of CDOM in near-shore waters. In this study, new measurements are presented of the optical characteristics of CDOM collected from the Chesapeake Bay estuarine environment. Measured parameters include absorption spectra, estimated spectral slopes, slope ratios, DOC-specific CDOM absorption as well as 3D CDOM fluorescence emission-excitation matrices. Such results will provide insight of the measured CDOM in this complex environment and the complex process that affect CDOM quality and amount during transport to the estuary and coastal ocean. New field campaigns will be conducted in August and September in the Chesapeake Bay estuary and the coast of the Gulf of Mexico to collect more samples for analysis of CDOM dynamics and link field observations and measurements to satellite ocean color retrievals of estuarine biogeochemical processes. In addition, advanced satellite CDOM data distribution and usage is discussed as it has considerable operational value and practical application beyond the scientific community and research. Keywords: CDOM, carbon dynamics, estuaries, coastal ecosystems, optical properties, satellite applications

  5. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  6. Climatology of the oceanography in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters: Observations from satellite remote sensing

    Science.gov (United States)

    Pan, X.; Wong, G. T.; Tai, J.; Ho, T.

    2013-12-01

    By using the observations from multiple satellite sensors, the climatology of the oceanography, including the surface wind vector, sea surface temperature (SST), surface chlorophyll a concentration (Chl_a), and vertically integrated net primary production (PPeu), in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters is evaluated. Regional and sub-regional mechanisms in driving the coastal processes, which influence the spatial and temporal distributional patterns in water component, are assessed. Seasonal vertical convective mixing by wind and surface heating/cooling is the primary force in driving the annual changes in SST and Chl_a in the open South China Sea (SCS), in which highly negative correlation coefficients between Chl_a and SST and moderately positive correlation coefficients between Chl_a and wind speed are found. Together, the seasonal variations in SST and wind speed account for about 80% of the seasonal variation in Chl_a. In the NoSoCS as a whole, however, the contribution is reduced to about 40%, primarily due to the effect of the Pearl River plume. A tongue of water extending eastward from the mouth of the River into the middle shelf with positive correlation coefficients between Chl_a and SST and around zero or slightly negative correlation coefficients between Chl_a and wind is the most striking feature in the NoSoCS. The westward and eastward propagations of the Pearl River plume are both very small during the northeast monsoonal season, driven primarily by the Coriolis effect. The abrupt increase in the areal coverage of the River plume, which is much more pronounced in the eastward propagation, between June and August can be attributed to the prevailing southwest monsoon as well as the annual peak of the river flow. Coastal upwelling is another sub-regional phenomenon in the NoSoCS. The upwelling at the shelf edge off the Taiwan Bank may be characterized by its elevated Chl_a. Its areal coverage and average Chl_a do not vary

  7. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  8. Towards higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Over the past 2 weeks, commissioning of the machine protection system has advanced significantly, opening up the possibility of higher intensity collisions at 3.5 TeV. The intensity has been increased from 2 bunches of 1010 protons to 6 bunches of 2x1010 protons. Luminosities of 6x1028 cm-2s-1 have been achieved at the start of fills, a factor of 60 higher than those provided for the first collisions on 30 March.   The recent increase in LHC luminosity as recorded by the experiments. (Graph courtesy of the experiments and M. Ferro-Luzzi) To increase the luminosity further, the commissioning crews are now trying to push up the intensity of the individual proton bunches. After the successful injection of nominal intensity bunches containing 1.1x1011 protons, collisions were subsequently achieved at 450 GeV with these intensities. However, half-way through the first ramping of these nominal intensity bunches to 3.5 TeV on 15 May, a beam instability was observed, leading to partial beam loss...

  9. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 3: Intensive use of living resources: Agriculture. Part 1: Overview

    Science.gov (United States)

    Kornhauser, A. L.; Wilson, L. B.

