WorldWideScience

Sample records for sensing improving sensitivity

  1. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  2. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.

    Science.gov (United States)

    Anderson, Will; Lane, Rebecca; Korbie, Darren; Trau, Matt

    2015-06-16

    Size distribution and concentration measurements of exosomes are essential when investigating their cellular function and uptake. Recently, a particle size distribution and concentration measurement platform known as tunable resistive pulse sensing (TRPS) has seen increased use for the characterization of exosome samples. TRPS measures the brief increase in electrical resistance (a resistive pulse) produced by individual submicrometer/nanoscale particles as they translocate through a size-tunable submicrometer/micrometer-sized pore, embedded in an elastic membrane. Unfortunately, TRPS measurements are susceptible to issues surrounding system stability, where the pore can become blocked by particles, and sensitivity issues, where particles are too small to be detected against the background noise of the system. Herein, we provide a comprehensive analysis of the parameters involved in TRPS exosome measurements and demonstrate the ability to improve system sensitivity and stability by the optimization of system parameters. We also provide the first analysis of system noise, sensitivity cutoff limits, and accuracy with respect to exosome measurements and offer an explicit definition of system sensitivity that indicates the smallest particle diameter that can be detected within the noise of the trans-membrane current. A comparison of exosome size measurements from both TRPS and cryo-electron microscopy is also provided, finding that a significant number of smaller exosomes fell below the detection limit of the TRPS platform and offering one potential insight as to why there is such large variability in the exosome size distribution reported in the literature. We believe the observations reported here may assist others in improving TRPS measurements for exosome samples and other submicrometer biological and nonbiological particles.

  3. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms.

    Science.gov (United States)

    Hoge, W Scott; Brooks, Dana H

    2008-08-01

    Two strategies are widely used in parallel MRI to reconstruct subsampled multicoil image data. SENSE and related methods employ explicit receiver coil spatial response estimates to reconstruct an image. In contrast, coil-by-coil methods such as GRAPPA leverage correlations among the acquired multicoil data to reconstruct missing k-space lines. In self-referenced scenarios, both methods employ Nyquist-rate low-frequency k-space data to identify the reconstruction parameters. Because GRAPPA does not require explicit coil sensitivities estimates, it needs considerably fewer autocalibration signals than SENSE. However, SENSE methods allow greater opportunity to control reconstruction quality though regularization and thus may outperform GRAPPA in some imaging scenarios. Here, we employ GRAPPA to improve self-referenced coil sensitivity estimation in SENSE and related methods using very few auto-calibration signals. This enables one to leverage each methods' inherent strength and produce high quality self-referenced SENSE reconstructions. (c) 2008 Wiley-Liss, Inc.

  4. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  5. Infrared sensing based sensitive skin

    Institute of Scientific and Technical Information of China (English)

    CAO Zheng-cai; FU Yi-li; WANG Shu-guo; JIN Bao

    2006-01-01

    Developed robotics sensitive skin is a modularized, flexible, mini-type array of infrared sensors with data processing capabilities, which can be used to cover the body of a robot. Depending on the infrared sensors and periphery processing circuit, robotics sensitive skin can in real-time provide existence and distance information about obstacles for robots within sensory areas. The methodology of designing sensitive skin and the algorithm of a mass of IR data fusion are presented. The experimental results show that the multi-joint robot with this sensitive skin can work autonomously in an unknown environment.

  6. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal-Organic Framework.

    Science.gov (United States)

    Razavi, Sayed Ali Akbar; Masoomi, Mohammad Yaser; Morsali, Ali

    2017-08-21

    To design a robust, π-conjugated, low-cost, and easy to synthesize metal-organic framework (MOF) for cation sensing by the photoluminescence (PL) method, 4,4'-oxybis(benzoic acid) (H 2 OBA) has been used in combination with 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (DPT) as a tetrazine-functionalized spacer to construct [Zn(OBA)(DPT) 0.5 ]·DMF (TMU-34(-2H)). The tetrazine motif is a π-conjugated, water-soluble/stable fluorophore with relatively weak σ-donating Lewis basic sites. These characteristics of tetrazine make TMU-34(-2H) a good candidate for cation sensing. Because of hydrogen bonding between tetrazine moieties and water molecules, TMU-34(-2H) shows different PL emissions in water and acetonitrile. Cation sensing in these two solvents revealed that TMU-34(-2H) can selectively detect Hg 2+ in water (by 243% enhancement) and in acetonitrile (by 90% quenching). The contribution of electron-donating/accepting characteristics along with solvation effects on secondary interactions of the tetrazine motifs inside the TMU-34(-2H) framework results in different signal transductions. Improved sensitivity and accuracy of detection were obtained using the double solvent sensing method (DSSM), in which different signal transductions of TMU-34(-2H) in water and acetonitrile were combined simultaneously to construct a double solvent sensing curve and formulate a sensitivity factor. Calculation of sensitivity factors for all of the tested cations demonstrated that it is possible to detect Hg 2+ by DSSM with ultrahigh sensitivity. Such a tremendous distinction in the Hg 2+ sensitivity factor is visualizable in the double solvent sensing curve. Thus, by application of DSSM instead of one-dimensional sensing, the interfering effects of other cations are completely eliminated and the sensitivity toward Hg(II) is highly improved. Strong interactions between Hg 2+ and the nitrogen atoms of the tetrazine groups along with easy accessibility of Hg 2+ to the tetrazine groups lead

  7. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    International Nuclear Information System (INIS)

    Xie Jining; Wang Shouyan; Aryasomayajula, L; Varadan, V K

    2007-01-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 μA mM -1 cm -2 ) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions

  8. Improving the sensitivity of LISA

    International Nuclear Information System (INIS)

    Nayak, K Rajesh; Pai, A; Dhurandhar, S V; Vinet, J-Y

    2003-01-01

    It has been shown in several recent papers that the six Doppler data streams obtained from a triangular LISA configuration can be combined by appropriately delaying the data streams for cancelling the laser frequency noise. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. A rigorous and systematic formalism using the powerful techniques of computational commutative algebra was developed, which generates in principle all the data combinations cancelling the laser frequency noise. The relevant data combinations form a first module of syzygies. In this paper, we use this formalism to advantage for optimizing the sensitivity of LISA by analysing the noise and signal covariance matrices. The signal covariance matrix is calculated for binaries whose frequency changes at most adiabatically and the signal is averaged over polarizations and directions. We then present the extremal SNR curves for all the data combinations in the module. They correspond to the eigenvectors of the noise and signal covariance matrices. A LISA 'network' SNR is also computed by combining the outputs of the eigenvectors. We show that substantial gains in sensitivity can be obtained by employing these strategies. The maximum SNR curve can yield an improvement up to 70% over the Michelson, mainly at high frequencies, while the improvement using the network SNR ranges from 40% to over 100%. Finally, we describe a simple toy model, in which LISA rotates in a plane. In this analysis, we estimate the improvement in the LISA sensitivity, if one switches from one data combination to another as it rotates. Here the improvement in sensitivity, if one switches optimally over three cyclic data combinations of the eigenvector, is about 55% on average over the LISA bandwidth. The corresponding SNR improvement increases to 60%, if one maximizes over the module

  9. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    Science.gov (United States)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  10. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    International Nuclear Information System (INIS)

    Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N.

    2016-01-01

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  11. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nakate, U.T., E-mail: umesh.nakate@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India); Bulakhe, R.N.; Lokhande, C.D. [Department of Physics, Thin films Physics Laboratory, Shivaji University Kolhapur 416004 (India); Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India)

    2016-05-15

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  12. Research for improved flexible tactile sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hae Yong; Kim, Ho Chan [Andong National University, Andong (Korea, Republic of); Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of)

    2015-11-15

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  13. Research for improved flexible tactile sensor sensitivity

    International Nuclear Information System (INIS)

    Yun, Hae Yong; Kim, Ho Chan; Lee, In Hwan

    2015-01-01

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  14. Highly sensitive urea sensing with ion-irradiated polymer foils

    International Nuclear Information System (INIS)

    Fink, Dietmar; Muñoz Hernandez, Gerardo; Alfonta, Lital

    2012-01-01

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms – tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  15. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  16. Citizen Sensing for Improved Urban Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Qijun Jiang

    2016-01-01

    Full Text Available Citizen science is increasingly being used in diverse research domains. With the emergence and rapid development of sensor technologies, citizens potentially have more powerful tools to collect data and generate information to understand their living environment. Although sensor technologies are developing fast, citizen sensing has not been widely implemented yet and published studies are only a few. In this paper, we analyse the practical experiences from an implementation of citizen sensing for urban environment monitoring. A bottom-up model in which citizens develop and use sensors for environmental monitoring is described and assessed. The paper focuses on a case study of Amsterdam Smart Citizens Lab using NO2 sensors for air quality monitoring. We found that the bottom-up citizen sensing is still challenging but can be successful with open cooperation and effective use of online and offline facilities. Based on the assessment, suggestions are proposed for further implementations and research.

  17. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Science.gov (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  18. Inline pressure sensing mechanisms enabling scalable range and sensitivity

    NARCIS (Netherlands)

    Alveringh, Dennis; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2015-01-01

    We report on two novel capacitive pressure sensing mechanisms that allow measurements inline with other fluidic devices on one chip, without introducing a large internal volume to the fluid path. The first sensing mechanism is based on out-of-plane bending of a U-shaped channel and the same

  19. Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Yaocheng Shi

    2016-03-01

    Full Text Available A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0 and liquid sensing (ncl ~ 1.33 are considered. When using SOI nanowires (with a SiO2 buffer layer, the sensitivity for liquid sensing (S ~ 0.55 is higher than that for gas sensing (S ~ 0.35 due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0. The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm. In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43 while the fabrication tolerance is very small (i.e., ∆w < ±5 nm. The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.

  20. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  1. Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization

    Science.gov (United States)

    Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong

    2018-05-01

    Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.

  2. High Sensitivity, Low Power Nano Sensors and Devices for Chemical Sensing

    Science.gov (United States)

    Li, Jing; Powell, Dan; Getty, Stephanie; Lu, Yi-Jiang

    2004-01-01

    The chemical sensor market has been projected to grow to better than $40 billion dollars worldwide within the next 10 years. Some of the primary motivations to develop nanostructured chemical sensors are monitoring and control of environmental pollution; improved diagnostics for consumption; improvement in measurement precision and accuracy; and improved detection limits for Homeland security, battlefield environments, and process and quality control of industrial applications. In each of these applications, there is demand for sensitivity, selectivity and stability of environmental and biohazard detection and capture beyond what is currently commercially available. Nanotechnology offers the ability to work at the molecular level, atom by atom, to create large structures with fundamentally new molecular organization. It is essentially concerned with materials, devices, and systems whose structures and components exhibit novel and significantly improved physical, chemical and biological properties, phenomena, and process control due to their nanoscale size. One such nanotechnology-enabled chemical sensor has been developed at NASA Ames leveraging nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxide nanobelts or nanowires, as a sensing medium bridging a pair of interdigitated electrodes (IDE) realized through a silicon-based microfabrication and micromachining technique. The DE fingers are fabricated on a silicon substrate using standard photolithography and thin film metallization techniques. It is noteworthy that the fabrication techniques employed are not confined to the silicon substrate. Through spin casting and careful substrate selection (i.e. clothing, glass, polymer, etc.), additional degrees of freedom can be exploited to enhance sensitivity or to conform to unique applications. Both in-situ growth of nanostructured materials and casting of nanostructured dispersions were used to produce analogous chemical sensing devices.

  3. Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection

    Directory of Open Access Journals (Sweden)

    Veerpal Kaur

    2017-09-01

    Full Text Available In this article, we have designed and analysed a photonic crystal fiber with multiple sensing ring in core for chemical and biochemical sensing applications. In this proposed design, three and four sensing ring describe in core which offers remarkable high sensitivity and spiral cladding pattern confines large fraction of power in core region and thus reduce the overall confinement loss. This novel proposed model exhibits simultaneously ultra high relative sensitivity 95.40%, 93.13% and minimum confinement loss 7.108×10−08, 2.47×10−08dB/km for four and three ring pattern. These sensing rings are filled with different sensing liquid. Multiple sensing rings as compared to multiple air holes are desirable feature from fabrication point of view. This proposed PCF design overcomes some experimental challenge such as PCF probe needs some displacement after filling the sensing liquid. These uniform circular sensing rings around the solid core overcome the losses and support better evanescent field matter interaction for sensing application. Multiple sensing rings as compared to multiple tiny air holes are desirable feature from fabrication point of view.

  4. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    Science.gov (United States)

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  5. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  6. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  7. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  8. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  9. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    Science.gov (United States)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  10. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Science.gov (United States)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  11. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Ehlert, Gregory J; Baur, Jeffery W; Dickinson, Ben

    2012-01-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0–1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats. (paper)

  12. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinyan; Chen, Shu, E-mail: chenshumail@gmail.com; Tang, Jian; Xiong, Yuan; Long, Yunfei, E-mail: l_yunfei927@163.com

    2014-05-01

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. Abstract: A colorimetric method for the recognition and sensing of iodide ions (I⁻) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I⁻ in the presence of sodium thiosulfate (Na₂S₂O₃). Specifically, I⁻ together with Na₂S₂O₃ can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na₂S₂O₃, the etching reactions on TAg-NPs were observed not only by I⁻ but also other halides ions. The Na₂S₂O₃ plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na₂S₂O₃/I⁻ mixture was proportional to the concentration of I⁻ in the range 1.0 × 10⁻⁹–1.0 × 10⁻⁶ mol L⁻¹. Moreover, no other ions besides I⁻ can induce an eye discernible color change as low as 1.0 × 10⁻⁷ mol L⁻¹. Finally, this method was successfully applied for I⁻ determination in kelp samples.

  13. Carotid endarterectomy significantly improves postoperative laryngeal sensitivity.

    Science.gov (United States)

    Hammer, Georg Philipp; Tomazic, Peter Valentin; Vasicek, Sarah; Graupp, Matthias; Gugatschka, Markus; Baumann, Anneliese; Konstantiniuk, Peter; Koter, Stephan Herwig

    2016-11-01

    sensory threshold on the operated-on side (6.08 ± 2.02 mm Hg) decreased significantly at the 6-week follow-up, even in relation to the preoperative measure (P = .022). With the exception of one patient with permanent unilateral vocal fold immobility, no signs of nerve injury were detected. In accordance with previous reports, injuries to the recurrent laryngeal nerve during CEA seem to be rare. In most patients, postoperative symptoms (globus, dysphagia, dysphonia) and signs fade within a few weeks without any specific therapeutic intervention. This study shows an improved long-term postoperative superior laryngeal nerve function with regard to laryngopharyngeal sensitivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Prevalence of sensitization to 'improver' enzymes in UK supermarket bakers.

    Science.gov (United States)

    Jones, M; Welch, J; Turvey, J; Cannon, J; Clark, P; Szram, J; Cullinan, P

    2016-07-01

    Supermarket bakers are exposed not only to flour and alpha-amylase but also to other 'improver' enzymes, the nature of which is usually shrouded by commercial sensitivity. We aimed to determine the prevalence of sensitization to 'improver' enzymes in UK supermarket bakers. We examined the prevalence of sensitization to enzymes in 300 bakers, employed by one of two large supermarket bakeries, who had declared work-related respiratory symptoms during routine health surveillance. Sensitization was determined using radioallergosorbent assay to eight individual enzymes contained in the specific 'improver' mix used by each supermarket. The prevalence of sensitization to 'improver' enzymes ranged from 5% to 15%. Sensitization was far more likely if the baker was sensitized also to either flour or alpha-amylase. The prevalence of sensitization to an 'improver' enzyme did not appear to be related to the concentration of that enzyme in the mix. We report substantial rates of sensitization to enzymes other than alpha-amylase in UK supermarket bakers; in only a small proportion of bakers was there evidence of sensitization to 'improver mix' enzymes without sensitization to either alpha-amylase or flour. The clinical significance of these findings needs further investigation, but our findings indicate that specific sensitization in symptomatic bakers may not be identified without consideration of a wide range of workplace antigens. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  16. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-05-01

    Full Text Available In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC sensing elements to detect different types of tastes, such as sweetness (glucose, saltiness (NaCl, sourness (HCl, bitterness (quinine-HCl, and umami (monosodium glutamate is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT-, Electronic Tongue (SA402-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA to distinguish between various kinds of taste in mixed taste compounds.

  17. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  18. Highly sensitive rotation sensing based on orthogonal fiber-optic structures

    Science.gov (United States)

    Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin

    2011-08-01

    In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than

  19. Sensitivity improvement techniques for micromechanical vibrating accelerometers

    Directory of Open Access Journals (Sweden)

    Vtorushin Sergey

    2016-01-01

    Full Text Available The paper presents the problems of detecting a desired signal generated by micromechanical vibrating accelerometer. Three detection methods, namely frequency, amplitude and phase are considered in this paper. These methods are used in micromechanical vibrating accelerometers that incorporate a force sensitive element which transforms measured acceleration into the output signal. Investigations are carried out using the ANSYS finite element program and MATLAB/Simulink support package. Investigation results include the comparative analysis of the output signal characteristics obtained by the different detection methods.

  20. Improvement on Timing Accuracy of LIDAR for Remote Sensing

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.

    2018-05-01

    The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.

  1. Sensitivity enhancement using annealed polymer optical fibre based sensors for pressure sensing applications

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Saez-Rodriguez, D.

    2016-01-01

    for that investigation was an unexpected behaviour observed in an array of sensors which were used for liquid level monitoring. One sensor exhibited much lower pressure sensitivity and that was the only one that was not annealed. To further investigate the phenomenon, additional sensors were photo...... sensitivity of the devices. This can provide better performing sensors for use in stress, force and pressure sensing applications.......Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity...

  2. Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor

    Science.gov (United States)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    Solid-state materials have becomes essential in recent technological advancements. This study also utilized solid-state material but in form of thin films to sense hydrogen ions in solutions. Fabrication of ZnO thin film was done using sol-gel spin coating technique. In an attempt to increase the pH sensitivity of the produced film, prolonging of annealing time was done. It was found that the increase in annealing time from 15 minutes to 30 minutes had managed to improve the sensitivity by 4.35%. The optimum pH sensitivity and linearity obtained in this study is 50.40 mV/pH and 0.9911 respectively.

  3. The Improvement of Land Cover Classification by Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Liya Sun

    2015-06-01

    Full Text Available Land cover classification has been widely investigated in remote sensing for agricultural, ecological and hydrological applications. Landsat images with multispectral bands are commonly used to study the numerous classification methods in order to improve the classification accuracy. Thermal remote sensing provides valuable information to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated by the ground-truth reference data considering the three level classification scheme from COoRdination of INformation on the Environment (CORINE using the 10-fold cross validation method. The accuracy assessment showed that compared to the visible and near infrared (VIS/NIR bands, the time series of thermal images alone can produce comparatively reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category and provides the best classified results with all seven bands for the time series of Landsat TM images.

  4. Improvements in agricultural water decision support using remote sensing

    Science.gov (United States)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  5. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.

    Science.gov (United States)

    Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Cheng-Yao Lo

    2012-03-01

    Full Text Available A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 ´ 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 ´ 20 mm2 dimensions. A complete finite element method (FEM model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors.

  7. Characterization of a compliant multi-layer system for tactile sensing with enhanced sensitivity and range

    Science.gov (United States)

    Chen, Ying; Yu, Miao; Bruck, Hugh A.; Smela, Elisabeth

    2018-06-01

    To allow robots to interact with humans via touch, new sensing concepts are needed that can detect a wide range of potential interactions and cover the body of a robot. In this paper, a skin-inspired multi-layer tactile sensing architecture is presented and characterized. The structure consists of stretchable piezoresistive strain-sensing layers over foam layers of different stiffness, allowing for both sufficient sensitivity and pressure range for human contacts. Strip-shaped sensors were used in this architecture to produce a deformation response proportional to pressure. The roles of the foam layers were elucidated by changing their stiffness and thickness, allowing the development of a geometric model to account for indenter interactions with the structure. The advantage of this architecture over other approaches is the ability to easily tune performance by adjusting the stiffness or thickness of the foams to tailor the response for different applications. Since viscoelastic materials were used, the temporal effects were also investigated.

  8. Improved quorum sensing capacity by culturing Vibrio harveyi in microcapsules.

    Science.gov (United States)

    Gao, Meng; Song, Huiyi; Liu, Xiudong; Yu, Weiting; Ma, Xiaojun

    2016-04-01

    Microcapsule entrapped low density cells with culture (ELDCwc), different from free cell culture, conferred stronger stress resistance and improved cell viability of microorganisms. In this paper, the quorum sensing (QS) system of Vibrio harveyi was used to investigate changes when cells were cultured in microcapsules. Cells in ELDCwc group grew into cell aggregates, which facilitated cell-cell communication and led to increased bioluminescence intensity. Moreover, the luxS-AI-2 system, a well-studied QS signal pathway, was detected as both luxS gene and the AI-2 signaling molecule, and the results were analyzed with respect to QS capacity of unit cell. The V. harveyi of ELDCwc also showed higher relative gene expression and stronger quorum sensing capacity when compared with free cells. In conclusion, the confined microcapsule space can promote the cell aggregates formation, reduce cell-cell communication distance and increase local concentration of signal molecule, which are beneficial to bacterial QS. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    Science.gov (United States)

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  10. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    International Nuclear Information System (INIS)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R.

    2016-01-01

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO_2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO_2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  11. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R., E-mail: sameer@ece.tufts.edu

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO{sub 2}), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO{sub 2}) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  12. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  13. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  14. Vanadium substitution: A simple and economic way to improve UV sensing in ZnO

    Science.gov (United States)

    Srivastava, Tulika; Bajpai, Gaurav; Rathore, Gyanendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-04-01

    The UV sensing in pure ZnO is due to oxygen adsorption/desorption process from the ZnO surface. Vanadium doping improves the UV sensitivity of ZnO. The enhancement in UV sensitivity in vanadium-substituted ZnO is attributed to trapping and de-trapping of electrons at V4+ and V5+-related defect states. The V4+ state has an extra electron than the V5+ state. A V4+ to V5+ transformation happens with excitation of this electron to the conduction band, while a reverse trapping process liberates a visible light. An analytic study of response phenomenon reveals this trapping and de-trapping process.

  15. Sensitivity and Resolution Improvement in RGBW Color Filter Array Sensor

    Directory of Open Access Journals (Sweden)

    Seunghoon Jee

    2018-05-01

    Full Text Available Recently, several red-green-blue-white (RGBW color filter arrays (CFAs, which include highly sensitive W pixels, have been proposed. However, RGBW CFA patterns suffer from spatial resolution degradation owing to the sensor composition having more color components than the Bayer CFA pattern. RGBW CFA demosaicing methods reconstruct resolution using the correlation between white (W pixels and pixels of other colors, which does not improve the red-green-blue (RGB channel sensitivity to the W channel level. In this paper, we thus propose a demosaiced image post-processing method to improve the RGBW CFA sensitivity and resolution. The proposed method decomposes texture components containing image noise and resolution information. The RGB channel sensitivity and resolution are improved through updating the W channel texture component with those of RGB channels. For this process, a cross multilateral filter (CMF is proposed. It decomposes the smoothness component from the texture component using color difference information and distinguishes color components through that information. Moreover, it decomposes texture components, luminance noise, color noise, and color aliasing artifacts from the demosaiced images. Finally, by updating the texture of the RGB channels with the W channel texture components, the proposed algorithm improves the sensitivity and resolution. Results show that the proposed method is effective, while maintaining W pixel resolution characteristics and improving sensitivity from the signal-to-noise ratio value by approximately 4.5 dB.

  16. Sensitivity improvement of a fibre Bragg grating pH sensor with elastomeric coating

    Science.gov (United States)

    Yulianti, Ian; Supa'at, A. S. M.; Idrus, Sevia M.; Kurdi, Ojo; Anwar, M. R. S.

    2012-01-01

    A new optical pH sensor based on fibre Bragg grating (FBG) is demonstrated. The sensor consists of a FBG coated with pH sensitive hydrogel. The sensing was performed through the detection of wavelength shifts resulting from the induced strain on the FBG due to mechanical expansion of the hydrogel. An elastomeric coating was applied before the hydrogel coating to improve the sensitivity. The sensor performance was investigated by simulating the hydrogel swelling and the strain induced on the FBG. The swelling of hydrogel due to pH change was modelled using a free-energy function and was solved using the finite element method. With silicone rubber as the elastomer material, the results show that the sensitivity was improved by up to 66% compared to that of the FBG pH sensor without elastomeric coating.

  17. Sensitivity improvement of a fibre Bragg grating pH sensor with elastomeric coating

    International Nuclear Information System (INIS)

    Yulianti, Ian; Supa'at, A S M; Idrus, Sevia M; Anwar, M R S; Kurdi, Ojo

    2012-01-01

    A new optical pH sensor based on fibre Bragg grating (FBG) is demonstrated. The sensor consists of a FBG coated with pH sensitive hydrogel. The sensing was performed through the detection of wavelength shifts resulting from the induced strain on the FBG due to mechanical expansion of the hydrogel. An elastomeric coating was applied before the hydrogel coating to improve the sensitivity. The sensor performance was investigated by simulating the hydrogel swelling and the strain induced on the FBG. The swelling of hydrogel due to pH change was modelled using a free-energy function and was solved using the finite element method. With silicone rubber as the elastomer material, the results show that the sensitivity was improved by up to 66% compared to that of the FBG pH sensor without elastomeric coating

  18. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-05-01

    Full Text Available ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%. The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS. The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm ZnO films evidently showed higher sensor signal and faster response times (within seconds than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  19. Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors

    International Nuclear Information System (INIS)

    Mohammed, Ahmed A S; Moussa, Walied A; Lou, Edmond

    2010-01-01

    In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from −50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 10 19 atoms cm −3 ). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges

  20. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  1. Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system.

    Science.gov (United States)

    Lowe, Benjamin M; Sun, Kai; Zeimpekis, Ioannis; Skylaris, Chris-Kriton; Green, Nicolas G

    2017-11-06

    Field-Effect Transistor sensors (FET-sensors) have been receiving increasing attention for biomolecular sensing over the last two decades due to their potential for ultra-high sensitivity sensing, label-free operation, cost reduction and miniaturisation. Whilst the commercial application of FET-sensors in pH sensing has been realised, their commercial application in biomolecular sensing (termed BioFETs) is hindered by poor understanding of how to optimise device design for highly reproducible operation and high sensitivity. In part, these problems stem from the highly interdisciplinary nature of the problems encountered in this field, in which knowledge of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical engineering is required. In this work, a quantitative analysis and critical review has been performed comparing literature FET-sensor data for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin systems. The aim is to provide the first systematic, quantitative comparison of BioFET results for a single biomolecular analyte, specifically streptavidin, which is the most commonly used model protein in biosensing experiments, and often used as an initial proof-of-concept for new biosensor designs. This novel quantitative and comparative analysis of the surface potential behaviour of a range of devices demonstrated a strong contrast between the trends observed in pH-sensing and those in biomolecule-sensing. Potential explanations are discussed in detail and surface-chemistry optimisation is shown to be a vital component in sensitivity-enhancement. Factors which can influence the response, yet which have not always been fully appreciated, are explored and practical suggestions are provided on how to improve experimental design.

  2. Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    AlAfeef, Ala, E-mail: a.al-afeef.1@research.gla.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bobynko, Joanna [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cockshott, W. Paul. [School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Craven, Alan J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Zuazo, Ian; Barges, Patrick [ArcelorMittal Maizières Research, Maizières-lès-Metz 57283 (France); MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-11-15

    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS. - Highlights: • DualEELS is essential for chemically sensitive electron tomography using EELS. • A new compressed sensing based algorithm (DLET) gives high fidelity reconstruction. • This combination of DualEELS and DLET will give reliable results from few projections.

  3. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity.

    Science.gov (United States)

    Cox, Amanda J; Bengtson, Hillary N; Gerasimova, Yulia V; Rohde, Kyle H; Kolpashchikov, Dmitry M

    2016-11-03

    Some natural enzymes increase the rate of diffusion-limited reactions by facilitating substrate flow to their active sites. Inspired by this natural phenomenon, we developed a strategy for efficient substrate delivery to a deoxyribozyme (DZ) catalytic sensor. This resulted in a three- to fourfold increase in sensitivity and up to a ninefold improvement in the detection limit. The reported strategy can be used to enhance catalytic efficiency of diffusion-limited enzymes and to improve sensitivity of enzyme-based biosensors. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñoz, Enrique

    2017-05-23

    On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current–voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green\\'s function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

  5. Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots.

    Science.gov (United States)

    Lu, Li-Qiang; Tan, Tian; Tian, Xi-Ke; Li, Yong; Deng, Pan

    2017-09-15

    Mercury ions sensing is an important issue for human health and environmental safety. A novel fluorescence nanosensor was designed for rapid visual detection of ultratrace mercury ions (Hg 2+ ) by using CH 3 NH 3 PbBr 3 perovskite quantum dots (QDs) based on the surface ion-exchange mechanism. The synthesized CH 3 NH 3 PbBr 3 QDs can emitt intense green fluorescence with high quantum yield of 50.28%, and can be applied for Hg 2+ sensing with the detection limit of 0.124 nM (24.87 ppt) in the range of 0 nM-100 nM. Furthermore, the interfering metal ions have no any influence on the fluorescence intensity of QDs, showing the perovskite QDs possess the high selectivity and sensitivity for Hg 2+ detection. The sensing mechanism of perovskite QDs for Hg 2+ is has also been investigated by XPS, EDX studies, showing Pb 2+ on the surface of perovskite QDs has been partially replaced by Hg 2+ . Spot plate test shows that the perovskite QDs can also be used for visual detection of Hg 2+ . Our research indicated the perovskite QDs are promising candidates for the visual fluorescence detection of environmental micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  7. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Can; Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Gang [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Qing, E-mail: qing_li_2@brown.edu [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    Highlights: • Graphene was prepared by one-step solvent exfoliation as superior electrode material. • Compared with RGO, prepared graphene exhibited stronger signal enhancement. • A widespread and highly-sensitive electrochemical sensing platform was constructed. - Abstract: Graphene was easily obtained via one-step ultrasonic exfoliation of graphite powder in N-methyl-2-pyrrolidone. Scanning electron microscopy, transmission electron microscopy, Raman and particle size measurements indicated that the exfoliation efficiency and the amount of produced graphene increased with ultrasonic time. The electrochemical properties and analytical applications of the resulting graphene were systematically studied. Compared with the predominantly-used reduced graphene oxides, the obtained graphene by one-step solvent exfoliation greatly enhanced the oxidation signals of various analytes, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), xanthine (XA), hypoxanthine (HXA), bisphenol A (BPA), ponceau 4R, and sunset yellow. The detection limits of AA, DA, UA, XA, HXA, BPA, ponceau 4R, and sunset yellow were evaluated to be 0.8 μM, 7.5 nM, 2.5 nM, 4 nM, 10 nM, 20 nM, 2 nM, and 1 nM, which are much lower than the reported values. Thus, the prepared graphene via solvent exfoliation strategy displays strong signal amplification ability and holds great promise in constructing a universal and sensitive electrochemical sensing platform.

  8. High sensitivity pH sensing on the BEOL of industrial FDSOI transistors

    Science.gov (United States)

    Rahhal, Lama; Ayele, Getenet Tesega; Monfray, Stéphane; Cloarec, Jean-Pierre; Fornacciari, Benjamin; Pardoux, Eric; Chevalier, Celine; Ecoffey, Serge; Drouin, Dominique; Morin, Pierre; Garnier, Philippe; Boeuf, Frederic; Souifi, Abdelkader

    2017-08-01

    In this work we demonstrate the use of Fully Depleted Silicon On Insulator (FDSOI) transistors as pH sensors with a 23 nm silicon nitride sensing layer built in the Back-End-Of-Line (BEOL). The back end process to deposit the sensing layer and fabricate the electrical structures needed for testing is detailed. A series of tests employing different pH buffer solutions has been performed on transistors of different geometries, controlled via the back gate. The main findings show a shift of the drain current (ID) as a function of the back gate voltage (VB) when different pH buffer solutions are probed in the range of pH 6 to pH 8. This shift is observed at VB voltages swept from 0 V to 3 V, demonstrating the sensor operation at low voltage. A high sensitivity of up to 250 mV/pH unit (more than 4-fold larger than Nernstian response) is observed on FDSOI MOS transistors of 0.06 μm gate length and 0.08 μm gate width. She is currently working as a Postdoctoral researcher at Institut des nanotechnologies de Lyon in collaboration with STMicroelectronics and Université de Sherbrook (Canada) working on ;Integration of ultra-low-power gas and pH sensors with advanced technologies;. Her research interest includes selection, machining, optimisation and electrical characterisation of the sensitive layer for a low power consumption gas sensor based on advanced MOS transistors.

  9. Modulation of olfactory sensitivity and glucose sensing by the feeding state in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Pascaline eAimé

    2014-09-01

    Full Text Available The Zucker fa/fa rat has been widely used as an animal model to study obesity, since it recapitulates most of its behavioral and metabolic dysfunctions, such as hyperphagia, hyperglycemia and insulin resistance. Although it is well established that olfaction is under nutritional and hormonal influences, little is known about the impact of metabolic dysfunctions on olfactory performances and glucose-sensing in the olfactory system of the obese Zucker rat. In the present study, using a behavioral paradigm based on a conditioned olfactory aversion, we have shown that both obese and lean Zucker rats have a better olfactory sensitivity when they are fasted than when they are satiated. Interestingly, the obese Zucker rats displayed a higher olfactory sensitivity than their lean controls. By investigating the molecular mechanisms involved in glucose-sensing in the olfactory system, we demonstrated that sodium-coupled glucose transporters 1 (SGLT1 and insulin dependent glucose transporters 4 (GLUT4 are both expressed in the olfactory bulb (OB. By comparing the expression of GLUT4 and SGLT1 in OB of obese and lean Zucker rats, we found that only SGLT1 is regulated in genotype-dependent manner. Next, we used glucose oxidase biosensors to simultaneously measure in vivo the extracellular fluid glucose concentrations ([Gluc]ECF in the OB and the cortex. Under metabolic steady state, we have determined that the OB contained twice the amount of glucose found in the cortex. In both regions, the [Gluc]ECF was 2 fold higher in obese rats compared to their lean controls. Under induced dynamic glycemia conditions, insulin injection produced a greater decrease of [Gluc]ECF in the OB than in the cortex. Glucose injection did not affect OB [Gluc]ECF in Zucker fa/fa rats. In conclusion, these results emphasize the importance of glucose for the OB network function and provide strong arguments towards establishing the OB glucose-sensing as a key factor for sensory

  10. Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach

    Science.gov (United States)

    Marshall, M.; Tu, K.; Funk, C.; Michaelsen, J.; Williams, P.; Williams, C.; Ardö, J.; Boucher, M.; Cappelaere, B.; de Grandcourt, A.; Nickless, A.; Nouvellon, Y.; Scholes, R.; Kutsch, W.

    2013-03-01

    Climate change is expected to have the greatest impact on the world's economically poor. In the Sahel, a climatically sensitive region where rain-fed agriculture is the primary livelihood, expected decreases in water supply will increase food insecurity. Studies on climate change and the intensification of the water cycle in sub-Saharan Africa are few. This is due in part to poor calibration of modeled evapotranspiration (ET), a key input in continental-scale hydrologic models. In this study, a remote sensing model of transpiration (the primary component of ET), driven by a time series of vegetation indices, was used to substitute transpiration from the Global Land Data Assimilation System realization of the National Centers for Environmental Prediction, Oregon State University, Air Force, and Hydrology Research Laboratory at National Weather Service Land Surface Model (GNOAH) to improve total ET model estimates for monitoring purposes in sub-Saharan Africa. The performance of the hybrid model was compared against GNOAH ET and the remote sensing method using eight eddy flux towers representing major biomes of sub-Saharan Africa. The greatest improvements in model performance were at humid sites with dense vegetation, while performance at semi-arid sites was poor, but better than the models before hybridization. The reduction in errors using the hybrid model can be attributed to the integration of a simple canopy scheme that depends primarily on low bias surface climate reanalysis data and is driven primarily by a time series of vegetation indices.

  11. Improved Extreme Learning Machine based on the Sensitivity Analysis

    Science.gov (United States)

    Cui, Licheng; Zhai, Huawei; Wang, Benchao; Qu, Zengtang

    2018-03-01

    Extreme learning machine and its improved ones is weak in some points, such as computing complex, learning error and so on. After deeply analyzing, referencing the importance of hidden nodes in SVM, an novel analyzing method of the sensitivity is proposed which meets people’s cognitive habits. Based on these, an improved ELM is proposed, it could remove hidden nodes before meeting the learning error, and it can efficiently manage the number of hidden nodes, so as to improve the its performance. After comparing tests, it is better in learning time, accuracy and so on.

  12. On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods

    Science.gov (United States)

    Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.

    2003-01-01

    Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.

  13. Improved Sensitivity Relations in State Constrained Optimal Control

    International Nuclear Information System (INIS)

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-01-01

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  14. Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range.

    Science.gov (United States)

    Choi, Eunsuk; Sul, Onejae; Hwang, Soonhyung; Cho, Joonhyung; Chun, Hyunsuk; Kim, Hongjun; Lee, Seung-Beck

    2014-10-24

    When developing an electronic skin with touch sensation, an array of tactile pressure sensors with various ranges of pressure detection need to be integrated. This requires low noise, highly reliable sensors with tunable sensing characteristics. We demonstrate the operation of tactile pressure sensors that utilize the spatial distribution of contact electrodes to detect various ranges of tactile pressures. The device consists of a suspended elastomer diaphragm, with a carbon nanotube thin-film on the bottom, which makes contact with the electrodes on the substrate with applied pressure. The electrodes separated by set distances become connected in sequence with tactile pressure, enabling consecutive electrodes to produce a signal. Thus, the pressure is detected not by how much of a signal is produced but by which of the electrodes is registering an output. By modulating the diaphragm diameter, and suspension height, it was possible to tune the pressure sensitivity and sensing range. Also, adding a fingerprint ridge structure enabled the sensor to detect the periodicity of sub-millimeter grating patterns on a silicon wafer.

  15. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    Science.gov (United States)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  16. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  17. Improved support films for electron microscopy of beam sensitive specimens

    International Nuclear Information System (INIS)

    Taylor, J.R.; Glaeser, R.M.

    1987-01-01

    Preliminary results indicate that technical innovations can address the problem of beam-induced movement and provide improved prospects for high resolution imaging of beam-sensitive specimens. Second-generation experiments with microgrid supports are in progress with efforts focusing on the objectives of maximizing the contact between the carbon film and its microgrid support and on improving the flatness of microgrids. When more robust support films are available they will be used in conjunction with small spot illumination. 4 refs., 2 figs

  18. Improvement in Sensitivity of an Inductive Oil Palm Fruit Sensor

    Directory of Open Access Journals (Sweden)

    Norhisam Misron

    2014-02-01

    Full Text Available Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced.

  19. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  20. Sensitivity analysis for improving nanomechanical photonic transducers biosensors

    International Nuclear Information System (INIS)

    Fariña, D; Álvarez, M; Márquez, S; Lechuga, L M; Dominguez, C

    2015-01-01

    The achievement of high sensitivity and highly integrated transducers is one of the main challenges in the development of high-throughput biosensors. The aim of this study is to improve the final sensitivity of an opto-mechanical device to be used as a reliable biosensor. We report the analysis of the mechanical and optical properties of optical waveguide microcantilever transducers, and their dependency on device design and dimensions. The selected layout (geometry) based on two butt-coupled misaligned waveguides displays better sensitivities than an aligned one. With this configuration, we find that an optimal microcantilever thickness range between 150 nm and 400 nm would increase both microcantilever bending during the biorecognition process and increase optical sensitivity to 4.8   ×   10 −2  nm −1 , an order of magnitude higher than other similar opto-mechanical devices. Moreover, the analysis shows that a single mode behaviour of the propagating radiation is required to avoid modal interference that could misinterpret the readout signal. (paper)

  1. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  2. Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Tian, Ye; Wei, Zhen

    2017-01-01

    Heteroatom-doped graphene materials emerged as promising metal-free catalysts have recently attracted a growing interest in electrochemical sensing applications. However, their catalytic activity and sensing performances still need to be further improved. Herein, we reported the development of unique phosphorus (P)-doped and plasma-etched graphene (denoted as PG-E) as an efficient metal-free electrocatalyst for dopamine (DA) sensing. It was demonstrated that introducing both P-dopants and plasma-engineered defects in graphene could synergistically improve the activity toward electrocatalytic oxidation of DA by increasing the accessible active sites and promoting the electron transport capability. The resulting PG-E modified electrode showed exceptional DA sensing performances with low detection limit, high selectivity and good stability. These results suggested that the synergistic effect of dopants and defects might be an important factor for developing the advanced graphene-based metal-free catalysts for electrochemical sensing.

  3. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements. Copyright (c) 2007 Wiley-Liss, Inc.

  4. Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization

    Science.gov (United States)

    Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane

    2003-01-01

    The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.

  5. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    Science.gov (United States)

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A

    Science.gov (United States)

    Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing

    2016-05-01

    Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.

  7. Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine

    International Nuclear Information System (INIS)

    Yang, Z.; Huang, X.; Li, J.; Zhang, Y.; Yu, S.; Xu, Q.; Hu, X.

    2012-01-01

    Urchin-like In 2 S 3 nanostructures were functionalized with multi-walled carbon nanotubes (MWCNTs) and deposited on a glassy carbon electrode (GCE) to obtain a new kind of sensor for dopamine (DA). The new electrode was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry and differential pulse voltammetry. It is found that the current response toward DA is significantly enhanced compared to that of a bare GCE or a GCE modified with MWCNTs. The peak separation between DA and ascorbic acid (AA) is up to 225 mV. The new electrode also has improved selectivity for DA over AA compared to the bare electrode. The new DA sensor has a wide linear range (0.5-300 μM), high sensitivity (594.9 μA mM -1 cm -2 ) and low detection limit (0.1 μM). CNTs wrapped on urchin-like nanostructures remarkable improve its electrocatalytic activity and thus provide a promising strategy to develop excellent composite materials for electrochemical sensing. (author)

  8. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  9. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer.

    Science.gov (United States)

    Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu

    2010-04-28

    A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.

  10. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  12. Solid Waste Landfill Site Selection in the Sense of Environment Sensitive Sustainable Urbanization: Izmir, Turkey Case

    Science.gov (United States)

    TÜdeş, Şule; Kumlu, Kadriye Burcu Yavuz

    2017-10-01

    Each stage of the planning process should be based on the natural resource protection, in the sense of environmental sensitive and sustainable urban planning. Values, which are vital for the continuity of the life in the Earth, as soil, water, forest etc. should be protected from the undesired effects of the pollution and the other effects caused by the high urbanization levels. In this context, GIS-MCDM based solid waste landfill site selection is applied for Izmir, Turkey, where is a significant attraction place for tourism. As Multi criteria Decision Making (MCDM) technique, Analytical Hierarchy Process (AHP) is used. In this study, geological, tectonically and hydrological data, as well as agricultural land use, slope, distance to the settlement areas and the highways are used as inputs for AHP analysis. In the analysis stage, those inputs are rated and weighted. The weighted criteria are evaluated via GIS, by using weighted overlay tool. Therefore, an upper-scale analysis is conducted and a map, which shows the alternative places for the solid waste landfill sites, considering the environmental protection and evaluated in the context of environmental and urban criteria, are obtained.

  13. Microfluidic Diatomite Analytical Devices for Illicit Drug Sensing with ppb-Level Sensitivity.

    Science.gov (United States)

    Kong, Xianming; Chong, Xinyuan; Squire, Kenny; Wang, Alan X

    2018-04-15

    The escalating research interests in porous media microfluidics, such as microfluidic paper-based analytical devices, have fostered a new spectrum of biomedical devices for point-of-care (POC) diagnosis and biosensing. In this paper, we report microfluidic diatomite analytical devices (μDADs), which consist of highly porous photonic crystal biosilica channels, as an innovative lab-on-a-chip platform to detect illicit drugs. The μDADs in this work are fabricated by spin-coating and tape-stripping diatomaceous earth on regular glass slides with cross section of 400×30µm 2 . As the most unique feature, our μDADs can simultaneously perform on-chip chromatography to separate small molecules from complex biofluidic samples and acquire the surface-enhanced Raman scattering spectra of the target chemicals with high specificity. Owing to the ultra-small dimension of the diatomite microfluidic channels and the photonic crystal effect from the fossilized diatom frustules, we demonstrate unprecedented sensitivity down to part-per-billion (ppb) level when detecting pyrene (1ppb) from mixed sample with Raman dye and cocaine (10 ppb) from human plasma. This pioneering work proves the exclusive advantage of μDADs as emerging microfluidic devices for chemical and biomedical sensing, especially for POC drug screening.

  14. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor

    Directory of Open Access Journals (Sweden)

    Raffaele Caroselli

    2017-12-01

    Full Text Available Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU, which allowed us to directly detect refractive index variations in the 10−7 RIU range.

  15. Regenerative, Highly-Sensitive, Non-Enzymatic Dopamine Sensor and Impact of Different Buffer Systems in Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    Saumya Joshi

    2018-01-01

    Full Text Available Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties. In this work, we demonstrate highly-sensitive regenerative dopamine sensors and the impact of varying buffer composition and type on the electrolyte gated field effect sensors. The role of the buffer system is an often ignored condition in the electrical characterization of sensors. Non-enzymatic dopamine sensors are fabricated and regenerated in hydrochloric acid (HCl solution. The sensors are finally measured against four different buffer solutions. The impact of the nature and chemical structure of buffer molecules on the dopamine sensors is shown, and the appropriate buffer systems are demonstrated.

  16. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    Science.gov (United States)

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  17. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    Science.gov (United States)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  18. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  19. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  20. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    Science.gov (United States)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  1. Ecological Sensitivity Evaluation of Tourist Region Based on Remote Sensing Image - Taking Chaohu Lake Area as a Case Study

    Science.gov (United States)

    Lin, Y.; Li, W. J.; Yu, J.; Wu, C. Z.

    2018-04-01

    Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine) classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland. Through the eco-sensitivity analysis of

  2. ECOLOGICAL SENSITIVITY EVALUATION OF TOURIST REGION BASED ON REMOTE SENSING IMAGE – TAKING CHAOHU LAKE AREA AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-04-01

    Full Text Available Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland

  3. Improved ocean chlorophyll estimate from remote sensed data: The ...

    African Journals Online (AJOL)

    Gregg and Conkright (2001) who pioneered the use of the blending technique in an attempt to calibrate ocean chlorophyll, expressed the need for further work to be done in order to obtain improved results. One problem faced when using this technique with spatially sparse data, is distortion of the resulting blended field ...

  4. Dichoptic training improves contrast sensitivity in adults with amblyopia.

    Science.gov (United States)

    Li, Jinrong; Spiegel, Daniel P; Hess, Robert F; Chen, Zidong; Chan, Lily Y L; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2015-09-01

    Dichoptic training is designed to promote binocular vision in patients with amblyopia. Initial studies have found that the training effects transfer to both binocular (stereopsis) and monocular (recognition acuity) visual functions. The aim of this study was to assess whether dichoptic training effects also transfer to contrast sensitivity (CS) in adults with amblyopia. We analyzed CS data from 30 adults who had taken part in one of two previous dichoptic training studies and assessed whether the changes in CS exceeded the 95% confidence intervals for change based on test-retest data from a separate group of observers with amblyopia. CS was measured using Gabor patches (0.5, 3 and 10cpd) before and after 10days of dichoptic training. Training was delivered using a dichoptic video game viewed through video goggles (n=15) or on an iPod touch equipped with a lenticular overlay screen (n=15). In the iPod touch study, training was combined with anodal transcranial direct current stimulation of the visual cortex. We found that dichoptic training significantly improved CS across all spatial frequencies tested for both groups. These results suggest that dichoptic training modifies the sensitivity of the neural systems that underpin monocular CS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Quantum dots as mediators in gas sensing: A case study of CdS sensitized WO{sub 3} sensing composites

    Energy Technology Data Exchange (ETDEWEB)

    Concina, Isabella, E-mail: concina@sensor.ing.unibs.it [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Comini, Elisabetta [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy); Kaciulis, Saulius [CNR-ISMN, Institute for the Study of Nanostructured Materials, Via dei Taurini, 19, 00185 Roma (Italy); Sberveglieri, Giorgio [CNR-INO SENSOR Laboratory, via Branze, 45, 25131 Brescia (Italy); SENSOR, Department of Information Engineering, Brescia University, via Valotti, 9, 25133 Brescia (Italy)

    2014-01-30

    In this study the proof of principle of the use of naked semiconductor directly generated on metal oxide surface as mediators in gas sensing is provided. Successive ionic layer absorption and reaction (SILAR) technique has been applied to sensitize a WO{sub 3} thin film with CdS quantum dots. Response to gases of bare WO{sub 3} is deeply modified: quantum dots dramatically increase the metal oxide conductance, otherwise rather poor, and modify the capability of detecting environmental pollutants, such as CO and NO{sub 2}. A modified sensing mechanism is proposed to rationalize the mediation exerted by the semiconducting active layer on the interaction between gaseous species and WO{sub 3} surface.

  6. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    Science.gov (United States)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf

  7. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    Science.gov (United States)

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  8. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  9. Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase.

    Science.gov (United States)

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Niino, Yusuke; Yamada, Yoshiyuki; Mikoshiba, Katsuhiko; Miyawaki, Atsushi; Okamura, Yasushi

    2013-09-15

      One of the most awaited techniques in modern physiology is the sensitive detection of spatiotemporal electrical activity in a complex network of excitable cells. The use of genetically encoded voltage probes has been expected to enable such analysis. However, in spite of recent progress, existing probes still suffer from low signal amplitude and/or kinetics too slow to detect fast electrical activity. Here, we have developed an improved voltage probe named Mermaid2, which is based on the voltage-sensor domain of the voltage-sensing phosphatase from Ciona intestinalis and Förster energy transfer between a pair of fluorescent proteins. In mammalian cells, Mermaid2 permits ratiometric readouts of fractional changes of more than 50% over a physiologically relevant voltage range with fast kinetics, and it was used to follow a train of action potentials at frequencies of up to 150 Hz. Mermaid2 was also able to detect single action potentials and subthreshold voltage responses in hippocampal neurons in vitro, in addition to cortical electrical activity evoked by sound stimuli in single trials in living mice.

  10. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  11. Surrogate indicators of sensitivity in gynecologic cytology: Can they be used to improve the measurement of sensitivity in the laboratory?

    Directory of Open Access Journals (Sweden)

    Renshaw Andrew

    2009-01-01

    Full Text Available Background: Measuring the sensitivity of screening in gynecologic cytology in real life is problematic. However, other quality measures may correlate with sensitivity, including the atypical squamous cells (ASC/squamous intraepithelial lesion (SIL ratio. Whether these other measures can function as "surrogate indicators" for sensitivity and improve the assessment of sensitivity in the laboratory is not known. Materials and Methods: We compared multiple quality measures with true screening sensitivity in a variety of situations. Results: The abnormal rate, ASC rate, and ASC/SIL ratio were all highly correlated (r = .83 or greater with sensitivity when the overall laboratory sensitivity was low (85% but became less correlated (.64 or less or uncorrelated when the screening sensitivity was higher (88% or 95%, respectively. Sensitivity was more highly correlated with the abnormal rate than the ASC/SIL ratio at low screening sensitivity. While thresholds could be set that were highly sensitive and specific for suboptimal screening, these thresholds were often less than one standard deviation away from the mean. Conclusion: The correlation of the abnormal rate and the ASC/SIL ratio with sensitivity depends on overall sensitivity. Standards to define minimum screening sensitivity can be defined, but these standards are relatively narrow. These features may limit the utility of these quality measures as surrogates for sensitivity.

  12. A Distributed Approach towards Improved Dissemination Protocol for Smooth Handover in MediaSense IoT Platform

    Directory of Open Access Journals (Sweden)

    Shabir Ahmad

    2018-05-01

    Full Text Available Recently, the Internet has been utilized by many applications to convey time-sensitive messages. The persistently expanding Internet coverage and its easy accessibility have offered to ascend to a problem which was once regarded as not essential to contemplate. Nowadays, the Internet has been utilized by many applications to convey time-sensitive messages. Wireless access points have widely been used but these access points have limitations regarding area coverage. So for covering a wider space, various access points need to be introduced. Therefore, when the user moves to some other place, the devices expected to switch between access points. Packet loss amid the handovers is a trivial issue. MediaSense is an Internet of Things distributed architecture enabling the development of the IoT application faster. It deals with this trivial handover issue by utilizing a protocol called Distributed Context eXchange Protocol. However, this protocol is centralized in nature and also suffers in a scenario when both sender and receiver address change simultaneously. This paper presents a mechanism to deal with this scenario and presents a distributed solution to deal with this issue within the MediaSense platform. The proposed protocol improves dissemination using retransmission mechanism to diminish packet loss. The proposed protocol has been delineated with a proof of concept chat application and the outcomes have indicated a significant improvement in terms of packet loss.

  13. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Bikash Kumar Paul

    2017-02-01

    Full Text Available A micro structure folded cladding porous shaped with circular air hole photonic crystal fiber (FP-PCF is proposed and numerically investigated in a broader wavelength range from 1.4 µm to 1.64 µm (E+S+C+L+U for chemical sensing purposes. Employing finite element method (FEM with anisotropic perfectly matched layer (PML various properties of the proposed FP-PCF are numerically inquired. Filling the hole of core with aqueous analyte ethanol (n = 1.354 and tuning different geometric parameters of the fiber, the sensitivity order of 64.19% and the confinement loss of 2.07 × 10-5 dB/m are attained at 1.48 µm wavelength in S band. The investigated numerical simulation result strongly focuses on sensing purposes; because this fiber attained higher sensitivity with lower confinement loss over the operating wavelength. Measuring time of sensitivity, simultaneously confinement loss also inquired. It reflects that confinement loss is highly dependable on PML depth but not for sensitivity. Beside above properties numerical aperture (NA, nonlinearity, and effective area are also computed. This FP-PCF also performed as sensor for other alcohol series (methanol, propanol, butanol, pentanol. Optimized FP-PCF shows higher sensitivity and low confinement loss carrying high impact in the area of chemical as well as gas sensing purposes. Surely it is clear that install such type of sensor will flourish technology massively.         Keywords: Confinement loss, Effective area, Index guiding FP-PCF, Numerical aperture, Nonlinear coefficient, Sensitivity

  14. Methanol-Sensing Property Improvement of Meso structured Zinc Oxide Prepared by the Nano casting Strategy

    International Nuclear Information System (INIS)

    Gao, Q.; Zheng, W.T.; Wei, C.D.; Lin, H.M.

    2013-01-01

    The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, meso structured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged meso pores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, meso structured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the non porous ZnO prepared through conventional coprecipitation approach, meso structured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice

  15. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2013-01-01

    Full Text Available The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, mesostructured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged mesopores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, mesostructured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the nonporous ZnO prepared through conventional coprecipitation approach, mesostructured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice.

  16. Use of immunoblotting assay improves the sensitivity of paracoccidioidomycosis diagnosis

    Directory of Open Access Journals (Sweden)

    D. F. Silva

    2008-01-01

    Full Text Available The purpose of this work was to evaluate two serological assays: double immunodiffusion (DI and immunoblotting (IB in immunodiagnosis of paracoccidioidomycosis (PCM. We evaluated by IB assay 23 sera samples from patients with clinical confirmation of PCM, all of them with negative DI results against culture filtrate from Paracoccidioides brasiliensis isolate 113. For IB, as well as for comparative DI assay, we employed soluble components of the cell wall outer surface (SCCWOS from P. brasiliensis isolate 113 cultivated at 36°C in Fava-Neto's agar medium for 5 and 10 days. Among the 20 sera samples analyzed by DI, 13 (65% were negative and 7 (35% were positive against SCCWOS obtained on the 5th and 10th days. By IB assay, 95.4% and 100% of sera reacted against gp43 and gp70 present in SCCWOS from the 5th day and 95.6% recognized these fractions when evaluated against SCCWOS from the 10th day. Our results demonstrated that the use of an immunoenzymatic assay significantly improves the sensitivity of PCM immunodiagnosis and also suggests that at least two serological tests for antibody detection should be adopted in cases of questionable diagnosis.

  17. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  18. A technique for position sensing and improved momentum evaluation of microparticle impacts in space.

    Science.gov (United States)

    Mcdonnell, J. A. M.; Abellanas, C.

    1972-01-01

    The design of a three element piezoelectric microparticle impact sensing diaphragm is described which is sensitive to the detection of momentum propagated by the bending wave. The design achieves a sensitivity of .03 microdyn/sec and optimizes the detection of the direct-path pulse from impact relative to secondary reflections and interference from discontinuities. Measurement of the relative arrival times and the maximum amplitudes of the outputs from the three piezoelectric sensors leads to the determination of the impact position and the normally resolved impact momentum exchange. Coincidence of the signals and a partial redundancy of data leads to a very high noise discrimination.

  19. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  20. The Sense of Agency Is More Sensitive to Manipulations of Outcome than Movement-Related Feedback Irrespective of Sensory Modality.

    Directory of Open Access Journals (Sweden)

    Nicole David

    Full Text Available The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement's outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants' finger movements and (i the movement of the virtual hand or (ii the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action.

  1. The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study

    KAUST Repository

    Chappanda, Karumbaiah. N.

    2017-11-01

    The application of metal-organic frameworks (MOFs) as a sensing layer has been attracting great interest over the last decade, due to their uniform properties in terms of high porosity and tunability, which provides a large surface area and/or centers for trapping/binding a targeted analyte. Here we report the fabrication of a highly sensitive humidity sensor that is based on composite thin films of HKUST-1 MOF and carbon nanotubes (CNT). The composite sensing films were fabricated by spin coating technique on a quartz-crystal microbalance (QCM) and a comparison of their shift in resonance frequencies to adsorbed water vapor (5 to 75% relative humidity) is presented. Through optimization of the CNT and HKUST-1 composition, we could demonstrate a 230% increase in sensitivity compared to plain HKUST-1 film. The optimized CNT-HKUST-1 composite thin films are stable, reliable, and have an average sensitivity of about 2.5×10−5 (Δf/f) per percent of relative humidity, which is up to ten times better than previously reported QCM-based humidity sensors. The approach presented here is facile and paves a promising path towards enhancing the sensitivity of MOF-based sensors.

  2. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons.

    Science.gov (United States)

    Mounien, Lourdes; Marty, Nell; Tarussio, David; Metref, Salima; Genoux, David; Preitner, Frédéric; Foretz, Marc; Thorens, Bernard

    2010-06-01

    The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.

  3. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets.

    Science.gov (United States)

    Lee, Jae-Hyoung; Katoch, Akash; Choi, Sun-Woo; Kim, Jae-Hun; Kim, Hyoun Woo; Kim, Sang Sub

    2015-02-11

    We propose a novel approach to improve the gas-sensing properties of n-type nanofibers (NFs) that involves creation of local p-n heterojunctions with p-type reduced graphene oxide (RGO) nanosheets (NSs). This work investigates the sensing behaviors of n-SnO2 NFs loaded with p-RGO NSs as a model system. n-SnO2 NFs demonstrated greatly improved gas-sensing performances when loaded with an optimized amount of p-RGO NSs. Loading an optimized amount of RGOs resulted in a 20-fold higher sensor response than that of pristine SnO2 NFs. The sensing mechanism of monolithic SnO2 NFs is based on the joint effects of modulation of the potential barrier at nanograin boundaries and radial modulation of the electron-depletion layer. In addition to the sensing mechanisms described above, enhanced sensing was obtained for p-RGO NS-loaded SnO2 NFs due to creation of local p-n heterojunctions, which not only provided a potential barrier, but also functioned as a local electron absorption reservoir. These mechanisms markedly increased the resistance of SnO2 NFs, and were the origin of intensified resistance modulation during interaction of analyte gases with preadsorbed oxygen species or with the surfaces and grain boundaries of NFs. The approach used in this work can be used to fabricate sensitive gas sensors based on n-type NFs.

  4. Improving radiochromic film's sensitivity by wrapping it with UV phosphor

    International Nuclear Information System (INIS)

    Geso, Moshi; Ackerly, Trevor; Patterson, William

    2004-01-01

    The main advantage of radiochromic-film dosimeters is the coupling of rapid full planar-acquisition, high-spatial resolution and dose linearity. Their main limitation, however, is their low radiation sensitivity. This precludes their application to measuring doses below a few Gy. Radiochromic films are sensitive to ultraviolet radiation. In this note the results of exposing radiochromic films to x rays through an UV imaging cassette, which converts and amplifies x rays to UV radiation, are presented. These results indicate a clear increase (around 50%) in radiochromic film's sensitivity to MV x rays (6, 10, and 18 MV) when exposed through the UV phosphor

  5. Synthesis and Characterization of Highly Sensitive Hydrogen (H2 Sensing Device Based on Ag Doped SnO2 Nanospheres

    Directory of Open Access Journals (Sweden)

    Zhaorui Lu

    2018-03-01

    Full Text Available In this paper, pure and Ag-doped SnO2 nanospheres were synthesized by hydrothermal method and characterized via X-ray powder diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive spectroscopy (EDS, and X-ray photoelectron spectra (XPS, respectively. The gas sensing performance of the pure, 1 at.%, 3 at.%, and 5 at.% Ag-doped SnO2 sensing devices toward hydrogen (H2 were systematically evaluated. The results indicated that compared with pure SnO2 nanospheres, Ag-doped SnO2 nanospheres could not only decrease the optimum working temperature but also significantly improve H2 sensing such as higher gas response and faster response-recovery. Among all the samples, the 3 at.% Ag-doped SnO2 showed the highest response 39 to 100 μL/L H2 at 300 °C. Moreover, its gas sensing mechanism was discussed, and the results will provide reference and theoretical guidance for the development of high-performance SnO2-based H2 sensing devices.

  6. Axial asymmetry for improved sensitivity in MEMS piezoresistors

    International Nuclear Information System (INIS)

    Shuvra, Pranoy Deb; McNamara, Shamus; Lin, Ji-Tzuoh; Alphenaar, Bruce; Walsh, Kevin; Davidson, Jim

    2016-01-01

    The strain induced resistance change is compared for asymmetric, symmetric and diffused piezoresistive elements. Finite element analysis is used to simulate the performance of a T-shaped piezoresistive MEMS cantilever, including a lumped parameter model to show the effect of geometric asymmetry on the piezoresistor sensitivity. Asymmetric piezoresistors are found to be much more sensitive to applied load than the typical symmetric design producing about two orders of magnitude higher resistance change. This is shown to be due to the difference in the stress distribution in the symmetric and asymmetric geometries resulting in less resistance change cancellation in the asymmetric design. Although still less sensitive than diffused piezoresistors, asymmetric piezoresistors are sensitive enough for many applications, and are much easier to fabricate and integrate into MEMS devices. (paper)

  7. An improved approach for remotely sensing water stress impacts on forest C uptake.

    Science.gov (United States)

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought. © 2014 John Wiley & Sons

  8. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    Science.gov (United States)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  9. Pt-decorated GaN nanowires with significant improvement in H2 gas-sensing performance at room temperature.

    Science.gov (United States)

    Abdullah, Q N; Yam, F K; Hassan, Z; Bououdina, M

    2015-12-15

    Superior sensitivity towards H2 gas was successfully achieved with Pt-decorated GaN nanowires (NWs) gas sensor. GaN NWs were fabricated via chemical vapor deposition (CVD) route. Morphology (field emission scanning electron microscopy and transmission electron microscopy) and crystal structure (high resolution X-ray diffraction) characterizations of the as-synthesized nanostructures demonstrated the formation of GaN NWs having a wurtzite structure, zigzaged shape and an average diameter of 30-166nm. The Pt-decorated GaN NWs sensor shows a high response of 250-2650% upon exposure to H2 gas concentration from 7 to 1000ppm respectively at room temperature (RT), and then increases to about 650-4100% when increasing the operating temperature up to 75°C. The gas-sensing measurements indicated that the Pt-decorated GaN NWs based sensor exhibited efficient detection of H2 at low concentration with excellent sensitivity, repeatability, and free hysteresis phenomena over a period of time of 100min. The large surface-to-volume ratio of GaN NWs and the catalytic activity of Pt metal are the most influential factors leading to the enhancement of H2 gas-sensing performances through the improvement of the interaction between the target molecules (H2) and the sensing NWs surface. The attractive low-cost, low power consumption and high-performance of the resultant decorated GaN NWs gas sensor assure their uppermost potential for H2 gas sensor working at low operating temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    Science.gov (United States)

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  12. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Directory of Open Access Journals (Sweden)

    M. Schrön

    2017-10-01

    Full Text Available In the last few years the method of cosmic-ray neutron sensing (CRNS has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  13. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Scheiffele, Lena; Iwema, Joost; Bogena, Heye R.; Lv, Ling; Martini, Edoardo; Baroni, Gabriele; Rosolem, Rafael; Weimar, Jannis; Mai, Juliane; Cuntz, Matthias; Rebmann, Corinna; Oswald, Sascha E.; Dietrich, Peter; Schmidt, Ulrich; Zacharias, Steffen

    2017-10-01

    In the last few years the method of cosmic-ray neutron sensing (CRNS) has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  14. Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay

    International Nuclear Information System (INIS)

    Qi Honglan; Ling Chen; Huang Ru; Qiu Xiaoying; Shangguan Li; Gao Qiang; Zhang Chengxiao

    2012-01-01

    Highlights: ► Single-walled carbon nanotubes were functionalized with protein by click chemistry. ► The SWNTs conjugated with protein showed excellent dispersion in water and kept good bioacitvity. ► A competitive electrochemical immunoassay for the determination of anti-IgG was developed with high sensitivity and good stability. - Abstract: The application of the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition to the functionalization of single-walled carbon nanotubes (SWNTs) with the protein and the use of the artificial SWNTs as a sensing platform for sensitive immunoassay were reported. Covalent functionalization of azide decorated SWNTs with alkyne modified protein was firstly accomplished by the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition. FT-IR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron micrograph were used to characterize the protein-functionalized SWNTs. It was found that the SWNTs conjugated with the proteins showed excellent dispersion in water and kept good bioacitivity when immunoglobulin (IgG) and horseradish peroxidase (HRP) were chosen as model proteins. As a proof-of-concept, IgG-functionalized SWNTs were immobilized onto the surface of a glassy carbon electrode by simple casting method as immunosensing platform and a sensitive competitive electrochemical immunoassay was developed for the determination of anti-immunoglobulin (anti-IgG) using HRP as enzyme label. The fabrication of the immunosensor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the redox probe [Fe(CN) 6 ] 3−/4− . The SWNTs as immobilization platform showed better sensitizing effect, a detection limit of 30 pg mL −1 (S/N = 3) was obtained for anti-IgG. The proposed strategy provided a stable immobilization method and sensitized recognition platform for analytes. This work demonstrated that the click coupling of SWNTs with protein was an effective

  15. Sense of agency in continuous action: Assistance-induced performance improvement is self-attributed even with knowledge of assistance.

    Science.gov (United States)

    Inoue, Kazuya; Takeda, Yuji; Kimura, Motohiro

    2017-02-01

    In a task involving continuous action to achieve a goal, the sense of agency increases with an improvement in task performance that is induced by unnoticed computer assistance. This study investigated how explicit instruction about the existence of computer assistance affects the increase of sense of agency that accompanies performance improvement. Participants performed a continuous action task in which they controlled the direction of motion of a dot to a goal by pressing keys. When instructions indicated the absence of assistance, the sense of agency increased with performance improvement induced by computer assistance, replicating previous findings. Interestingly, this increase of sense of agency was also observed even when instructions indicated the presence of assistance. These results suggest that even when a plausible cause of performance improvement other than one's own action exists, the improvement can be misattributed to one's own control of action, resulting in an increased sense of agency. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Influence of Pd Layer on the Sensitivity of CHx/PS/Si as Structure for Oxygen Sensing

    Directory of Open Access Journals (Sweden)

    N. Ghellai

    2008-04-01

    Full Text Available It has been demonstrated recently that the fabricated gas sensing device based on hydrocarbons (CHx/Porous silicon structure can be used for detecting a low concentration of a large variety of gases but does not respond to oxygen. In this work, an oxygen sensor based on Palladium/hydrocarbons (CHx/ Porous silicon/ Silicon structure has been studied in presence of oxygen gas. Current-voltage and capacitance-voltage characterizations show that Pd/CHx-PS/Si structure is very sensitive toward O2 gas. A fast response time of the sensor of about 3 s is measured.