    1974-01-01

    Potential economic benefits obtainable from a state-of-the-art ERS system in the resource area of intensive use of living resources, agriculture, are studied. A spectrum of equal capability (cost saving), increased capability, and new capability benefits are quantified. These benefits are estimated via ECON developed models of the agricultural marketplace and include benefits of improved production and distribution of agricultural crops. It is shown that increased capability benefits and new capability benefits result from a reduction of losses due to disease and insect infestation given ERS's capability to distinguish crop vigor and from the improvement in world trade negotiations given ERS's worldwide surveying capability.

  10. Simple apparatus for polarization sensing of analytes

    Science.gov (United States)

    Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2000-09-01

    We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.

  11. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  12. Predicting word sense annotation agreement

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector; Johannsen, Anders Trærup; Lopez de Lacalle, Oier

    2015-01-01

    High agreement is a common objective when annotating data for word senses. However, a number of factors make perfect agreement impossible, e.g. the limitations of the sense inventories, the difficulty of the examples or the interpretation preferences of the annotations. Estimating potential...... agreement is thus a relevant task to supplement the evaluation of sense annotations. In this article we propose two methods to predict agreement on word-annotation instances. We experiment with a continuous representation and a three-way discretization of observed agreement. In spite of the difficulty...

  13. Origin of transient cosmic ray intensity variations

    International Nuclear Information System (INIS)

    Duggal, S.P.; Pomerantz, M.A.

    1977-01-01

    A new approach to determining the solar progenitor of transient cosmic ray intensity variations has revealed that in a statistical sense, solar flares, heretofore regarded as the predominant source of the modulation, actually do not precede the reduction in flux observed at earth. Superposed epoch analysis of the cosmic ray data with respect to the time of occurrence of all 379 solar flares of importance (Imp) < or =2 observed during solar cycle 20 (1964-1974 inclusive) shows that the onset of a decrease in the composite nucleonic intensity at polar stations occurs prior to the zero day (i.e., time of the flare) well before the arrival in the vicinity of earth of the associated solar plasma. The statistical significance of this result is confirmed by comparing the pooled variance determined from Chree analysis of an equal number of random epochs with that of the curve representing the flare epochs. Subdivision of the latter into three groups according to the heliographic longitude of the flares shows that whereas eastern flares might be associated with cosmic ray decreases, central (30degree to -30degree) and western flares cannot be thus related. A similar analysis of all flares of Imp< or =2 that occurred in a selected set of 24 extraordinary flare-rich active centers during 1964--1974 confirms these results and shows that the observed cosmic ray intensity decrease is, in fact, associated with the central meridian passage ( +- 1 day) of the active regions. Thus earlier conclusions concerning relationships between the heliolongitude of flares and their apparent effectiveness in producing Forbush decreases require reevaluation. The specific feature associated with solar active centers that is actually the principal source of transient modulations remanins to be identified

  14. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  15. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  16. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  17. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  18. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  19. To observe the intensity of the inflammatory reaction caused by neonatal urine and meconium on the intestinal wall of rats in order to understand etiology of intestinal damage in gastroschisis

    Directory of Open Access Journals (Sweden)

    Devdas S Samala

    2014-01-01

    Full Text Available Objectives: The aim of this experimental study was to observe the intensity of the inflammatory reaction caused by neonatal urine and meconium on the intestinal wall of rats to better understand etiology of intestinal damage in gastroschisis. Materials and Methods: A total of 24 adult Wistar rats were used as experimental models to simulate the effect of exposed bowel in cases of gastroschisis. The peritoneal cavity of the rats was injected with substances which constitute human amniotic fluid to study the effect on the bowel. Sterile urine and meconium were obtained from newborn humans. The rats were divided into four groups according to the material to be injected. In Group I (Control group 3 mL of distilled water was injected, in Group II (Urine group 3 mL of neonatal urine was injected, in Group III (Meconium group 5% meconium suspension was injected, while in Group IV, a combination of 5% meconium suspension and urine was injected. A total of 3mL solution was injected into the right inferior quadrant twice a day for 5 days. The animals were sacrificed on the 6 th day by a high dose of thiopentone sodium. A segment of small bowel specimen was excised, fixed in paraffin, and stained with hematoxylin-eosin for microscopic analysis for determination of the degree of inflammatory reaction in the intestinal wall. All pathology specimens were studied by the same pathologist. Results: The maximum bowel damage was seen in Group II (Urine group in the form of serositis, severe enteritis, parietal necrosis, and peeling. A lesser degree of damage was observed in Group III (Meconium group as mild enteritis (mild lymphoid hyperplasia. The least damage was seen in Group IV (Combination of meconium and urine and Group I (Control group. Conclusion: The intraabdominal injection of neonatal human urine produces significant inflammatory reactions in the intestinal wall of rats.

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4: ... ways to understand and measure the intensity of aerobic activity: relative intensity and absolute intensity. Relative Intensity ...

  1. Energy sense is common sense

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, K.

    1979-07-01

    Background information about the West Midlands Region of British Gas is presented and this sets the scene for the subsequent description of the action taken to conserve energy in all West Midlands Gas operational activities. The basic organizational structure for dealing with energy throughout the Region is outlined. The objectives of the Energy Conservation Working Party are defined and the achievements in energy saving since April 1975 are highlighted. The monitoring and control action taken to save energy in buildings and functional engineering and transport activities is described and reference is made to special projects undertaken to improve performance in energy utilization. Special emphasis is given to the promotion of energy conservation through the use of specially designed posters and stickers, by publicity in the in-house newspaper Boost, and by annual Energy Conservation Conferences and Awards for the Conservation of Energy in the form of an ACE Trophy for group achievement and ACE Merit Awards for individual achievement. The motivational aspects of the Region's energy conservation campaign are discussed and plans for continuing to gain the cooperation of employees to conserve energy are outlined. It is concluded that the success achieved by the Region in saving energy has been significantly influenced by the special attention which has been given to mounting an imaginative, intensive, and long term campaign aimed at involving all employees and to gaining their continuing commitment to energy conservation.

  2. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  3. Investigating the application of motion accelerometers as a sleep monitoring technique and the clinical burden of the intensive care environment on sleep quality: study protocol for a prospective observational study in Australia.

    Science.gov (United States)

    Delaney, Lori J; Currie, Marian J; Huang, Hsin-Chia Carol; Litton, Edward; Wibrow, Bradley; Lopez, Violeta; Haren, Frank Van

    2018-01-21

    Sleep is a state of quiescence that facilitates the significant restorative processes that enhance individuals' physiological and psychological well-being. Patients admitted to the intensive care unit (ICU) experience substantial sleep disturbance. Despite the biological importance of sleep, sleep monitoring does not form part of standard clinical care for critically ill patients. There exists an unmet need to assess the feasibility and accuracy of a range of sleep assessment techniques that have the potential to allow widespread implementation of sleep monitoring in the ICU. The coprimary outcome measures of this study are to: determine the accuracy and feasibility of motion accelerometer monitoring (ie, actigraphy) and subjective assessments of sleep (nursing-based observations and patient self-reports) to the gold standard of sleep monitoring (ie, polysomnography) in evaluating sleep continuity and disturbance. The secondary outcome measures of the study will include: (1) the association between sleep disturbance and environmental factors (eg, noise, light and clinical interactions) and (2) to describe the sleep architecture of intensive care patients. A prospective, single centre observational design with a within subjects' assessment of sleep monitoring techniques. The sample will comprise 80 adults (aged 18 years or more) inclusive of ventilated and non-ventilated patients, admitted to a tertiary ICU with a Richmond Agitation-Sedation Scale score between +2 (agitated) and -3 (moderate sedation) and an anticipated length of stay >24 hours. Patients' sleep quality, total sleep time and sleep fragmentations will be continuously monitored for 24 hours using polysomnography and actigraphy. Behavioural assessments (nursing observations) and patients' self-reports of sleep quality will be assessed during the 24-hour period using the Richards-Campbell Sleep Questionnaire, subjective sleepiness evaluated via the Karolinska Sleepiness Scale, along with a

  4. Coral Bleaching Assessment Through Remote Sensing and Integrated Citizen Science (CoralBASICS): Engaging Dive Instructors on Reef Characterization in Southwest, Puerto Rico Coupled with the Analysis of Water Quality Using NASA Earth Observations

    Science.gov (United States)

    Torres-Perez, J. L.; Armstrong, R.; Detres, Y.; Aragones-Fred, C.; Melendez, J.