  17. Sensitivity improvement of an electrical sensor achieved by control of biomolecules based on the negative dielectrophoretic force.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Jinsik; Yoo, Yong Kyoung; Lee, Jeong Hoon; Park, Jung Ho; Hwang, Kyo Seon

    2016-11-15

    Effective control of nano-scale biomolecules can enhance the sensitivity and limit of detection of an interdigitated microelectrode (IME) sensor. Manipulation of the biomolecules by dielectrophoresis (DEP), especially the negative DEP (nDEP) force, so that they are trapped between electrodes (sensing regions) was predicted to increase the binding efficiency of the antibody and target molecules, leading to a more effective reaction. To prove this concept, amyloid beta 42 (Aβ42) and prostate specific antigen (PSA) protein were respectively trapped between the sensing region owing to the nDEP force under 5V and 0.05V, which was verified with COMSOL simulation. Using the simulation value, the resistance change (ΔR/Rb) of the IME sensor from the specific antibody-antigen reaction of the two biomolecules and the change in fluorescence intensity were compared in the reference (pDEP) and nDEP conditions. The ΔR/Rb value improved by about 2-fold and 1.66-fold with nDEP compared to the reference condition with various protein concentrations, and these increases were confirmed with fluorescence imaging. Overall, nDEP enhanced the detection sensitivity for Aβ42 and PSA by 128% and 258%, respectively, and the limit of detection improved by up to 2-orders of magnitude. These results prove that DEP can improve the biosensor's performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sound improves diminished visual temporal sensitivity in schizophrenia

    NARCIS (Netherlands)

    de Boer-Schellekens, L.; Stekelenburg, J.J.; Maes, J.P.; van Gool, A.R.; Vroomen, J.

    2014-01-01

    Visual temporal processing and multisensory integration (MSI) of sound and vision were examined in individuals with schizophrenia using a visual temporal order judgment (TOJ) task. Compared to a non-psychiatric control group, persons with schizophrenia were less sensitive judging the temporal order

  19. Sensitivity of Miniaturized Photo-elastic Transducer for Small Force Sensing

    Directory of Open Access Journals (Sweden)

    Naceur-Eddine KHELIFA

    2015-01-01

    Full Text Available The sensitivity of a force sensor based on photo-elastic effect in a monolithic Nd- YAG laser depends strongly on the geometrical shape and dimensions of the laser medium. The theoretical predictions of sensitivity are in good agreement with first results obtained with a plano- concave cylindrical crystal of (4´4 mm and some values reported by other groups. However, for small size of the laser sensor, the developed model predicts sensitivity, about 30 % higher than the values given by available experiments. In this paper, we present experimental results obtained with a force sensor using a miniaturized monolithic cylindrical Nd-YAG laser of dimensions (2´3 mm with suitable optical coatings on its plane end faces. The new result of measurement concerning the sensitivity has allowed us to refine the theoretical model to treat photo-elastic force sensors with small dimensions.

  20. Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples

    Directory of Open Access Journals (Sweden)

    Andreas Hans

    2018-05-01

    Full Text Available The detection of a single photon is the most sensitive method for sensing of photon emission. A common technique for single photon detection uses microchannel plate arrays combined with photocathodes and position sensitive anodes. Here, we report on the combination of such detectors with grating diffraction spectrometers, constituting a low-noise wavelength resolving photon spectroscopy apparatus with versatile applicability. We recapitulate the operation principle of such detectors and present the details of the experimental set-up, which we use to investigate fundamental mechanisms in atomic and molecular systems after excitation with tuneable synchrotron radiation. Extensions for time and polarization resolved measurements are described and examples of recent applications in current research are given.

  1. Stability and Sensitive Analysis of a Model with Delay Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Zhonghua Zhang

    2015-01-01

    Full Text Available This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold reduction method and the normal form theory due to Faria and Magalhaes are used to compute the normal form of the model, and the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most sensitive parameter of the threshold parameter R0 and should be targeted in the controlling strategies.

  2. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  3. Sensitivity and response time improvements in millimeter-wave spectrometers

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.

    1980-09-01

    A new version of a microwave spectrometer for the detection of gaseous pollutants and other atmospheric constituents is described. The spectrometer, which operates in the vicinity of 70 GHz, employs a Fabry-Perot resonator as a sample cell and uses superhetrodyne detection for high sensitivity. The spectrometer has been modified to incorporate a frequency doubler modulated at 30 MHz to permit operation with a single Gunn oscillator source. As a result, faster response time and somewhat greater sensitivity are obtained. The spectrometer is capable of detecting a minimum concentration of 1 ppM of SO 2 diluted in air with a 1 second time constant. For OCS diluted in air, the minimum detectable concentration is 800 ppB and with a 10 second time constant 300 ppB

  4. An Improved Method to Watermark Images Sensitive to Blocking Artifacts

    OpenAIRE

    Afzel Noore

    2007-01-01

    A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multi...

  5. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Flávia de Andrade e Souza Mazuchi

    2018-03-01

    Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.

  6. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  7. Graphene oxide-sensitized molecularly imprinted opto-polymers for charge-transfer fluorescent sensing of cyanoguanidine.

    Science.gov (United States)

    Liu, Huilin; Zhou, Kaiwen; Chen, Xiaomo; Wang, Jing; Wang, Shuo; Sun, Baoguo

    2017-11-15

    The hierarchical structuring of materials offers exciting opportunities to construct functional sensors. Multiple processes were combined to create complex materials for the selective detection of cyanoguanidine (CYA) using graphene oxide-sensitized molecularly imprinted opto-polymers (MIOP). Molecular imprinting was used to construct molecular-scale analyte-selective cavities, graphene oxide was introduced to provide a platform for the polymerization, and increase the stability and binding kinetic properties, and 3-methacryloxy propyl trimethoxy silane-modified quantum dots were combined with a functional monomer to increase the fluorescence quantum yield. Polymer cross-linking and fluorescence intensity were optimized for molecular recognition and opto-sensing detection. Selective and sensitive, fluorescence sensing of CYA was possible at concentrations as low as to 1.6μM. It could be applied to the rapid and cost-effective monitoring of CYA in infant formula. The approach is generic and applicable to many molecules and conventional opto-sensors, based on molecularly imprinted polymer formulations, individually or in multiplexed arrays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Improved Rotation Forest for Multi-Feature Remote-Sensing Imagery Classification

    Directory of Open Access Journals (Sweden)

    Yingchang Xiu

    2017-11-01

    Full Text Available Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve land cover classification accuracy. However, sometimes it is difficult to utilize all the features efficiently. To enhance classification performance based on multi-feature imagery, an improved rotation forest, combining Principal Component Analysis (PCA and a boosting naïve Bayesian tree (NBTree, is proposed. First, feature extraction was carried out with PCA. The feature set was randomly split into several disjoint subsets; then, PCA was applied to each subset, and new training data for linear extracted features based on original training data were obtained. These steps were repeated several times. Second, based on the new training data, a boosting naïve Bayesian tree was constructed as the base classifier, which aims to achieve lower prediction error than a decision tree in the original rotation forest. At the classification phase, the improved rotation forest has two-layer voting. It first obtains several predictions through weighted voting in a boosting naïve Bayesian tree; then, the first-layer vote predicts by majority to obtain the final result. To examine the classification performance, the improved rotation forest was applied to multi-feature remote-sensing images, including MODIS Enhanced Vegetation Index (EVI imagery time series, MODIS Surface Reflectance products and ancillary data in Shandong Province for 2013. The EVI imagery time series was preprocessed using harmonic analysis of time series (HANTS to reduce the noise effects. The overall accuracy of the final classification result was 89.17%, and the Kappa coefficient was 0.71, which outperforms the original rotation forest and other classifier ensemble results, as well as the NASA land cover product. However, this new algorithm requires more computational time, meaning the efficiency needs to be further improved. Generally, the improved rotation forest has a potential advantage in

  9. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors

    Science.gov (United States)

    Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong

    2015-01-01

    Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ∼1015 cm−2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (10 nm). PMID:26486604

  10. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D-H

    2008-01-01

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g -1 . Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  11. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing.

    Science.gov (United States)

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2004-04-01

    We characterize three new fluorescent probes that show both spectral shifts and intensity changes in the presence of aqueous cyanide, allowing for both excitation and fluorescence emission wavelength ratiometric and colorimetric sensing. The relatively high binding constants of the probes for cyanide enables a distinct colorimetric change to be visually observed with as little as 10 microM cyanide. The response of the new probes is based on the ability of the boronic acid group to interact with the CN(-) anion, changing from the neutral form of the boronic acid group R-B(OH)(2) to the anionic R-B(-)(OH)3 form, which is an electron-donating group. The presence of an electron-deficient quaternary heterocyclic nitrogen center and a strong electron-donating amino group in the 6 position on the quinolinium backbone provides for the spectral changes observed upon CN(-) complexation. We have determined the binding constants for the ortho-, meta-, and para-boronic acid probes to be 0.12, 0.17, and 0.14 microM(-3). In addition we have synthesized a control compound that does not contain the boronic acid moiety, allowing for structural comparisons and a rationale for the sensing mechanism to be made. Finally we show that the affinity for monosaccharides, such as glucose or fructose, is relatively low as compared to that for cyanide, enabling the potential detection of cyanide in physiologies up to lethal levels.

  12. Highly Sensitive Nanostructured SnO2 Thin Films For Hydrogen Sensing

    Science.gov (United States)

    Patil, L. A.; Shinde, M. D.; Bari, A. R.; Deo, V. V.

    2010-10-01

    Nanostructured SnO2 thin films were prepared by ultrasonic spray pyrolysis technique. Aqueous solution (0.05 M) of SnCl4ṡ5H2O in double distilled water was chosen as the starting solution for the preparation of the films. The stock solution was delivered to nozzle with constant and uniform flow rate of 70 ml/h by Syringe pump SK5001. Sono-tek spray nozzle, driven by ultrasonic frequency of 120 kHz, converts the solution into fine spray. The aerosol produced by nozzle was sprayed on glass substrate heated at 150 °C. The sensing performance of the films was tested for various gases such as LPG, hydrogen, ethanol, carbon dioxide and ammonia. The sensor (30 min) showed high gas response (S = 3040 at 350 °C) on exposure of 1000 ppm of hydrogen and high selectivity against other gases. Its response time was short (2 s) and recovery was also fast (12 s). To understand reasons behind this uncommon gas sensing performance of the films, their structural, microstructural, and optical properties were studied using X-ray diffraction, electron microscopy (SEM and TEM) respectively. The results are interpreted

  13. Use of remote sensing and GIS in mapping the environmental sensitivity areas for desertification of Egyptian territory

    Science.gov (United States)

    Gad, A.; Lotfy, I.

    2008-06-01

    Desertification is defined in the first art of the convention to combat desertification as "land degradation in arid, semiarid and dry sub-humid areas resulting from climatic variations and human activities". Its consequence include a set of important processes which are active in arid and semi arid environment, where water is the main limiting factor of land use performance in such ecosystem . Desertification indicators or the groups of associated indicators should be focused on a single process. They should be based on available reliable information sources, including remotely sensed images, topographic data (maps or DEM'S), climate, soils and geological data. The current work aims to map the Environmental Sensitivity Areas (ESA's) to desertification in whole territory of Egypt at a scale of 1:1 000 000. ETM satellite images, geologic and soil maps were used as main sources for calculating the index of Environmental Sensitivity Areas (ESAI) for desertification. The algorism is adopted from MEDALLUS methodology as follows; ESAI = (SQI * CQI * VQI)1/3 Where SQI is the soil quality index, CQI is the climate quality index and VQI is the vegetation quality index. The SQI is based on rating the parent material, slope, soil texture, and soil depth. The VQI is computed on bases of rating three categories (i.e. erosion protection, drought resistance and plant cover). The CQI is based on the aridity index, derived from values of annual rainfall and potential evapotranspiration. Arc-GIS 9 software was used for the computation and sensitivity maps production. The results show that the soil of the Nile Valley are characterized by a moderate SQI, however the those in the interference zone are low soil quality indexed. The dense vegetation of the valley has raised its VQI to be good, however coastal areas are average and interference zones are low. The maps of ESA's for desertification show that 86.1% of Egyptian territory is classified as very sensitive areas, while 4.3% as

  14. On the sensitivity of numerical weather prediction to remotely sensed marine surface wind data - A simulation study

    Science.gov (United States)

    Cane, M. A.; Cardone, V. J.; Halem, M.; Halberstam, I.

    1981-01-01

    The reported investigation has the objective to assess the potential impact on numerical weather prediction (NWP) of remotely sensed surface wind data. Other investigations conducted with similar objectives have not been satisfactory in connection with a use of procedures providing an unrealistic distribution of initial errors. In the current study, care has been taken to duplicate the actual distribution of information in the conventional observing system, thus shifting the emphasis from accuracy of the data to the data coverage. It is pointed out that this is an important consideration in assessing satellite observing systems since experience with sounder data has shown that improvements in forecasts due to satellite-derived information is due less to a general error reduction than to the ability to fill data-sparse regions. The reported study concentrates on the evaluation of the observing system simulation experimental design and on the assessment of the potential of remotely sensed marine surface wind data.

  15. Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping

    Science.gov (United States)

    Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing

    2018-06-01

    Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.

  16. Improved insulin sensitivity after exercise: focus on insulin signaling

    DEFF Research Database (Denmark)

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  17. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  18. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  19. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  20. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation

    Science.gov (United States)

    Gleason, Colin J.; Wada, Yoshihide; Wang, Jida

    2018-01-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.

  1. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  2. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air.

    Science.gov (United States)

    Caucheteur, Christophe; Debliquy, Marc; Lahem, Driss; Megret, Patrice

    2008-10-13

    Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 degrees C, which is without equivalent for other hydrogen optical sensors reported so far.

  3. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Directory of Open Access Journals (Sweden)

    Zhu Shiming

    2018-01-01

    Full Text Available A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  4. Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields

    Science.gov (United States)

    Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune

    2018-04-01

    A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.

  5. Laparoscopic Sleeve Gastrectomy Improves Olfaction Sensitivity in Morbidly Obese Patients.

    Science.gov (United States)

    Hancı, Deniz; Altun, Huseyin; Altun, Hasan; Batman, Burcin; Karip, Aziz Bora; Serin, Kursat Rahmi

    2016-03-01

    Olfactory abilities of the patients are known to be altered by eating and metabolic disorders, including obesity. There are only a number of studies investigating the effect of obesity on olfaction, and there is limited data on the changes in olfactory abilities of morbidly obese patients after surgical treatment. Here we investigated the changes in olfactory abilities of 54 morbidly obese patients (M/F, 22/32; age range 19-57 years; body mass index (BMI) range 30.5-63.0 kg/m(2)) after laparoscopic sleeve gastrectomy. A laparoscopic sleeve gastrectomy was performed by the same surgeon using five-port technique. Olfactory abilities were tested preoperatively and 1, 3, and 6 months after the surgery using a standardized Sniffin' Sticks Extended Test kit. Analyses of variance indicated statistically significant improvement in T, D, and I scores of morbidly obese patients within time factors (preoperative vs. 1, 3, and 6 months; 1 vs. 3 and 6 months; and 3 vs. 6 months; p < 0.001 for all). There was a statistically significant improvement in overall TDI scores with an increase from 25 to 41 during the 6 months follow-up period (p < 0.001 for all). Here, for the first time in literature, we were able to show the significant improvement in olfactory abilities of morbidly obese patients after laparoscopic sleeve gastrectomy.

  6. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    International Nuclear Information System (INIS)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-01-01

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO 3 nanoparticles (nano-CaCO 3 ) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO 3 . The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO 3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO 3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L −1 for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC

  7. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Xia, Shanhong; Tong, Jianhua [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, 100190 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO{sub 3} nanoparticles (nano-CaCO{sub 3}) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO{sub 3}. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO{sub 3} weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO{sub 3} weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L{sup −1} for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC.

  8. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  9. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. TOF spectrometer with improved sensitivity for ERDA of light isotopes

    International Nuclear Information System (INIS)

    Siketic, Z.; Bogdanovic Radovic, I.; Jaksic, M.

    2009-01-01

    Time-of-Flight Elastic Recoil Detection Analysis (TOF ERDA) is a well established and powerful ion beam analytical technique. It is used for simultaneous and quantitative analysis of elemental depth distributions of light and medium mass elements in both light and heavy matrices. Contrary to silicon particle detectors, the efficiency of the carbon-foil MCP time detectors in TOF system depends on energy and electronic stopping power of analyzing recoil atoms in the C foil and it is often less than 100% for light elements (H, He, Li). This is particularly critical for hydrogen isotopes where detection efficiency can be drastically reduced (∼ 10%). Therefore, TOF ERDA spectrometers were so far not the best choice for depth profiling and quantification of light elements. To improve the detection efficiency of TOF ERDA, the electron emission of C foils (∼ 0.3 μg/cm 2 ) has been enhanced by evaporating a thin LiF layer on the foil. That procedure improved significantly detection efficiency of hydrogen and other light elements, making TOF ERDA spectrometer more suitable for multielemental analysis applications. The capabilities of upgraded spectrometer were demonstrated on samples with well known as well as unknown concentration and depth distribution of H and D.(author)

  11. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  12. Improvements in irrigation system modelling when using remotely sensed ET for calibration

    Science.gov (United States)

    van Opstal, J. D.; Neale, C. M. U.; Lecina, S.

    2014-10-01

    Irrigation system modelling is often used to aid decision-makers in the agricultural sector. It gives insight on the consequences of potential management and infrastructure changes. However, simulating an irrigation district requires a considerable amount of input data to properly represent the system, which is not easily acquired or available. During the simulation process, several assumptions have to be made and the calibration is usually performed only with flow measurements. The advancement of estimating evapotranspiration (ET) using remote sensing is a welcome asset for irrigation system modelling. Remotely-sensed ET can be used to improve the model accuracy in simulating the water balance and the crop production. This study makes use of the Ador-Simulation irrigation system model, which simulates water flows in irrigation districts in both the canal infrastructure and on-field. ET is estimated using an energy balance model, namely SEBAL, which has been proven to function well for agricultural areas. The seasonal ET by the Ador model and the ET from SEBAL are compared. These results determine sub-command areas, which perform well under current assumptions or, conversely, areas that need re-evaluation of assumptions and a re-run of the model. Using a combined approach of the Ador irrigation system model and remote sensing outputs from SEBAL, gives great insights during the modelling process and can accelerate the process. Additionally cost-savings and time-savings are apparent due to the decrease in input data required for simulating large-scale irrigation areas.

  13. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Directory of Open Access Journals (Sweden)

    Jan U. H. Eitel

    2010-03-01

    Full Text Available Active ground optical remote sensing (AGORS devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm and near-infrared (>760 nm reflectance AGORS devices have recently become available that also measure red-edge (730 nm reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris. Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69 when compared to those without (r2 = 0.57, RMSE = 2.11.

  14. Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval

    Directory of Open Access Journals (Sweden)

    S. G. García Galiano

    2015-05-01

    Full Text Available Population growth and intense consumptive water uses are generating pressures on water resources in the southeast of Spain. Improving the knowledge of the climate change impacts on water cycle processes at the basin scale is a step to building adaptive capacity. In this work, regional climate model (RCM ensembles are considered as an input to the hydrological model, for improving the reliability of hydroclimatic projections. To build the RCMs ensembles, the work focuses on probability density function (PDF-based evaluation of the ability of RCMs to simulate of rainfall and temperature at the basin scale. To improve the spatial calibration of the continuous hydrological model used, an algorithm for remote sensing actual evapotranspiration (AET retrieval was applied. From the results, a clear decrease in runoff is expected for 2050 in the headwater basin studied. The plausible future scenario of water shortage will produce negative impacts on the regional economy, where the main activity is irrigated agriculture.

  15. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Zhang, Haizhou; Duan, Wenjing; Liang, Tianchen; Wu, Shuaipeng

    2018-02-01

    The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.

  16. Studying the influence of stem composition in pH-sensitive molecular beacons onto their sensing properties.

    Science.gov (United States)

    Dembska, Anna; Kierzek, Elzbieta; Juskowiak, Bernard

    2017-10-16

    Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Remote sensing data handling to improve the system integration of indonesian national spatial data infrastructure

    International Nuclear Information System (INIS)

    Hari, G. R. V.

    2010-01-01

    With the usage of metadata as a reference for spatial data query, remote sensing images and other spatial datasets have been linked to their related semantic information. In the current catalogue systems, like those or satellite data provides, or clearinghouses, each remote sensing image is maintained as an independent entity. There is a very limited possibility to know the linkage of one image to another, even if one image has actually been derived from the other. It is an advantage for many purposes if the linkage among remote sensing image or other spatial data can be maintained or at least reconstructed. This research will explore how an image is linked to its related information, and how an image can be linked to another images. By exploring links among remote sensing images, a query of remote sensing data collection can be extended, for example, to find the answer of the query: 'which images are used to create certain dataset?', or 'which images have been created from a concrete dataset?', or 'is there a relationship between image A and image B based on their processing steps?'. By building links among spatial datasets in a collection based on their creation process, a further possibility of spatial data organization can be supported. The applicability and compatibility of the proposed method with the current platform is also considered. The proposed method can be implemented using the same standard and protocol and using the same metadata file as used by the existing system. This approach makes it also possible to be implemented in many countries which use the same infrastructure. To prove this purpose, we develop a prototype based on open source platform, including PostgreSQL, Apache Webserver, Mapserver WebGIS, and PHP programming environment. The output of this research leads to an improvement of spatial data handling, where an adjacency list is used to maintain spatial dataset history link. This improvement can enhance the query of spatial data in a

  18. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon.

    Science.gov (United States)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO3 nanoparticles (nano-CaCO3) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO3. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L(-1) for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.

    Science.gov (United States)

    Hinson, Brian T; Morgansen, Kristi A

    2015-10-06

    The wings of the hawkmoth Manduca sexta are lined with mechanoreceptors called campaniform sensilla that encode wing deformations. During flight, the wings deform in response to a variety of stimuli, including inertial-elastic loads due to the wing flapping motion, aerodynamic loads, and exogenous inertial loads transmitted by disturbances. Because the wings are actuated, flexible structures, the strain-sensitive campaniform sensilla are capable of detecting inertial rotations and accelerations, allowing the wings to serve not only as a primary actuator, but also as a gyroscopic sensor for flight control. We study the gyroscopic sensing of the hawkmoth wings from a control theoretic perspective. Through the development of a low-order model of flexible wing flapping dynamics, and the use of nonlinear observability analysis, we show that the rotational acceleration inherent in wing flapping enables the wings to serve as gyroscopic sensors. We compute a measure of sensor fitness as a function of sensor location and directional sensitivity by using the simulation-based empirical observability Gramian. Our results indicate that gyroscopic information is encoded primarily through shear strain due to wing twisting, where inertial rotations cause detectable changes in pronation and supination timing and magnitude. We solve an observability-based optimal sensor placement problem to find the optimal configuration of strain sensor locations and directional sensitivities for detecting inertial rotations. The optimal sensor configuration shows parallels to the campaniform sensilla found on hawkmoth wings, with clusters of sensors near the wing root and wing tip. The optimal spatial distribution of strain directional sensitivity provides a hypothesis for how heterogeneity of campaniform sensilla may be distributed.

  20. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  1. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    Science.gov (United States)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  2. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    Science.gov (United States)

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    Science.gov (United States)

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  4. Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin

    International Nuclear Information System (INIS)

    Zhang, Rongli; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2015-01-01

    A voltammetric sensor for hemoglobin (Hb) was prepared from molecularly imprinted polymer nanoparticles (MINPs) via electrophoretic deposition. A photo-sensitive copolymer composed of poly-γ-glutamic grafted with the fluorophore 7-amino-4-methylcoumarin was converted into nanoparticles that were imprinted with Hb. The resultant MINPs were then placed on a glassy carbon electrode (GCE) via electrophoretic deposition. Subsequent photo-crosslinking locks the recognition sites. The template was removed by extraction with a mixture of acetic acid and methanol at a ratio of 1:9 (v:v) to obtain a voltammetric sensor for Hb. The current response of the sensor at a working voltage of −260 mV is linearly related to the concentration of Hb in the range from 5 to 100 μg mL −1 , and recoveries range from 98.7 to 102.3 %. Compared to the respective non-imprinted nanoparticles, the sensor displays high recognition capability and affinity for Hb. (author)

  5. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    Science.gov (United States)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  6. Solid polymeric electrolyte based dye-sensitized solar cell with improved stability

    Science.gov (United States)

    Prasad, Narottam; Kumar, Manish; Patel, K. R.; Roy, M. S.

    2018-05-01

    The impact of polymeric electrolyte was investigated over the performance of dye-sensitized solar cell made with Rose Bengal as sensitizer. Further, the selective influence of TiCl4 treatment and pre-sensitizer deoxycholic acid on nc-TiO2 photoanode was determined in terms of improvement in conversion efficiency of the cell. It is found that the effect of TiCl4 treatment was comparatively more than pre-sensitization with de-oxy cholic acid towards improving the efficiency of the cell. The conversion efficiency on TiCl4 treatment was 0.2% whereas on pre-sensitization with deoxy chollic acid it was 0.1%. The combined effect of both TiCl4 treatment & pre-sensitization with deoxycholic acid leads conversion efficiency to 0.33%.

  7. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  8. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms

    International Nuclear Information System (INIS)

    Vicentini, Fernando Campanhã; Ravanini, Amanda E.; Figueiredo-Filho, Luiz C.S.; Iniesta, Jesús; Banks, Craig E.; Fatibello-Filho, Orlando

    2015-01-01

    Three different carbon black materials have been evaluated as a potential modifier, however, only one demonstrated an improvement in the electrochemical properties. The carbon black structures were characterised with SEM, XPS and Raman spectroscopy and found to be very similar to that of amorphous graphitic materials. The modifications utilised were constructed by three different strategies (using ultrapure water, chitosan and dihexadecylphosphate). The fabricated sensors are electrochemically characterised using N,N,N',N'-tetramethyl-para-phenylenediamine and both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(II) and hexaammineruthenium(III) chloride, in addition to the biologically relevant and electroactive analytes, dopamine (DA) and acetaminophen (AP). Comparisons are made with an edge-plane pyrolytic graphite and glassy-carbon electrode and the benefits of carbon black implemented as a modifier for sensors within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal significant improvements in the electrochemical performance (excellent sensitivity, faster heterogeneous electron transfer rate (HET)) over that of a bare glassy-carbon and edge-plane pyrolytic graphite electrode and thus suggest that there are substantial advantages of using carbon black as modifier in the fabrication of electrochemical based sensors. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials

  9. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

    Directory of Open Access Journals (Sweden)

    Yuting Yang

    2015-06-01

    Full Text Available Surface soil moisture (SM plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data based on a trapezoidal space defined by remotely sensed vegetation cover (Fc and land surface temperature (LST. Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed

  10. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    Science.gov (United States)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly

  11. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    Science.gov (United States)

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Katarina Marcinko

    2015-12-01

    Conclusions: These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  13. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice

    OpenAIRE

    Bradley, Richard L.; Jeon, Justin Y.; Liu, Fen-Fen; Maratos-Flier, Eleftheria

    2008-01-01

    Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high suc...

  14. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals.

    Science.gov (United States)

    Song, Kai; Mo, Jingang; Lu, Chengwen

    2017-05-15

    This paper reported two nanocomposite sensing platforms for Hg(II) detection with improved photostability, using two rhodamine derivatives as chemosensors and up-conversion nanocrystals as excitation host, respectively. There existed a secondary energy transfer from this excitation host to these chemosensors, which was confirmed by spectral analysis, energy transfer radius calculation and emission decay lifetime comparison. In this case, chemosensor photostability was greatly improved. Further analysis suggested that these chemosensors recognized Hg(II) following a simple binding stoichiometry of 1:1. Hg(II) sensing performance of these sensing platforms was analyzed through their emission spectra upon various Hg(II) concentrations. Emission spectral response, Stern-Volmer equation, emission stability and sensing selectivity were discussed in detail. It was finally concluded that these chemosensors showed emission turn on effect towards Hg(II), with high photostability, good selectivity and linear response. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays

    Directory of Open Access Journals (Sweden)

    José María Pousada-Carballo

    2013-11-01

    Full Text Available Future wireless communications are heading towards an all-Internet Protocol (all-IP design, and will rely on the Session Initiation Protocol (SIP to manage services, such as voice over IP (VoIP. The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT and dSIP.

  16. Improving management performance of P2PSIP for mobile sensing in wireless overlays.

    Science.gov (United States)

    Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María

    2013-11-08

    Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP.

  17. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  18. Calibration and Distortion Field Compensation of Gradiometer and the Improvement in Object Remote Sensing

    Directory of Open Access Journals (Sweden)

    Hu Xiangchao

    2016-01-01

    Full Text Available Magnetometer, misalignment error and distortion field can reduce the accuracy of gradiometers. So, it is important to calibrate and compensate gradiometers error. Scale factor, bias, nonorthogonality, misalignment and distortion field should be considered. A gradiometer is connected by an aluminium frame, which contains two fluxgate magnetometers. A nonmagnetic rotation equipment is used to change gradiometer attitude, and the compensation parameters are estimated. Experiment results show that, after calibration and compensation, error of each axis is reduced from 888.4 nT, 1292.6 nT and 168.9 nT to 15.3 nT, 22.1 nT and 9.9 nT, respectively. It shows that the proposed method can calibrate gradiometer and compensate distortion field. After calibration and compensation, the object remote sensing performance is improved.

  19. AquaUsers: Improving access to remotely sensed data for non-specialists

    Science.gov (United States)

    Clements, Oliver; Walker, Peter; Calton, Ben; Miller, Peter

    2015-04-01

    In recent years more and more complex remotely sensed data have been made available to the public by national and international agencies. These data are also reprocessed by different organisations to produce secondary products that are of specific need to a community. For instance the production of chlorophyll concentration maps from ocean colour data provided by NASA for the marine community. Providing access to such data has normally been focused on simply making the data available with appropriate metadata so that domain specialists can make use of it. One area that has seen significant investment, both of time and money, has been in the production of web based data portals. Primarily these have focused on spatial data. By providing a web map visualisation users are able to quickly assess both spatial coverage and data values. Data portal improvements have been possible thanks to advancements in back end data servers such as Thredds and ncWMS as well as improvements in front-end libraries for data visualisation including OpenLayers and D3. Data portals that make use of these technological advancements have aimed at improving the access and use of data by trained scientific domain specialists. There is now a push to improve access to these systems by non-scientific domain specialists through several European Commission funded projects, including OPEC and AquaUsers. These projects have improved upon an open source web GIS portal created by Plymouth Marine Laboratory [https://github.com/pmlrsg/GISportal]. We will present the latest version of our GIS portal, discuss the designs steps taken to achieve the latest build and share user stories as to how non-domain specialists are now able to utilise the system and get benefits from remotely sensed data. A first version was produced and disseminated to end users for feedback. At this stage the end users included government advisors, fish farmers and scientific groups with no specific GIS training or knowledge. This

  20. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    Science.gov (United States)

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Improved sensitivity and selectivity of uric acid voltammetric sensing with mechanically grinded carbon/graphite electrodes

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Vetterl, Vladimír; Jelen, František; Fojta, Miroslav

    2009-01-01

    Roč. 54, č. 6 (2009), s. 1864-1873 ISSN 0013-4686 R&D Projects: GA AV ČR(CZ) KAN200040651; GA ČR(CZ) GA203/07/1195; GA MŠk(CZ) LC06035; GA ČR(CZ) GA202/08/1688; GA AV ČR(CZ) IAA400040804 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : grinded carbon electrodes * voltammetry * uric acid Subject RIV: AQ - Safety, Health Protection, Human - Machine Impact factor: 3.325, year: 2009

  2. Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water.

    Science.gov (United States)

    Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir

    2018-01-10

    The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.

  3. Sensitivity of the improved Dutch tube diffusion test for detection of ...

    African Journals Online (AJOL)

    The sensitivity of the improved two-tube test for detection of antimicrobial residues in Kenyan milk was investigated by comparison with the commercial Delvo test SP. Suspect positive milk samples (n =244) from five milk collection centers, were analyzed with the improved two-tube and the commercial Delvo SP test as per ...

  4. Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite.

    Science.gov (United States)

    Wu, Hai; Fan, Suhua; Jin, Xiaoyan; Zhang, Hong; Chen, Hong; Dai, Zong; Zou, Xiaoyong

    2014-07-01

    Enzymatic sensors possess high selectivity but suffer from some limitations such as instability, complicated modified procedure, and critical environmental factors, which stimulate the development of more sensitive and stable nonenzymatic electrochemical sensors. Herein, a novel nonenzymatic electrochemical sensor is proposed based on a new zinc porphyrin-fullerene (C60) derivative (ZnP-C60), which was designed and synthesized according to the conformational calculations and the electronic structures of two typical ZnP-C60 derivatives of para-ZnP-C60 (ZnP(p)-C60) and ortho-ZnP-C60 (ZnP(o)-C60). The two derivatives were first investigated by density functional theory (DFT) and ZnP(p)-C60 with a bent conformation was verified to possess a smaller energy gap and better electron-transport ability. Then ZnP(p)-C60 was entrapped in tetraoctylammonium bromide (TOAB) film and modified on glassy carbon electrode (TOAB/ZnP(p)-C60/GCE). The TOAB/ZnP(p)-C60/GCE showed four well-defined quasi-reversible redox couples with extremely fast direct electron transfer and excellent nonenzymatic sensing ability. The electrocatalytic reduction of H2O2 showed a wide linear range from 0.035 to 3.40 mM, with a high sensitivity of 215.6 μA mM(-1) and a limit of detection (LOD) as low as 0.81 μM. The electrocatalytic oxidation of nitrite showed a linear range from 2.0 μM to 0.164 mM, with a sensitivity of 249.9 μA mM(-1) and a LOD down to 1.44 μM. Moreover, the TOAB/ZnP(p)-C60/GCE showed excellent stability and reproducibility, and good testing recoveries for analysis of the nitrite levels of river water and rainwater. The ZnP(p)-C60 can be used as a novel material for the fabrication of nonenzymatic electrochemical sensors.

  5. Improved drought monitoring in the Greater Horn of Africa by combining meteorological and remote sensing based indicators

    DEFF Research Database (Denmark)

    Horion, Stéphanie Marie Anne F; Kurnik, Blaz; Barbosa, Paulo

    2010-01-01

    , and therefore to better trigger timely and appropriate actions on the field. In this study, meteorological and remote sensing based drought indicators were compared over the Greater Horn of Africa in order to better understand: (i) how they depict historical drought events ; (ii) if they could be combined...... distribution. Two remote sensing based indicators were tested: the Normalized Difference Water Index (NDWI) derived from SPOT-VEGETATION and the Global Vegetation Index (VGI) derived form MERIS. The first index is sensitive to change in leaf water content of vegetation canopies while the second is a proxy...... of the amount and vigour of vegetation. For both indexes, anomalies were estimated using available satellite archives. Cross-correlations between remote sensing based anomalies and SPI were analysed for five land covers (forest, shrubland, grassland, sparse grassland, cropland and bare soil) over different...

  6. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Zhongxu Hu

    2016-10-01

    Full Text Available This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1 mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz.

  7. One-Port Electronic Detection Strategies for Improving Sensitivity in Piezoelectric Resonant Sensor Measurements

    Science.gov (United States)

    Hu, Zhongxu; Hedley, John; Keegan, Neil; Spoors, Julia; Gallacher, Barry; McNeil, Calum

    2016-01-01

    This paper describes a one-port mechanical resonance detection scheme utilized on a piezoelectric thin film driven silicon circular diaphragm resonator and discusses the limitations to such an approach in degenerate mode mass detection sensors. The sensor utilizes degenerated vibration modes of a radial symmetrical microstructure thereby providing both a sense and reference mode allowing for minimization of environmental effects on performance. The circular diaphragm resonator was fabricated with thickness of 4.5 µm and diameter of 140 µm. A PZT thin film of 0.75 µm was patterned on the top surface for the purposes of excitation and vibration sensing. The device showed a resonant frequency of 5.8 MHz for the (1, 1) mode. An electronic interface circuit was designed to cancel out the large static and parasitic capacitance allowing for electrical detection of the mechanical vibration thereby enabling the frequency split between the sense and reference mode to be measured accurately. The extracted motional current, proportional to the vibration velocity, was fed back to the drive to effectively increase the Q factor, and therefore device sensitivity, by more than a factor of 8. A software phase-locked loop was implemented to automatically track the resonant frequencies to allow for faster and accurate resonance detection. Results showed that by utilizing the absolute mode frequencies as an indication of sensor temperature, the variation in sensor temperature due to the heating from the drive electronics was accounted for and led to an ultimate measurement sensitivity of 2.3 Hz. PMID:27792154

  8. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    Science.gov (United States)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  9. An ultra-sensitive colorimetric Hg(2+)-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease.

    Science.gov (United States)

    Li, Chao; Dai, Peiqing; Rao, Xinyi; Shao, Lin; Cheng, Guifang; He, Pingang; Fang, Yuzhi

    2015-01-01

    This paper reports the development of an ultra-sensitive colorimetric method for the detection of trace mercury ions involving DNAzymes, Au nanoparticle aggregation, magnetic nanoparticles and an endonuclease. DNAzyme-sensing elements are conjugated to the surface of Au nanoparticle-2, which can crosslink with the T-rich strands coated on Au nanoparticle-1 to form Au nanoparticle aggregation. Other T-rich stands are immobilized on the surface of MNPs. The specific hybridization of these two T-rich strands depends on the presence of Hg(2+), resulting in the formation of a T-Hg(2+)-T structure. Added endonuclease then digests the hybridized strands, and DNAzyme-modified Au NP aggregation is released, catalysing the conversion of the colourless ABTS into a blue-green product by H2O2-mediated oxidation. The increase in the adsorption spectrum of ABTS(+) at 421 nm is related to the concentration of Hg(2+). This assay was validated by detecting mercury ion concentrations in river water. The colorimetric responses were not significantly altered in the presence of 100-fold excesses of other metal ions such as Zn(2+), Pb(2+), Cd(2+), Mn(2+), Ca(2+) and Ni(2+). The inclusion of both Au NP aggregation and an endonuclease enables the assay to eliminate interference from the magnetic nanoparticles with colorimetric detection, decrease the background and improve the detection sensitivity. The calibration curve of the assay was linear over the range of Hg(2+) concentrations from 1 to 30 nM, and the detection limit was 0.8 nM, which is far lower than the 10 nM US EPA limit for drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching.

    Science.gov (United States)

    Wang, Yanhu; Gao, Chaomin; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2016-11-15

    A platelike tungsten trioxide (WO3) sensitized with CdS quantum dots (QDs) heterojunction is developed for solar-driven, real-time, and selective photoelectrochemical (PEC) sensing of H2O2 in the living cells. The structure is synthesized by hydrothermally growing platelike WO3 on fluorine doped tin oxide (FTO) and subsequently sensitized with CdS QDs. The as-prepared WO3-CdS QDs heterojunction achieve significant photocurrent enhancement, which is remarkably beneficial for light absorption and charge carrier separation. Based on the enzymatic etching of CdS QDs enables the activation of quenching the charge transfer efficiency, thus leading to sensitive PEC recording of H2O2 level in buffer and cellular environments. The results indicated that the proposed method will pave the way for the development of excellent PEC sensing platform with the quantum dot sensitization. This study could also provide a new train of thought on designing of self-operating photoanode in PEC sensing, promoting the application of semiconductor nanomaterials in photoelectrochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  12. SenseCam improves memory for recent events and quality of life in a patient with memory retrieval difficulties.

    Science.gov (United States)

    Browne, Georgina; Berry, Emma; Kapur, Narinder; Hodges, Steve; Smyth, Gavin; Watson, Peter; Wood, Ken

    2011-10-01

    A wearable camera that takes pictures automatically, SenseCam, was used to generate images for rehearsal, promoting consolidation and retrieval of memories for significant events in a patient with memory retrieval deficits. SenseCam images of recent events were systematically reviewed over a 2-week period. Memory for these events was assessed throughout and longer-term recall was tested up to 6 months later. A written diary control condition followed the same procedure. The SenseCam review procedure resulted in significantly more details of an event being recalled, with twice as many details recalled at 6 months follow up compared to the written diary method. Self-report measures suggested autobiographical recollection was triggered by the SenseCam condition but not by reviewing the written diary. Emotional and social wellbeing questionnaires indicated improved confidence and decreased anxiety as a result of memory rehearsal using SenseCam images. We propose that SenseCam images provide a powerful boost to autobiographical recall, with secondary benefits for quality of life.

  13. Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay

    Science.gov (United States)

    Serebrennikova, Kseniya; Samsonova, Jeanne; Osipov, Alexander

    2018-06-01

    Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).

  14. Exercises focusing on rotator cuff and scapular muscles do not improve shoulder joint position sense in healthy subjects.

    Science.gov (United States)

    Lin, Yin-Liang; Karduna, Andrew

    2016-10-01

    Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  16. Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning.

    Directory of Open Access Journals (Sweden)

    Daniel Arribas-Bel

    Full Text Available This paper provides evidence on the usefulness of very high spatial resolution (VHR imagery in gathering socioeconomic information in urban settlements. We use land cover, spectral, structure and texture features extracted from a Google Earth image of Liverpool (UK to evaluate their potential to predict Living Environment Deprivation at a small statistical area level. We also contribute to the methodological literature on the estimation of socioeconomic indices with remote-sensing data by introducing elements from modern machine learning. In addition to classical approaches such as Ordinary Least Squares (OLS regression and a spatial lag model, we explore the potential of the Gradient Boost Regressor and Random Forests to improve predictive performance and accuracy. In addition to novel predicting methods, we also introduce tools for model interpretation and evaluation such as feature importance and partial dependence plots, or cross-validation. Our results show that Random Forest proved to be the best model with an R2 of around 0.54, followed by Gradient Boost Regressor with 0.5. Both the spatial lag model and the OLS fall behind with significantly lower performances of 0.43 and 0.3, respectively.

  17. Merging Remote Sensing and Socioeconomic Data to Improve Disaster Risk Assessment

    Science.gov (United States)

    Yetman, G.; Chen, R. S.; Huyck, C. K.

    2015-12-01

    Natural disasters disproportionately impact developing country economies while also impacting business operations for multi-national corporations that rely on supplies and manufacturing in affected areas. Understanding natural hazard risk is only a first step towards preparedness and mitigation—data on facilities, transportation, critical infrastructure, and populations that may be exposed to disasters is required to plan for events and properly assess risks. Detailed exposure data can be used in models to predict casualty rates, aggregate estimates of building damage or destruction, impacts on business operations, and the scale of recovery efforts required. These model outputs are useful for disaster preparedness planning by national and international organizations, as well as for corporations and the reinsurance industry seeking to better understand their risk exposure. Many of these data are lacking for developing countries. Rapid assessment in areas with minimal data for disaster modeling is possible by combing remote sensing data, sample data on construction methods, facility and critical infrastructure data, and economic and demographic census information. This presentation focuses on the methods used to fuse the physical and socioeconomic data by presenting the results from two projects. The first project seeks to improve earthquake risk assessments in Asia using for the reinsurance industry, while the second project builds an integrated exposure database across five countries in Africa for use by international development organizations.

  18. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  19. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''

    International Nuclear Information System (INIS)

    Escadafal, R.; Huete, A.

    1991-01-01

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [fr

  20. Sensitivity improvement of a laser interferometer limited by inelastic back-scattering, employing dual readout

    International Nuclear Information System (INIS)

    Meinders, Melanie; Schnabel, Roman

    2015-01-01

    Inelastic back-scattering of stray light is a long-standing and fundamental problem in high-sensitivity interferometric measurements and a potential limitation for advanced gravitational-wave (GW) detectors. The emerging parasitic interferences cannot be distinguished from a scientific signal via conventional single readout. In this work, we propose the subtraction of inelastic back-scatter signals by employing dual homodyne detection on the output light, and demonstrate it for a table-top Michelson interferometer. The additional readout contains solely parasitic signals and is used to model the scatter source. Subtraction of the scatter signal reduces the noise spectral density and thus improves the measurement sensitivity. Our scheme is qualitatively different from the previously demonstrated vetoing of scatter signals and opens a new path for improving the sensitivity of future GW detectors and other back-scatter limited devices. (paper)

  1. Sampling strategies to improve passive optical remote sensing of river bathymetry

    Science.gov (United States)

    Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.

    2018-01-01

    Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.

  2. Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence

    International Nuclear Information System (INIS)

    Niu, Tianye; Fruhauf, Quentin; Petrongolo, Michael; Zhu, Lei; Ye, Xiaojing

    2014-01-01

    Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai–Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp–Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations. (paper)

  3. Improved Mapping of Human Population and Settlements through Integration of Remote Sensing and Socioeconomic Data

    Science.gov (United States)

    de Sherbinin, A. M.; Yetman, G.; MacManus, K.; Vinay, S.

    2017-12-01

    The diversity of data on human settlements, infrastructure, and population continues to grow rapidly, with recent releases of data products based on a range of different remote sensing data sources as well as census and administrative data. We report here on recent improvements in data from the NASA Socioeconomic Data and Applications Center (SEDAC) and partner organizations, aimed at supporting both interdisciplinary research and real-world applications. The fourth version of SEDAC's Gridded Population of the World (GPWv4) now includes variables for age categories, gender, and urban/rural location, and has also been integrated with the Global Human Settlements (GHS) data developed by the Joint Research Centre of the European Commission to produce a GHS-POP grid for the years 1975, 1990, 2000 and 2015. Through a collaboration between Facebook's Connectivity Lab and the Center for International Earth Science Information Network (CIESIN), High Resolution Settlement Layer (HRSL) data derived from 50-cm DigitalGlobe imagery are now available for selected developing countries at 30-m resolution. SEDAC is also developing interactive mapping and analysis tools to facilitate visualization and access to these often large and complex data products. For example, SEDAC has collaborated with scientists from NASA's Goddard Space Flight Center to release the Global Man-made Impervious Surfaces & Settlement Extents from Landsat data at 30-m resolution through an innovative map interface. We also summarize recent progress in developing an international data collective that is bringing together both data developers and data users from the public and private sectors to collaborate on expanding data access and use, improving data quality and documentation, facilitating data intercomparison and integration, and sharing of resources and capabilities.

  4. Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction

    Science.gov (United States)

    Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.

    2010-12-01

    Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.

  5. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  6. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    2010-01-01

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  7. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  8. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    Science.gov (United States)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  9. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    Science.gov (United States)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  10. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study

    International Nuclear Information System (INIS)

    Zhang Yonghui; Chen Yabin; Zhou Kaige; Liu Caihong; Zeng Jing; Zhang Haoli; Peng Yong

    2009-01-01

    The interactions between four different graphenes (including pristine, B- or N-doped and defective graphenes) and small gas molecules (CO, NO, NO 2 and NH 3 ) were investigated by using density functional computations to exploit their potential applications as gas sensors. The structural and electronic properties of the graphene-molecule adsorption adducts are strongly dependent on the graphene structure and the molecular adsorption configuration. All four gas molecules show much stronger adsorption on the doped or defective graphenes than that on the pristine graphene. The defective graphene shows the highest adsorption energy with CO, NO and NO 2 molecules, while the B-doped graphene gives the tightest binding with NH 3 . Meanwhile, the strong interactions between the adsorbed molecules and the modified graphenes induce dramatic changes to graphene's electronic properties. The transport behavior of a gas sensor using B-doped graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. This work reveals that the sensitivity of graphene-based chemical gas sensors could be drastically improved by introducing the appropriate dopant or defect.

  11. Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pH-ISFET fabricated by CMOS compatible process

    International Nuclear Information System (INIS)

    Bunjongpru, W.; Sungthong, A.; Porntheeraphat, S.; Rayanasukha, Y.; Pankiew, A.; Jeamsaksiri, W.; Srisuwan, A.; Chaisriratanakul, W.; Chaowicharat, E.; Klunngien, N.; Hruanun, C.; Poyai, A.; Nukeaw, J.

    2013-01-01

    High sensitivity and very low drift rate pH sensors are successfully prepared by using nanocrystal-TiO 2 as sensing membrane of ion sensitive field effect transistor (ISFET) device fabricated via CMOS process. This paper describes the physical properties and sensing characteristics of the TiO 2 membrane prepared by annealing Ti and TiN thin films that deposited on SiO 2 /p-Si substrates through reactive DC magnetron sputtering system. The X-ray diffraction, scanning electron microscopy and Auger electron spectroscopy were used to investigate the structural and morphological features of deposited films after they had been subjected to annealing at various temperatures. The experimental results are interpreted in terms of the effects of amorphous-to-crystalline phase transition and subsequent oxidation of the annealed films. The electrolyte–insulator–semiconductor (EIS) device incorporating Ti-O-N membrane that had been obtained by annealing of TiN thin film at 850 °C exhibited a higher sensitivity (57 mV/pH), a higher linearity (1), a lower hysteresis voltage (1 mV in the pH cycle of 7 → 4 → 7 → 10 → 7), and a smaller drift rate (0.246 mV/h) than did those devices prepared at the other annealing temperatures. Furthermore, this pH-sensing device fabrication process is fully compatible with CMOS fabrication process technology.

  12. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    Science.gov (United States)

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  13. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  14. Importance of self-shielding for improving sensitivity coefficients in light water nuclear reactors

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2014-01-01

    Highlights: • A new method has been developed for calculating sensitivity coefficients. • This method is based on the use of infinite dilution cross-sections instead of effective cross-sections. • The change of self-shielding factor due to cross-section perturbation has been considered. • SRAC and SAINT codes are used for calculating improved sensitivities, while MCNP code has been used for verification. - Abstract: In order to perform sensitivity analyzes in light water reactors where self-shielding effect becomes important, a new method has been developed for calculating sensitivity coefficient of core characteristics relative to the infinite dilution cross-sections instead of the effective cross-sections. This method considers the change of the self-shielding factor due to cross-section perturbation for different nuclides and reactions. SRAC and SAINT codes are used to calculate the improved sensitivity; while the accuracy of the present method has been verified by MCNP code and good agreement has been found

  15. Remote Sensing Dynamic Monitoring of Biological Invasive Species Based on Adaptive PCNN and Improved C-V Model

    Directory of Open Access Journals (Sweden)

    PENG Gang

    2014-12-01

    Full Text Available Biological species invasion problem bring serious damage to the ecosystem, and have become one of the six major enviromental problems that affect the future economic development, also have become one of the hot topic in domestic and foreign scholars. Remote sensing technology has been successfully used in the investigation of coastal zone resources, dynamic monitoring of the resources and environment, and other fields. It will cite a new remote sensing image change detection algorithm based on adaptive pulse coupled neural network (PCNN and improved C-V model, for remote sensing dynamic monitoring of biological species invasion. The experimental results show that the algorithm is effective in the test results of biological species invasions.

  16. An enhanced electronic topology aimed at improving the phase sensitivity of GMI sensors

    International Nuclear Information System (INIS)

    Costa Silva, E; Gusmão, L A P; Hall Barbosa, C R; Costa Monteiro, E

    2014-01-01

    The giant magnetoimpedance effect (GMI) is used in the most recent technologies developed for the detection of magnetic fields, showing potential to be applied in the measurement of ultra-weak fields. GMI samples exhibit a huge dependency of their electrical impedance on the magnetic field, which makes them excellent magnetic sensors. In spite of GMI magnetometers being mostly based on magnitude impedance characteristics, it was previously verified that sensitivity could be significantly increased by reading the impedance phase. Pursuing this idea, a phase-based GMI magnetometer has been already developed as well as an electronic configuration capable of improving the phase sensitivity of GMI samples. However, when using this topology, it was noted that the sensitivity improvement comes at the cost of reduced voltage levels in the reading terminal, degrading the signal-to-noise ratio. Another drawback of the electronic configuration was that it was not capable of enforcing a linear behavior of the impedance phase in the function of the magnetic field in a given operation region. Aiming at overcoming those issues and then optimizing the behavior of the circuit developed to improve the phase sensitivity, this paper mathematically describes a completely new methodology, presents an enhanced newly developed electronic topology and exemplifies its application. (paper)

  17. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  18. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    OpenAIRE

    Flávia de Andrade e Souza Mazuchi; Aline Bigongiari; Juliana Valente Francica; Patricia Martins Franciulli; Luis Mochizuki; Joseph Hamill; Ulysses Fernandes Ervilha

    2018-01-01

    Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients). To compare the effect of two exercise training protocols (walking in deep water and on a treadmill) on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the ...

  19. Remote Sensing Characterization of the Urban Landscape for Improvement of Air Quality Modeling

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, in moderating ground-level ozone and air temperature, compared to "business as usual" simulations in which heat island mitigation strategies are not applied. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data has been found to better characterize low densityhburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for fiture scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the state Environmental Protection agency to evaluate how these

  20. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing

    Science.gov (United States)

    Antohe, Iulia; Spasic, Dragana; Delport, Filip; Li, Jiaqi; Lammertyn, Jeroen

    2017-05-01

    Merging surface plasmon resonance (SPR) to fiber optic (FO) technology has brought remarkable achievements in the field by offering attractive advantages over the conventional prism-based SPR platforms, such as simplicity, cost-effectiveness and miniaturization. However, the performance of the existing FO-SPR instruments mainly depends on the device surface condition and in particular on the structural aspect of the thin gold (Au) plasmonic film deposited on the FO substrate. In this work, a simple cost-effective colloidal lithography technique (CLT) was adapted and applied for the first time to the micrometer-sized FO substrate, to design end reflection-type FO-SPR sensors with periodic arrays of Au triangularly-shaped nanostructures on the Au mirror FO tip distal end. The nanopatterned FO-SPR sensor tips were afterwards subjected to refractometric measurements in a sucrose dilution series and subsequently compared with their non-patterned counterparts. It was observed that the spectral dips of the nanopatterned FO-SPR sensor tips were shifted towards longer wavelengths after CLT patterning. Moreover, the sensor sensitivity was improved with up to 25% compared to the conventional non-patterned FO-SPR devices. The obtained results represent important steps in the development of a new generation of FO-SPR sensors with improved performance, which can ultimately be used in various applications, ranging from food analysis and environmental monitoring, to health control and medical diagnosis.

  1. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs

    International Nuclear Information System (INIS)

    Lei, Yaguo; Zuo, Ming J

    2009-01-01

    A Hilbert–Huang transform (HHT) is a time–frequency technique and has been widely applied to analyzing vibration signals in the field of fault diagnosis of rotating machinery. It analyzes the vibration signals using intrinsic mode functions (IMFs) extracted using empirical mode decomposition (EMD). However, EMD sometimes cannot reveal the signal characteristics accurately because of the problem of mode mixing. Ensemble empirical mode decomposition (EEMD) was developed recently to alleviate this problem. The IMFs generated by EEMD have different sensitivity to faults. Some IMFs are sensitive and closely related to the faults but others are irrelevant. To enhance the accuracy of the HHT in fault diagnosis of rotating machinery, an improved HHT based on EEMD and sensitive IMFs is proposed in this paper. Simulated signals demonstrate the effectiveness of the improved HHT in diagnosing the faults of rotating machinery. Finally, the improved HHT is applied to diagnosing an early rub-impact fault of a heavy oil catalytic cracking machine set, and the application results prove that the improved HHT is superior to the HHT based on all IMFs of EMD

  2. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  3. Total sensitivity and uncertainty analysis for LWR pin-cells with improved UNICORN code

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei

    2017-01-01

    Highlights: • A new model is established for the total sensitivity and uncertainty analysis. • The NR approximation applied in S&U analysis can be avoided by the new model. • Sensitivity and uncertainty analysis is performed to PWR pin-cells by the new model. • The effects of the NR approximation for the PWR pin-cells are quantified. - Abstract: In this paper, improvements to the multigroup cross-section perturbation model have been proposed and applied in the self-developed UNICORN code, which is capable of performing the total sensitivity and total uncertainty analysis for the neutron-physics calculations by applying the direct numerical perturbation method and the statistical sampling method respectively. The narrow resonance (NR) approximation was applied in the multigroup cross-section perturbation model, implemented in UNICORN. As improvements to the NR approximation to refine the multigroup cross-section perturbation model, an ultrafine-group cross-section perturbation model has been established, in which the actual perturbations are applied to the ultrafine-group cross-section library and the reconstructions of the resonance cross sections are performed by solving the neutron slowing-down equation. The total sensitivity and total uncertainty analysis were then applied to the LWR pin-cells, using both the multigroup and the ultrafine-group cross-section perturbation models. The numerical results show that the NR approximation overestimates the relative sensitivity coefficients and the corresponding uncertainty results for the LWR pin-cells, and the effects of the NR approximation are significant for σ_(_n_,_γ_) and σ_(_n_,_e_l_a_s_) of "2"3"8U. Therefore, the effects of the NR approximation applied in the total sensitivity and total uncertainty analysis for the neutron-physics calculations of LWR should be taken into account.

  4. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    Science.gov (United States)

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  5. Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity- and Pressure-Sensing Skins.

    Science.gov (United States)

    Lai, Ying-Chih; Deng, Jianan; Liu, Ruiyuan; Hsiao, Yung-Chi; Zhang, Steven L; Peng, Wenbo; Wu, Hsing-Mei; Wang, Xingfu; Wang, Zhong Lin

    2018-06-04

    Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism-like adaptive bodies have shown great potential in vast robot-human and robot-environment applications. Developing skin-like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self-powered active triboelectric robotic skins (tribo-skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low-pressure regime. The tribo-skins can actively sense proximity, contact, and pressure to external stimuli via self-generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo-skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self-generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sensing properties of separative paper-based extended-gate ion-sensitive field-effect transistor for cost effective pH sensor applications

    Science.gov (United States)

    Cho, Won-Ju; Lim, Cheol-Min

    2018-02-01

    In this study, we developed a cost-effective ion-sensing field-effect transistor (FET) with an extended gate (EG) fabricated on a separative paper substrate. The pH sensing characteristics of the paper EG was compared with those of other EGs fabricated on silicon, glass, or polyimide substrates. The fabricated paper-based EGFET exhibited excellent sensitivity close to the Nernst response limit as well as to that of the other substrate-based EGFETs. In addition, we found that all EGFETs, regardless of the substrate, have similar non-ideal behavior, i.e., drift phenomenon and hysteresis width. To investigate the degradation and durability of the paper EG after prolonged use, aging-effect tests were carried out in terms of the hysteresis width and sensitivity over a course of 30 days. As a result, the paper EG maintained stable pH sensing characteristics after 30 days. Therefore, we expect that paper EGFETs can provide a cost-effective sensor platform.

  7. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    Science.gov (United States)

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  8. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  9. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  10. Improvement technique of sensitized HAZ by GTAW cladding applied to a BWR power plant

    International Nuclear Information System (INIS)

    Tujimura, Hiroshi; Tamai, Yasumasa; Furukawa, Hideyasu; Kurosawa, Kouichi; Chiba, Isao; Nomura, Keiichi.

    1995-01-01

    A SCC(Stress Corrosion Cracking)-resistant technique, in which the sleeve installed by expansion is melted by GTAW process without filler metal with outside water cooling, was developed. The technique was applied to ICM (In-Core Monitor) housings of a BWR power plant in 1993. The ICM housings of which materials are type 304 Stainless Steels are sensitized with high tensile residual stresses by welding to the RPV (Reactor Pressure Vessel). As the result, ICM housings have potential of SCC initiation. Therefore, the improvement technique resistant to SCC was needed. The technique can improve chemical composition of the housing inside and residual stresses of the housing outside at the same time. Sensitization of the housing inner surface area is eliminated by replacing low-carbon with proper-ferrite microstructure clad. High tensile residual stresses of housing outside surface area is improved into compressive side. Compressive stresses of outside surface are induced by thermal stresses which are caused by inside cladding with outside water cooling. The clad is required to be low-carbon metal with proper ferrite and not to have the new sensitized HAZ (Heat Affected Zone) on the surface by cladding. The effect of the technique was qualified by SCC test, chemical composition check, ferrite content measurement and residual stresses measurement etc. All equipment for remote application were developed and qualified, too. The technique was successfully applied to a BWR plant after sufficient training

  11. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  12. Image Processing Tools for Improved Visualization and Analysis of Remotely Sensed Images for Agriculture and Forest Classifications

    OpenAIRE

    SINHA G. R.

    2017-01-01

    This paper suggests Image Processing tools for improved visualization and better analysis of remotely sensed images. There are methods already available in literature for the purpose but the most important challenge among the limitations is lack of robustness. We propose an optimal method for image enhancement of the images using fuzzy based approaches and few optimization tools. The segmentation images subsequently obtained after de-noising will be classified into distinct information and th...

  13. Fusing Mobile In Situ Observations and Satellite Remote Sensing of Chemical Release Emissions to Improve Disaster Response

    Directory of Open Access Journals (Sweden)

    Ira Leifer

    2016-09-01

    Full Text Available Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and spacebased remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response.Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG Surveyor, a commuter car modified for science. Mobile surface in situ CH4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr-1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. This study demonstrated a novel application of satellite aerosol remote

  14. Intervention to Improve Engineering Self-Efficacy and Sense of Belonging of First-Year Engineering Students

    Science.gov (United States)

    Jordan, Kari L.

    /her physiological state, and social persuasions, such as student-professor interaction. Increasing the awareness of a student's engineering self-efficacy could potentially improve sense of belonging and persistence for underrepresented minority students in engineering. The hypothesis of this study is that an intervention during the first semester of an incoming freshman's tenure can help improve their engineering self-efficacy, sense of belonging, and overall retention in the engineering program. This study explored the following research questions: 1. What are the differences in engineering self-efficacy, and sense of belonging for first-year underrepresented minority engineering students compared to majority students? 2. What factors or variables should be considered and/or addressed in designing an intervention to increase engineering self-efficacy and sense of belonging amongst first-year underrepresented minority engineering students? 3. Can a small intervention during the beginning of the first semester improve a student's sense of belonging, engineering self-efficacy, and student-professor interaction? Using the race, social fit, and achievement study by Walton and Cohen as a model, the author developed an intervention consisting of short compelling videos of upperclass engineering students from diverse backgrounds. In these videos, students discussed their pursuit of the engineering degree, what obstacles they faced in terms of sense of belonging and coping efficacy, and how they overcame those obstacles. Treatment groups of students watched the videos during the first few weeks of the semester, and pre and post tests were administered to measure mean gains in the student's engineering self-efficacy, sense of belonging, and other variables. The results showed that underrepresented minority students had a lower sense of belonging than whites. The intervention used in the study contributed to mean gain increases in participants' engineering self-efficacy, which could

  15. Auditory-somatosensory temporal sensitivity improves when the somatosensory event is caused by voluntary body movement

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2016-12-01

    Full Text Available When we actively interact with the environment, it is crucial that we perceive a precise temporal relationship between our own actions and sensory effects to guide our body movements.Thus, we hypothesized that voluntary movements improve perceptual sensitivity to the temporal disparity between auditory and movement-related somatosensory events compared to when they are delivered passively to sensory receptors. In the voluntary condition, participants voluntarily tapped a button, and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either 'sound-first' or 'touch-first' responses. We found that the performance of temporal order judgment (TOJ in the voluntary condition (as indexed by the just noticeable difference was significantly better (M=42.5 ms ±3.8 s.e.m than that when their finger was passively stimulated (passive condition: M=66.8 ms ±6.3 s.e.m. We further examined whether the performance improvement with voluntary action can be attributed to the prediction of the timing of the stimulation from sensory cues (sensory-based prediction, kinesthetic cues contained in voluntary action, and/or to the prediction of stimulation timing from the efference copy of the motor command (motor-based prediction. When the participant’s finger was moved passively to press the button (involuntary condition and when three noise bursts were presented before the target burst with regular intervals (predictable condition, the TOJ performance was not improved from that in the passive condition. These results suggest that the improvement in sensitivity to temporal disparity between somatosensory and auditory events caused by the voluntary action cannot be attributed to sensory-based prediction and kinesthetic cues. Rather, the prediction from the efference copy of the motor command would be crucial for improving the temporal sensitivity.

  16. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications

    International Nuclear Information System (INIS)

    Penza, M; Tagliente, M A; Aversa, P; Re, M; Cassano, G

    2007-01-01

    HiPco (high-pressure CO dissociation process) single-walled carbon nanotube (SWCNT) bundles containing Fe particles were purified in a two-step purification process by thermal annealing in oxygen and post-treatment in HCl. Nanocomposite films of pristine and purified SWCNTs embedded in an organic matrix of cadmium arachidate (CdA) were prepared by a Langmuir-Blodgett (LB) molecular engineering technique with a fixed weight filler content of 75 wt% onto a surface acoustic wave (SAW) transducer operating as an oscillator at a frequency of 433 MHz. The raw and purified samples were characterized at various stages of the purification process using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), along with energy-dispersive x-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Functional characterizations of the SWCNT-nanocomposite-based SAW sensors were investigated towards methanol, isopropanol and ethanol, and demonstrated high sensitivity, reversibility, fast response and ppm level detection at room temperature. Results indicate that the sensitivity of the SAW sensors based on a nanocomposite film of oxygen-annealed SWCNTs is enhanced to the alcohols tested at room temperature. Purification of the SWCNTs in the nanocomposite film affects the SAW sensitivity to alcohol by modulating the sensing properties. The sensing mechanisms are analysed and discussed

  17. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M; Tagliente, M A; Aversa, P; Re, M; Cassano, G [ENEA, Department of Physical Technologies and New Materials, SS 7, Appia, km 714-72100 Brindisi (Italy)

    2007-05-09

    HiPco (high-pressure CO dissociation process) single-walled carbon nanotube (SWCNT) bundles containing Fe particles were purified in a two-step purification process by thermal annealing in oxygen and post-treatment in HCl. Nanocomposite films of pristine and purified SWCNTs embedded in an organic matrix of cadmium arachidate (CdA) were prepared by a Langmuir-Blodgett (LB) molecular engineering technique with a fixed weight filler content of 75 wt% onto a surface acoustic wave (SAW) transducer operating as an oscillator at a frequency of 433 MHz. The raw and purified samples were characterized at various stages of the purification process using thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), along with energy-dispersive x-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Functional characterizations of the SWCNT-nanocomposite-based SAW sensors were investigated towards methanol, isopropanol and ethanol, and demonstrated high sensitivity, reversibility, fast response and ppm level detection at room temperature. Results indicate that the sensitivity of the SAW sensors based on a nanocomposite film of oxygen-annealed SWCNTs is enhanced to the alcohols tested at room temperature. Purification of the SWCNTs in the nanocomposite film affects the SAW sensitivity to alcohol by modulating the sensing properties. The sensing mechanisms are analysed and discussed.

  18. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis.

    NARCIS (Netherlands)

    Tjalsma, H.; Koetje, E.J.; Kiewiet, R.; Kuipers, O.P.; Kolkman, M.J.M.; Laan, J.H. van der; Daskin, R.; Ferrari, E.; Bron, S.

    2004-01-01

    AIM: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. METHODS AND RESULTS: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr

  19. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis

    NARCIS (Netherlands)

    Tjalsma, H; Koetje, EJ; Kiewiet, R; Kuipers, OP; Kolkman, M; van der Laan, J; Daskin, R; Ferrari, E; Bron, S

    2004-01-01

    Aim: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. Methods and Results: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr

  20. Twenty weeks of computer-training improves sense of agency in children with spastic cerebral palsy

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Christensen, Mark Schram; Nielsen, Jens Bo

    2012-01-01

    Children with cerebral palsy (CP) show alteration of perceptual and cognitive abilities in addition to motor and sensory deficits, which may include altered sense of agency. The aim of this study was to evaluate whether 20 weeks of internet-based motor, perceptual and cognitive training enhances...

  1. Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling

    Directory of Open Access Journals (Sweden)

    Yvonne Walz

    2015-11-01

    Full Text Available Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.