    2017-12-01

    As recurrences of extreme sea water thermal events increase with climate change, the need for continuous monitoring of coral reefs becomes even more evident. Enabling properly trained members from the local communities to actively participate in scientific programs/research projects, provides for such monitoring at little cost once the citizens are properly trained and committed. Further, the possibility of obtaining high temporal resolution data with citizen scientists can provide for new venues to answer questions that may not be answered with traditional research approaches. The CoralBASICS project engages members of the local diving industry in Puerto Rico on the assessment of coastal water quality and the status of Puerto Rico's coral reefs in an age of climate change and in particular, an increase in the frequency and magnitude of coral bleaching events. The project complements remote sensing data with community-based field assessments strictly supervised by the PI's. The study focuses on training citizen scientists (dive instructors) on the collection of benthic information related to the state of coral reefs using the Reef Check (fish and invertebrates ID and substrate composition) and video transects methodologies, monitoring of coral bleaching events, and collecting of water quality data using a smartphone ocean color application. The data collected by citizen scientists complements the validation of Landsat-8 (OLI) imagery for water quality assessment. At the same time, researchers from the University of Puerto Rico conduct field assessment of the bio-optical properties of waters surrounding the coral reef study areas. Dive instructors have been collecting benthic and water quality data for the past 4 months. Initial analysis using the Coral Point Count with excel extension (CPCe) software showed a dominance of gorgonians at most sites (up to 32.8%) with hard coral cover ranging between 5.5-13.2% of the hard substrates. No coral diseases or bleaching

  5. Spectroscopic observations of AG Dra

    International Nuclear Information System (INIS)

    Chang-Chun, H.

    1982-01-01

    During summer 1981, spectroscopic observations of AG Dra were performed at the Haute-Provence Observatory using the Marly spectrograph with a dispersion of 80 A mm -1 at the 120 cm telescope and using the Coude spectrograph of the 193 cm telescope with a dispersion of 40 A mm -1 . The actual outlook of the spectrum of AG Dra is very different from what it was in 1966 in the sense that only a few intense absorption lines remain, the heavy emission continuum masking the absorption spectrum, while on the 1966 plate, about 140 absorption lines have been measured. Numerous emission lines have been measured, most of them, present in 1981, could also be detected in 1966. They are due to H, HeI and HeII. (Auth.)

  6. Intensive social cognitive treatment (can do treatment) with participation of support partners in persons with relapsing remitting multiple sclerosis: observation of improved self-efficacy, quality of life, anxiety and depression 1 year later.

    Science.gov (United States)

    Jongen, Peter Joseph; Heerings, Marco; Ruimschotel, Rob; Hussaarts, Astrid; Duyverman, Lotte; van der Zande, Anneke; Valkenburg-Vissers, Joyce; van Droffelaar, Maarten; Lemmens, Wim; Donders, Rogier; Visser, Leo H

    2016-07-29

    In persons with multiple sclerosis (MS) self-efficacy positively affects health-related quality of life (HRQoL) and physical activity. In a previous study we observed that 6 months after an intensive 3-day social cognitive treatment (Can Do treatment) with the participation of support partners, self-efficacy and HRQoL had improved in persons with relapsing remitting MS (RRMS). Given the chronic nature of the disease, it is important to know whether these beneficial changes may last. Can Do treatment was given to 60 persons with MS and their support partners. At baseline and 12 months after treatment self-efficacy control, self-efficacy function, physical and mental HRQoL, anxiety, depression and fatigue were assessed via self-report questionnaires. Differences were tested via a paired t test. Of the 57 persons with MS that completed the baseline assessment and the 3-day treatment, 38 filled in the 12th month questionnaires (response rate 66.7 %), 22 with RRMS and 14 with progressive MS. In the RR group self-efficacy control had increased by 20.2 % and physical HRQoL by 15.0 %, and depression and anxiety had decreased by 29.8 and 25.9 %, respectively (all P treatment (Can Do treatment) with the participation of support partners may have long lasting beneficial effects on the self-efficacy and HRQoL in persons with RRMS; and that improvements in anxiety and depression, not seen in the 6-month study, may yet develop at 12 months.