  2. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  3. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  4. Making Sense of Learning at Secondary School: Involving Students to Improve Teaching Practice

    Science.gov (United States)

    Kane, Ruth G.; Maw, Nicola

    2005-01-01

    Consulting students on their experiences of learning and teaching in schools, while signalled as a potentially valuable research practice fifteen years ago by Michael Fullan, is now gaining prominence in educational research within New Zealand. The "Making Sense of Learning at Secondary Schools" research began with the premise that to…

  5. W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    International Nuclear Information System (INIS)

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-01-01

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W 18 O 49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W 18 O 49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W 18 O 49 NRs, and they are highly selective and sensitive to NH 3 , acetone, and H 2 S with short response and recovery times. The Ag/AgCl/W 18 O 49 NRs photocatlysts also possess higher photocatalytic performance than bare W 18 O 49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W 18 O 49 NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W 18 O 49 nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W 18 O 49 and AgCl. Highlights: → Ag/AgCl/W 18 O 49 NRs were successfully obtained via a clean photochemical route. → The Ag/AgCl nanoparticles decorated on the W 18 O 49 NRs possessed cladding structure. → The Ag/AgCl/W 18 O 49 NRs exhibited excellent gas-sensing and photocatalytic properties.

  6. Distributed fiber-optic temperature sensing: recent improvements and Nagra's applications in the Mont Terri URL

    International Nuclear Information System (INIS)

    Vogt, Tobias; Mueller, Herwig R.; Vietor, Tim; Frieg, Bernd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The application of fiber-optic sensors in large experiments in underground rock laboratories (URL) and for monitoring of pilot repositories offers several advantages in contrast to conventional sensors. By means of optical fibers distributed temperature and deformation measurements can be performed without electric or mechanical components at the measurement location reducing the risk of corrosion and sensor failure. As fiber-optic strain sensors are to some extend still in a prototype stage, we focus here on Raman spectra distributed fiber-optic temperature sensing (DTS). In DTS a fiber-optic cable, which is the temperature sensor, is connected to a light reading unit that sends laser-pulses into the fiber. The backscattered light is detected with high temporal resolution. From the two-way-light-travel-time the location of backscattering is determined. For the temperature information the amplitude ratio of the Stokes and anti-Stokes signals is analyzed. The Stokes and anti- Stokes signals are the result of the Raman effect. The ratio of these signals provides a quantity that depends only on the temperature of the fiber at the location of backscatter. With commercial DTS setups it is possible to measure the temperature distribution along several kilometer long cables with a temperature resolution of 0.01 C and a spatial resolution of 1 m. Recent developments in DTS focus on better temperature precision and resolution. This advancement can be achieved by experiment-specific calibration techniques and sensor-layout as well as improved instruments. To realize high spatial resolution (cm range) wrapped fiber-optic cables can be applied. Another promising approach to monitor moisture along a fiber-optic cable installed in unconsolidated material are heatable cables. We will present a selection of the most recent advancements which may improve temperature monitoring in natural and

  7. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  8. Engineering Sensitivity Improvement of Helium Mass Spectrometer Leak Detection System by Means Global Hard Vacuum Test

    International Nuclear Information System (INIS)

    Sigit Asmara Santa

    2006-01-01

    The engineering sensitivity improvement of Helium mass spectrometer leak detection using global hard vacuum test configuration has been done. The purpose of this work is to enhance the sensitivity of the current leak detection of pressurized method (sniffer method) with the sensitivity of 10 -3 ∼ 10 -5 std cm 3 /s, to the global hard vacuum test configuration method which can be achieved of up to 10 -8 std cm 3 /s. The goal of this research and development is to obtain a Helium leak test configuration which is suitable and can be used as routine bases in the quality control tests of FPM capsule and AgInCd safety control rod products. The result is an additional instrumented vacuum tube connected with conventional Helium mass spectrometer. The pressure and temperature of the test object during the leak measurement are simulated by means of a 4.1 kW capacity heater and Helium injection to test object, respectively. The addition of auxiliary mechanical vacuum pump of 2.4 l/s pumping speed which is directly connected to the vacuum tube, will reduce 86 % of evacuation time. The reduction of the measured sensitivity due to the auxiliary mechanical vacuum pump can be overcome by shutting off the pump soon after Helium mass spectrometer reaches its operating pressure condition. (author)

  9. High intensity interval training improves liver and adipose tissue insulin sensitivity

    Science.gov (United States)

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  10. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    Science.gov (United States)

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  12. On the possibility of improving the sensitivity of dark-matter detection

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, E.A.; Pilaftsis, A. (Dortmund Univ. (Germany, F.R.). Inst. fuer Physik); Zioutas, K. (Thessaloniki Univ. (Greece). Nuclear and Elementary Particle Physics Section)

    1990-02-22

    First we investigate the detectability of nuclear magnetic transitions produced by dark-matter particles. The M1 transitions are mediated by spin-dependent interactions between dark matter and nuclei. We assume that the dark matter consists mainly of photinos, and show that the expected rate is of the order of 1 event/kg/d for the excitation of nuclear magnetic states accompanied also by a recoiling nucleus. The de-excitation decay that follows, {approx equal} (ms-{mu}s), might later be observed as electromagnetic radiation in the GHz region in future, more sensitive, microwave devices. Secondly, we propose to utilize liquid-xenon detectors for measuring the energy of the recoiling nucleus, either through the Xe odd-isotopes or through other mixed atoms, such as hydrogen, with lowest masses. Furthermore the mass scale of these calorimeters (1-100 t) gives a greatly improved sensitivity for darkmatter detection compared with other conventional systems. (orig.).

  13. Radioimmunoassay of the myelin basic protein in biological fluids, conditions improving sensitivity and specificity

    International Nuclear Information System (INIS)

    Delassalle, A.; Jacque, C.; Raoul, M.; Legrand, J.C.; Cesselin, F.; Drouet, J.

    1980-01-01

    The radioimmunoassay (RIA) for myelin basic protein (MBP) in biological fluids was reassessed in order to improve its sensitivity and eliminate some interferences. By using the pre-incubation technique and the charcoal-dextram-horse serum mixture for the separation step, the detection limit could be lowered to 200 pg/ml for cerebrospinal fluids (CSF), amniotic fluids (AF) and nervous tissue extracts and 600 pg/ml for sera. The RIA could be used directly on CSF, AF and nervous tissue extracts. Sera, however, had to be heated in citrate buffer at 100 0 C in order to discard interfering material. The present method is 10 to 20 times more sensitive than others previously published. Moreover, it can be applied to amniotic fluid. The biological fluids had to be promptly frozen to avoid degradation of MBP

  14. Yellow filters can improve magnocellular function: motion sensitivity, convergence, accommodation, and reading.

    Science.gov (United States)

    Ray, N J; Fowler, S; Stein, J F

    2005-04-01

    The magnocellular system plays an important role in visual motion processing, controlling vergence eye movements, and in reading. Yellow filters may boost magnocellular activity by eliminating inhibitory blue input to this pathway. It was found that wearing yellow filters increased motion sensitivity, convergence, and accommodation in many children with reading difficulties, both immediately and after three months using the filters. Motion sensitivity was not increased using control neutral density filters. Moreover, reading-impaired children showed significant gains in reading ability after three months wearing the filters compared with those who had used a placebo. It was concluded that yellow filters can improve magnocellular function permanently. Hence, they should be considered as an alternative to corrective lenses, prisms, or exercises for treating poor convergence and accommodation, and also as an aid for children with reading problems.

  15. Improving sensitivity to magnetic fields and electric dipole moments by using measurements of individual magnetic sublevels

    Science.gov (United States)

    Tang, Cheng; Zhang, Teng; Weiss, David S.

    2018-03-01

    We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.

  16. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.

    Science.gov (United States)

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-27

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  17. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials

    Science.gov (United States)

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-01

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  18. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  19. The Improved Sensitivity to Crossmodal Asynchrony Caused by Voluntary Action: Comparing Combinations of Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Norimichi Kitagawa

    2011-10-01

    Full Text Available The brain has to assess the fine temporal relationship between voluntary actions and their sensory effects to achieve precise spatiotemporal control of body movement. Recently we found that voluntary action improved the subsequent perceptual temporal discrimination between somatosensory and auditory events. In voluntary condition, participants actively pressed a button and a noise burst was presented at various onset asynchronies relative to the button press. The participants made either ‘sound-first’ or ‘touch-first’ responses. We found that the temporal order judgment performance in the voluntary condition (as indexed by just noticeable difference was significantly better than that when their finger was passively stimulated (passive condition. Temporal attention and comparable involuntary movement did not explain the improvement caused by the voluntary action. The results suggest that predicting sensory consequences via a ‘forward’ model enhances perceptual temporal resolution for precise control of the body. The present study examined whether this improved temporal sensitivity caused by the voluntary action is also observed for the other combinations of sensory modalities. We compared the effects of voluntary action on the temporal sensitivity between auditory-somatosensory, visual-somatosensory, and somatosensory-somatosensory stimulus pairs.

  20. Improving Remote Sensing Scene Classification by Integrating Global-Context and Local-Object Features

    Directory of Open Access Journals (Sweden)

    Dan Zeng

    2018-05-01

    Full Text Available Recently, many researchers have been dedicated to using convolutional neural networks (CNNs to extract global-context features (GCFs for remote-sensing scene classification. Commonly, accurate classification of scenes requires knowledge about both the global context and local objects. However, unlike the natural images in which the objects cover most of the image, objects in remote-sensing images are generally small and decentralized. Thus, it is hard for vanilla CNNs to focus on both global context and small local objects. To address this issue, this paper proposes a novel end-to-end CNN by integrating the GCFs and local-object-level features (LOFs. The proposed network includes two branches, the local object branch (LOB and global semantic branch (GSB, which are used to generate the LOFs and GCFs, respectively. Then, the concatenation of features extracted from the two branches allows our method to be more discriminative in scene classification. Three challenging benchmark remote-sensing datasets were extensively experimented on; the proposed approach outperformed the existing scene classification methods and achieved state-of-the-art results for all three datasets.

  1. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    International Nuclear Information System (INIS)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    Graphical abstract: - Highlights: • A series of Na- and K-doped CuO were growth via SILAR method. • The hydration level monitoring activity has been tested with CuO films. • The highest sensing efficiency was obtained with 4 M% K. - Abstract: In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current–voltage (I–V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  2. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Bünyamin, E-mail: sahin38@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay, 31034 (Turkey); School of Engineering and Technology, Central Michigan University, Mt. Pleasant, 48859 (United States); Kaya, Tolga [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, 48859 (United States); Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, 48859 (United States)

    2016-01-30

    Graphical abstract: - Highlights: • A series of Na- and K-doped CuO were growth via SILAR method. • The hydration level monitoring activity has been tested with CuO films. • The highest sensing efficiency was obtained with 4 M% K. - Abstract: In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current–voltage (I–V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  3. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    Science.gov (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  4. Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE color filter pattern

    Science.gov (United States)

    DiBella, James; Andreghetti, Marco; Enge, Amy; Chen, William; Stanka, Timothy; Kaser, Robert

    2010-01-01

    The KODAK TRUESENSE Color Filter Pattern has technology that for the first time is applied to a commercially available interline CCD. This 2/3" true-HD sensor will be described along with its performance attributes, including sensitivity improvement as compared to the Bayer CFA version of the same sensor. In addition, an overview of the system developed for demonstration and evaluation will be provided. Examples of the benefits of the new technology in specific applications including surveillance and intelligent traffic systems will be discussed.

  5. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  6. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    of graphene, Since the discovery of graphene, series of two-dimensional (2-D) nanosheets materials such as metal oxides, metal hydroxides, transition metal chalcogenides (TMDs), boron nitride (BN) and black phosphorus have been of great interests, and have been extensively investigated for applications...... in electronics, lithium-ion batteries, catalysis and mechanical properties, etc. 2-D MOF nanosheets materials, as a new member of the 2-D nanomaterials family, are still at the very early stage. However, to the best of our knowledge, the 2-D MOF nanosheets materials for luminescent sensing have been rarely...

  7. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor.

    Science.gov (United States)

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok

    2015-01-01

    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and

  8. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  10. Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial.

    Science.gov (United States)

    Hou, Wenli; Liu, Xiaoying; Lu, Qiujun; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2018-02-01

    In this paper, the colorimetric sensing of H 2 O 2 related molecules and biothiols based on etching and anti-etching strategy was firstly proposed. Ag/carbon nanocomposite (Ag/C NC) was served as the sensing nanoprobe, which was synthesized via carbon dots (C-dots) as the reductant and stabilizer. The characteristic surface plasmon resonance (SPR) absorbance of Ag nanoparticles (AgNPs) was sensitive to the amount of hydrogen peroxide (H 2 O 2 ). It exhibited strong optical responses to H 2 O 2 with the solution colour changing from yellow to nearly colourless, which is resulted from the etching of Ag by H 2 O 2 . The sensing platform was further extended to detect H 2 O 2 related molecules such as lactate in coupling with the specific catalysis oxidation of L-lactate by lactate oxidase (LOx) and formation of H 2 O 2 . It provides wide linear range for detecting H 2 O 2 in 0.1-80μM and 80-220μM with the detection limit as low as 0.03μM (S/N=3). In the presence of biothiols, the etching from the H 2 O 2 can be hampered. Other biothiols exhibit anti-etching effects well. The strategy works well in detecting of typical biothiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). Thus, a simple colorimetric strategy for sensitive detection of H 2 O 2 and biothiols is proposed. It is believed that the colorimetric sensor based on etching and anti-etching strategy can be applied in other systems in chemical and biosensing areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jin-Dong Su

    2016-01-01

    Full Text Available An ultralight conducting polyaniline/SiC/polyacrylonitrile (PANI/SiC/PAN composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in SiC/PAN aerogel. The SiC/PAN aerogel was obtained by electrospinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscope (SEM, and voltage-current characteristic measurement. The thermostability of PANI/SiC/PAN composite was investigated by thermogravimetric analysis (TGA and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211 g cm−3, the porosity was 76.44%, and the conductivity was 0.013 S m−1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1 s. This composite may have application in pressure sensor field.

  12. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    International Nuclear Information System (INIS)

    Su, J. D.; Sun, J.L.; Chen, J.H.; Jia, X.Sh.; Li, J.T.; Yan, X.; Long, Y.Z.; Lou, T.; Yan, X.; Long, Y.Z.

    2016-01-01

    An ultra light conducting poly aniline/Si C/polyacrylonitrile (PANI/Si C/PAN) composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in Si C/PAN aerogel. The Si C/PAN aerogel was obtained by electro spinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and voltage-current characteristic measurement. The thermostability of PANI/Si C/PAN composite was investigated by thermogravimetric analysis (TGA) and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211gcm - 3, the porosity was 76.44%, and the conductivity was 0.013Sm - 1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1s). This composite may have application in pressure sensor field

  13. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism

    Science.gov (United States)

    van der Zijl, Nynke J.; Moors, Chantalle C.M.; Goossens, Gijs H.; Hermans, Marc M.H.; Blaak, Ellen E.; Diamant, Michaela

    2011-01-01

    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in β-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on β-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes. PMID:21330640

  14. Synthesis and characterization of Ag nanowires: Improved performance in dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Safia A. Kazmi

    2016-09-01

    Full Text Available Development of highly efficient dye-sensitized solar cells (DSSCs with good photovoltaic parameters is an active research area of current global interest. Recently, one dimensional nanomaterial, such as nanorods and nanotubes has replaced the nanoparticles used in DSSCs anode because of their ability to improve the electron transport leading to enhanced electron collection efficiency. In the present work, rapid synthesis of silver nanowires (AgNWs was done. The XRD characterization was performed to confirm the formation and size of synthesized AgNWs. It was observed that FWHM of the diffraction peaks was increased with AgNWs concentration in TiO2. The synthesized TiO2AgNWs nanocomposite was used as the photo anode of Dye sensitized solar cell. The I–V characteristics of the solar cell were drawn using standard conditions. It was observed that TiO2AgNWs based solar cells have significantly increased photocurrent density resulting in improved conversion efficiency as compared to pure TiO2 based DSSC.

  15. Detecting determinism with improved sensitivity in time series: rank-based nonlinear predictability score.

    Science.gov (United States)

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  16. Artemisia Extract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin.

    Science.gov (United States)

    Sun, Xia; Sun, Hong; Zhang, Jing; Ji, Xianghong

    2016-12-01

    Gestational diabetes mellitus (GDM) has affected a great number of pregnant women worldwide. Artemisia extracts have been found to exhibit a potent antidiabetic effect in the treatment of type 2 diabetes mellitus. We aimed to examine the effects of Artemisia extract on insulin resistance and lipid profiles in pregnant GDM patients. Patients in their second trimester were randomly assigned to the Artemisia extract group (AE) or to a placebo group (PO). They were instructed to consume either AE or PO daily for a period of 10 weeks. Glucose and insulin profiles and adiponectin level were assessed at baseline (week 0) and after the treatment (week 10). Compared to the PO group, fasting plasma glucose, serum insulin levels, homeostasis model of assessment of insulin resistance (HOMA-IR), and β-cell function (HOMA-B) were significantly reduced in the AE group participants. Moreover, levels of circulating adiponectin were also significantly up-regulated in the AE group, which also positively contributed to improved insulin sensitivity. Daily administration of Artemisia extract improves insulin sensitivity by up-regulating adiponectin in women with gestational diabetes mellitus. © 2016, The American College of Clinical Pharmacology.

  17. An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses

    International Nuclear Information System (INIS)

    Tang Yabing; Xing Da; Zhu Debin; Liu Jinfeng

    2007-01-01

    Recently, we have reported an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection of genetically modified organisms. The ECL-PCR method was further improved in the current study by introducing a multi-purpose nucleic acid sequence that was specific to the tris(bipyridine) ruthenium (TBR) labeled probe, into the 5' terminal of the primers. The method was applied to detect plant viruses. Conserved sequence of the plant viruses was amplified by PCR. The product was hybridized with a biotin labeled probe and a TBR labeled probe. The hybridization product was separated by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Under the optimized conditions, the experiment results show that the detection limit is 50 fmol of PCR products, and the signal-to-noise ratio is in excess of 14.6. The method was used to detect banana streak virus, banana bunchy top virus, and papaya leaf curl virus. The experiment results show that this method could reliably identity viruses infected plant samples. The improved ECL-PCR approach has higher sensitivity and lower cost than previous approach. It can effectively detect the plant viruses with simplicity, stability, and high sensitivity

  18. Improving Water Balance Estimation in the Nile by Combining Remote Sensing and Hydrological Modelling: a Template for Ungauged Basins

    Science.gov (United States)

    Gleason, C. J.; Wada, Y.; Wang, J.

    2017-12-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally, especially in international river basins. Remote sensing and water balance modelling are frequently cited as a potential solutions, but these techniques largely rely on the same in decline gauge data to constrain or parameterize discharge estimates, thus creating a circular approach to estimating discharge inapplicable to ungauged basins. To address this, we here combine a discontinued gauge, remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and Landsat data, and the PCR-GLOBWB hydrological model to estimate discharge for an ungauged time period for the Lower Nile (1978-present). Specifically, we first estimate initial discharges from 86 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the hydrologic model. Our tuning methodology is purposefully simple and can be easily applied to any model without the need for calibration/parameterization. The resulting tuned modelled hydrograph shows large improvement in flow magnitude over previous modelled hydrographs, and validation of tuned monthly model output flows against the historical gauge yields an RMSE of 343 m3/s (33.7%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: modelled flows have a one-to two-month wet season lag and a negative bias. More sophisticated model calibration and training (e.g. data assimilation) is needed to improve upon our results, however, our results achieved by coupling physical models and remote sensing is a promising first step and proof of concept toward future modelling of ungauged flows. This is especially true as massive cloud computing via Google Earth Engine makes our method easily applicable to any basin without current gauges. Finally, we purposefully do not offer prescriptive solutions for Nile management, and

  19. Improving sensitivity in micro-free flow electrophoresis using signal averaging

    Science.gov (United States)

    Turgeon, Ryan T.; Bowser, Michael T.

    2009-01-01

    Microfluidic free-flow electrophoresis (μFFE) is a separation technique that separates continuous streams of analytes as they travel through an electric field in a planar flow channel. The continuous nature of the μFFE separation suggests that approaches more commonly applied in spectroscopy and imaging may be effective in improving sensitivity. The current paper describes the S/N improvements that can be achieved by simply averaging multiple images of a μFFE separation; 20–24-fold improvements in S/N were observed by averaging the signal from 500 images recorded for over 2 min. Up to an 80-fold improvement in S/N was observed by averaging 6500 images. Detection limits as low as 14 pM were achieved for fluorescein, which is impressive considering the non-ideal optical set-up used in these experiments. The limitation to this signal averaging approach was the stability of the μFFE separation. At separation times longer than 20 min bubbles began to form at the electrodes, which disrupted the flow profile through the device, giving rise to erratic peak positions. PMID:19319908

  20. Improving Students’ Sense to Learn Language in Islamic Institution of Coastal Area Indonesia

    Science.gov (United States)

    Kuraedah, St.; Azaliah Mar, Nur; Gunawan, Fahmi

    2018-05-01

    This research aims to examine the ways to develop a sense of love for learning Arabic among students in Islamic Higher education of Indonesia. This study is essential to do because Arabic should be the favourite subject by the students. In addition, Arabic is also the language of Al-Qur’an. As the language of Al-Qur’an, Arabic for Indonesian is not a foreign language as other foreign languages. In fact, the Arabic becomes one of the dreaded subjects by most students, especially at State Islamic Institute of Kendari. Therefore, it takes the tips and efforts by the Arabic teachers to make Arabic more interesting for the students. The results show that one way to increase the motivation to learn Arabic for students is to develop students’ sense of love to Arabic. The teachers can do it by showing how easy Arabic is and how important it is since it is a language of religion and science, and providing the tips to learn the language. Besides, they also can explain some borrowing words from Arabic adopted into Indonesian and to be used in daily conversations without realizing it, and show the form of word derivation in Arabic that can help to enrich the Arabic vocabulary. The teacher should tell the students that knowing one word in Arabic can develop into some vocabulary with different meanings.

  1. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    Science.gov (United States)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  2. A Miniaturized Carbon Dioxide Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling with a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    A measurement concept has been realized for the detection of carbon dioxide, where the CO2 induced pressure generation by an enclosed pH-sensitive hydrogel is measured with a micro pressure sensor. The application of the sensor is the quantification of the partial pressure of CO2 (Pco2) in the

  3. Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study

    Science.gov (United States)

    Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.

    2008-09-01

    Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.

  4. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL assembly of single-walled carbon nanotubes (SWNTs and multilayer films composed of chitosan (CS, gold nanoparticles (GNp, and glucose oxidase (GOx to obtain high sensitivity and accuracy. The glucose sensor has following features: (1 direct electron transfer between GOx and the electrode surface; (2 on-a-chip; (3 glucose detection down to 0.1 mg/dL (5.6 μM; (4 good sensing linearity over 0.017–0.81 mM; (5 high sensitivity (61.4 μA/mM-cm2 with a small reactive area (8 mm2; (6 fast response; (7 high reproducibility and repeatability; (8 reliable and accurate saliva glucose detection. Thus, this disposable biosensor will be an alternative for real time tracking of glucose levels from body fluids, e.g. saliva, in a noninvasive, pain-free, accurate, and continuous way. In addition to being used as a disposable glucose biosensor, it also provides a suitable platform for on-chip electrochemical sensing for other chemical agents and biomolecules.

  5. A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongbo [College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); College of Chemistry and Biology Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); Li, Jing [College of Chemistry and Biology Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); Xu, Qin; Yang, Zhanjun [College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); Hu, Xiaoya, E-mail: xyhu@yzu.edu.cn [College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China)

    2013-03-05

    Highlights: ► A novel enzymeless photoelectrochemical sensor for 4-nitrophenolate contained OPs. ► Sensors have performances of rapid response, good sensitivity and selectivity. ► PTCA as sensitizer can form ultrastable thin film and is economic as well. ► The strategy extends the application of PTCA for photoelectrochemical sensor. - Abstract: A novel visible light sensitized photoelectrochemical sensing platform was constructed based on the perylene-3,4,9,10-tetracarboxylic acid/titanium dioxide (PTCA/TiO{sub 2}) heterojunction as the photoelectric beacon. PTCA was synthesized via facile steps of hydrolysis and neutralization reaction, and then the PTCA/TiO{sub 2} heterojunction was easily prepared by coating PTCA on nano-TiO{sub 2} surface. The resulting photoelectric beacon was characterized by transmission electron microscope, scanning electron microscopy, X-ray diffractometry, FTIR spectroscopy, and ultraviolet and visible spectrophotometer. Using parathion-methyl as a model, after a simple hydrolyzation process, p-nitrophenol as the hydrolysate of parathion-methyl could be obtained, the fabricated derivative photoelectrochemical sensor showed good performances with a rapid response, instrument simple and portable, low detection limit (0.08 nmol L{sup −1}) at a signal-to-noise ratio of 3, and good selectivity against other pesticides and possible interferences. It had been successfully applied to the detection of parathion-methyl in green vegetables and the results agreed well with that by GC–MS. This strategy not only extends the application of PTCA, but also presents a simple, economic and novel methodology for photoelectrochemical sensing.

  6. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  7. Pioglitazone improves insulin sensitivity, reduces visceral fat and stimulates lipolysis in non diabetic dialyzed patients

    Directory of Open Access Journals (Sweden)

    Anne Zanchi

    2012-06-01

    Full Text Available Insulin resistance is common in dialyzed patients and is associated with increased mortality and protein-energy wasting. The aim of this study was to investigate the effect of pioglitazone (PIO, a powerful insulin sensitizer, on insulin sensitivity, body composition and adipose tissue metabolism, in dialyzed patients. A double blind randomized cross-over study was performed in non diabetic dialysis patients. Each patient followed 2 treatment phases of 16 weeks, starting either with oral PIO 45 mg/d or placebo (PL, and then switched to the other phase. At the end of each phase, patients underwent hyperinsulinemic euglycemic clamps, dual energy X-ray absorptiometry, an abdominal CT, and extensive plasma biochemical analysis. Twelve patients including 8 HD (59.6±4.4 y and 4 PD patients (43.5±3.6 y were recruited. Nine patients completed both phases and 3 patients dropped out (renal transplantation/2 HD and peritonitis/1 PD. PIO was safe and well tolerated. Under PIO, insulin sensitivity improved, as assessed by increased total glucose disposal rate (1.98±0.24 for PIO versus 1.58±0.12 umol/kg/min for PL, p<0.05, and reduced glucose endogenous hepatic production. PIO did not affect post-dialysis body weight, total fat and lean body mass, but significantly reduced visceral adipose tissue (VAT area and the VAT/SAT (subcutaneous adipose tissue ratio. HDL-cholesterol significantly increased. PIO decreased CRP (3.96±1.44 mg/l vs 7.88±2.56, p<0.05, plasma leptin, and dramatically reduced leptin/adiponectin ratio. Glycerol turnover, circulating glycerol and non esterified fatty acids were paradoxically increased. In conclusion, the improvement in insulin sensitivity by PIO, in non diabetic dialyzed patients, was associated with favorable metabolic effects, reduction in inflammation and body fat redistribution. The stimulation of systemic lipolysis was a surprising finding which may reflect adipose tissue remodeling and/or a paradoxical lypolitic

  8. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2017-06-01

    Full Text Available A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  9. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements.

    Science.gov (United States)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-06-26

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  10. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    OpenAIRE

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-01-01

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ...

  11. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  12. Microcirculatory Improvement Induced by Laparoscopic Sleeve Gastrectomy Is Related to Insulin Sensitivity Retrieval.

    Science.gov (United States)

    Ministrini, Stefano; Fattori, Chiara; Ricci, Maria Anastasia; Bianconi, Vanessa; Paltriccia, Rita; Boni, Marcello; Paganelli, Maria Teresa; Vaudo, Gaetano; Lupattelli, Graziana; Pasqualini, Leonella

    2018-05-12

    Microvascular dysfunction is a potential factor explaining the association of obesity, insulin resistance, and vascular damage in morbidly obese subjects. The purpose of the study was to evaluate possible determinants of microcirculatory improvement 1 year after laparoscopic sleeve gastrectomy (LSG) intervention. Thirty-seven morbidly obese subjects eligible for bariatric surgery were included in the study. Post-occlusive reactive hyperemia (PORH) of the forearm skin was measured as area of hyperemia (AH) by laser-Doppler flowmetry before LSG and after a 1-year follow-up. After intervention, we observed a significant reduction in BMI, HOMA index, HbA1c, and a significant increase of AH in all patients after surgery; this variation was significant only in those patients having insulin resistance or prediabetes/diabetes. Although significant correlation between the increase of AH and the reduction of both BMI, HOMA index, and HbA1c was observed, BMI was the only independent predictor of AH variation after LSG at the linear regression analysis. Our study shows that LSG intervention is correlated with a significant improvement in the microvascular function of morbidly obese subjects; this improvement seems to be related to the baseline degree of insulin-resistance and to the retrieval of insulin-sensitivity post-intervention.

  13. Remote Sensing of Seagrass Leaf Area Index and Species: The Capability of a Model Inversion Method Assessed by Sensitivity Analysis and Hyperspectral Data of Florida Bay

    Directory of Open Access Journals (Sweden)

    John D. Hedley

    2017-11-01

    Full Text Available The capability for mapping two species of seagrass, Thalassia testudinium and Syringodium filiforme, by remote sensing using a physics based model inversion method was investigated. The model was based on a three-dimensional canopy model combined with a model for the overlying water column. The model included uncertainty propagation based on variation in leaf reflectances, canopy structure, water column properties, and the air-water interface. The uncertainty propagation enabled both a-priori predictive sensitivity analysis of potential capability and the generation of per-pixel error bars when applied to imagery. A primary aim of the work was to compare the sensitivity analysis to results achieved in a practical application using airborne hyperspectral data, to gain insight on the validity of sensitivity analyses in general. Results showed that while the sensitivity analysis predicted a weak but positive discrimination capability for species, in a practical application the relevant spectral differences were extremely small compared to discrepancies in the radiometric alignment of the model with the imagery—even though this alignment was very good. Complex interactions between spectral matching and uncertainty propagation also introduced biases. Ability to discriminate LAI was good, and comparable to previously published methods using different approaches. The main limitation in this respect was spatial alignment with the imagery with in situ data, which was heterogeneous on scales of a few meters. The results provide insight on the limitations of physics based inversion methods and seagrass mapping in general. Complex models can degrade unpredictably when radiometric alignment of the model and imagery is not perfect and incorporating uncertainties can have non-intuitive impacts on method performance. Sensitivity analyses are upper bounds to practical capability, incorporating a term for potential systematic errors in radiometric alignment may

  14. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  15. New features and improved uncertainty analysis in the NEA nuclear data sensitivity tool (NDaST)

    Science.gov (United States)

    Dyrda, J.; Soppera, N.; Hill, I.; Bossant, M.; Gulliford, J.

    2017-09-01

    Following the release and initial testing period of the NEA's Nuclear Data Sensitivity Tool [1], new features have been designed and implemented in order to expand its uncertainty analysis capabilities. The aim is to provide a free online tool for integral benchmark testing, that is both efficient and comprehensive, meeting the needs of the nuclear data and benchmark testing communities. New features include access to P1 sensitivities for neutron scattering angular distribution [2] and constrained Chi sensitivities for the prompt fission neutron energy sampling. Both of these are compatible with covariance data accessed via the JANIS nuclear data software, enabling propagation of the resultant uncertainties in keff to a large series of integral experiment benchmarks. These capabilities are available using a number of different covariance libraries e.g., ENDF/B, JEFF, JENDL and TENDL, allowing comparison of the broad range of results it is possible to obtain. The IRPhE database of reactor physics measurements is now also accessible within the tool in addition to the criticality benchmarks from ICSBEP. Other improvements include the ability to determine and visualise the energy dependence of a given calculated result in order to better identify specific regions of importance or high uncertainty contribution. Sorting and statistical analysis of the selected benchmark suite is now also provided. Examples of the plots generated by the software are included to illustrate such capabilities. Finally, a number of analytical expressions, for example Maxwellian and Watt fission spectra will be included. This will allow the analyst to determine the impact of varying such distributions within the data evaluation, either through adjustment of parameters within the expressions, or by comparison to a more general probability distribution fitted to measured data. The impact of such changes is verified through calculations which are compared to a `direct' measurement found by

  16. Feeling Better About Self After Receiving Negative Feedback: When the Sense That Ability Can Be Improved Is Activated.

    Science.gov (United States)

    Hu, Xinyi; Chen, Yinghe; Tian, Baowei

    2016-01-01

    Past studies suggest that managers and educators often consider negative feedback as a motivator for individuals to think about their shortcomings and improve their work, but delivering negative feedback does not always achieve desired results. The present study, based on incremental theory, employed an intervention method to activate the belief that a particular ability could be improved after negative feedback. Three experiments tested the intervention effect on negative self-relevant emotion. Study 1 indicated conveying suggestions for improving ability reduced negative self-relevant emotion after negative feedback. Study 2 tested whether activating the sense of possible improvement in the ability could reduce negative self-relevant emotion. Results indicated activating the belief that ability could be improved reduced negative self-relevant emotion after failure, but delivering emotion management information alone did not yield the same effect. Study 3 extended the results by affirming the effort participants made in doing the test, and found the affirmation reduced negative self-relevant emotion. Collectively, the findings indicated focusing on the belief that the ability could be improved in the future can reduce negative self-relevant emotion after negative feedback.

  17. A low-fat Diet improves insulin sensitivity in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Rosenfalck, AM; Almdal, Thomas Peter; Viggers, Lone

    2006-01-01

    diet (P = 0.039). The daily protein and carbohydrate intake increased (+4.4% of total energy intake, P = 0.0049 and +2.5%, P = 0.34, respectively), while alcohol intake decreased (-3.2% of total energy intake, P = 0.02). There was a significant improvement in insulin sensitivity on the isocaloric, low-fat......AIMS: To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes. METHODS: Thirteen Type 1 patients were...... by the insulin clamp technique at baseline and after each of the diet intervention periods. RESULTS: On an isocaloric low-fat diet, Type 1 diabetic patients significantly reduced the proportion of fat in the total daily energy intake by 12.1% (or -3.6% of total energy) as compared with a conventional diabetes...

  18. New C$_{6}$D$_{6}$ detectors: reduced neutron sensitivity and improved safety

    CERN Document Server

    Mastinu, Pierfrancesco; Berthoumieux, Eric; Cano-Ott, Daniel; Gramegna, F; Guerrero, Carlos; Massimi, Cristian; Milazzo, Paolo Maria; Mingrone, Federica; Praena, Javier; Prete, G; García, Aczel Regino

    2013-01-01

    During the 2011 data measurement campaign at n_TOF, the liquid scintillator detectors developed at FZK-Karlsruhe (hereafter named K6D6, [1]) and used with success along 10 years have shown ageing problems, mainly related to liquid leakage. The mould used to produce the carbon fiber structure, containing the liquid and the detection elements, was not available anymore and the technician involved in its construction was retired. Once decided to proceed to the production of new detectors (L6D6 in the following) two major items have been identified: - The detector setup must be able to work in the new class A experimental area (safety requirements advise to avoid the use of the old K6D6 in this area). - If possible, it is useful to reduce the neutron sensitivity, with the aim to have a liquid scintillator detector with very low neutron sensitivity (improving the already high performing K6D6). [1] R.Plag et al., NIM A496 (2003) 425

  19. Possibilities to improve sensitivity and rendering of detail of streamer chamber track photographs

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, J

    1975-01-01

    Streamer chambers are increasingly used as effective particle detectors in the field of experimental elementary particle physics. The photographic recording of high energy events in streamer chambers is limited by performance of current photographic silver-halide layers. Similar limiting problems occur in other fields as well, e.g., in astronomy, x-ray medicine and photogrammetry; therefore methods have been developed to increase sensitivity and improve the information transfer of the emulsion. In this paper these methods have been classified and summarized under the aspect of their application to streamer image recording. Proposals for further investigations are given. Especially the applicability of these methods, their possibility of combination to large film lengths should be investigated The detective quantum efficiency (DQE) is proposed as criterion to estimate and compare the different methods.

  20. Peripheral Hole Acceptor Moieties on an Organic Dye Improve Dye‐Sensitized Solar Cell Performance

    Science.gov (United States)

    Hao, Yan; Gabrielsson, Erik; Lohse, Peter William; Yang, Wenxing; Johansson, Erik M. J.; Hagfeldt, Anders

    2015-01-01

    Investigation of charge transfer dynamics in dye‐sensitized solar cells is of fundamental interest and the control of these dynamics is a key factor for developing more efficient solar cell devices. One possibility for attenuating losses through recombination between injected electrons and oxidized dye molecules is to move the positive charge further away from the metal oxide surface. For this purpose, a metal‐free dye named E6 is developed, in which the chromophore core is tethered to two external triphenylamine (TPA) units. After photoinduced electron injection into TiO2, the remaining hole is rapidly transferred to a peripheral TPA unit. Electron–hole recombination is slowed down by 30% compared to a reference dye without peripheral TPA units. Furthermore, it is found that the added TPA moieties improve the electron blocking effect of the dye, retarding recombination of electrons from TiO2 to the cobalt‐based electrolyte. PMID:27722076

  1. Improving the Design of Capacitive Micromachined Ultrasonic Transducers Aided with Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    A Martowicz

    2016-09-01

    Full Text Available The paper presents the results of analysis performed to search for feasible design improvements for capacitive micromachined ultrasonic transducer. Carried out search has been aided with the sensitivity analysis and the application of Response Surface Method. The multiphysics approach has been taken into account in elaborated finite element model of one cell of described transducer in order to include significant physical phenomena present in modelled microdevice. The set of twelve input uncertain and design parameters consists of geometric, material and control properties. The amplitude of dynamic membrane deformation of the transducer has been chosen as studied parameter. The objective of performed study has been defined as the task of finding robust design configurations of the transducer, i.e. characterizing maximal value of deformation amplitude with its minimal variation.

  2. Use of sensitivity, uncertainty and data adjustment analysis to improve nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Kodeli, I [CEA-Centre d' Etudes de Saclay, SERMA/LEPP, Gif sur Yvette (France); Sartori, E [OECD/ NEA Data Bank, Issy-les-Moulineaux (France); Remec, I [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Sensitivity and adjustment analysis provide some valuable information about the radiation transport calculations. Together they give us a clear insight into the importance of different calculational parameters and tell us how much we can trust our result. Without this information the calculation cannot be considered as comprehensive. On the other hand the adjustment permits the improvement of our data base and thus reduces the uncertainty of our target quantities for a range of specific applications. With the objective to validate the methodology used in the reactor shielding analysis, these techniques were applied to PWR power plants, manufactured by EDF (52 capsules analysed in France) and Westinghouse (capsule and cavity dosimetry for the Krsko NPP in Slovenia), as well as to the ASPIS benchmark experiment. (author)

  3. Improved sample preparation and counting techniques for enhanced tritium measurement sensitivity

    Science.gov (United States)

    Moran, J.; Aalseth, C.; Bailey, V. L.; Mace, E. K.; Overman, C.; Seifert, A.; Wilcox Freeburg, E. D.

    2015-12-01

    Tritium (T) measurements offer insight to a wealth of environmental applications including hydrologic tracking, discerning ocean circulation patterns, and aging ice formations. However, the relatively short half-life of T (12.3 years) limits its effective age dating range. Compounding this limitation is the decrease in atmospheric T content by over two orders of magnitude (from 1000-2000 TU in 1962 to testing in the 1960's. We are developing sample preparation methods coupled to direct counting of T via ultra-low background proportional counters which, when combined, offer improved T measurement sensitivity (~4.5 mmoles of H2 equivalent) and will help expand the application of T age dating to smaller sample sizes linked to persistent environmental questions despite the limitations above. For instance, this approach can be used to T date ~ 2.2 mmoles of CH4 collected from sample-limited systems including microbial communities, soils, or subsurface aquifers and can be combined with radiocarbon dating to distinguish the methane's formation age from C age in a system. This approach can also expand investigations into soil organic C where the improved sensitivity will permit resolution of soil C into more descriptive fractions and provide direct assessments of the stability of specific classes of organic matter in soils environments. We are employing a multiple step sample preparation system whereby organic samples are first combusted with resulting CO2 and H2O being used as a feedstock to synthesize CH4. This CH4 is mixed with Ar and loaded directly into an ultra-low background proportional counter for measurement of T β decay in a shallow underground laboratory. Analysis of water samples requires only the addition of geologic CO2 feedstock with the sample for methane synthesis. The chemical nature of the preparation techniques enable high sample throughput with only the final measurement requiring T decay with total sample analysis time ranging from 2 -5 weeks

  4. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    Science.gov (United States)

    Hao, L.; Lewin, P. L.; Swingler, S. G.

    2008-05-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC.

  5. Improving detection sensitivity for partial discharge monitoring of high voltage equipment

    International Nuclear Information System (INIS)

    Hao, L; Lewin, P L; Swingler, S G

    2008-01-01

    Partial discharge (PD) measurements are an important technique for assessing the health of power apparatus. Previous published research by the authors has shown that an electro-optic system can be used for PD measurement of oil-filled power transformers. A PD signal generated within an oil-filled power transformer may reach a winding and then travel along the winding to the bushing core bar. The bushing, acting like a capacitor, can transfer the high frequency components of the partial discharge signal to its earthed tap point. Therefore, an effective PD current measurement can be implemented at the bushing tap by using a radio frequency current transducer around the bushing-tap earth connection. In addition, the use of an optical transmission technique not only improves the electrical noise immunity and provides the possibility of remote measurement but also realizes electrical isolation and enhances safety for operators. However, the bushing core bar can act as an aerial and in addition noise induced by the electro-optic modulation system may influence overall measurement sensitivity. This paper reports on a machine learning technique, namely the use of a support vector machine (SVM), to improve the detection sensitivity of the system. Comparison between the signal extraction performances of a passive hardware filter and the SVM technique has been assessed. The results obtained from the laboratory-based experiment have been analysed and indicate that the SVM approach provides better performance than the passive hardware filter and it can reliably detect discharge signals with apparent charge greater than 30 pC

  6. Synthesis of photoluminescent o-phenylenediamine–m-phenylenediamine copolymer nanospheres: An effective fluorescent sensing platform for selective and sensitive detection of chromium(VI) ion

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xun [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Sun, Huaiyu [Applied Technique College of Southwest Peteoleum University, Nanchong 637002 (China); Yang, Siwei; Zhao, Shizhen [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China); Liao, Fang, E-mail: liaozhang2003@163.com [Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002 (China)

    2016-01-15

    In this paper, we demonstrated a fluorescent o-phenylenediamine–m-phenylenediamine copolymer sensing system, which was synthesized by a facile and one-step hydrothermal method. The copolymer was first used as fluorescent probe for the detection of Chromium(VI) ion (Cr{sup 6+}) and showed high selectivity and sensitivity. The detection limit was 1×10{sup −11} M. It showed excellent linear relationships in wide range of 7×10{sup −11}–6×10{sup −10} M. Moreover, the addition of ethylenediaminetetraacetate (EDTA) to the detection system could successfully combine with Cr{sup 6+} to form metal chelates, making the fluorescence recovery of o-phenylenediamine–m-phenylenediamine copolymer. What is important, the prepared process had no addition of initiating agent.

  7. Sensitivity of MODIS 2.1-(micrometers) Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.; Arnold, T.

    2000-01-01

    In this sensitivity study, we examined the ratio technique, the official method for remote sensing of aerosols over land from Moderate Resolution Imaging Spectroradiometer (MODIS) DATA, for view angles from nadir to 65 deg. off-nadir using Cloud Absorption Radiometer (CAR) data collected during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment conducted in 1995. For the data analyzed and for the view angles tested, results seem to suggest that the reflectance (rho)0.47 and (rho)0.67 are predictable from (rho)2.1 using: (rho)0.47 = (rho)2.1/6, which is a slight modification and (rho)0.67 = (rho)2.1/2. These results hold for target viewed from backscattered direction, but not for the forward direction.

  8. Tetra(p-tolyl)borate-functionalized solvent polymeric membrane: a facile and sensitive sensing platform for peroxidase and peroxidase mimetics.

    Science.gov (United States)

    Wang, Xuewei; Qin, Wei

    2013-07-22

    The determination of peroxidase activities is the basis for enzyme-labeled bioaffinity assays, peroxidase-mimicking DNAzymes- and nanoparticles-based assays, and characterization of the catalytic functions of peroxidase mimetics. Here, a facile, sensitive, and cost-effective solvent polymeric membrane-based peroxidase detection platform is described that utilizes reaction intermediates with different pKa values from those of substrates and final products. Several key but long-debated intermediates in the peroxidative oxidation of o-phenylenediamine (o-PD) have been identified and their charge states have been estimated. By using a solvent polymeric membrane functionalized by an appropriate substituted tetraphenylborate as a receptor, those cationic intermediates could be transferred into the membrane from the aqueous phase to induce a large cationic potential response. Thus, the potentiometric indication of the o-PD oxidation catalyzed by peroxidase or its mimetics can be fulfilled. Horseradish peroxidase has been detected with a detection limit at least two orders of magnitude lower than those obtained by spectrophotometric techniques and traditional membrane-based methods. As an example of peroxidase mimetics, G-quadruplex DNAzymes were probed by the intermediate-sensitive membrane and a label-free thrombin detection protocol was developed based on the catalytic activity of the thrombin-binding G-quadruplex aptamer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    Science.gov (United States)

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-07

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  10. Improved interior wall detection using designated dictionaries in compressive urban sensing problems

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-05-01

    In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.

  11. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    Science.gov (United States)

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  12. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    Directory of Open Access Journals (Sweden)

    Chi-Chun Chen

    Full Text Available This paper describes an infrared-sensing running wheel (ISRW system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA, with the IR sensors (which are connected to a conventional PC recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  13. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations

    Science.gov (United States)

    Patil, Amol; Ramsankaran, RAAJ

    2017-12-01

    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  14. Improvements to the hierarchically structured ZnO nanosphere based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongzhe; Wu Lihui; Liu Yanping; Xie Erqing, E-mail: zhangyzh04@126.co, E-mail: xieeq@lzu.edu.c [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2009-04-21

    Hierarchically structured ZnO nanospheres are synthesized by a wet-chemical method and ZnO sphere-consisting films are applied to dye-sensitized solar cells (DSSCs). It is found that the overall light-to-electricity conversion efficiency ({eta}) is significantly enhanced from 0.474% to 1.03% due to light scattering compared with the ZnO nanoparticle-based DSSC. However, the fill factor (FF) and open-circuit voltage (V{sub oc}) decrease obviously. After annealing the films in an oxygen environment and placing a ZnO blocking layer on the fluorine-doped SnO{sub 2} (FTO) conducting substrate, the FF and V{sub oc} are greatly improved and {eta} increases from 1.03% to 1.59% and 2.25%, respectively. According to the results of x-ray diffraction and photoluminescence, the significant improvements in the cell performances might be due to the suppression of the recombination and the decrease in the resistances existing in the cell.

  15. Improved sensitivity in patients with peripheral neuropathy: effects of monochromatic infrared photo energy.

    Science.gov (United States)

    DeLellis, Salvatore L; Carnegie, Dale H; Burke, Thomas J

    2005-01-01

    The medical records of 1,047 patients (mean age, 73 years) with established peripheral neuropathy were examined to determine whether treatment with monochromatic infrared photo energy was associated with increased foot sensitivity to the 5.07 Semmes-Weinstein monofilament. The peripheral neuropathy in 790 of these patients (75%) was due to diabetes mellitus. Before treatment with monochromatic infrared photo energy, of the ten tested sites (five on each foot), a mean +/- SD of 7.9 +/- 2.4 sites were insensitive to the 5.07 Semmes-Weinstein monofilament, and 1,033 patients exhibited loss of protective sensation. After treatment, the mean +/- SD number of insensate sites on both feet was 2.3 +/- 2.4, an improvement of 71%. Only 453 of 1,033 patients (43.9%) continued to have loss of protective sensation after treatment. Therefore, monochromatic infrared photo energy treatment seems to be associated with significant clinical improvement in foot sensation in patients, primarily Medicare aged, with peripheral neuropathy. Because insensitivity to the 5.07 Semmes-Weinstein monofilament has been reported to be a major risk factor for diabetic foot wounds, the use of monochromatic infrared photo energy may be associated with a reduced incidence of diabetic foot wounds and amputations.

  16. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Science.gov (United States)

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  17. Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Beili; Ryu, Chong-Min; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-11-01

    Highlights: • Silica nanoparticles were modified to carry the vinyl groups for photo-crosslinking. • Acrylic copolymer was modified to have the vinyl groups for photo-crosslinking. • Strong and extensive interfacial bondings were formed between polymer and silica. • Thermal stability of PSA was improved by forming nanocomposite with modified silica. -- Abstract: Pressure sensitive adhesives (PSAs) with higher thermal stability were successfully prepared by forming composite with the silica nanoparticles modified via reaction with 3-methacryloxypropyltrimethoxysilane. The acrylic copolymer was synthesized as a base resin for PSAs by solution polymerization of 2-EHA, EA, and AA with AIBN as an initiator. The acrylic copolymer was further modified with GMA to have the vinyl groups available for UV curing. The peel strength decreased with the increase of gel content which was dependent on both silica content and UV dose. Thermal stability of the composite PSAs was improved noticeably with increasing silica content and UV dose mainly due to the strong and extensive interfacial bonding between the organic polymer matrix and silica.

  18. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Daquan [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kita, Shota; Wang, Cheng; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Liang, Feng; Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Tian, Huiping; Ji, Yuefeng [State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-08-11

    We experimentally demonstrate a label-free sensor based on nanoslotted parallel quadrabeam photonic crystal cavity (NPQC). The NPQC possesses both high sensitivity and high Q-factor. We achieved sensitivity (S) of 451 nm/refractive index unit and Q-factor >7000 in water at telecom wavelength range, featuring a sensor figure of merit >2000, an order of magnitude improvement over the previous photonic crystal sensors. In addition, we measured the streptavidin-biotin binding affinity and detected 10 ag/mL concentrated streptavidin in the phosphate buffered saline solution.

  19. Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2010-07-01

    Though many studies concern the agro-food sector in the EU and Italy, and its environmental impacts, literature is quite lacking in works regarding LCA application on citrus products. This paper represents one of the first studies on the environmental impacts of citrus products in order to suggest feasible strategies and actions to improve their environmental performance. In particular, it is part of a research aimed to estimate environmental burdens associated with the production of the following citrus-based products: essential oil, natural juice and concentrated juice from oranges and lemons. The life cycle assessment of these products, published in a previous paper, had highlighted significant environmental issues in terms of energy consumption, associated CO(2) emissions, and water consumption. Starting from such results the authors carry out an improvement analysis of the assessed production system, whereby sustainable scenarios for saving water and energy are proposed to reduce environmental burdens of the examined production system. In addition, a sensitivity analysis to estimate the effects of the chosen methods will be performed, giving data on the outcome of the study. Uncertainty related to allocation methods, secondary data sources, and initial assumptions on cultivation, transport modes, and waste management is analysed. The results of the performed analyses allow stating that every assessed eco-profile is differently influenced by the uncertainty study. Different assumptions on initial data and methods showed very sensible variations in the energy and environmental performances of the final products. Besides, the results show energy and environmental benefits that clearly state the improvement of the products eco-profile, by reusing purified water use for irrigation, using the railway mode for the delivery of final products, when possible, and adopting efficient technologies, as the mechanical vapour recompression, in the pasteurisation and

  20. Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats.

    Science.gov (United States)

    Alves, Naiane F B; Porpino, Suênia K P; Monteiro, Matheus M O; Gomes, Enéas R M; Braga, Valdir A

    2015-04-01

    The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.

  1. Using Remotely Sensed Data to Automate and Improve Census Bureau Update Activities

    Science.gov (United States)

    Desch, A., IV

    2017-12-01

    Location of established and new housing structures is fundamental in the Census Bureau's planning and execution of each decennial census. Past Census address list compilation and update programs have involved sending more than 100,000 workers into the field to find and verify housing units. The 2020 Census program has introduced an imagery based In-Office Address Canvassing Interactive Review (IOAC-IR) program in an attempt to reduce the in-field workload. The human analyst driven, aerial image based IOAC-IR operation has proven to be a cost effective and accurate substitute for a large portion of the expensive in-field address canvassing operations. However, the IOAC-IR still required more than a year to complete and over 100 full-time dedicated employees. Much of the basic image analysis work done in IOAC-IR can be handled with established remote sensing and computer vision techniques. The experience gained from the Interactive Review phase of In-Office Address Canvassing has led to the development of a prototype geo-processing tool to automate much of this process for future and ongoing Address Canvassing operations. This prototype utilizes high-resolution aerial imagery and LiDAR to identify structures and compare their location to existing Census geographic information. In this presentation, we report on the comparison of this exploratory system's results to the human based IOAC-IR. The experimental image and LiDAR based change detection approach has itself led to very promising follow-on experiments utilizing very current, high repeat datasets and scalable cloud computing. We will discuss how these new techniques can be used to both aid the US Census Bureau meet its goals of identify all the housing units in the US as well as aid developing countries better identify where there population is currently distributed.

  2. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    Science.gov (United States)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  3. A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy

    Science.gov (United States)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2018-02-01

    Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.

  4. Assessing Error Correlations in Remote Sensing-Based Estimates of Forest Attributes for Improved Composite Estimation

    Directory of Open Access Journals (Sweden)

    Sarah Ehlers

    2018-04-01

    Full Text Available Today, non-expensive remote sensing (RS data from different sensors and platforms can be obtained at short intervals and be used for assessing several kinds of forest characteristics at the level of plots, stands and landscapes. Methods such as composite estimation and data assimilation can be used for combining the different sources of information to obtain up-to-date and precise estimates of the characteristics of interest. In composite estimation a standard procedure is to assign weights to the different individual estimates inversely proportional to their variance. However, in case the estimates are correlated, the correlations must be considered in assigning weights or otherwise a composite estimator may be inefficient and its variance be underestimated. In this study we assessed the correlation of plot level estimates of forest characteristics from different RS datasets, between assessments using the same type of sensor as well as across different sensors. The RS data evaluated were SPOT-5 multispectral data, 3D airborne laser scanning data, and TanDEM-X interferometric radar data. Studies were made for plot level mean diameter, mean height, and growing stock volume. All data were acquired from a test site dominated by coniferous forest in southern Sweden. We found that the correlation between plot level estimates based on the same type of RS data were positive and strong, whereas the correlations between estimates using different sources of RS data were not as strong, and weaker for mean height than for mean diameter and volume. The implications of such correlations in composite estimation are demonstrated and it is discussed how correlations may affect results from data assimilation procedures.

  5. Application of Remote Sensing Data to Improve the Water and Soil Resource Management of Rwanda

    Science.gov (United States)

    Csorba, Ádám; Bukombe, Benjamin; Naramabuye, Francois Xavier; Szegi, Tamás; Vekerdy, Zoltán; Michéli, Erika

    2017-04-01

    The Rwandan agriculture strongly relies in the dry seasons on the water stored in artificial reservoirs of various sizes for irrigation purposes. Furthermore, the success of irrigation depends on a wide range of soil properties which directly affect the moisture regime of the growing medium. By integrating remote sensing and auxiliary data the objectives of our study are to monitor the water level fluctuation in the reservoirs, estimate the volume of water available for irrigation and to combine this information with soil property maps to support the decision making for sustainable irrigation water management in a study area in Southern Rwanda. For water level and volume estimation a series of Sentinel-1 (product type: GRD, acquisition mode: IW, polarizations HH and VH) data were obtained covering the study area and spanning over a period of two years. To map the extent of water bodies the Radar-Based Water Body Mapping module of the Water Observation and Information System (WOIS) was used. High-resolution optical data (Sentinel-2) were used for validation in cloud-free periods. To estimate the volume changes in the reservoirs, we combined the information derived from the water body mapping procedure and digital elevation models. For sustainable irrigation water management, digital soil property maps were developed by the application of wide range of environmental covariates related to soil forming factors. To develop covariates which represent the land use a time series analysis of the 2 years of Sentinel-1 data was performed. As auxiliary soil data, the ISRIC-WISE harmonized soil profile database was used. The developed digital soil mapping approach is integrated into a new WOIS workflow.

  6. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    Science.gov (United States)

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  7. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    Energy Technology Data Exchange (ETDEWEB)

    Saghi, Zineb, E-mail: saghizineb@gmail.com [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Divitini, Giorgio [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Winter, Benjamin [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Leary, Rowan [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Spiecker, Erdmann [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Ducati, Caterina [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Midgley, Paul A., E-mail: pam33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-01-15

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  8. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    International Nuclear Information System (INIS)

    Saghi, Zineb; Divitini, Giorgio; Winter, Benjamin; Leary, Rowan; Spiecker, Erdmann; Ducati, Caterina; Midgley, Paul A.

    2016-01-01

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  9. High-intensity interval training improves insulin sensitivity in older individuals.

    Science.gov (United States)

    Søgaard, D; Lund, M T; Scheuer, C M; Dehlbaek, M S; Dideriksen, S G; Abildskov, C V; Christensen, K K; Dohlmann, T L; Larsen, S; Vigelsø, A H; Dela, F; Helge, J W

    2018-04-01

    Metabolic health may deteriorate with age as a result of altered body composition and decreased physical activity. Endurance exercise is known to counter these changes delaying or even preventing onset of metabolic diseases. High-intensity interval training (HIIT) is a time efficient alternative to regular endurance exercise, and the aim of this study was to investigate the metabolic benefit of HIIT in older subjects. Twenty-two sedentary male (n = 11) and female (n = 11) subjects aged 63 ± 1 years performed HIIT training three times/week for 6 weeks on a bicycle ergometer. Each HIIT session consisted of five 1-minute intervals interspersed with 1½-minute rest. Prior to the first and after the last HIIT session whole-body insulin sensitivity, measured by a hyperinsulinaemic-euglycaemic clamp, plasma lipid levels, HbA1c, glycaemic parameters, body composition and maximal oxygen uptake were assessed. Muscle biopsies were obtained wherefrom content of glycogen and proteins involved in muscle glucose handling were determined. Insulin sensitivity (P = .011) and maximal oxygen uptake increased (P body fat (P < .05) decreased after 6 weeks of HIIT. HbA1c decreased only in males (P = .001). Muscle glycogen content increased in both genders (P = .001) and in line GLUT4 (P < .05), glycogen synthase (P = .001) and hexokinase II (P < .05) content all increased. Six weeks of HIIT significantly improves metabolic health in older males and females by reducing age-related risk factors for cardiometabolic disease. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  10. A CHANGE DETECTION AND RESOURCE-AWARE DATA SENSING APPROACHES FOR IMPROVING THE REPORTING PROTOCOL MECHANISM FOR MOBILE USER

    Directory of Open Access Journals (Sweden)

    annisaa sri indrawanti

    2015-08-01

    Full Text Available Update mechanism is an important process that relays information to the end-user by sending the data from the client to the server. There are several kinds of update mechanism that are used, one of them is reporting protocol. Reporting protocol sends the data from the client to the server continuously in a certain time interval. Reporting protocol occasionally sends the same information repeatedly to the end-user and sometimes the data aren’t needed by the end-user. This is an issue, because it can cause a large amount of bandwidth usage. In this research, we have developed an improvement of the reporting protocol mechanism for mobile user using change detection and resource-aware data sensing to minimize the bandwidth and resource usage. The improvement of reporting protocol that is implemented reduces frequency of data transfer with the prediction of the changes in user activity and position. The prediction is used as a trigger when the data is about to be sent. The results have shown that the adaptive reporting protocol could improve the performance of the overall reporting protocol. This is shown by the improvement of the bandwidth efficiency up to 36-97%, memory efficiency at 1.5-6% and battery efficiency at 7-13%.

  11. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  12. Impact of carbon-fluorine doped titanium dioxide in the performance of an electrochemical sensing of dopamine and rosebengal sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Abinaya C

    2015-01-01

    Full Text Available The role of Fluorine and Carbon as dopants in the TiO2 based electrochemical sensor and DSSC were presented in this work. A series of Carbon nano-cones and disc doped TiO2 (TC, Fluorine doped TiO2 (FT and C & F co-doped TiO2 (CFT powdered samples were prepared via solid state synthesis. The CFT film showed excellent electrochemical sensitivity to the oxidation of dopamine in aqueous solution and could be employed as a dopamine sensor. The proposed sensor exhibited good linear response in the range of 10-820 μM with a detection limit of 3.6 μM under optimum conditions. The photovoltaic performances of Rose Bengal sensitized solar cells were assessed through I-V measurements. The CFT based DSSC shows a short-circuit current density and a power conversion efficiency (η of 0.908 mA/cm2 and 0.163% respectively, which is 35% and 38% greater than the performance of other PT based cells. The characterization studies such as UV-Visible spectroscopy, Photoluminescence, TEM and EPR spectroscopy were utilized for further investigation, which helps us to understand how fluorine and carbon play a part in dopamine sensing and solar energy conversion.

  13. Graphene Oxide Based Nanocarrier Combined with a pH-Sensitive Tracer: A Vehicle for Concurrent pH Sensing and pH-Responsive Oligonucleotide Delivery.

    Science.gov (United States)

    Hsieh, Chia-Jung; Chen, Yu-Cheng; Hsieh, Pei-Ying; Liu, Shi-Rong; Wu, Shu-Pao; Hsieh, You-Zung; Hsu, Hsin-Yun

    2015-06-03

    We chemically tuned the oxidation status of graphene oxide (GO) and constructed a GO-based nanoplatform combined with a pH-sensitive fluorescence tracer that is designed for both pH sensing and pH-responsive drug delivery. A series of GOs oxidized to distinct degrees were examined to optimize the adsorption of the model drug, poly dT30. We determined that highly oxidized GO was a superior drug-carrier candidate in vitro when compared to GOs oxidized to lesser degrees. In the cell experiment, the synthesized pH-sensitive rhodamine dye was first applied to monitor cellular pH; under acidic conditions, protonated rhodamine fluoresces at 588 nm (λex=561 nm). When the dT30-GO nanocarrier was introduced into cells, a rhodamine-triggered competition reaction occurred, and this led to the release of the oligonucleotides and the quenching of rhodamine fluorescence by GO. Our results indicate high drug loading (FAM-dT30/GO=25/50 μg/mL) and rapid cellular uptake (<0.5 h) of the nanocarrier which can potentially be used for targeted RNAi delivery to the acidic milieu of tumors.

  14. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Science.gov (United States)

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p protocol improves insulin sensitivity and mitochondrial

  15. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-02-01

    Full Text Available Land surface temperature (LST is an important variable that provides a valuable connection between the energy and water budget and is strongly linked to land surface hydrology. Space-borne remote sensing provides a consistent means for regularly observing LST using thermal infrared (TIR and passive microwave observations each with unique strengths and weaknesses. The spatial resolution of TIR based LST observations is around 1 km, a major advantage when compared to passive microwave observations (around 10 km. However, a major advantage of passive microwaves is their cloud penetrating capability making them all-weather sensors whereas TIR observations are routinely masked under the presence of clouds and aerosols. In this study, a relatively simple combination approach that benefits from the cloud penetrating capacity of passive microwave sensors was proposed. In the first step, TIR and passive microwave LST products were compared over Australia for both anomalies and raw timeseries. A very high agreement was shown over the vast majority of the country with R2 typically ranging from 0.50 to 0.75 for the anomalies and from 0.80 to 1.00 for the raw timeseries. Then, the scalability of the passive microwave based LST product was examined and a pixel based merging approach through linear scaling was proposed. The individual and merged LST products were further compared against independent LST from the re-analysis model outputs. This comparison revealed that the TIR based LST product agrees best with the re-analysis data (R2 0.26 for anomalies and R2 0.76 for raw data, followed by the passive microwave LST product (R2 0.16 for anomalies and R2 0.66 for raw data and the combined LST product (R2 0.18 for anomalies and R2 0.62 for raw data. It should be noted that the drop in performance comes with an increased revisit frequency of approximately 20% compared to the revised frequency of the TIR alone. Additionally, this comparison against re

  17. Improved Adhesion of Gold Thin Films Evaporated on Polymer Resin: Applications for Sensing Surfaces and MEMS

    Directory of Open Access Journals (Sweden)

    Behrang Moazzez

    2013-05-01

    Full Text Available We present and analyze a method to improve the morphology and mechanical properties of gold thin films for use in optical sensors or other settings where good adhesion of gold to a substrate is of importance and where controlled topography/roughness is key. To improve the adhesion of thermally evaporated gold thin films, we introduce a gold deposition step on SU-8 photoresist prior to UV exposure but after the pre-bake step of SU-8 processing. Shrinkage and distribution of residual stresses, which occur during cross-linking of the SU-8 polymer layer in the post-exposure baking step, are responsible for the higher adhesion of the top gold film to the post-deposition cured SU-8 sublayer. The SU-8 underlayer can also be used to tune the resulting gold film morphology. Our promoter-free protocol is easily integrated with existing sensor microfabrication processes.

  18. Enhanced sensitivity in non-enzymatic glucose detection by improved growth kinetics of Ni-based nanostructures

    Science.gov (United States)

    Urso, M.; Pellegrino, G.; Strano, V.; Bruno, E.; Priolo, F.; Mirabella, S.

    2018-04-01

    Ni-based nanostructures are attractive catalytic materials for many electrochemical applications, among which are non-enzymatic sensing, charge storage, and water splitting. In this work, we clarify the synthesis kinetics of Ni(OH)2/NiOOH nanowalls grown by chemical bath deposition at room temperature and at 50 °C. We applied the results to non-enzymatic glucose sensing, reaching a highest sensitivity of 31 mA cm-2mM-1. Using scanning electron microscopy, x-ray diffraction analysis and Rutherford backscattering spectrometry we found that the growth occurs through two regimes: first, a quick random growth leading to disordered sheets of Ni oxy-hydroxide, followed by a slower growth of well-aligned sheets of Ni hydroxide. A high growth temperature (50 °C), leading mainly to well-aligned sheets, offers superior electrochemical properties in terms of charge storage, charge carrier transport and catalytic action, as confirmed by cyclic voltammetry and electrochemical impedance spectroscopy analyses. The reported results on the optimization and application of low-cost synthesis of these Ni-based nanostructures have a large potential for application in catalysis, (bio)sensing, and supercapacitors areas.

  19. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  20. New and Improved Remotely Sensed Products and Tools for Agricultural Monitoring Applications in Support of Famine Early Warning

    Science.gov (United States)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.

    2011-12-01

    monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.

  1. PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience.

    Science.gov (United States)

    Ponsot, Flavien; Shen, Weida; Ashokkumar, Pichandi; Audinat, Etienne; Klymchenko, Andrey S; Collot, Mayeul

    2017-11-22

    Monitoring calcium concentration in the cytosol is of main importance as this ion drives many biological cascades within the cell. To this end, molecular calcium probes are widely used. Most of them, especially the red emitting probes, suffer from nonspecific interactions with inner membranes due to the hydrophobic nature of their fluorophore. To circumvent this issue, calcium probes conjugated to dextran can be used to enhance the hydrophilicity and reduce the nonspecific interaction and compartmentalization. However, dextran conjugates also feature important drawbacks including lower affinity, lower dynamic range, and slow diffusion. Herein, we combined the advantage of molecular probes and dextran conjugate without their drawbacks by designing a new red emitting turn-on calcium probe based on PET quenching, Rhod-PEG, in which the rhodamine fluorophore bears four PEG 4 units. This modification led to a high affinity calcium probe (K d = 748 nM) with reduced nonspecific interactions, enhanced photostability, two-photon absorbance, and brightness compared to the commercially available Rhod-2. After spectral characterizations, we showed that Rhod-PEG quickly and efficiently diffused through the dendrites of pyramidal neurons with an enhanced sensitivity (ΔF/F 0 ) at shorter time after patching compared to Rhod-2.

  2. Sensitivity Improvement of an Impedimetric Immunosensor Using Functionalized Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Imen Hafaid

    2009-01-01

    Full Text Available This work has explored the development of impedimetric immunosensors based on magnetic iron nanoparticles (IrNP functionalized with streptavidin to which a biotinylated FAB part of the antibody has been bound using a biotin-streptavidin interaction. SPR analysis shows a deviation on the measured (angle during antigen-antibody recognition whereas label free detection using by EIS allows us to monitor variation of polarization resistance. Before detection, layers were analyzed by FTIR and AFM. Compared to immobilization of antibody on bare gold surface using aminodecanethiol SAM, antibody immobilization on nanoparticles permitted to reach lower detection limit: 500 pg/ml instead of 1 ng/ml to in the case of EIS and 300 ng/ml instead of 4.5 μg/ml in the case of SPR. Thus, it permitted to improve the sensitivity: from 257.3  Ω⋅cm2⋅μg−1⋅ml to 1871 Ω⋅cm2⋅μg−1⋅ml in the case of EIS and from 0.003°μg−1⋅ml to 0.094°μg−1⋅ml in the case of SPR.