  7. The impact of healthcare professionals' personality and religious beliefs on the decisions to forego life sustaining treatments: an observational, multicentre, cross-sectional study in Greek intensive care units.

    Science.gov (United States)

    Ntantana, Asimenia; Matamis, Dimitrios; Savvidou, Savvoula; Marmanidou, Kyriaki; Giannakou, Maria; Gouva, Μary; Nakos, George; Koulouras, Vasilios

    2017-07-21

    To assess the opinion of intensive care unit (ICU) personnel and the impact of their personality and religious beliefs on decisions to forego life-sustaining treatments (DFLSTs). Cross-sectional, observational, national study in 18 multidisciplinary Greek ICUs, with >6 beds, between June and December 2015. 149 doctors and 320 nurses who voluntarily and anonymously answered the End-of-Life (EoL) attitudes, Personality (EPQ) and Religion (SpREUK) questionnaires. Multivariate analysis was used to detect the impact of personality and religious beliefs on the DFLSTs. The participation rate was 65.7%. Significant differences in DFLSTs between doctors and nurses were identified. 71.4% of doctors and 59.8% of nurses stated that the family was not properly informed about DFLST and the main reason was the family's inability to understand medical details. 51% of doctors expressed fear of litigation and 47% of them declared that this concern influenced the information given to family and nursing staff. 7.5% of the nurses considered DFLSTs dangerous, criminal or illegal. Multivariate logistic regression identified that to be a nurse and to have a high neuroticism score were independent predictors for preferring the term 'passive euthanasia' over 'futile care' (OR 4.41, 95% CI 2.21 to 8.82, ppersonality trait (OR 2.45, 95% CI 1.25 to 4.80, ppersonality and religious beliefs influence the attitudes of ICU personnel when making decisions to forego life-sustaining treatments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  9. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  10. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  11. Surface holograms for sensing application

    Science.gov (United States)

    Zawadzka, M.; Naydenova, I.

    2018-01-01

    Surface gratings with periodicity of 2 μm and amplitude in the range of 175 and 240 nm were fabricated in a plasticized polyvinylchloride doped with a metalloporphyrin (ZnTPP), via a single laser pulse holographic ablation process. The effect of the laser pulse energy on the profiles of the fabricated surface structure was investigated. The sensing capabilities of the fabricated diffractive structures towards amines (triethylamine, diethylamine) and pyridine vapours were then explored; the holographic structures were exposed to the analyte vapours and changes in the intensity of the diffracted light were monitored in real time at 473 nm. It was demonstrated that surface structures, fabricated in a polymer doped with a metalloporphyrin which acts as analyte receptor, have a potential in sensing application.

  12. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  13. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  14. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  15. Remote sensing fire and fuels in southern California

    Science.gov (United States)

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  16. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  17. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2011-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  18. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2010-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  19. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 45 David, Age 65 Harold, Age 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do ...

  1. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  2. Hematologic Toxicity in Patients Treated With Postprostatectomy Whole-Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Cozzarini, Cesare, E-mail: cozzarini.cesare@hsr.it [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy); Chiorda, Barbara Noris [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy); Sini, Carla; Fiorino, Claudio [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Briganti, Alberto; Montorsi, Francesco [Department of Urology, Vita-Salute University, Milan (Italy); Di Muzio, Nadia [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy)

    2016-06-01

    Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-field IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques

  3. Hematologic Toxicity in Patients Treated With Postprostatectomy Whole-Pelvis Irradiation With Different Intensity Modulated Radiation Therapy Techniques Is Not Negligible and Is Prolonged: Preliminary Results of a Longitudinal, Observational Study

    International Nuclear Information System (INIS)

    Cozzarini, Cesare; Chiorda, Barbara Noris; Sini, Carla; Fiorino, Claudio; Briganti, Alberto; Montorsi, Francesco; Di Muzio, Nadia

    2016-01-01

    Purpose: To address the thus-far poorly investigated severity and duration of hematologic toxicity from whole-pelvis radiation therapy (WPRT) in a cohort of chemo-naïve patients treated with postprostatectomy radiation therapy including WPRT with different intensity modulated radiation therapy (IMRT) techniques, doses, and fractionations. Methods and Materials: This analysis pertains to 125 patients (70 from a pilot study and 55 from an observational protocol) for whom 1 baseline and at least 3 subsequent blood samples (median 6), obtained at irradiation midpoint and end, and thereafter at 3, 6, and 12 months, were available. Patients were treated with adjuvant (n=73) or salvage intent; static-field IMRT (n=19); volumetric modulated arc therapy (n=60) or helical Tomotherapy (n=46); and conventional (n=39) or moderately hypofractionated (median 2.35 Gy per fraction, n=86) regimens. The median 2-Gy equivalent dose (EQD2) to the prostatic bed was 70.4 Gy with a lymph-nodal planning target volume of 50.2 Gy. Clinical and dosimetric data were collected. Results: Both leukopenia and thrombocytopenia were significant (median nadir count 65% and 67% of baseline, respectively), with leukopenia also persisting (1-year median count 75% of baseline). Lymphopenia was the major contributor to the severity and 1-year persistence of leukopenia; all patients developed acute grade ≥1 lymphopenia (61% and 26% grade 2 and ≥3, respectively), whereas 1-year grade ≥2 lymphopenia was still present in 16%. In addition to an independent predictive role of corresponding baseline values, multivariable analyses highlighted that higher EQD2 doses to lymph nodal planning target volume increased risk of acute neutropenia and hypofractionation for acute thrombocytopenia. Of note, patients of older age were at higher risk for acute grade 2 lymphopenia, and interestingly, increased risk of grade >2 lymphopenia for those who smoked at least one year. No role for different IMRT techniques

  4. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  5. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  6. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  7. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  8. Maximally incompatible quantum observables

    Energy Technology Data Exchange (ETDEWEB)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)

    2014-05-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  9. Maximally incompatible quantum observables

    International Nuclear Information System (INIS)

    Heinosaari, Teiko; Schultz, Jussi; Toigo, Alessandro; Ziman, Mario

    2014-01-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  10. The effect of the TIM program (Transfer ICU Medication reconciliation) on medication transfer errors in two Dutch intensive care units : Design of a prospective 8-month observational study with a before and after period

    NARCIS (Netherlands)

    B.E. Bosma (Bertha); E. Meuwese (Edmé); S.S. Tan (Siok Swan); J. van Bommel (Jasper); Melief, P.H.G.J. (Piet Herman Gerard Jan); N.G.M. Hunfeld (Nicola); P.M.L.A. van den Bemt (Patricia)

    2017-01-01

    markdownabstract__Background:__ The transfer of patients to and from the Intensive Care Unit (ICU) is prone to medication errors. The aim of the present study is to determine whether the number of medication errors at ICU admission and discharge and the associated potential harm and costs are

  11. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  12. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  13. Tango, senses and sensuality

    Directory of Open Access Journals (Sweden)

    María de los Angeles Montes

    2014-11-01

    Full Text Available One of the most important contributions of the Peircean paradigm to semiotics consists in its opening the sign to development and modification. Sense, meaning, is no longer a static and fixed property. The Peircean paradigm allows us to wonder about how signs are interpreted, how they make sense in actual reception practices. The purpose of this paper is to address the problem of the relationship between appropriation practices (Montes, 2011 and significance processes from the analysis of an empirical case, observing how signs of sensuality are produced in the ballroom tango dance. Tango has earned international reputation mainly as a sensuality dance thanks to its spectacularization and subsequent mediatization. However, as I expect to demonstrate, at the moment of reception, people put those discourses in interaction with specific appropriation practices that shape very special interpretive habits. I will address the issue from an empirical investigation, especially focused on the production of interpretants (emotional, energetic, and logical, that is to say, looking back to the sign reception from the body to the mind. From a corpus of 25 focused interviews with people who got to know tango through mass media but that afterwards learnt to dance it as a social dance, it is my intention to show what sensuality means to them today, and how that current practice interacts with other external and previous discourses to produce interpretive habits. Finally, I wish to offer a theoretical reflection about the relationship between these three types of interpretants, their interaction with the discourse of the mass media and the place corporality has in the reception processes.