  3. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  5. Hepatic Cholesterol-25-Hydroxylase Overexpression Improves Systemic Insulin Sensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Britta Noebauer

    2017-01-01

    Full Text Available Obesity is a major risk factor for several diseases including diabetes, heart disease, and some forms of cancer and due to its rapidly increasing prevalence it has become one of the biggest problems medicine is facing today. All the more surprising, a substantial percentage of obese patients are metabolically healthy when classified based on insulin resistance and systemic inflammation. Oxysterols are naturally occurring molecules that play important role in various metabolic and inflammatory processes and their levels are elevated in patients suffering from obesity and diabetes. 25-Hydroxycholesterol (25-OHC is produced in cells from cholesterol by the enzyme cholesterol 25-hydroxylase (Ch25h and is involved in lipid metabolism, inflammatory processes, and cell proliferation. Here, we investigated the role of hepatic Ch25h in the transition from metabolically healthy obesity to insulin resistance and diabetes. Using several different experimental approaches, we demonstrated the significance of Ch25h on the border of “healthy” and “diseased” states of obesity. Adenovirus-mediated Ch25h overexpression in mice improved glucose tolerance and insulin sensitivity and lowered HOMA-IR. Our data suggest that low hepatic Ch25h levels could be considered a risk marker for unhealthy obesity.

  6. Can Simulation Credibility Be Improved Using Sensitivity Analysis to Understand Input Data Effects on Model Outcome?

    Science.gov (United States)

    Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.

    2015-01-01

    Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.

  7. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  8. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  9. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu; Zhan, Yonghua; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China); Kang, Fei; Wang, Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Wu, Kaichun [Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity, which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.

  10. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  11. REAL-TIME ENVIRONMENTAL SENSORS TO IMPROVE HEALTH IN THE SENSING CITY

    Directory of Open Access Journals (Sweden)

    L. Marek

    2016-06-01

    Full Text Available The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD, which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor’s care. By learning more about patients’ movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.

  12. Real-Time Environmental Sensors to Improve Health in the Sensing City

    Science.gov (United States)

    Marek, L.; Campbell, M.; Epton, M.; Storer, M.; Kingham, S.

    2016-06-01

    The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor's care. By learning more about patients' movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.

  13. Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and Its Application in Self-Powered Active Acetylene Gas Sensing.

    Science.gov (United States)

    Uddin, A S M Iftekhar; Yaqoob, Usman; Chung, Gwiy-Sang

    2016-11-09

    Herein we report an enhanced triboelectric nanogenerator (TENG) based on the contact-separation mode between a patterned film of polydimethylsiloxane (PDMS) with a semimetallic elastomer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nylon fiber film. The addition of ethylene glycol to the PEDOT:PSS film improves the functionality of the TENG significantly, yielding promising applicability in both indoor and outdoor (i.e., under sunlight) environments, with the maximum instantaneous power of 0.09 mW (indoors) and 0.2 mW (outdoors) for the load resistance of 3.8 MΩ. The device can also generate 11.2 V and 0.08 μA cm -2 in response to the forearm movement of a human. Additionally, by replacing the bare nylon fiber in the TENG design with a Ag@ZnO/nylon fiber film, a self-powered active sensor (triboelectric nanogenerator-based sensor; TENS) has been realized to detect acetylene (C 2 H 2 ) gas. The TENS exhibits excellent sensitivity of 70.9% (indoors) and 89% (outdoors) to C 2 H 2 gas of 1000 ppm concentration. The proposed approach for harvesting energy and sensing can be advantageous in practical applications and may stimulate new research that will enhance nanogenerators as well as wearable, self-powered active sensors.

  14. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  15. Improving Medical Decision Making and Health Promotion through Culture-Sensitive Health Communication : an Agenda for Science and Practice

    OpenAIRE

    Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O.; Butler, Robb; Chapman, Gretchen B.; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J.; Shavitt, Sharon; Updegraff, John A.

    2016-01-01

    This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making ...

  16. Data Assimilation using observed streamflow and remotely-sensed soil moisture for improving sub-seasonal-to-seasonal forecasting

    Science.gov (United States)

    Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.

    2017-12-01

    Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.

  17. Improving Oil Palm Classification in the Peruvian Amazon by Combining Active and Passive Remote Sensing Data

    Science.gov (United States)

    Gutierrez-Velez, V. H.; DeFries, R. S.

    2011-12-01

    Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm

  18. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Mathieu, Renaud; Mutanga, Onisimo; Ramoelo, Abel; Kaszta, Żaneta; Kerchove, Ruben Van De; Wolff, Eléonore

    2017-06-01

    Biodiversity mapping in African savannah is important for monitoring changes and ensuring sustainable use of ecosystem resources. Biodiversity mapping can benefit from multi-spectral instruments such as WorldView-2 with very high spatial resolution and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory power of WV-2 bands using interspecies-Spectral Angle Mapper (SAM) via Band Add-On procedure and tested the spectral capability of WorldView-2 against simulated IKONOS for tree species classification. The results from interspecies-SAM procedure identified the yellow and red bands as the most statistically significant bands (p = 0.000251 and p = 0.000039 respectively) in the discriminatory power of WV-2 during the transition from wet to dry season (April). Using Random Forest classifier, the classification scenarios investigated showed that i) the 8-bands of the WV-2 sensor achieved higher classification accuracy for the April date (transition from wet to dry season, senescence) compared to the March date (peak productivity season) ii) the WV-2 spectral configuration systematically outperformed the IKONOS sensor spectral configuration and iii) the multi-temporal approach (March and April combined) improved the discrimination of tress species and produced the highest overall accuracy results at 80.4%. Consistent with the interspecies-SAM procedure, the yellow (605 nm) band also showed a statistically significant contribution in the improved classification accuracy from WV-2. These results highlight the mapping opportunities

  19. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images

    Science.gov (United States)

    Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing

    2016-10-01

    Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.

  20. Quantified-self for obesity: Physical activity behaviour sensing to improve health outcomes

    Directory of Open Access Journals (Sweden)

    Jennifer Murphy

    2015-10-01

    We have shown that it is possible to passively monitor physical activity in a large patient population in a cost-effective way. The results demonstrate that while two thirds of bariatric patients achieved an average of 30 minutes walking per day, this was not of sufficient intensity to gain health-related benefits. Further analysis will examine whether increased activity is associated with successful weight loss outcomes, improved mood and psychological functioning, and increased quality of life. We will also employ machine-learning techniques to identify the factors that are critical for a successful outcome following bariatric surgery. Recruitment will continue to the end of the project (April 2016 and tracking will continue into 2017.

  1. Tilted c-Axis Thin-Film Bulk Wave Resonant Pressure Sensors With Improved Sensitivity

    OpenAIRE

    Anderås, Emil; Katardjiev, Ilia; Yantchev, Ventsislav

    2012-01-01

    Aluminum nitride thin film bulk wave resonant pressure sensors employing c- and tilted c-axis texture, have been fabricated and tested for their pressure sensitivities. The c-axis tilted FBAR pressure sensors demonstrate substantially higher pressure sensitivity compared to its c-axis oriented counterpart. More specifically the thickness plate quasi-shear resonance has demonstrated the highest pressure sensitivity while further being able to preserve its performance in liquid environment.

  2. SPHERE's 'Dress Sense' a Multi-disciplinary approach to designing wearable technology to improve health

    Directory of Open Access Journals (Sweden)

    Amelia Martin

    2015-10-01

    Full Text Available Background Healthcare systems face financial challenges, with a greater number of the population living longer with long term conditions. In order to deliver safe, high quality care within these constraints, we must place more emphasis on preventing illness than treating illness. We can use the science of behaviour change, health, and technology to create solutions to these problems. An example of innovation in this field include SPHERE’s multidisciplinary project entitled ‘Dress Sense’, with the aim to create a piece of wearable technology to improve health. Description This competition was run by SPHERE (Sensor Platform for HEalthcare in a Residential Environment which focuses on developing sensor systems to monitor health and wellbeing in the home. The teams comprised of computer scientists, medical professionals, students and school children, engineers, fashion designers and textile artists. They were provided with a kit including Arduino software, sensors and other items to make wearable computers. There were no constraints on what they could produce, except for a deadline of 3 weeks. The end project was judged according to the innovation and usefulness of the overall concept; the functionality, usability and desirability (aesthetics of the constructed device and the multi-displinary component. The idea was to foster open innovation in order to share ideas between specialities. Conclusions Ideas included tackling diabetic medical adherence through a wearable band to sensors woven into socks to prevent deep vein thrombosis. The winning concept was, ‘Yo’ a support system to aid cognitive behaviour therapy, through wearable products and accessories, to help those who begin CBT, stay motivated to engage effectively with therapy. This project highlighs how through multi-disciplinary collaboration and including the younger generation, innovative effective ideas can be found to harness digital technology to improve health.

  3. Co-sensitization of ZnO by CdS quantum dots in natural dye-sensitized solar cells with polymeric electrolytes to improve the cell stability

    Energy Technology Data Exchange (ETDEWEB)

    Junhom, W.; Magaraphan, R. [Polymer Processing and Polymer Nanomaterials Research Unit, Petroleum and Petrochemical College, Chulalongkorn University, Bangkok (Thailand)

    2015-05-22

    The CdS quantum dots (QDs) were deposited on ZnO layer by chemical bath deposition method to absorb light in the shorter wavelength region and used as photoanode in the dye sensitized solar cell (DSSCs) with natural dye extracted from Noni leaves. Microstructures of CdS-ZnO from various dipping time were characterized by XRD, FE-SEM and EDX. The results showed that the CdS is hexagonal structure and the amount of CdS increases when the dipping time increases. The maximal conversion efficiency of 0.292% was achieved by the DSSCs based on CdS QDs-sensitized ZnO film obtained from 9 min-dipping time. Furthermore, the stability of DSSCs was improved by using polymeric electrolyte. Poly (acrylic acid) (PAA) and Polyacrylamide (PAM) were introduced to CdS QDs-sensitized ZnO film from 9 min-dipping time. Each polymeric electrolyte was prepared by swelling from 0.1-2.0 %w in H2O. The maximal conversion efficiency of 0.207% was achieved for DSSCs based on CdS QDs-sensitized ZnO film with PAM 1.0% and the conversion efficiency was decreased 25% when it was left for1 hr.

  4. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET biosensor.

    Directory of Open Access Journals (Sweden)

    Hui-Chong Lau

    Full Text Available Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD. In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET. Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET, resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD, and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar

  5. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Science.gov (United States)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An

  6. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    Science.gov (United States)

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  7. Improving the description of sunglint for accurate prediction of remotely sensed radiances

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, Matteo [Light and Life Laboratory, Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States)], E-mail: mottavia@stevens.edu; Spurr, Robert [RT Solutions Inc., 9 Channing Street, Cambridge, MA 02138 (United States); Stamnes, Knut; Li Wei [Light and Life Laboratory, Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States); Su Wenying [Science Systems and Applications Inc., 1 Enterprise Parkway, Hampton, VA 23666 (United States); Wiscombe, Warren [NASA GSFC, Greenbelt, MD 20771 (United States)

    2008-09-15

    The bidirectional reflection distribution function (BRDF) of the ocean is a critical boundary condition for radiative transfer calculations in the coupled atmosphere-ocean system. Existing models express the extent of the glint-contaminated region and its contribution to the radiance essentially as a function of the wind speed. An accurate treatment of the glint contribution and its propagation in the atmosphere would improve current correction schemes and hence rescue a significant portion of data presently discarded as 'glint contaminated'. In current satellite imagery, a correction to the sensor-measured radiances is limited to the region at the edge of the glint, where the contribution is below a certain threshold. This correction assumes the sunglint radiance to be directly transmitted through the atmosphere. To quantify the error introduced by this approximation we employ a radiative transfer code that allows for a user-specified BRDF at the atmosphere-ocean interface and rigorously accounts for multiple scattering. We show that the errors incurred by ignoring multiple scattering are very significant and typically lie in the range 10-90%. Multiple reflections and shadowing at the surface can also be accounted for, and we illustrate the importance of such processes at grazing geometries.

  8. Improving subjective pattern recognition in chemical senses through reduction of nonlinear effects in evaluation of sparse data

    Science.gov (United States)

    Assadi, Amir H.; Rasouli, Firooz; Wrenn, Susan E.; Subbiah, M.

    2002-11-01

    Artificial neural network models are typically useful in pattern recognition and extraction of important features in large data sets. These models are implemented in a wide variety of contexts and with diverse type of input-output data. The underlying mathematics of supervised training of neural networks is ultimately tied to the ability to approximate the nonlinearities that are inherent in network"s generalization ability. The quality and availability of sufficient data points for training and validation play a key role in the generalization ability of the network. A potential domain of applications of neural networks is in analysis of subjective data, such as in consumer science, affective neuroscience and perception of chemical senses. In applications of ANN to subjective data, it is common to rely on knowledge of the science and context for data acquisition, for instance as a priori probabilities in the Bayesian framework. In this paper, we discuss the circumstances that create challenges for success of neural network models for subjective data analysis, such as sparseness of data and cost of acquisition of additional samples. In particular, in the case of affect and perception of chemical senses, we suggest that inherent ambiguity of subjective responses could be offset by a combination of human-machine expert. We propose a method of pre- and post-processing for blind analysis of data that that relies on heuristics from human performance in interpretation of data. In particular, we offer an information-theoretic smoothing (ITS) algorithm that optimizes that geometric visualization of multi-dimensional data and improves human interpretation of the input-output view of neural network implementations. The pre- and post-processing algorithms and ITS are unsupervised. Finally, we discuss the details of an example of blind data analysis from actual taste-smell subjective data, and demonstrate the usefulness of PCA in reduction of dimensionality, as well as ITS.

  9. Making sense of mobile health data: an open architecture to improve individual- and population-level health.

    Science.gov (United States)

    Chen, Connie; Haddad, David; Selsky, Joshua; Hoffman, Julia E; Kravitz, Richard L; Estrin, Deborah E; Sim, Ida

    2012-08-09

    Mobile phones and devices, with their constant presence, data connectivity, and multiple intrinsic sensors, can support around-the-clock chronic disease prevention and management that is integrated with daily life. These mobile health (mHealth) devices can produce tremendous amounts of location-rich, real-time, high-frequency data. Unfortunately, these data are often full of bias, noise, variability, and gaps. Robust tools and techniques have not yet been developed to make mHealth data more meaningful to patients and clinicians. To be most useful, health data should be sharable across multiple mHealth applications and connected to electronic health records. The lack of data sharing and dearth of tools and techniques for making sense of health data are critical bottlenecks limiting the impact of mHealth to improve health outcomes. We describe Open mHealth, a nonprofit organization that is building an open software architecture to address these data sharing and "sense-making" bottlenecks. Our architecture consists of open source software modules with well-defined interfaces using a minimal set of common metadata. An initial set of modules, called InfoVis, has been developed for data analysis and visualization. A second set of modules, our Personal Evidence Architecture, will support scientific inferences from mHealth data. These Personal Evidence Architecture modules will include standardized, validated clinical measures to support novel evaluation methods, such as n-of-1 studies. All of Open mHealth's modules are designed to be reusable across multiple applications, disease conditions, and user populations to maximize impact and flexibility. We are also building an open community of developers and health innovators, modeled after the open approach taken in the initial growth of the Internet, to foster meaningful cross-disciplinary collaboration around new tools and techniques. An open mHealth community and architecture will catalyze increased mHealth efficiency

  10. A Robust Algorithm of Multiquadric Method Based on an Improved Huber Loss Function for Interpolating Remote-Sensing-Derived Elevation Data Sets

    Directory of Open Access Journals (Sweden)

    Chuanfa Chen

    2015-03-01

    Full Text Available Remote-sensing-derived elevation data sets often suffer from noise and outliers due to various reasons, such as the physical limitations of sensors, multiple reflectance, occlusions and low contrast of texture. Outliers generally have a seriously negative effect on DEM construction. Some interpolation methods like ordinary kriging (OK are capable of smoothing noise inherent in sample points, but are sensitive to outliers. In this paper, a robust algorithm of multiquadric method (MQ based on an Improved Huber loss function (MQ-IH has been developed to decrease the impact of outliers on DEM construction. Theoretically, the improved Huber loss function is null for outliers, quadratic for small errors, and linear for others. Simulated data sets drawn from a mathematical surface with different error distributions were employed to analyze the robustness of MQ-IH. Results indicate that MQ-IH obtains a good balance between efficiency and robustness. Namely, the performance of MQ-IH is comparative to those of the classical MQ and MQ based on the Classical Huber loss function (MQ-CH when sample points follow a normal distribution, and the former outperforms the latter two when sample points are subject to outliers. For example, for the Cauchy error distribution with the location parameter of 0 and scale parameter of 1, the root mean square errors (RMSEs of MQ-CH and the classical MQ are 0.3916 and 1.4591, respectively, whereas that of MQ-IH is 0.3698. The performance of MQ-IH is further evaluated by qualitative and quantitative analysis through a real-world example of DEM construction with the stereo-images-derived elevation points. Results demonstrate that compared with the classical interpolation methods, including natural neighbor (NN, OK and ANUDEM (a program that calculates regular grid digital elevation models (DEMs with sensible shape and drainage structure from arbitrarily large topographic data sets, and two versions of MQ, including the

  11. Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach

    Energy Technology Data Exchange (ETDEWEB)

    Hehn, L. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Armengaud, E.; Boissiere, T. de; Gros, M.; Navick, X.F.; Nones, C.; Paul, B. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex (France); Arnaud, Q. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Queen' s University, Kingston (Canada); Augier, C.; Billard, J.; Cazes, A.; Charlieux, F.; Jesus, M. de; Gascon, J.; Juillard, A.; Queguiner, E.; Sanglard, V.; Vagneron, L. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Benoit, A.; Camus, P. [Institut Neel, CNRS/UJF, Grenoble (France); Berge, L.; Chapellier, M.; Dumoulin, L.; Giuliani, A.; Le-Sueur, H.; Marnieros, S.; Olivieri, E.; Poda, D. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Bluemer, J. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Broniatowski, A. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Eitel, K.; Kozlov, V.; Siebenborn, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Foerster, N.; Heuermann, G.; Scorza, S. [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Jin, Y. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis (France); Kefelian, C. [Univ Lyon, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Lyon (France); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Kleifges, M.; Tcherniakhovski, D.; Weber, M. [Karlsruher Institut fuer Technologie, Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruhe (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Kudryavtsev, V.A. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Pari, P. [CEA Saclay, DSM/IRAMIS, Gif-sur-Yvette (France); Piro, M.C. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Rensselaer Polytechnic Institute, Troy, NY (United States); Rozov, S.; Yakushev, E. [JINR, Laboratory of Nuclear Problems, Dubna, Moscow Region (Russian Federation); Schmidt, B. [Karlsruher Institut fuer Technologie, Institut fuer Kernphysik, Karlsruhe (Germany); Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-10-15

    We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range m{sub χ} element of [4, 30] GeV/c{sup 2} with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from {sup 206}Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with m{sub χ} = 4 GeV/c{sup 2} is 1.6 x 10{sup -39} cm{sup 2}, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15 GeV/c{sup 2} the exclusion limits found with both analyses are in good agreement. (orig.)

  12. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.

    Science.gov (United States)

    Zhang, Ning; Valentine, Joseph M; Zhou, You; Li, Mengyao E; Zhang, Yiqiang; Bhattacharya, Arunabh; Walsh, Michael E; Fischer, Katherine E; Austad, Steven N; Osmulski, Pawel; Gaczynska, Maria; Shoelson, Steven E; Van Remmen, Holly; Chen, Hung I; Chen, Yidong; Liang, Hanyu; Musi, Nicolas

    2017-08-01

    Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Improving color constancy by discounting the variation of camera spectral sensitivity

    Science.gov (United States)

    Gao, Shao-Bing; Zhang, Ming; Li, Chao-Yi; Li, Yong-Jie

    2017-08-01

    It is an ill-posed problem to recover the true scene colors from a color biased image by discounting the effects of scene illuminant and camera spectral sensitivity (CSS) at the same time. Most color constancy (CC) models have been designed to first estimate the illuminant color, which is then removed from the color biased image to obtain an image taken under white light, without the explicit consideration of CSS effect on CC. This paper first studies the CSS effect on illuminant estimation arising in the inter-dataset-based CC (inter-CC), i.e., training a CC model on one dataset and then testing on another dataset captured by a distinct CSS. We show the clear degradation of existing CC models for inter-CC application. Then a simple way is proposed to overcome such degradation by first learning quickly a transform matrix between the two distinct CSSs (CSS-1 and CSS-2). The learned matrix is then used to convert the data (including the illuminant ground truth and the color biased images) rendered under CSS-1 into CSS-2, and then train and apply the CC model on the color biased images under CSS-2, without the need of burdensome acquiring of training set under CSS-2. Extensive experiments on synthetic and real images show that our method can clearly improve the inter-CC performance for traditional CC algorithms. We suggest that by taking the CSS effect into account, it is more likely to obtain the truly color constant images invariant to the changes of both illuminant and camera sensors.

  14. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.

    Science.gov (United States)

    Bagarolli, Renata A; Tobar, Natália; Oliveira, Alexandre G; Araújo, Tiago G; Carvalho, Bruno M; Rocha, Guilherme Z; Vecina, Juliana F; Calisto, Kelly; Guadagnini, Dioze; Prada, Patrícia O; Santos, Andrey; Saad, Sara T O; Saad, Mario J A

    2017-12-01

    Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    DEFF Research Database (Denmark)

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi

    2004-01-01

    was adjusted from the recommended value of 3,400 to 1,000, the sensitivity of the modified procedure increased to 84.7%, with unchanged specificity. Results were obtained in 3 to 4 h. The new pretreatment procedure with the ProbeTec assay described here provides a rapid, simple, and sensitive tool...

  16. Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument

    Directory of Open Access Journals (Sweden)

    Raczyński Lech

    2016-03-01

    Full Text Available Nowadays, in positron emission tomography (PET systems, a time of flight (TOF information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.

  17. Analyzing remotely sensed datasets for improved characterization of field-scale interventions for food security

    Science.gov (United States)

    Limaye, A. S.; Ellenburg, W. L., II; Coffee, K.; Ashmall, W.; Stanton, K.; Burks, J.; Irwin, D.

    2017-12-01

    Agriculture interventions such as irrigation, improved fertilization, and advanced cultivars have the potential to increase food security and ensure climate resilience. However, in order broaden the support of activities like these, environmental managers must be able to assess their impact. Often field data are difficult to obtain and decisions are made with limited information. Satellite products can provide relevant information at field and village wide scales that can assist in this process. SERVIR is taking an aim of helping connect the space-based products to help the efficacy of village scale interventions through a couple of web-based tools, called ClimateSERV and AgriSERV. ClimateSERV has been active since 2014, and has increased in the data holdings and access points. Currently, ClimateSERV enables users to create geographic regions of their choosing and to compute key statistics for those regions. Rainfall (GPM IMERG, CHIRPS), vegetation indices (eMODIS Normalized Difference Vegetation Index - NDVI; Evaporative Stress Index), and North American Multi-model Ensemble-based seasonal climate forecasts of rainfall and temperature. ClimateSERV can also query the Google Earth Engine holdings for datasets, currently, ClimateSERV provides access to the daytime MODIS Land Surface Temperature (LST). Our first such derived product is a monthly rainfall analysis feature which combines CHIRPS historic rainfall with seasonal forecast models AgriSERV is a derived web-based tool based on the ClimateSERV data holdings. It is designed to provide easy to interpret analysis, based NDVI and rainfall. This tool allows users to draw two areas of interest, one control with no intervention and another that has experienced intervention. An on-demand comparative analysis is performed and the user is presented with side-by-side charts and summary data that highlight the differences of the two areas in terms of vegetation health, derived growing season lengths and rainfall. The

  18. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2018-01-01

    Full Text Available A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs display a change three orders higher than that of pure ZnO with relative humidity (RH ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  19. An improvement of LLNA:DA to assess the skin sensitization potential of chemicals.

    Science.gov (United States)

    Zhang, Hongwei; Shi, Ying; Wang, Chao; Zhao, Kangfeng; Zhang, Shaoping; Wei, Lan; Dong, Li; Gu, Wen; Xu, Yongjun; Ruan, Hongjie; Zhi, Hong; Yang, Xiaoyan

    2017-01-01

    We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.

  20. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  1. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    KAUST Repository

    Loan, Phan Thi Kim

    2017-07-19

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1 pM – 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.

  2. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Yu Xu

    2016-02-01

    Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  3. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency.

    Science.gov (United States)

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-02-06

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  4. Improved Immunoassay Sensitivity in Serum as a Result of Polymer-Entrapped Quantum Dots: 'Papaya Particles'

    NARCIS (Netherlands)

    Ranzoni, A.; den Hamer, A.; Karoli, T.; Buechler, J.; Cooper, M.A.

    2015-01-01

    Fluorescent labels are widely employed in biomarker quantification and diagnostics, however they possess narrow Stokes shifts and can photobleach, limiting multiplexed detection applications and compromising sensitivity. In contrast, quantum dots do not photobleach and have much wider Stokes shifts,

  5. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    KAUST Repository

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2017-01-01

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a

  6. Differential Privacy for Relational Algebra: Improving the Sensitivity Bounds via Constraint Systems

    Directory of Open Access Journals (Sweden)

    Catuscia Palamidessi

    2012-07-01

    Full Text Available Differential privacy is a modern approach in privacy-preserving data analysis to control the amount of information that can be inferred about an individual by querying a database. The most common techniques are based on the introduction of probabilistic noise, often defined as a Laplacian parametric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial to estimate the sensitivity as precisely as possible. In this paper we consider relational algebra, the classical language for queries in relational databases, and we propose a method for computing a bound on the sensitivity of queries in an intuitive and compositional way. We use constraint-based techniques to accumulate the information on the possible values for attributes provided by the various components of the query, thus making it possible to compute tight bounds on the sensitivity.

  7. Long-term treatment with losartan versus atenolol improves insulin sensitivity in hypertension: ICARUS, a LIFE substudy

    DEFF Research Database (Denmark)

    Olsen, Michael H; Fossum, Eigil; Høieggen, Aud

    2005-01-01

    Hypertension and insulin resistance might be associated through peripheral vascular hypertrophy/rarefaction which compromises skeletal muscle blood flow and decreases glucose uptake, inducing insulin resistance. We hypothesized that treatment with losartan as compared to atenolol would improve...... insulin sensitivity through regression of peripheral vascular hypertrophy/rarefaction....

  8. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition

    DEFF Research Database (Denmark)

    Kootte, Ruud S.; Levin, Evgeni; Salojärvi, Jarkko

    2017-01-01

    be predicted based on baseline fecal microbiota composition. Kootte et al. show that fecal microbiota transplantation from lean donors to obese patients with metabolic syndrome improves insulin sensitivity, a transient effect associated with changes in microbiota composition and fasting plasma metabolites...

  9. A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, T; Viggers, L

    2006-01-01

    To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes.......To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes....

  10. Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle

    Directory of Open Access Journals (Sweden)

    Emre Sert

    2017-06-01

    In summary, within the scope of this work, unlike the previous studies, experiments involving physical tests (i.e. tilt table, fishhook and cornering and numerical calculations are included. In addition, verification of the virtual model, parametric sensitivity analysis and the comparison of the virtual test and the physical test is performed. Because of the vigorous verification, sensitivity analysis and validation process, the results can be more reliable compared to previous studies.

  11. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    Science.gov (United States)

    Allan, Jesse

    are better suited for sensor applications. The commercially used porous poly-vinyl chloride (PVC) membrane was investigated and modified to improve performance of this material. As PVC does not contain any natural hydroscopic properties, the addition of various hydrophilic groups to the PVC would aid in water management. It was found that while chemical modification could improve water retention, optimization of the modifications would be required to ensure flooding was not an issue. Composites of PVC and sulfonated silica showed performance that matched that of the commercial PVC, whilst using significantly less water to achieve those results. By reducing the water required for sensing, leaching of acid, as well as flooding could be reduced. Finally, the catalyst layer and gas diffusion layer (GDL) were investigated to understand what properties of these would impart the best performance increases for the sensor. For the catalyst layer, it was found that platinum black and 20% platinum supported on carbon achieved similar results. Platinum black has excellent catalytic activity for the ethanol oxidation reaction, while the surface area of the 20% platinum supported on carbon would allow for more ethanol to react, increasing the overall sensor capability. The choice of catalyst was less of an issue than the choice of GDL. It was found that using carbon fiber paper GDLs lead to greater retention of water in the MEA compared to carbon cloth GDLs due to the lower air permeability. This came at a cost however in that with a lower air permeability, less ethanol vapour would reach the catalytic sites, reducing sensing performance. Depending on the choice of membrane, removal of the GDL could impart performance increases, but could also cause detrimental failure in the case of Nafion based systems.

  12. L-band microwave remote sensing and land data assimilation improve the representation of pre-storm soil moisture conditions for hydrologic forecasting

    Science.gov (United States)

    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i...

  13. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Schulz, Nadja; Drescher, Andrea; Bergheim, Ina; Machann, Jürgen; Schick, Fritz; Siegel-Axel, Dorothea; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Hennige, Anita M

    2014-01-01

    Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  14. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  15. An Improved Algorithm Based on Minimum Spanning Tree for Multi-scale Segmentation of Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LI Hui

    2015-07-01

    Full Text Available As the basis of object-oriented information extraction from remote sensing imagery,image segmentation using multiple image features,exploiting spatial context information, and by a multi-scale approach are currently the research focuses. Using an optimization approach of the graph theory, an improved multi-scale image segmentation method is proposed. In this method, the image is applied with a coherent enhancement anisotropic diffusion filter followed by a minimum spanning tree segmentation approach, and the resulting segments are merged with reference to a minimum heterogeneity criterion.The heterogeneity criterion is defined as a function of the spectral characteristics and shape parameters of segments. The purpose of the merging step is to realize the multi-scale image segmentation. Tested on two images, the proposed method was visually and quantitatively compared with the segmentation method employed in the eCognition software. The results show that the proposed method is effective and outperforms the latter on areas with subtle spectral differences.

  16. Randomized crossover trial of a pressure sensing visual feedback system to improve mask fitting in noninvasive ventilation.

    Science.gov (United States)

    Brill, Anne-Kathrin; Moghal, Mohammad; Morrell, Mary J; Simonds, Anita K

    2017-10-01

    A good mask fit, avoiding air leaks and pressure effects on the skin are key elements for a successful noninvasive ventilation (NIV). However, delivering practical training for NIV is challenging, and it takes time to build experience and competency. This study investigated whether a pressure sensing system with real-time visual feedback improved mask fitting. During an NIV training session, 30 healthcare professionals (14 trained in mask fitting and 16 untrained) performed two mask fittings on the same healthy volunteer in a randomized order: one using standard mask-fitting procedures and one with additional visual feedback on mask pressure on the nasal bridge. Participants were required to achieve a mask fit with low mask pressure and minimal air leak (mask fit and staff- confidence were measured. Compared with standard mask fitting, a lower pressure was exerted on the nasal bridge using the feedback system (71.1 ± 17.6 mm Hg vs 63.2 ± 14.6 mm Hg, P mask-fitting training, resulted in a lower pressure on the skin and better mask fit for the volunteer, with increased staff confidence. © 2017 Asian Pacific Society of Respirology.

  17. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and

  18. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    Science.gov (United States)

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  19. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    Science.gov (United States)

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  20. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    Science.gov (United States)

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Improved Titanium Billet Inspection Sensitivity through Optimized Phased Array Design, Part II: Experimental Validation and Comparative Study with Multizone

    International Nuclear Information System (INIS)

    Hassan, W.; Vensel, F.; Knowles, B.; Lupien, V.

    2006-01-01

    The inspection of critical rotating components of aircraft engines has made important advances over the last decade. The development of Phased Array (PA) inspection capability for billet and forging materials used in the manufacturing of critical engine rotating components has been a priority for Honeywell Aerospace. The demonstration of improved PA inspection system sensitivity over what is currently used at the inspection houses is a critical step in the development of this technology and its introduction to the supply base as a production inspection. As described in Part I (in these proceedings), a new phased array transducer was designed and manufactured for optimal inspection of eight inch diameter Ti-6Al-4V billets. After confirming that the transducer was manufactured in accordance with the design specifications a validation study was conducted to assess the sensitivity improvement of the PAI over the current capability of Multi-zone (MZ) inspection. The results of this study confirm the significant (≅ 6 dB in FBH number sign sensitivity) improvement of the PAI sensitivity over that of MZI

  2. Improving CT detection sensitivity for nodal metastases in oesophageal cancer with combination of smaller size and lymph node axial ratio

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianfang [Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing (China); Capital Medical University Electric Power Teaching Hospital, Beijing (China); Wang, Zhu; Qu, Dong; Yao, Libo [Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/Cancer Hospital, Beijing (China); Shao, Huafei [Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai (China); Liu, Jian [Meitan General Hospital, Beijing (China)

    2018-01-15

    To investigate the value of CT with inclusion of smaller lymph node (LN) sizes and axial ratio to improve the sensitivity in diagnosis of regional lymph node metastases in oesophageal squamous cell carcinoma (OSCC). The contrast-enhanced multidetector row spiral CT (MDCT) multiplanar reconstruction images of 204 patients with OSCC were retrospectively analysed. The long-axis and short-axis diameters of the regional LNs were measured and axial ratios were calculated (short-axis/long-axis diameters). Nodes were considered round if the axial ratio exceeded the optimal LN axial ratio, which was determined by receiver operating characteristic analysis. A positive predictive value (PPV) exceeding 50% is needed. This was achieved only with LNs larger than 9 mm in short-axis diameter, but nodes of this size were rare (sensitivity 37.3%, specificity 96.4%, accuracy 85.8%). If those round nodes (axial ratio exceeding 0.66) between 7 mm and 9 mm in size were considered metastases as well, it might improve the sensitivity to 67.2% with a PPV of 63.9% (specificity 91.6%, accuracy 87.2%). Combination of a smaller size and axial ratio for LNs in MDCT as criteria improves the detection sensitivity for LN metastases in OSCC. (orig.)

  3. A procedure for the improvement in the determination of a TXRF spectrometer sensitivity curve

    International Nuclear Information System (INIS)

    Bennun, Leonardo; Sanhueza, Vilma

    2010-01-01

    A simple procedure is proposed to determine the total reflection X-ray fluorescence (TXRF) spectrometer sensitivity curve; this procedure provides better accuracy and exactitude than the standard established method. It uses individual pure substances instead of the use of vendor-certified values of reference calibration standards, which are expensive and lack any method to check their quality. This method avoids problems like uncertainties in the determination of the sensitivity curve according to different standards. It also avoids the need for validation studies between different techniques, in order to assure the quality of their TXRF results. (author)

  4. Using trajectory sensitivity analysis to find suitable locations of series compensators for improving rotor angle stability

    DEFF Research Database (Denmark)

    Nasri, Amin; Eriksson, Robert; Ghandhar, Mehrdad

    2014-01-01

    This paper proposes an approach based on trajectory sensitivity analysis (TSA) to find most suitable placement of series compensators in the power system. The main objective is to maximize the benefit of these devices in order to enhance the rotor angle stability. This approach is formulated...

  5. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  6. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  7. Improved sensitivity testing of explosives using transformed Up-Down methods

    International Nuclear Information System (INIS)

    Brown, Geoffrey W

    2014-01-01

    Sensitivity tests provide data that help establish guidelines for the safe handling of explosives. Any sensitivity test is based on assumptions to simplify the method or reduce the number of individual sample evaluations. Two common assumptions that are not typically checked after testing are 1) explosive response follows a normal distribution as a function of the applied stimulus levels and 2) the chosen test level spacing is close to the standard deviation of the explosive response function (for Bruceton Up-Down testing for example). These assumptions and other limitations of traditional explosive sensitivity testing can be addressed using Transformed Up-Down (TUD) test methods. TUD methods have been developed extensively for psychometric testing over the past 50 years and generally use multiple tests at a given level to determine how to adjust the applied stimulus. In the context of explosive sensitivity we can use TUD methods that concentrate testing around useful probability levels. Here, these methods are explained and compared to Bruceton Up-Down testing using computer simulation. The results show that the TUD methods are more useful for many cases but that they do require more tests as a consequence. For non-normal distributions, however, the TUD methods may be the only accurate assessment method.

  8. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    Science.gov (United States)

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  9. Evaluation of optical remote sensing parameters to improve modeling of gross primary productivity in a heterogeneous agricultural area

    Science.gov (United States)

    Schickling, A.; Damm, A.; Schween, J.; Rascher, U.; Crewell, S.; Wahner, A.

    2011-12-01

    Terrestrial photosynthesis greatly determines plant mediated exchange processes in the vegetation atmosphere system and substantially influences patterns in atmospheric carbon dioxide (CO2) concentrations and water vapor. Therefore, an accurate quantification of photosynthetic CO2 uptake, commonly referred to as gross primary productivity (GPP), is a key parameter to distinguish those atmospheric patterns on various spatio-temporal scales. Remote sensing (RS) offers the unique possibility to determine GPP at different spatial scales ranging from the local to the global scale. Attempts to estimate GPP from RS data focus on the light use efficiency (LUE) concept of Monteith which relates GPP to the absorbed photosynthetically active radiation and the efficiency of plant canopies to utilize the absorbed radiation for photosynthesis. To reliably predict GPP on different spatio-temporal scales LUE has to be linked to optical RS parameters which detect changes in photosynthetic efficiency due to environmental conditions. In this study we evaluated two optical RS parameters, namely the sun-induced fluorescence (Fs) and the photochemical reflectance index (PRI), for their potential to serve as a proxy for LUE. The parameters were derived from two ASD FieldSpec spectrometers which were operated in parallel. During several days one instrument was installed on the ground above the vegetation canopy of either a winter wheat or a sugar beet field. The second instrument was operated from a small research aircraft continuously crossing the observation sites at low altitude (sugar beet fields during the day. Results of this spatio-temporal investigation revealed a significant variability of GPP between different winter wheat fields compared to the within-field variability. In addition to the significant between-field variability of sugar beet the results also showed an increase of the within-field variability in the afternoon. Moreover, for the first time it could be shown that

  10. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  11. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  12. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    Science.gov (United States)

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification

    Directory of Open Access Journals (Sweden)

    Anjali Agarwal

    2014-12-01

    Full Text Available We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA. We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.

  14. A community effort to assess and improve drug sensitivity prediction algorithms.

    Science.gov (United States)

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2014-12-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

  15. Improved sensitivity, safety and laboratory turnaround time in the diagnosis of pulmonary tuberculosis by use of bleach sedimentation

    Directory of Open Access Journals (Sweden)

    Ameh James

    2015-11-01

    Full Text Available Background: Inadequate diagnostic processes and human resources in laboratories contribute to a high burden of tuberculosis (TB in low- and middle-income countries. Direct smear microscopy is relied on for TB diagnosis; however, sensitivity rates vary. To improve sensitivity of direct microscopy, the researchers employed several approaches, including sputum digestion and concentration of acid-fast bacilli (AFB, a technique which uses commercial bleach. Objectives: This study compared methods used to diagnose active Mycobacterium tuberculosis infections. Methods: Three sputum specimens were collected from each of 340 participants in Abuja, Nigeria, over two consecutive days. Direct microscopy was performed on all specimens; following microscopy, one specimen from each patient was selected randomly for bleach sedimentation and one for Lowenstein-Jensen culture. Results: Direct microscopy produced 28.8% AFB-positive results, whilst bleach sedimentation resulted in 30.3%. When compared with the cultures, 26.5% were AFB true positive using direct microscopy and 27.1% using bleach sedimentation. Whilst the specificity rate between these two methods was not statistically significant (P = 0.548, the sensitivity rate was significant (P = 0.004. Conclusion: Based on these results, bleach increases the sensitivity of microscopy compared with direct smear and has similar specificity. When diagnosing new cases of pulmonary TB, one bleach-digested smear is as sensitive as three direct smears, reducing waiting times for patients and ensuring the safety of laboratory technicians.

  16. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    International Nuclear Information System (INIS)

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2016-01-01

    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ∼1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (∼1−10 %).

  17. Role of Dyestuff in Improving Dye-Sensitized Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Yehia Selim

    2017-03-01

    Full Text Available Dye-sensitized solar cells DSSCs have attracted great attention for their simple fabrication process, low production costs, relatively high conversion efficiency, and being environmental friendly.DSSC are a combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a electrode.DSSCs use organic dye assist to produce electricity in a wide range of light conditions, indoors and outdoors.The dye in the solar cell is the key element since it is responsible for light harvesting ability, photoelectron generation (the creation of free charges after injection of electrons into the nanostructured semi-conducting oxide and electron transfer.For this reason, this paper gives a background of dyestuff, types and limitations. The motivation of this work is to design a simple, easy and prepare an efficient organic dye sensitizer.Also, this paper investigates the important criteria which are considered for selecting dye to enhance DSSC efficiency. 

  18. Development of the method of sensitivity improvement of photographic film applicable in high-energy physics experiments

    International Nuclear Information System (INIS)

    Gokieli, V.D.

    1986-01-01

    Sensitivity improvement of photographic films applicable in high-energy physics experiments is discussed. To get optimal operating conditions for photographic film PT-6 to check its physical properties on electron beam and in cosmic rays a set for film samples exposure in visible spectrum and in X-rays is constructed. The set includes a start up device, high-voltage pulse oscillator, shapers, a chamber for the sample exposure, voltage divider and electron oscillograph

  19. Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds.

    Science.gov (United States)

    Zhao, Dehua; Jiang, Hao; Yang, Tangwu; Cai, Ying; Xu, Delin; An, Shuqing

    2012-03-01

    Classification trees (CT) have been used successfully in the past to classify aquatic vegetation from spectral indices (SI) obtained from remotely-sensed images. However, applying CT models developed for certain image dates to other time periods within the same year or among different years can reduce the classification accuracy. In this study, we developed CT models with modified thresholds using extreme SI values (CT(m)) to improve the stability of the models when applying them to different time periods. A total of 903 ground-truth samples were obtained in September of 2009 and 2010 and classified as emergent, floating-leaf, or submerged vegetation or other cover types. Classification trees were developed for 2009 (Model-09) and 2010 (Model-10) using field samples and a combination of two images from winter and summer. Overall accuracies of these models were 92.8% and 94.9%, respectively, which confirmed the ability of CT analysis to map aquatic vegetation in Taihu Lake. However, Model-10 had only 58.9-71.6% classification accuracy and 31.1-58.3% agreement (i.e., pixels classified the same in the two maps) for aquatic vegetation when it was applied to image pairs from both a different time period in 2010 and a similar time period in 2009. We developed a method to estimate the effects of extrinsic (EF) and intrinsic (IF) factors on model uncertainty using Modis images. Results indicated that 71.1% of the instability in classification between time periods was due to EF, which might include changes in atmospheric conditions, sun-view angle and water quality. The remainder was due to IF, such as phenological and growth status differences between time periods. The modified version of Model-10 (i.e. CT(m)) performed better than traditional CT with different image dates. When applied to 2009 images, the CT(m) version of Model-10 had very similar thresholds and performance as Model-09, with overall accuracies of 92.8% and 90.5% for Model-09 and the CT(m) version of Model

  20. Improving Clinical Outcomes in Patients With Methicillin-Sensitive Staphylococcus aureus Bacteremia and Reported Penicillin Allergy.

    Science.gov (United States)

    Blumenthal, Kimberly G; Parker, Robert A; Shenoy, Erica S; Walensky, Rochelle P

    2015-09-01

    Methicillin-sensitive Staphylococcus aureus (MSSA) bacteremia is a morbid infection. First-line MSSA therapies (nafcillin, oxacillin, cefazolin) are generally avoided in the 10% of patients reporting penicillin (PCN) allergy, but most of these patients are not truly allergic. We used a decision tree with sensitivity analyses to determine the optimal evaluation and treatment for patients with MSSA bacteremia and reported PCN allergy. Our model simulates 3 strategies: (1) no allergy evaluation, give vancomycin (Vanc); (2) allergy history-guided treatment: if history excludes anaphylactic features, give cefazolin (Hx-Cefaz); and (3) complete allergy evaluation with history-appropriate PCN skin testing: if skin test negative, give cefazolin (ST-Cefaz). Model outcomes included 12-week MSSA cure, recurrence, and death; allergic reactions including major, minor, and potentially iatrogenic; and adverse drug reactions. Vanc results in the fewest patients achieving MSSA cure and the highest rate of recurrence (67.3%/14.8% vs 83.4%/9.3% for Hx-Cefaz and 84.5%/8.9% for ST-Cefaz) as well as the greatest frequency of allergic reactions (3.0% vs 2.4% for Hx-Cefaz and 1.7% for ST-Cefaz) and highest rates of adverse drug reactions (5.2% vs 4.6% for Hx-Cefaz and 4.7% for ST-Cefaz). Even in a "best case for Vanc" scenario, Vanc yields the poorest outcomes. ST-Cefaz is preferred to Hx-Cefaz although sensitive to input variations. Patients with MSSA bacteremia and a reported PCN allergy should have the allergy addressed for optimal treatment. Full allergy evaluation with skin testing seems to be preferred, although more data are needed. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  2. Developing methods and means to improve the sensitivity and stability characteristics of microwave sensors.

    Directory of Open Access Journals (Sweden)

    S. A. Vasyukov

    2014-01-01

    Full Text Available The paper considers the issues of designing the two-zone digital microwave sensors for the car alarm systems with high stability characteristics and capable of adaptation to external noise.The existing analog circuit-based microwave sensors for car alarm systems have a number of essential drawbacks:-- high level of intrinsic noise to cause the "false" alarm of response sensors;-- non-stable characteristics caused by the application of analog components at the environmental temperatures from -30 tо +60 С. This requires sensor readjustment during the transition from the summer season to the winter one, that is, essentially, hard to implement;-- uneasy adjustment of a mounted sensor with variable resistors;-- adjustment characterstic nonlinearity and high power consumption;-- impossible to implement the auto-compensation and adjustment algorithms to the repetitive external actions.To overcome abovementioned drawbacks the paper offers a circuit of digital microprocessor-based (PIC12F683 processor sensor with HF oscillator running in pulse operation mode (pulse ratio 20. It allows 6-8 times decrease of power consumption up to 2.1 mA and twice reduction of noise amplitude. Filters with useful output signal are of digital implementation. This enables us to reduce the number of electric components of sensor in half and to increase characteristics stability.For remote adjustment of sensor (with the key fob of car alarm or by GSM link 16 gradations of sensitivity are entered for zones of warning and alarm. The reference levels of digital comparators at each gradation of sensitivity are so generated that the sensor has a linear adjustment characteristic (distance of movable object detection versus gradation number.An application of digital signal processing and sensor capability of data exchange with the main alarm module through the bus allows us to implement the original algorithm of automatic correction of sensitivity across the warning zone of

  3. Improving Terminology Mapping in Clinical Text with Context-Sensitive Spelling Correction.

    Science.gov (United States)

    Dziadek, Juliusz; Henriksson, Aron; Duneld, Martin

    2017-01-01

    The mapping of unstructured clinical text to an ontology facilitates meaningful secondary use of health records but is non-trivial due to lexical variation and the abundance of misspellings in hurriedly produced notes. Here, we apply several spelling correction methods to Swedish medical text and evaluate their impact on SNOMED CT mapping; first in a controlled evaluation using medical literature text with induced errors, followed by a partial evaluation on clinical notes. It is shown that the best-performing method is context-sensitive, taking into account trigram frequencies and utilizing a corpus-based dictionary.

  4. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Ryan, Marno C; Itsiopoulos, Catherine; Thodis, Tania; Ward, Glenn; Trost, Nicholas; Hofferberth, Sophie; O'Dea, Kerin; Desmond, Paul V; Johnson, Nathan A; Wilson, Andrew M

    2013-07-01

    Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the population and signifies increased risk of liver fibrosis and cirrhosis, type 2 diabetes, and cardiovascular disease. Therapies are limited. Weight loss is of benefit but is difficult to maintain. We aimed at examining the effect of the Mediterranean diet (MD), a diet high in monounsaturated fatty acids, on steatosis and insulin sensitivity, using gold standard techniques. Twelve non-diabetic subjects (6 Females/6 Males) with biopsy-proven NAFLD were recruited for a randomised, cross-over 6-week dietary intervention study. All subjects undertook both the MD and a control diet, a low fat-high carbohydrate diet (LF/HCD), in random order with a 6-week wash-out period in- between. Insulin sensitivity was determined with a 3-h hyperinsulinemic-euglycemic clamp study and hepatic steatosis was assessed with localized magnetic resonance (1)H spectroscopy ((1)H-MRS). At baseline, subjects were abdominally obese with elevated fasting concentrations of glucose, insulin, triglycerides, ALT, and GGT. Insulin sensitivity at baseline was low (M=2.7 ± 1.0 mg/kg/min(-1)). Mean weight loss was not different between the two diets (p=0.22). There was a significant relative reduction in hepatic steatosis after the MD compared with the LF/HCD: 39 ± 4% versus 7 ± 3%, as measured by (1)H-MRS (p=0.012). Insulin sensitivity improved with the MD, whereas after the LF/HCD there was no change (p=0.03 between diets). Even without weight loss, MD reduces liver steatosis and improves insulin sensitivity in an insulin-resistant population with NAFLD, compared to current dietary advice. This diet should be further investigated in subjects with NAFLD. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  6. Parameter sensitivity analysis of nonlinear piezoelectric probe in tapping mode atomic force microscopy for measurement improvement

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Rachael; Nima Mahmoodi, S., E-mail: nmahmoodi@eng.ua.edu [Department of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, Alabama 35487 (United States)

    2014-02-21

    The equations of motion for a piezoelectric microcantilever are derived for a nonlinear contact force. The analytical expressions for natural frequencies and mode shapes are obtained. Then, the method of multiple scales is used to analyze the analytical frequency response of the piezoelectric probe. The effects of nonlinear excitation force on the microcantilever beam's frequency and amplitude are analytically studied. The results show a frequency shift in the response resulting from the force nonlinearities. This frequency shift during contact mode is an important consideration in the modeling of AFM mechanics for generation of more accurate imaging. Also, a sensitivity analysis of the system parameters on the nonlinearity effect is performed. The results of a sensitivity analysis show that it is possible to choose parameters such that the frequency shift minimizes. Certain parameters such as tip radius, microcantilever beam dimensions, and modulus of elasticity have more influence on the nonlinearity of the system than other parameters. By changing only three parameters—tip radius, thickness, and modulus of elasticity of the microbeam—a more than 70% reduction in nonlinearity effect was achieved.

  7. Estimating the Capacity of Urban Transportation Networks with an Improved Sensitivity Based Method

    Directory of Open Access Journals (Sweden)

    Muqing Du

    2015-01-01

    Full Text Available The throughput of a given transportation network is always of interest to the traffic administrative department, so as to evaluate the benefit of the transportation construction or expansion project before its implementation. The model of the transportation network capacity formulated as a mathematic programming with equilibrium constraint (MPEC well defines this problem. For practical applications, a modified sensitivity analysis based (SAB method is developed to estimate the solution of this bilevel model. The high-efficient origin-based (OB algorithm is extended for the precise solution of the combined model which is integrated in the network capacity model. The sensitivity analysis approach is also modified to simplify the inversion of the Jacobian matrix in large-scale problems. The solution produced in every iteration of SAB is restrained to be feasible to guarantee the success of the heuristic search. From the numerical experiments, the accuracy of the derivatives for the linear approximation could significantly affect the converging of the SAB method. The results also show that the proposed method could obtain good suboptimal solutions from different starting points in the test examples.

  8. The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy.

    Science.gov (United States)

    Schofield, Jonathon S; Evans, Katherine R; Hebert, Jacqueline S; Marasco, Paul D; Carey, Jason P

    2016-03-21

    Force Sensitive Resistors (FSRs) are commercially available thin film polymer sensors commonly employed in a multitude of biomechanical measurement environments. Reasons for such wide spread usage lie in the versatility, small profile, and low cost of these sensors. Yet FSRs have limitations. It is commonly accepted that temperature, curvature and biological tissue compliance may impact sensor conductance and resulting force readings. The effect of these variables and degree to which they interact has yet to be comprehensively investigated and quantified. This work systematically assesses varying levels of temperature, sensor curvature and surface compliance using a full factorial design-of-experiments approach. Three models of Interlink FSRs were evaluated. Calibration equations under 12 unique combinations of temperature, curvature and compliance were determined for each sensor. Root mean squared error, mean absolute error, and maximum error were quantified as measures of the impact these thermo/mechanical factors have on sensor performance. It was found that all three variables have the potential to affect FSR calibration curves. The FSR model and corresponding sensor geometry are sensitive to these three mechanical factors at varying levels. Experimental results suggest that reducing sensor error requires calibration of each sensor in an environment as close to its intended use as possible and if multiple FSRs are used in a system, they must be calibrated independently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A call to improve practice concerning cultural sensitivity in advance directives: a review of the literature.

    Science.gov (United States)

    Zager, B Sue; Yancy, Margaret

    2011-12-01

    The Patient Self Determination Act of 1990 mandates healthcare providers (HCP) to speak with patients about end-of-life preferences and advance directives (AD). HCP work with patients of varying cultures, and standard ADs do not address cultural differences. In order to understand various cultural beliefs, cultural sensitivity is important especially when discussing advance care planning (ACP). Individuals from differing ethnic backgrounds are likely to turn to their traditional norms of practice when ill or treatment choices must be made. An AD that addresses varying cultural values and beliefs was sought. A comprehensive review of the literature was conducted. Articles selected for review included qualitative and quantitative studies. The evidence was evaluated and synthesized for information related to cultural sensitivity and ADs. Three common themes emerged related to ACP discussions and culture. Healthcare provider awareness, communication, and education concerning cultural differences and ACP assisted in meeting the needs for end-of-life planning in the current era of increased globalization. Education for HCP on cultural differences and how to lead discussions promoted ACP. ADs are an essential part of health care and promote patient-centered care. (HCP) should be able to recognize differing cultural values and beliefs in order to initiate conversations about end of life. Initiating conversations about ACP can be facilitated by using open-ended questions that respect the values and beliefs of various cultures. Copyright ©2011 Sigma Theta Tau International.

  10. Improving Sensitivity to Detect Mild Cognitive Impairment: Cognitive Load Dual-Task Gait Speed Assessment.

    Science.gov (United States)

    MacAulay, Rebecca K; Wagner, Mark T; Szeles, Dana; Milano, Nicholas J

    2017-07-01

    Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, pscognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).

  11. Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode

    International Nuclear Information System (INIS)

    Zhao, Junchang; Wu, Jihuai; Zheng, Ming; Huo, Jinghao; Tu, Yongguang

    2015-01-01

    Highlights: • A colloid of graphene/titania is prepared, and thus a graphene/titania film is made. • The film shows high porosity, large surface area and small transfer resistance. • The cell with graphene/titania photoanode obtains a conversion efficiency of 7.52%. • Which is increased by 18% compared to the cell with pristine titania electrode. - Abstract: A mixed colloid of graphene and titania is synthesized by a one-step hydrothermal reaction, thus a graphene/titania film photoanode is prepared. The graphene/titania film shows high porosity and large specific surface area, which favors a full adsorption of sensitized dye. On the other hand, the graphene/titania electrode has smaller charge transfer resistance than the pristine titania electrode, which replies that the graphene/titania electrode accelerates electronic transportation and suppresses the charge recombination. Under an optimal condition, the dye-sensitized solar cell based on graphene/titania photoanode achieve a power conversion efficiency of 7.52%, which is increased by 17.7% compared to the cell based on the pristine titania electrode under a simulated solar light irradiation of 100 mW·cm −2

  12. Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Brijesh, E-mail: brijesh.tripathi@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Yadav, Pankaj; Pandey, Kavita; Kanade, Pooja [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Pune 411025 (India); Kumar, Manoj, E-mail: manoj.kumar@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India)

    2014-12-15

    Highlights: • Graphene catalytic activity in dye-sensitized solar cell is evaluated. • Two-diode model is used for performance evaluation. • Optical performance of graphene is analyzed. • 36% increase in efficiency has been reported using graphene-coupled counter electrode. - Abstract: This article compares and describes the photovoltaic performance of dye-sensitized solar cell (DSSC) consisting of platinum (Pt) and graphene-coupled-platinum based counter electrodes (CE). The power conversion efficiency of DSSC could be enhanced by 36% with multi-layer graphene flakes (MGF)/Pt CE as compared to Pt CE. Electrochemical impedance spectroscopy and cyclic voltammetry analysis show that DSSC with an MGF/Pt CE exhibits a higher electro-catalytic activity with lower series resistance. Two-diode model has been used to extract the recombination governing and the performance indicating parameters of a DSSC. An enhancement of ≈76% in short-circuit current of MGF/CE based DSSC, as compared to Pt CE, could be attributed to optical and catalytic properties of graphene. This study provides an insight into electronic transport mechanism of DSSC, which changes under the influence of highly catalytic materials such as graphene.

  13. Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Tripathi, Brijesh; Yadav, Pankaj; Pandey, Kavita; Kanade, Pooja; Kumar, Manjeet; Kumar, Manoj

    2014-01-01

    Highlights: • Graphene catalytic activity in dye-sensitized solar cell is evaluated. • Two-diode model is used for performance evaluation. • Optical performance of graphene is analyzed. • 36% increase in efficiency has been reported using graphene-coupled counter electrode. - Abstract: This article compares and describes the photovoltaic performance of dye-sensitized solar cell (DSSC) consisting of platinum (Pt) and graphene-coupled-platinum based counter electrodes (CE). The power conversion efficiency of DSSC could be enhanced by 36% with multi-layer graphene flakes (MGF)/Pt CE as compared to Pt CE. Electrochemical impedance spectroscopy and cyclic voltammetry analysis show that DSSC with an MGF/Pt CE exhibits a higher electro-catalytic activity with lower series resistance. Two-diode model has been used to extract the recombination governing and the performance indicating parameters of a DSSC. An enhancement of ≈76% in short-circuit current of MGF/CE based DSSC, as compared to Pt CE, could be attributed to optical and catalytic properties of graphene. This study provides an insight into electronic transport mechanism of DSSC, which changes under the influence of highly catalytic materials such as graphene

  14. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  15. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis.

    Science.gov (United States)

    Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Wang, Wei; Liu, Yuan-Yuan

    2016-01-01

    A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.

  16. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    International Nuclear Information System (INIS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-01-01

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM"−"1 cm"−"2. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N_2 adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2, and a possible mechanism was also given in the paper.

  17. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang, E-mail: caowang507@163.com; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-30

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM{sup −1} cm{sup −2}. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}, and a possible mechanism was also given in the paper.

  18. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    Science.gov (United States)

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  19. Simple PCR assays improve the sensitivity of HIV-1 subtype B drug resistance testing and allow linking of resistance mutations.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Johnson

    Full Text Available BACKGROUND: The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing. METHODOLOGY: We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing. SIGNIFICANCE: Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations.

  20. Improving sensitivity of the polyurethane/CNT laminate strain sensor by controlled mechanical preload

    International Nuclear Information System (INIS)

    Slobodian, Petr; Olejnik, Robert; Matyas, Jiri; Babar, Dipak Gorakh

    2016-01-01

    This article describes strain detection potential of polyurethane/CNT layered composite and further possible enhance of its sensitivity to strain, expressed by value of gauge factor, GF, employing its controlled mechanical preload. In course of its fabrication a non-woven polyurethane membrane made by electro spinning was used as filtering membrane for CNT aqueous dispersion. Final CNT polyurethane laminate composite is prepared by compression molding. Produced polyurethane/CNT composite laminate is electrically conductive and high elastic. Its elongation leads to change of its macroscopic electrical resistance. Changes in resistance are further reversible, reproducible and can monitor deformation in real time. Gauge factor reaches very high values around 8 for strain reaching 3.5% comparing with conventional metallic strain gauges. Finally, controlled mechanical preload significantly increases value of GF. For example for value of 8.1% of preload value of GF reaches 23.3 for strain 3.5%. (paper)

  1. High-intensity interval training improves insulin sensitivity in older individuals

    DEFF Research Database (Denmark)

    Søgaard, D; Lund, M T; Scheuer, C M

    2017-01-01

    AIM: Metabolic health may deteriorate with age as a result of altered body composition and decreased physical activity. Endurance exercise is known to counter these changes delaying or even preventing onset of metabolic diseases. High-intensity interval training (HIIT) is a time efficient...... alternative to regular endurance exercise, and the aim of this study was to investigate the metabolic benefit of HIIT in older subjects. METHODS: Twenty-two sedentary male (n = 11) and female (n = 11) subjects aged 63 ± 1 years performed HIIT training three times/week for 6 weeks on a bicycle ergometer. Each...... HIIT session consisted of five 1-minute intervals interspersed with 1½-minute rest. Prior to the first and after the last HIIT session whole-body insulin sensitivity, measured by a hyperinsulinaemic-euglycaemic clamp, plasma lipid levels, HbA1c, glycaemic parameters, body composition and maximal oxygen...

  2. Improving the Sensitivity of Humidity Sensor Based on Mach-Zehnder Interferometer Coated with a Methylcellulose

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2018-01-01

    Full Text Available A novel humidity sensor based on Mach-Zehnder interferometer (MZI with the single-mode fiber (SMF coated with methylcellulose (MC is proposed and experimentally demonstrated. The MZI consists of two waist enlarged structures. Such an all-fiber MZI incorporates an intermodal interference between the core mode and cladding modes. The MC is coated on the surface of the SMF. External humidity changes the refractive index of MC, causing the intensity changes of the interference pattern. The proposed sensor is linearly responsive to refractive humidity (RH within the range from 45% to 85% RH, with sensitivity of 0.094 dB/%RH. Moreover the insensitivity of the fiber to the temperature makes this structure more suitable for practical measurement.

  3. Resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin.

    Science.gov (United States)

    Yuan, Hong; Weng, Chunyan; Yang, Youbo; Huang, Lihua; Xing, Xiaowei

    2013-12-01

    The metabolic syndrome (MS) is a cluster of metabolic disorders arising from insulin resistance, characterized by the presence of central obesity, impaired fasting glucose level, dyslipidemia and hypertension. As the first-line medication, metformin is commonly used for MS to reduce insulin resistance. Comparing with rosiglitazone, metformin does not increase cardiovascular mortality risk in patients with MS. However, metformin is not good enough in improving insulin sensitivity. Its molecular mechanism is still not clear. Recent studies have demonstrated that resistin, an adipokine, could induce IR by both AMPK-dependent and AMPK-independent pathways. Though there were conflicting findings of resistin in metabolic syndrome or type 2 diabetes mellitus in different studies, resistin was significant decreased in the rosiglitazone treated patients than in the metformin-treated patients in most of studies. Here, we hypothesized that resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin. This hypothesis could explain why rosiglitazone is superior to metformin in enhancement of insulin sensitivity. Copyright © 2013. Published by Elsevier Ltd.

  4. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path.

    Science.gov (United States)

    Katis, Ioannis N; He, Peijun J W; Eason, Robert W; Sones, Collin L

    2018-05-03

    We report on the use of a laser-direct write (LDW) technique that allows the fabrication of lateral flow devices with enhanced sensitivity and limit of detection. This manufacturing technique comprises the dispensing of a liquid photopolymer at specific regions of a nitrocellulose membrane and its subsequent photopolymerisation to create impermeable walls inside the volume of the membrane. These polymerised structures are intentionally designed to create fluidic channels which are constricted over a specific length that spans the test zone within which the sample interacts with pre-deposited reagents. Experiments were conducted to show how these constrictions alter the fluid flow rate and the test zone area within the constricted channel geometries. The slower flow rate and smaller test zone area result in the increased sensitivity and lowered limit of detection for these devices. We have quantified these via the improved performance of a C-Reactive Protein (CRP) sandwich assay on our lateral flow devices with constricted flow paths which demonstrate an improvement in its sensitivity by 62x and in its limit of detection by 30x when compared to a standard lateral flow CRP device. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Endurance training improves insulin sensitivity and body composition in prostate cancer patients treated with androgen deprivation therapy.

    Science.gov (United States)

    Hvid, Thine; Winding, Kamilla; Rinnov, Anders; Dejgaard, Thomas; Thomsen, Carsten; Iversen, Peter; Brasso, Klaus; Mikines, Kari J; van Hall, Gerrit; Lindegaard, Birgitte; Solomon, Thomas P J; Pedersen, Bente K

    2013-10-01

    Insulin resistance and changes in body composition are side effects of androgen deprivation therapy (ADT) given to prostate cancer patients. The present study investigated whether endurance training improves insulin sensitivity and body composition in ADT-treated prostate cancer patients. Nine men undergoing ADT for prostate cancer and ten healthy men with normal testosterone levels underwent 12 weeks of endurance training. Primary endpoints were insulin sensitivity (euglycemic-hyperinsulinemic clamps with concomitant glucose-tracer infusion) and body composition (dual-energy X-ray absorptiometry and magnetic resonance imaging). The secondary endpoint was systemic inflammation. Statistical analysis was carried out using two-way ANOVA. Endurance training increased VO2max (ml(O2)/min per kg) by 11 and 13% in the patients and controls respectively (PBody weight (Pbody fat mass (FM) (Pbody mass (P=0.99) was unchanged. Additionally, reductions were observed in abdominal (Pcancer patients exhibited improved insulin sensitivity and body composition to a similar degree as eugonadal men.

  6. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  7. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  8. Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory.

    Science.gov (United States)

    Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen R

    2013-08-01

    Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers.

  9. Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Kamizato Iwao

    2014-01-01

    Full Text Available Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.

  10. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice

    DEFF Research Database (Denmark)

    Brandt, Claus; Hansen, Rasmus Hvass; Hansen, Jakob Bondo

    2015-01-01

    -fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were......OBJECTIVE: Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling....../glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION: Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content....

  11. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  12. IceCube-Gen2 sensitivity improvement for steady neutrino point sources

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Resconi, Elisa [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The observation of an astrophysical neutrino flux by high-energy events starting in IceCube strengthens the search for sources of astrophysical neutrinos. Identification of these sources requires good pointing at high statistics, mainly using muons created by charged-current muon neutrino interactions going through the IceCube detector. We report about preliminary studies of a possible high-energy extension IceCube-Gen2. Using a 6 times bigger detection volume, effective area as well as reconstruction accuracy will improve with respect to IceCube. Moreover, using (in-ice) active veto techniques will significantly improve the performance for Southern hemisphere events, where possible local candidate neutrino sources are located.

  13. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Science.gov (United States)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  14. Acquiring additional delayed PET images improves sensitivity and specificity in oncology cases

    International Nuclear Information System (INIS)

    Lamki, L.M.; Barron, B.J.; Mullani, N.; Joseph, U.; Ehert, E.

    2002-01-01

    Aim: This study looked into utility of acquiring PET images at 2-3 hours in addition to the standard whole body PET done at 1-hour after FDG injection in certain oncology cases. The objective is to evaluate whether the delayed additional images can decipher equivocal foci of FDG accumulation commonly seen in oncology patients. Typical example is the bowel activity that moves with time. Materials and Methods: PET protocol at our Institution in patients with colon Cancer, Pancreas Ca, Ovarian Ca and Breast Ca include a whole body PET (6-7 bed positions) done at 1-hour after 15 mCi F-18-FDG followed by select limited area PET scan (typically 2 bed stops over the area of interest) at 2-3 hours. Acquisition was undertaken on Siemens ECAT-EXACT Camera - 2-D acquisition and 8 mins. per bed position (5 mins. Emission and 3 mins. Transmission), 16.3 cm FOV and then Iterative Reconstruction. Results: Analysis of the first 115 patients who had additional delayed images resulted in 80% of patients where delayed images helped in interpretation. In 70% of these, delayed images helped in identifying physiological structures, e.g., ureters, bowel, blood vessels and muscles versus pathology. In 25%, they actually helped in identifying malignancy, e.g. more definite FDG accumulation. Almost all helped to boost the confidence of the reader. The contribution was mainly in differentiating bowel and ureter activity from cancer in the abdomen, as these change position with time. In case of pancreas and breast cancer, delayed images contributed in clarifying tumor metabolic activity as well. Inflammation and motion artifacts could also be better defined and so was muscle uptake. Conclusion: (1) Additional delayed PET imaging is very helpful in certain cancers in identifying more lesions and avoiding pitfalls. (2) They can yield higher sensitivity and specificity for colon, ovarian, breast and pancreas cancers. (3) Identification of physiologic structures and differentiation of these from

  15. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature.

    Directory of Open Access Journals (Sweden)

    Anne Bernhardt

    Full Text Available The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critica