  14. Incentive Schemes for Participatory Sensing

    OpenAIRE

    Radanovic, Goran; Faltings, Boi

    2015-01-01

    We consider a participatory sensing scenario where a group of private sensors observes the same phenomenon, such as air pollution. Since sensors need to be installed and maintained, owners of sensors are inclined to provide inaccurate or random data. We design a novel payment mechanism that incentivizes honest behavior by scoring sensors based on the quality of their reports. The basic principle follows the standard Bayesian Truth Serum (BTS) paradigm, where highest rewards are obtained for r...

  15. Digital methods and remote sensing in archaeology archaeology in the age of sensing

    CERN Document Server

    Campana, Stefano

    2016-01-01

    This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscap...

  16. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  17. Pyroelectric composite for detection of X-ray intensity

    International Nuclear Information System (INIS)

    Sakamoto, Walter Katsumi; Estevam, Giuliano Pierre; Carvalho, Aparecido Augusto de; Pontes, Wesley; Paula, Mauro Henrique de

    2010-01-01

    Composite material obtained with modified lead titanate (Pz34) ferroelectric ceramic and polyether-ether-ketone (PEEK) polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 deg C and applying 12 MPa pressure for 2.0 h. The sensor response varies from 2.70 V to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W/m 2 . The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation. (author)

  18. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  19. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  20. Industrial Penetration and Internet Intensity

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); Y-C. Wu (Yu-Chieh)

    2016-01-01

    textabstractThis paper investigates the effect of industrial penetration and internet intensity for Taiwan manufacturing firms, and analyses whether the relationships are substitutes or complements. The sample observations are based on 153,081 manufacturing plants, and covers 26 two-digit industry

  1. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  2. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  3. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  4. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  5. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  6. Future opportunities and challenges in remote sensing of drought

    Science.gov (United States)

    Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt; Wardlow, Brian D.; Anderson, Martha C.; Verdin, James P.

    2012-01-01

    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and

  7. Study on an intense dust storm over Greece

    Science.gov (United States)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Nastos, P. T.; Kosmopoulos, P. G.

    Springtime constitutes the most favorable period for Sahara dust outbreaks and transport over Eastern Mediterranean. This study investigates the aerosol properties during April 2005 using remote-sensing and ground-based measurements. Three dust events with high aerosol optical depth (AOD) values have been observed during the measuring period, with duration of two days, i.e. 11-12, 16-17 and 25-26 April 2005. In this paper we mainly focus on the intense dust event of 16-17 April 2005, when a thick dust layer transported from Libya affected the whole Greek territory. Very high AOD values obtained from Aqua-MODIS sensor were observed over Greece (mean 2.42 ± 1.25) on 17 April, while the respective mean April value was 0.31 ± 0.09. The AOD at 550 nm (AOD 550) values over Crete were even larger, reaching ˜4.0. As a consequence, the PM 10 concentrations over Athens dramatically increased reaching up to 200 μg m -3. On the other hand, the fine-mode fraction values obtained from Terra-MODIS showed a substantial decrease in the whole Greek area on 17 April with values below 0.2 in the Southern regions. The intense dust layer showed a complex behavior concerning its spatial and temporal evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport routes due to the mixing processes with other aerosol types. The results from different measurements (ground-based and remote-sensing) did not contradict each other and, therefore, are adequate for monitoring of dust load over the Eastern Mediterranean.

  8. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  9. National Satellite Land Remote Sensing Data Archive

    Science.gov (United States)

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... using relative intensity, people pay attention to how physical activity affects their heart rate and breathing. The talk test is a simple way to measure relative intensity. ...

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion ( ... a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Share Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, ... The table below lists examples of activities classified as moderate-intensity or vigorous-intensity based upon the ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... for a breath. Absolute Intensity The amount of energy used by the body per minute of activity. ... or vigorous-intensity based upon the amount of energy used by the body while doing the activity. ...

  14. Iowa Intensive Archaeological Survey

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This shape file contains intensive level archaeological survey areas for the state of Iowa. All intensive Phase I surveys that are submitted to the State Historic...

  15. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  16. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  17. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  18. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  19. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  20. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  1. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  2. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  3. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  4. Landscape dynamics analysis in Iasi Metropolitan Area (Romania using remote sensing data

    Directory of Open Access Journals (Sweden)

    CÃTÃLIN CÎMPIANU

    2013-08-01

    Full Text Available The present paper focuses on the observation and quantification of land cover changes in Iasi Metropolitan Area during 1993-2009. The analysis is centered upon the built-up space dynamics and includes the detection of its extension directions and the measurement of its structural changes by landscape metrics. In order to obtain the land cover data, some remote sensing images were processed by supervised classification and Normalized Difference Vegetation Index (NDVI. In the end of the study, a synthetic statistical analysis of the change dynamics is performed at commune level, in order to compare the administrative units by the intensity of land cover dynamics.

  5. Zones of Intensity Invested with Desire

    Directory of Open Access Journals (Sweden)

    Monica Biagioli

    2015-10-01

    Full Text Available This paper explores the meaning-making potential of cultural sites of historical importance within the current framework of human communication that now seamlessly intertwines digital, electronic and organic forms of contact. The paper argues that the computer-guided communication prevalent now favours the systematic and programmed and that has repercussions in terms of our sense of identity as organic beings living in a physical world. A response is to reinforce a sense of place via direct experience in cultural sites that are invested with a strong sense of place, referred to as “zones of intensity invested with desire” (this term was coined by Russell West-Pavlov and referenced by Darko Radovic to address the visual bias of urban planning. The argument follows that there needs to be a conscious reconnection with all the senses, overcoming the current visual bias encouraged by communication via the printed word. Art as alternative modality of relations has a strong role to play to reconnect us to the meaning-making elements in physical sites and reinforce the sense of place so crucial in our existence as organic beings.

  6. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  7. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  8. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  9. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations ...

  10. 'Observation' of dislocation motion in single crystal and polycrystalline aluminum during uniaxial deformation using photoemission technique

    International Nuclear Information System (INIS)

    Cai, M.; Levine, L.E.; Langford, S.C.; Dickinson, J.T.

    2005-01-01

    We report measurements of photostimulated electron emission (PSE) from single-crystalline aluminum (99.995%) and high-purity polycrystalline aluminum (>99.9%) during uniaxial tensile deformation. Photoelectron intensities are sensitive to changes in surface morphology accompanying deformation, including slip line and slip band formation. In the single crystalline material, the PSE intensity increases linearly with strain. In the polycrystalline material, the PSE intensity increases exponentially with strain. In both materials, time-resolved PSE measurements show step-like increases in intensity consistent with the heterogeneous nucleation and growth of slip bands during tensile deformation. In this sense, we have 'observed' dislocation motion by this technique. Slip bands on the surfaces of deformed samples were subsequently imaged by atomic-force microscopy (AFM). Photoelectron measurements can provide reliable, quantitative information for dislocation dynamics

  11. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  12. Environmental monitoring by means of remote sensing

    International Nuclear Information System (INIS)

    Theilen-Willige, B.

    1993-01-01

    Aircraft and satellite aerial photographs represent indispensible tools for environmental observation today. They contribute to a systematic inventory of important environmental parameters such as climate, vegetation or surface water. Their great importance lies in the continuous monitoring of large regions so that changes in environmental conditions are quickly detected. This book provides an overview of the capabilities of remote sensing in environmental monitoring and in the recognition of environmental problems as well as of the usefulness of remote sensing data for environmental planning. Also addressed is the role of remote sensing in the monitoring of natural hazards such as earthquakes and volcano eruptions as well as problems of remote sensing technology transfer to developing countries. (orig.) [de

  13. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  14. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  15. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  16. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel s