WorldWideScience

Sample records for semisymmetric riemannian manifolds

  1. Principal Curves on Riemannian Manifolds

    DEFF Research Database (Denmark)

    Hauberg, Søren

    2015-01-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Eucl...

  2. Principal Curves on Riemannian Manifolds.

    Science.gov (United States)

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  3. Connections and curvatures on complex Riemannian manifolds

    International Nuclear Information System (INIS)

    Ganchev, G.; Ivanov, S.

    1991-05-01

    Characteristic connection and characteristic holomorphic sectional curvatures are introduced on a complex Riemannian manifold (not necessarily with holomorphic metric). For the class of complex Riemannian manifolds with holomorphic characteristic connection a classification of the manifolds with (pointwise) constant holomorphic characteristic curvature is given. It is shown that the conformal geometry of complex analytic Riemannian manifolds can be naturally developed on the class of locally conformal holomorphic Riemannian manifolds. Complex Riemannian manifolds locally conformal to the complex Euclidean space are characterized with zero conformal fundamental tensor and zero conformal characteristic tensor. (author). 12 refs

  4. Natural Connections on Riemannian Product Manifolds

    OpenAIRE

    Gribacheva, Dobrinka

    2011-01-01

    A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

  5. Minimal Webs in Riemannian Manifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    For a given combinatorial graph $G$ a {\\it geometrization} $(G, g)$ of the graph is obtained by considering each edge of the graph as a $1-$dimensional manifold with an associated metric $g$. In this paper we are concerned with {\\it minimal isometric immersions} of geometrized graphs $(G, g......)$ into Riemannian manifolds $(N^{n}, h)$. Such immersions we call {\\em{minimal webs}}. They admit a natural 'geometric' extension of the intrinsic combinatorial discrete Laplacian. The geometric Laplacian on minimal webs enjoys standard properties such as the maximum principle and the divergence theorems, which...... are of instrumental importance for the applications. We apply these properties to show that minimal webs in ambient Riemannian spaces share several analytic and geometric properties with their smooth (minimal submanifold) counterparts in such spaces. In particular we use appropriate versions of the divergence...

  6. Harmonic Riemannian Maps on Locally Conformal Kaehler Manifolds

    Indian Academy of Sciences (India)

    We study harmonic Riemannian maps on locally conformal Kaehler manifolds ( l c K manifolds). We show that if a Riemannian holomorphic map between l c K manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, we ...

  7. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    International Nuclear Information System (INIS)

    Gilkey, Peter B; Ivanova, Raina; Zhang Tan

    2002-01-01

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds

  8. Higher-order Jordan Osserman pseudo-Riemannian manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Gilkey, Peter B [Mathematics Department, University of Oregon, Eugene, OR 97403 (United States); Ivanova, Raina [Mathematics Department, University of Hawaii - Hilo, 200 W Kawili St, Hilo, HI 96720 (United States); Zhang Tan [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071 (United States)

    2002-09-07

    We study the higher-order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r, s) for certain values of (r, s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher-order Osserman manifolds.

  9. Convex functions and optimization methods on Riemannian manifolds

    CERN Document Server

    Udrişte, Constantin

    1994-01-01

    This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...

  10. CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds

    International Nuclear Information System (INIS)

    Perdomo, Oscar M.

    2012-01-01

    In this paper we generalize the explicit formulas for constant mean curvature (CMC) immersion of hypersurfaces of Euclidean spaces, spheres and hyperbolic spaces given in Perdomo (Asian J Math 14(1):73–108, 2010; Rev Colomb Mat 45(1):81–96, 2011) to provide explicit examples of several families of immersions with constant mean curvature and non constant principal curvatures, in semi-Riemannian manifolds with constant sectional curvature. In particular, we prove that every h is an element of [-1,-(2√n-1/n can be realized as the constant curvature of a complete immersion of S 1 n-1 x R in the (n + 1)-dimensional de Sitter space S 1 n+1 . We provide 3 types of immersions with CMC in the Minkowski space, 5 types of immersion with CMC in the de Sitter space and 5 types of immersion with CMC in the anti de Sitter space. At the end of the paper we analyze the families of examples that can be extended to closed hypersurfaces.

  11. On Riemannian manifolds (Mn, g) of quasi-constant curvature

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-07-01

    A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs

  12. Riemannian multi-manifold modeling and clustering in brain networks

    Science.gov (United States)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  13. Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Hua

    2018-03-01

    Full Text Available This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.

  14. Conservation laws in quantum mechanics on a Riemannian manifold

    International Nuclear Information System (INIS)

    Chepilko, N.M.

    1992-01-01

    In Refs. 1-5 the quantum dynamics of a particle on a Riemannian manifold V n is considered. The advantage of Ref. 5, in comparison with Refs. 1-4, is the fact that in it the differential-geometric character of the theory and the covariant definition (via the known Lagrangian of the particle) of the algebra of quantum-mechanical operators on V n are mutually consistent. However, in Ref. 5 the procedure for calculating the expectation values of operators from the known wave function of the particle is not discussed. In the authors view, this question is problematical and requires special study. The essence of the problem is that integration on a Riemannian manifold V n , unlike that of a Euclidean manifold R n , is uniquely defined only for scalars. For this reason, the calculation of the expectation value of, e.g., the operator of the momentum or angular momentum of a particle on V n is not defined in the usual sense. However, this circumstance was not taken into account by the authors of Refs. 1-4, in which quantum mechanics on a Riemannian manifold V n was studied. In this paper the author considers the conservation laws and a procedure for calculating observable quantities in the classical mechanics (Sec. 2) and quantum mechanics (Sec. 3) of a particle on V n . It is found that a key role here is played by the Killing vectors of the Riemannian manifold V n . It is shown that the proposed approach to the problem satisfies the correspondence principle for both the classical and the quantum mechanics of a particle on a Euclidean manifold R n

  15. On the de Rham–Wu decomposition for Riemannian and Lorentzian manifolds

    International Nuclear Information System (INIS)

    Galaev, Anton S

    2014-01-01

    It is explained how to find the de Rham decomposition of a Riemannian manifold and the Wu decomposition of a Lorentzian manifold. For that it is enough to find parallel symmetric bilinear forms on the manifold, and do some linear algebra. This result will allow to compute the connected holonomy group of an arbitrary Riemannian or Lorentzian manifold. (paper)

  16. Introduction to global analysis minimal surfaces in Riemannian manifolds

    CERN Document Server

    Moore, John Douglas

    2017-01-01

    During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed param...

  17. Quantum mechanics on Riemannian manifold in Schwinger's quantization approach II

    International Nuclear Information System (INIS)

    Chepilko, N.M.; Romanenko, A.V.

    2001-01-01

    The extended Schwinger quantization procedure is used for constructing quantum mechanics on a manifold with a group structure. The considered manifold M is a homogeneous Riemannian space with the given action of an isometry transformation group. Using the identification of M with the quotient space G/H, where H is the isotropy group of an arbitrary fixed point of M, we show that quantum mechanics on G/H possesses a gauge structure, described by a gauge potential that is the connection 1-form of the principal fiber bundle G(G/H, H). The coordinate representation of quantum mechanics and the procedure for selecting the physical sector of the states are developed. (orig.)

  18. Exact solutions for isometric embeddings of pseudo-Riemannian manifolds

    International Nuclear Information System (INIS)

    Amery, G; Moodley, J

    2014-01-01

    Embeddings into higher dimensions are of direct importance in the study of higher dimensional theories of our Universe, in high energy physics and in classical general relativity. Theorems have been established that guarantee the existence of local and global codimension-1 embeddings between pseudo-Riemannian manifolds, particularly for Einstein embedding spaces. A technique has been provided to determine solutions to such embeddings. However, general solutions have not yet been found and most known explicit solutions are for embedded spaces with relatively simple Ricci curvature. Motivated by this, we have considered isometric embeddings of 4-dimensional pseudo-Riemannian spacetimes into 5-dimensional Einstein manifolds. We have applied the technique to treat specific 4-dimensional cases of interest in astrophysics and cosmology (including the global monopole exterior and Vaidya-de Sitter-class solutions), and provided novel physical insights into, for example, Einstein-Gauss-Bonnet gravity. Since difficulties arise in solving the 5-dimensional equations for given 4-dimensional spaces, we have also investigated embedded spaces, which admit bulks with a particular metric form. These analyses help to provide insight to the general embedding problem

  19. L2-Harmonic Forms on Incomplete Riemannian Manifolds with Positive Ricci Curvature

    Directory of Open Access Journals (Sweden)

    Junya Takahashi

    2018-05-01

    Full Text Available We construct an incomplete Riemannian manifold with positive Ricci curvature that has non-trivial L 2 -harmonic forms and on which the L 2 -Stokes theorem does not hold. Therefore, a Bochner-type vanishing theorem does not hold for incomplete Riemannian manifolds.

  20. Point interactions in two- and three-dimensional Riemannian manifolds

    International Nuclear Information System (INIS)

    Erman, Fatih; Turgut, O Teoman

    2010-01-01

    We present a non-perturbative renormalization of the bound state problem of n bosons interacting with finitely many Dirac-delta interactions on two- and three-dimensional Riemannian manifolds using the heat kernel. We formulate the problem in terms of a new operator called the principal or characteristic operator Φ(E). In order to investigate the problem in more detail, we then restrict the problem to one particle sector. The lower bound of the ground state energy is found for a general class of manifolds, e.g. for compact and Cartan-Hadamard manifolds. The estimate of the bound state energies in the tunneling regime is calculated by perturbation theory. Non-degeneracy and uniqueness of the ground state is proven by the Perron-Frobenius theorem. Moreover, the pointwise bounds on the wave function is given and all these results are consistent with the one given in standard quantum mechanics. Renormalization procedure does not lead to any radical change in these cases. Finally, renormalization group equations are derived and the β function is exactly calculated. This work is a natural continuation of our previous work based on a novel approach to the renormalization of point interactions, developed by Rajeev.

  1. Spherical-type hypersurfaces in a Riemannian manifold

    International Nuclear Information System (INIS)

    Ezin, J.P.; Rigoli, M.

    1988-06-01

    Let M be a compact hypersurface immersed in R n and let K and L be its mean curvature function and scalar curvature respectively. A classical global problem concerning these two geometrical quantities is to find out if assuming that either K or L is constant and under some additional assumptions M is a sphere. It was demonstrated that assuming the immersion to be an embedding, the consistency of K implies M to be spherical. It was also demonstrated that the sphere is the only compact hypersurface with constant scalar curvature embedded in Euclidean space. In this paper we give a generalization of these results when the ambient space is an appropriate Riemannian manifold (N, h). 17 refs

  2. Rigid supersymmetry on 5-dimensional Riemannian manifolds and contact geometry

    International Nuclear Information System (INIS)

    Pan, Yiwen

    2014-01-01

    In this note we generalize the methods of http://dx.doi.org/10.1007/JHEP08(2012)141, http://dx.doi.org/10.1007/JHEP01(2013)072 and http://dx.doi.org/10.1007/JHEP05(2013)017 to 5-dimensional Riemannian manifolds M. We study the relations between the geometry of M and the number of solutions to a generalized Killing spinor equation obtained from a 5-dimensional supergravity. The existence of 1 pair of solutions is related to almost contact metric structures. We also discuss special cases related to M=S 1 ×M 4 , which leads to M being foliated by submanifolds with special properties, such as Quaternion-Kähler. When there are 2 pairs of solutions, the closure of the isometry sub-algebra generated by the solutions requires M to be S 3 or T 3 -fibration over a Riemann surface. 4 pairs of solutions pin down the geometry of M to very few possibilities. Finally, we propose a new supersymmetric theory for N=1 vector multiplet on K-contact manifold admitting solutions to the Killing spinor equation

  3. Absolute Monotonicity of Functions Related To Estimates of First Eigenvalue of Laplace Operator on Riemannian Manifolds

    Directory of Open Access Journals (Sweden)

    Feng Qi

    2014-10-01

    Full Text Available The authors find the absolute monotonicity and complete monotonicity of some functions involving trigonometric functions and related to estimates the lower bounds of the first eigenvalue of Laplace operator on Riemannian manifolds.

  4. Steiner minimal trees in small neighbourhoods of points in Riemannian manifolds

    Science.gov (United States)

    Chikin, V. M.

    2017-07-01

    In contrast to the Euclidean case, almost no Steiner minimal trees with concrete boundaries on Riemannian manifolds are known. A result describing the types of Steiner minimal trees on a Riemannian manifold for arbitrary small boundaries is obtained. As a consequence, it is shown that for sufficiently small regular n-gons with n≥ 7 their boundaries without a longest side are Steiner minimal trees. Bibliography: 22 titles.

  5. Covariant Schrödinger semigroups on Riemannian manifolds

    CERN Document Server

    Güneysu, Batu

    2017-01-01

    This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities.  The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials. The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also inc...

  6. Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary

    International Nuclear Information System (INIS)

    Ezin, J.P.; Mouhamadou Hassirou; Tossa, J.

    2005-08-01

    We prove in this paper a divergence theorem for symmetric (0,2)-tensors on a semi-Riemannian manifold with boundary. As a consequence we establish the complete divergence theorem on a semi-Riemannian manifold with any kinds of smooth boundaries. This result contains the previous attempts to write this theorem on a semi-Riemannian manifold as Unal results. A vanishing theorem for gradient timelike Killing vector fields on Einstein semi-Riemannian manifolds is obtained. As a tool, an induced volume form is defined for a degenerate boundary by using a star like operator that we define on degenerate submanifolds. (author)

  7. On the concircular curvature tensor of Riemannian manifolds

    International Nuclear Information System (INIS)

    Rahman, M.S.; Lal, S.

    1990-06-01

    Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs

  8. Existence of parallel spinors on non-simply-connected Riemannian manifolds

    International Nuclear Information System (INIS)

    McInnes, B.

    1997-04-01

    It is well known, and important for applications, that Ricci-flat Riemannian manifolds of non-generic holonomy always admit a parallel [covariant constant] spinor if they are simply connected. The non-simply-connected case is much more subtle, however. We show that a parallel spinor can still be found in this case provided that the [real] dimension is not a multiple of four, and provided that the spin structure is carefully chosen. (author). 10 refs

  9. On construction of two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space

    International Nuclear Information System (INIS)

    Saveliev, M.V.

    1983-01-01

    In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)

  10. Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-07-01

    Full Text Available Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC. Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR sensor of the Jet Propulsion Laboratory (JPL and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR sensor of the Technical University of Denmark (DTU. Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.

  11. Seeley-Gilkey coefficients for the fourth-order operators on a Riemannian manifold

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    1989-01-01

    A new covariant method for computing the coefficients in the heat kernel expansion is suggested. It allows one to calculate Seeley-Gilkey coefficients for both minimal and nonminimal differential operators acting on a vector bundle over a Riemannian manifold. The coefficients for the fourth-order minimal operators in arbitrary dimension of the space are calculated. In contrast to the second-order operators the coefficients for the fourth-order (and higher) operators turn out to be essentially dependent on the space dimension. The algorithmic character of the method suggested allows one to calculate coefficients by computer using the analytical calculation system. 19 refs.; 1 fig

  12. Seeley-Gilkey coefficients for fourth-order operators on Riemannian manifold

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    1990-01-01

    The covariant pseudodifferential-operator method of Widom is developed for computing the coefficients in the heat kernel expansion. It allows one to calculate Seeley-Gilkey coefficients for both minimal and nonminimal differential operators acting on a vector bundle over a riemannian manifold. The coefficients for the fourth-order minimal operators in arbitrary dimensions of space are calculated. In contrast to the second-order operators the coefficients for the fourth-order (and higher) operators turn out to be essentially dependent on the space dimension. The algorithmic character of the method allows one to calculate the coefficients by computer using an analytical calculation system. The method also permits a simple generalization to manifolds with torsion and supermanifolds. (orig.)

  13. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    Science.gov (United States)

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  14. A Note on the Asymptotic Behavior of Parabolic Monge-Ampère Equations on Riemannian Manifolds

    Directory of Open Access Journals (Sweden)

    Qiang Ru

    2013-01-01

    Full Text Available We study the asymptotic behavior of the parabolic Monge-Ampère equation in , in , where is a compact complete Riemannian manifold, λ is a positive real parameter, and is a smooth function. We show a meaningful asymptotic result which is more general than those in Huisken, 1997.

  15. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric

    OpenAIRE

    Zimmermann, Ralf

    2016-01-01

    We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.

  16. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric

    DEFF Research Database (Denmark)

    Zimmermann, Ralf

    2017-01-01

    We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm...... converges locally and exhibits a linear rate of convergence....

  17. Geodesic B-Preinvex Functions and Multiobjective Optimization Problems on Riemannian Manifolds

    Directory of Open Access Journals (Sweden)

    Sheng-lan Chen

    2014-01-01

    Full Text Available We introduce a class of functions called geodesic B-preinvex and geodesic B-invex functions on Riemannian manifolds and generalize the notions to the so-called geodesic quasi/pseudo B-preinvex and geodesic quasi/pseudo B-invex functions. We discuss the links among these functions under appropriate conditions and obtain results concerning extremum points of a nonsmooth geodesic B-preinvex function by using the proximal subdifferential. Moreover, we study a differentiable multiobjective optimization problem involving new classes of generalized geodesic B-invex functions and derive Kuhn-Tucker-type sufficient conditions for a feasible point to be an efficient or properly efficient solution. Finally, a Mond-Weir type duality is formulated and some duality results are given for the pair of primal and dual programming.

  18. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds

    International Nuclear Information System (INIS)

    Ivanov, A O; Tuzhilin, A A

    2001-01-01

    It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space

  19. Topics in Riemannian geometry

    International Nuclear Information System (INIS)

    Ezin, J.P.

    1988-08-01

    The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs

  20. Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features

    Science.gov (United States)

    Nguyen, Chuong H.; Karavas, George K.; Artemiadis, Panagiotis

    2018-02-01

    Objective. In this paper, we investigate the suitability of imagined speech for brain-computer interface (BCI) applications. Approach. A novel method based on covariance matrix descriptors, which lie in Riemannian manifold, and the relevance vector machines classifier is proposed. The method is applied on electroencephalographic (EEG) signals and tested in multiple subjects. Main results. The method is shown to outperform other approaches in the field with respect to accuracy and robustness. The algorithm is validated on various categories of speech, such as imagined pronunciation of vowels, short words and long words. The classification accuracy of our methodology is in all cases significantly above chance level, reaching a maximum of 70% for cases where we classify three words and 95% for cases of two words. Significance. The results reveal certain aspects that may affect the success of speech imagery classification from EEG signals, such as sound, meaning and word complexity. This can potentially extend the capability of utilizing speech imagery in future BCI applications. The dataset of speech imagery collected from total 15 subjects is also published.

  1. Contribution to the establishment and resolution of the Schroedinger equation in a Riemannian manifold with constant curvature

    International Nuclear Information System (INIS)

    Rasolofoson, N.G.

    2014-01-01

    The properties of a physical system may vary significantly due to the presence of matter or energy. This change can be defined by the deformation of the space which is described as the variation of its curvature. In order to describe this law of physics, we have used differential geometry and studied especially a Schroedinger equation which describes a system evolving with time on a Riemannian manifold of constant curvature. Therefore, we have established and solved the Schroedinger equation using appropriate mathematics tools. As perspective, the study of string theory may be considered. [fr

  2. On the geometry of Riemannian manifolds with a Lie structure at infinity

    Directory of Open Access Journals (Sweden)

    Bernd Ammann

    2004-01-01

    Full Text Available We study a generalization of the geodesic spray and give conditions for noncomapct manifolds with a Lie structure at infinity to have positive injectivity radius. We also prove that the geometric operators are generated by the given Lie algebra of vector fields. This is the first one in a series of papers devoted to the study of the analysis of geometric differential operators on manifolds with Lie structure at infinity.

  3. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    Science.gov (United States)

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  4. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  5. On generalized de Rham-Hodge complexes, the related characteristic Chern classes and some applications to integrable multi-dimensional differential systems on Riemannian manifolds

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.

    2006-12-01

    The differential-geometric aspects of generalized de Rham-Hodge complexes naturally related with integrable multi-dimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type are constructed, their importance for the integrability of multi-dimensional nonlinear differential systems on Riemannian manifolds is discussed. An example of the three-dimensional Davey-Stewartson type nonlinear strongly integrable differential system is considered, its Cartan type connection mapping and related Chern type differential invariants are analyzed. (author)

  6. Norm of the Riemannian Curvature Tensor

    Indian Academy of Sciences (India)

    We consider the Riemannian functional R p ( g ) = ∫ M | R ( g ) | p d v g defined on the space of Riemannian metrics with unit volume on a closed smooth manifold where R ( g ) and d v g denote the corresponding Riemannian curvature tensor and volume form and p ∈ ( 0 , ∞ ) . First we prove that the Riemannian metrics ...

  7. Needle decompositions in Riemannian geometry

    CERN Document Server

    Klartag, Bo'az

    2017-01-01

    The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.

  8. Hyperspin manifolds

    International Nuclear Information System (INIS)

    Finkelstein, D.; Finkelstein, S.R.; Holm, C.

    1986-01-01

    Riemannian manifolds are but one of three ways to extrapolate from fourdimensional Minkowskian manifolds to spaces of higher dimension, and not the most plausible. If we take seriously a certain construction of time space from spinors, and replace the underlying binary spinors by N-ary hyperspinors with new ''internal'' components besides the usual two ''external'' ones, this leads to a second line, the hyperspin manifolds /sub n/ and their tangent spaces d/sub n/, different in structure and symmetry group from the Riemannian line, except that the binary spaces d 2 (Minkowski time space) and 2 (Minkowskian manifold) lie on both. d/sub n/ and /sub n/ have dimension n = N 2 . In hyperspin manifolds the energies of modes of motion multiply instead of adding their squares, and the N-ary chronometric form is not quadratic, but N-ic, with determinantal normal form. For the nine-dimensional ternary hyperspin manifold, we construct the trino, trine-Gordon, and trirac equations and their mass spectra in flat time space. It is possible that our four-dimensional time space sits in a hyperspin manifold rather than in a Kaluza-Klein Riemannian manifold. If so, then gauge quanta with spin-3 exist

  9. Eigenvalue pinching on spinc manifolds

    Science.gov (United States)

    Roos, Saskia

    2017-02-01

    We derive various pinching results for small Dirac eigenvalues using the classification of spinc and spin manifolds admitting nontrivial Killing spinors. For this, we introduce a notion of convergence for spinc manifolds which involves a general study on convergence of Riemannian manifolds with a principal S1-bundle. We also analyze the relation between the regularity of the Riemannian metric and the regularity of the curvature of the associated principal S1-bundle on spinc manifolds with Killing spinors.

  10. Comparison theorems in Riemannian geometry

    CERN Document Server

    Cheeger, Jeff

    2008-01-01

    The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re

  11. Absence of embedded eigenvalues for Riemannian Laplacians

    DEFF Research Database (Denmark)

    Ito, Kenichi; Skibsted, Erik

    Schrödinger operators on non-compact connected Riemannian manifolds. A principal example is given by a manifold with an end (possibly more than one) in which geodesic coordinates are naturally defined. In this case one of our geometric conditions is a positive lower bound of the second fundamenta...

  12. Geometric control theory and sub-Riemannian geometry

    CERN Document Server

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  13. On Kähler–Norden manifolds

    Indian Academy of Sciences (India)

    Abstract. This paper is concerned with the problem of the geometry of Norden manifolds. Some properties of Riemannian curvature tensors and curvature scalars of Kähler–Norden manifolds using the theory of Tachibana operators is presented.

  14. Scattering theory for Riemannian Laplacians

    DEFF Research Database (Denmark)

    Ito, Kenichi; Skibsted, Erik

    In this paper we introduce a notion of scattering theory for the Laplace-Beltrami operator on non-compact, connected and complete Riemannian manifolds. A principal condition is given by a certain positive lower bound of the second fundamental form of angular submanifolds at infinity. Another...... condition is certain bounds of derivatives up to order one of the trace of this quantity. These conditions are shown to be optimal for existence and completeness of a wave operator. Our theory does not involve prescribed asymptotic behaviour of the metric at infinity (like asymptotic Euclidean or hyperbolic...

  15. Riemannian geometry in an orthogonal frame

    CERN Document Server

    Cartan, Elie Joseph

    2001-01-01

    Foreword by S S Chern. In 1926-27, Cartan gave a series of lectures in which he introduced exterior forms at the very beginning and used extensively orthogonal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. In 1960, Sergei P Finikov translated from French into Russian his notes of these Cartan's lectures and published them as a book entitled Riemannian Geometry in an Orthogonal Frame. This book has many innovations, such as the n

  16. Toric Vaisman manifolds

    Science.gov (United States)

    Pilca, Mihaela

    2016-09-01

    Vaisman manifolds are strongly related to Kähler and Sasaki geometry. In this paper we introduce toric Vaisman structures and show that this relationship still holds in the toric context. It is known that the so-called minimal covering of a Vaisman manifold is the Riemannian cone over a Sasaki manifold. We show that if a complete Vaisman manifold is toric, then the associated Sasaki manifold is also toric. Conversely, a toric complete Sasaki manifold, whose Kähler cone is equipped with an appropriate compatible action, gives rise to a toric Vaisman manifold. In the special case of a strongly regular compact Vaisman manifold, we show that it is toric if and only if the corresponding Kähler quotient is toric.

  17. Roughly isometric minimal immersions into Riemannian manifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    of the intrinsic combinatorial discrete Laplacian, and we will show that they share several analytic and geometric properties with their smooth (minimal submanifold) counterparts in $N$. The intrinsic properties thus obtained may hence serve as roughly invariant descriptors for the original metric space $X$....

  18. Pseudo harmonic morphisms on Riemannian polyhedra

    International Nuclear Information System (INIS)

    Aprodu, M.A.; Bouziane, T.

    2004-10-01

    The aim of this paper is to extend the notion of pseudo harmonic morphism (introduced by Loubeau) to the case when the source manifold is an admissible Riemannian polyhedron. We define these maps to be harmonic in the sense of Eells-Fuglede and pseudo-horizontally weakly conformal in our sense. We characterize them by means of germs of harmonic functions on the source polyhedron, in the sense of Korevaar-Schoen, and germs of holomorphic functions on the Kaehler target manifold. (author)

  19. The heat flows and harmonic maps from complete manifolds into generalized regular balls

    International Nuclear Information System (INIS)

    Li Jiayu.

    1993-01-01

    Let M be a complete Riemannian manifold (compact (with or without boundary) or noncompact). Let N be a complete Riemannian manifold. We generalize the existence result for harmonic maps obtained by Hildebrandt-Kaul-Widman using the heat flow method. (author). 21 refs

  20. Pseudo-Riemannian Novikov algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

    2008-08-08

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  1. Classification of non-Riemannian doubled-yet-gauged spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Kevin [Universidad Andres Bello, Departamento de Ciencias Fisicas, Santiago de Chile (Chile); Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso, Departamento de Fisica, Valparaiso (Chile); Park, Jeong-Hyuck [Sogang University, Department of Physics, Seoul (Korea, Republic of); Institute for Basic Science (IBS), Center for Theoretical Physics of the Universe, Seoul (Korea, Republic of)

    2017-10-15

    Assuming O(D,D) covariant fields as the 'fundamental' variables, double field theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n, anti n), 0 ≤ n + anti n ≤ D. Upon these backgrounds, strings become chiral and anti-chiral over n and anti n directions, respectively, while particles and strings are frozen over the n + anti n directions. In particular, we identify (0, 0) as Riemannian manifolds, (1, 0) as non-relativistic spacetime, (1, 1) as Gomis-Ooguri non-relativistic string, (D-1, 0) as ultra-relativistic Carroll geometry, and (D, 0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0, 1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D = 10, (3, 3) may open a new scheme for the dimensional reduction from ten to four. (orig.)

  2. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  3. Isometric C1-immersions for pairs of Riemannian metrics

    International Nuclear Information System (INIS)

    D'Ambra, Giuseppina; Datta, Mahuya

    2001-08-01

    Let h 1 , h 2 be two Euclidean metrics on R q , and let V be a C ∞ -manifold endowed with two Riemannian metrics g 1 and g 2 . We study the existence of C 1 -immersions f:(V,g 1 ,g 2 )→(R q ,h 1 ,h 2 ) such that f*(h i )=g i for i=1,2. (author)

  4. Some theorems on a class of harmonic manifolds

    International Nuclear Information System (INIS)

    Rahman, M.S.; Chen Weihuan.

    1993-08-01

    A class of harmonic n-manifold, denoted by HM n , is, in fact, focussed on a Riemannian manifold with harmonic curvature. A variety of results, with properties, on HM n is presented in a fair order. Harmonic manifolds are then touched upon manifolds with recurrent Ricci curvature, biRicci-recurrent curvature and recurrent conformal curvature, and, in consequence, a sequence of theorems are deduced. (author). 21 refs

  5. On complete manifolds supporting a weighted Sobolev type inequality

    International Nuclear Information System (INIS)

    Adriano, Levi; Xia Changyu

    2011-01-01

    Highlights: → We study manifolds supporting a weighted Sobolev or log-Sobolev inequality. → We investigate manifolds of asymptotically non-negative Ricci curvature. → The constant in the weighted Sobolev inequality on complete manifolds is studied. - Abstract: This paper studies the geometric and topological properties of complete open Riemannian manifolds which support a weighted Sobolev or log-Sobolev inequality. We show that the constant in the weighted Sobolev inequality on a complete open Riemannian manifold should be bigger than or equal to the optimal one on the Euclidean space of the same dimension and that a complete open manifold of asymptotically non-negative Ricci curvature supporting a weighted Sobolev inequality must have large volume growth. We also show that a complete manifold of non-negative Ricci curvature on which the log-Sobolev inequality holds is not very far from the Euclidean space.

  6. Sasakian manifolds and M-theory

    International Nuclear Information System (INIS)

    Figueroa-O’Farrill, José; Santi, Andrea

    2016-01-01

    We extend the link between Einstein Sasakian manifolds and Killing spinors to a class of η-Einstein Sasakian manifolds, both in Riemannian and Lorentzian settings, characterizing them in terms of generalized Killing spinors. We propose a definition of supersymmetric M-theory backgrounds on such a geometry and find a new class of such backgrounds, extending previous work of Haupt, Lukas and Stelle. (paper)

  7. An introduction to differential manifolds

    CERN Document Server

    Lafontaine, Jacques

    2015-01-01

    This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergra...

  8. Mechanical systems with closed orbits on manifolds of revolution

    International Nuclear Information System (INIS)

    Kudryavtseva, E A; Fedoseev, D A

    2015-01-01

    We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the 'stable' Bertrand property: every parallel is an 'almost stable' circular orbit, and any nonsingular bounded orbit is closed. Bibliography: 14 titles

  9. STRUCTURE TENSOR IMAGE FILTERING USING RIEMANNIAN L1 AND L∞ CENTER-OF-MASS

    Directory of Open Access Journals (Sweden)

    Jesus Angulo

    2014-06-01

    Full Text Available Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These images give at each pixel a n×n symmetric positive definite matrix SPD(n, representing the local orientation and the edge information. Processing such images requires appropriate algorithms working on the Riemannian manifold on the SPD(n matrices. This contribution deals with structure tensor image filtering based on Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point and L∞ center-of-mass (Riemannian circumcenter can be obtained for structure tensors using recently proposed algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for structure tensor image processing. In particular, we compare both for two image analysis tasks: (i structure tensor image denoising; (ii anomaly detection in structure tensor images.

  10. Diffeomorphisms of elliptic 3-manifolds

    CERN Document Server

    Hong, Sungbok; McCullough, Darryl; Rubinstein, J Hyam

    2012-01-01

    This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small...

  11. Pseudo-Riemannian VSI spaces

    International Nuclear Information System (INIS)

    Hervik, Sigbjoern; Coley, Alan

    2011-01-01

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S i - and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  12. Bilinear Regularized Locality Preserving Learning on Riemannian Graph for Motor Imagery BCI.

    Science.gov (United States)

    Xie, Xiaofeng; Yu, Zhu Liang; Gu, Zhenghui; Zhang, Jun; Cen, Ling; Li, Yuanqing

    2018-03-01

    In off-line training of motor imagery-based brain-computer interfaces (BCIs), to enhance the generalization performance of the learned classifier, the local information contained in test data could be used to improve the performance of motor imagery as well. Further considering that the covariance matrices of electroencephalogram (EEG) signal lie on Riemannian manifold, in this paper, we construct a Riemannian graph to incorporate the information of training and test data into processing. The adjacency and weight in Riemannian graph are determined by the geodesic distance of Riemannian manifold. Then, a new graph embedding algorithm, called bilinear regularized locality preserving (BRLP), is derived upon the Riemannian graph for addressing the problems of high dimensionality frequently arising in BCIs. With a proposed regularization term encoding prior information of EEG channels, the BRLP could obtain more robust performance. Finally, an efficient classification algorithm based on extreme learning machine is proposed to perform on the tangent space of learned embedding. Experimental evaluations on the BCI competition and in-house data sets reveal that the proposed algorithms could obtain significantly higher performance than many competition algorithms after using same filter process.

  13. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    Science.gov (United States)

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  14. Pseudo-Riemannian VSI spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hervik, Sigbjoern [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway); Coley, Alan, E-mail: sigbjorn.hervik@uis.no, E-mail: aac@mathstat.dal.ca [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2011-01-07

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S{sub i}- and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  15. Riemannian computing in computer vision

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).   ·         Illustrates Riemannian computing theory on applications in computer vision, machine learning, and robotics ·         Emphasis on algorithmic advances that will allow re-application in other...

  16. Harmonic mappings into manifolds with boundary

    International Nuclear Information System (INIS)

    Chen Yunmei; Musina, R.

    1989-08-01

    In this paper we deal with harmonic maps from a compact Riemannian manifold into a manifold with boundary. In this case, a weak harmonic map is by definition a solution to a differential inclusion. In the first part of the paper we investigate the general properties of weak harmonic maps, which can be seen as solutions to a system of elliptic differential equations. In the second part we concentrate our attention on the heat flow method for harmonic maps. The result we achieve in this context extends a result by Chen and Struwe. (author). 21 refs

  17. Osserman and conformally Osserman manifolds with warped and twisted product structure

    OpenAIRE

    Brozos-Vazquez, M.; Garcia-Rio, E.; Vazquez-Lorenzo, R.

    2008-01-01

    We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds which can be written as a twisted product are those of constant curvature.

  18. The Hodge theory of projective manifolds

    CERN Document Server

    de Cataldo, Mark Andrea

    2007-01-01

    This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Kähler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences - topological, geometrical and algebraic - are discussed at some length. The special properties of complex projective manifolds constitute an important body of knowledge and readers are guided through it with the help of selected exercises. Despite starting with very few prerequisites, the concluding chapter works out, in the meaningful special case of surfaces, the proof of a special property of maps between complex projective manifolds, which was discovered only quite recently.

  19. Submanifolds of a Finsler manifold - I

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-06-01

    In 1981, Hojo defined a scalar function φ (p) (x,y), where p is a real number (not= 1). He used this function to define a tensor φ ij (p) (x,y) and a c P Γ-connection which reduce to g ij (x,y) and cΓ-connection for p=2. The aim of this paper is to study submanifolds of a Finsler manifold admitting a c P Γ-connection. In this paper I have obtained four kinds of Gauss-Codazzi equations based on various derivatives in a Finsler manifold admitting a c P Γ-connection. The method used in this paper is similar to the one used by the author in obtaining generalized Gauss-Codazzi equations based on congruences of curves in a Finsler manifold. Besides considering some special cases we have also studied the relationship between the Riemannian curvatures and Ricci tensors of the submanifold and the enveloping manifold. (author)

  20. Stochastic description of supersymmetric fields with values in a manifold

    International Nuclear Information System (INIS)

    Hoba, Z.

    1986-01-01

    This paper discusses the mathematical problem of the imaginary time quantum mechanics of a particle moving in Euclidean space as considered from the theory of diffusion processes. The diffusion process is defined by a stochastic equation; the equation describes the diffusion process as a time evolution of a Brownian particle in a force field. The paper considers a Brownian particle on a Riemannian manifold

  1. Geometry and physics of pseudodifferential operators on manifolds

    DEFF Research Database (Denmark)

    Esposito, Giampiero; Napolitano, George M.

    2015-01-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic...

  2. Smooth manifolds

    CERN Document Server

    Sinha, Rajnikant

    2014-01-01

    This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard’s theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book ...

  3. Dynamic graphs, community detection, and Riemannian geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun

    2018-03-29

    A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited to dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.

  4. 3-manifolds

    CERN Document Server

    Hempel, John

    2004-01-01

    A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold … self-contained … one can learn the subject from it … would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. -Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The t

  5. Statistics on Lie groups: A need to go beyond the pseudo-Riemannian framework

    Science.gov (United States)

    Miolane, Nina; Pennec, Xavier

    2015-01-01

    Lie groups appear in many fields from Medical Imaging to Robotics. In Medical Imaging and particularly in Computational Anatomy, an organ's shape is often modeled as the deformation of a reference shape, in other words: as an element of a Lie group. In this framework, if one wants to model the variability of the human anatomy, e.g. in order to help diagnosis of diseases, one needs to perform statistics on Lie groups. A Lie group G is a manifold that carries an additional group structure. Statistics on Riemannian manifolds have been well studied with the pioneer work of Fréchet, Karcher and Kendall [1, 2, 3, 4] followed by others [5, 6, 7, 8, 9]. In order to use such a Riemannian structure for statistics on Lie groups, one needs to define a Riemannian metric that is compatible with the group structure, i.e a bi-invariant metric. However, it is well known that general Lie groups which cannot be decomposed into the direct product of compact and abelian groups do not admit a bi-invariant metric. One may wonder if removing the positivity of the metric, thus asking only for a bi-invariant pseudo-Riemannian metric, would be sufficient for most of the groups used in Computational Anatomy. In this paper, we provide an algorithmic procedure that constructs bi-invariant pseudo-metrics on a given Lie group G. The procedure relies on a classification theorem of Medina and Revoy. However in doing so, we prove that most Lie groups do not admit any bi-invariant (pseudo-) metric. We conclude that the (pseudo-) Riemannian setting is not the richest setting if one wants to perform statistics on Lie groups. One may have to rely on another framework, such as affine connection space.

  6. Conformal, Riemannian and Lagrangian geometry the 2000 Barrett lectures

    CERN Document Server

    Chang, Sun-Yung A; Grove, Karsten; Yang, Paul C; Freire, Alexandre

    2002-01-01

    Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus...

  7. Canonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations

    Science.gov (United States)

    Wang, Lu; Albera, Laurent; Kachenoura, Amar; Shu, Huazhong; Senhadji, Lotfi

    2014-12-01

    Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the intensities of some latent source signals present in the observation channels. In addition, in many applications, such as the magnetic resonance spectroscopy (MRS), the columns of the mixing matrix are viewed as relative concentrations of the spectra of the chemical components. Therefore, the two loading matrices of the three-way array, which are equal to the mixing matrix, are nonnegative. Most existing CP algorithms handle the symmetry and the nonnegativity separately. Up to now, very few of them consider both the semi-nonnegativity and the semi-symmetry structure of the three-way array. Nevertheless, like all the methods based on line search, trust region strategies, and alternating optimization, they appear to be dependent on initialization, requiring in practice a multi-initialization procedure. In order to overcome this drawback, we propose two new methods, called [InlineEquation not available: see fulltext.] and [InlineEquation not available: see fulltext.], to solve the problem of CP decomposition of semi-nonnegative semi-symmetric three-way arrays. Firstly, we rewrite the constrained optimization problem as an unconstrained one. In fact, the nonnegativity constraint of the two symmetric modes is ensured by means of a square change of variable. Secondly, a Jacobi-like optimization procedure is adopted because of its good convergence property. More precisely, the two new methods use LU and QR matrix factorizations, respectively, which consist in formulating high-dimensional optimization problems into several sequential polynomial and rational subproblems. By using both LU

  8. Differential manifolds

    CERN Document Server

    Kosinski, Antoni A

    2007-01-01

    The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

  9. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  10. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Svane, Anne Marie

    2017-01-01

    distributions. We discuss a factorization of the frame bundle projection map through this bundle, the natural sub-Riemannian structure of the frame bundle, the effect of holonomy, and the existence of subbundles where the Hormander condition is satisfied such that the Brownian motions have smooth transition......We discuss the geometric foundation behind the use of stochastic processes in the frame bundle of a smooth manifold to build stochastic models with applications in statistical analysis of non-linear data. The transition densities for the projection to the manifold of Brownian motions developed...... in the frame bundle lead to a family of probability distributions on the manifold. We explain how data mean and covariance can be interpreted as points in the frame bundle or, more precisely, in the bundle of symmetric positive definite 2-tensors analogously to the parameters describing Euclidean normal...

  11. Harmonic maps of V-manifolds

    International Nuclear Information System (INIS)

    Chiang, Yuan-Jen.

    1989-01-01

    Harmonic maps between manifolds are described as the critical maps of their associated energy functionals. By using Sampson's method [Sam1], the author constructs a Sobolev's chain on a compact V-manifold and obtain Rellich's Theorem (Theorem 3.1), Sobolev's Theorem (Theorem 3.2), the regularity theorem (Theorem 3.3), the property of the eigenspaces for the Laplacian (Theorem 3.5) and the solvability of Laplacian (Theorem 3.6). Then, with these results, he constructs the Green's functions for the Laplacian on a compact V-manifold M in Proposition 4.1; and obtain an orthonormal basis for L 2 (M) formed by the eigenfunctions of the Laplacian corresponding to the eigenvalues in Proposition 4.2. He also estimates the eigenvalues and eigenfunctions of the Laplacian in Theorem 4.3, which is used to construct the heat kernel on a compact V-manifold in Proposition 5.1. Afterwards, he compares the G-invariant heat kernel functions with the G-invariant fundamental solutions of heat equations in the finite V-charts of a compact V-manifold in Theorem 6.1, and then study two integral operators associated to the heat kernel on a compact V-manifold in section 7. With all the preceding results established, in Theorem 8.3 he uses successive approximations to prove the existence of the solutions of parabolic equations on V-manifolds. Finally, he uses Theorem 8.3 to show the existence of harmonic maps from compact V-manifolds into compact Riemannian manifolds in Theorem 9.1 which extends Eells-Sampson's results [E-S

  12. Nearly pseudo-Kähler manifolds and related special holonomies

    CERN Document Server

    Schäfer, Lars

    2017-01-01

    Developing and providing an overview of recent results on nearly Kähler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applications in high energy physics, such as supergravity and string theory. Before starting into the field, a self-contained introduction to the subject is given, aimed at students with a solid background in differential geometry. The book will therefore be accessible to masters and Ph.D. students who are beginning work on nearly Kähler geometry in pseudo-Riemannian signature, and also to non-experts interested in gaining an overview of the subject.  Moreover, a number of results and techniques are provided which will be helpful for differential geometers as well as for high energy physicists interested in the mathematical background of the geometric objects they need.

  13. Complex manifolds

    CERN Document Server

    Morrow, James

    2006-01-01

    This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic

  14. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  15. Rotation vectors for homeomorphisms of non-positively curved manifolds

    International Nuclear Information System (INIS)

    Lessa, Pablo

    2011-01-01

    Rotation vectors, as defined for homeomorphisms of the torus that are isotopic to the identity, are generalized to such homeomorphisms of any complete Riemannian manifold with non-positive sectional curvature. These generalized rotation vectors are shown to exist for almost every orbit of such a dynamical system with respect to any invariant measure with compact support. The concept is then extended to flows and, as an application, it is shown how non-null rotation vectors can be used to construct a measurable semi-conjugacy between a given flow and the geodesic flow of a manifold

  16. A semi-symmetric image encryption scheme based on the function projective synchronization of two hyperchaotic systems.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Di

    Full Text Available Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN response system and the 6th-order cellular neural network (CNN drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme.

  17. New complete noncompact Spin(7) manifolds

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.

    2002-01-01

    We construct new explicit metrics on complete noncompact Riemannian 8-manifolds with holonomy Spin(7). One manifold, which we denote by (A 8 , is topologically R 8 and another, which we denote by B 8 , is the bundle of chiral spinors over S 4 . Unlike the previously-known complete noncompact metric of Spin(7) holonomy, which was also defined on the bundle of chiral spinors over S 4 , our new metrics are asymptotically locally conical (ALC): near infinity they approach a circle bundle with fibres of constant length over a cone whose base is the squashed Einstein metric on CP 3 . We construct the covariantly-constant spinor and calibrating 4-form. We also obtain an L 2 -normalisable harmonic 4-form for the (A)) 8 manifold, and two such 4-forms (of opposite dualities) for the B 8 manifold. We use the metrics to construct new supersymmetric brane solutions in M-theory and string theory. In particular, we construct resolved fractional M2-branes involving the use of the L 2 harmonic 4-forms, and show that for each manifold there is a supersymmetric example. An intriguing feature of the new A 8 and B 8 Spin(7) metrics is that they are actually the same local solution, with the two different complete manifolds corresponding to taking the radial coordinate to be either positive or negative. We make a comparison with the Taub-NUT and Taub-BOLT metrics, which by contrast do not have special holonomy. In we construct the general solution of our first-order equations for Spin(7) holonomy, and obtain further regular metrics that are complete on manifolds B 8 + and B 8 - similar to B 8

  18. Scale space representations locally adapted to the geometry of base and target manifold

    NARCIS (Netherlands)

    Florack, L.M.J.

    2010-01-01

    We generalize the Gaussian multi-resolution image paradigm for a Euclidean domain to general Riemannian base manifolds and also account for the codomain by considering the extension into a fibre bundle structure. We elaborate on aspects of parametrization and gauge, as these are important in

  19. A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.

    Science.gov (United States)

    Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit

    2017-05-01

    Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.

  20. Riemannian theory of Hamiltonian chaos and Lyapunov exponents

    Science.gov (United States)

    Casetti, Lapo; Clementi, Cecilia; Pettini, Marco

    1996-12-01

    A nonvanishing Lyapunov exponent λ1 provides the very definition of deterministic chaos in the solutions of a dynamical system; however, no theoretical mean of predicting its value exists. This paper copes with the problem of analytically computing the largest Lyapunov exponent λ1 for many degrees of freedom Hamiltonian systems as a function of ɛ=E/N, the energy per degree of freedom. The functional dependence λ1(ɛ) is of great interest because, among other reasons, it detects the existence of weakly and strongly chaotic regimes. This aim, the analytic computation of λ1(ɛ), is successfully reached within a theoretical framework that makes use of a geometrization of Newtonian dynamics in the language of Riemannian differential geometry. An alternative point of view about the origin of chaos in these systems is obtained independently of the standard explanation based on homoclinic intersections. Dynamical instability (chaos) is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of the Jacobi-Levi-Civita equation (JLCE) for geodesic spread. In this paper it is shown how to derive from the JLCE an effective stability equation. Under general conditions, this effective equation formally describes a stochastic oscillator; an analytic formula for the instability growth rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam β model and to a chain of coupled rotators. Excellent agreement is found between the theoretical prediction and numeric values of λ1(ɛ) for both models.

  1. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    Science.gov (United States)

    Ardentov, Andrei A.; Sachkov, Yuri L.

    2017-12-01

    We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

  2. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  3. Sub-Riemannian geometry and optimal transport

    CERN Document Server

    Rifford, Ludovic

    2014-01-01

    The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.

  4. Duality constructions from quantum state manifolds

    Science.gov (United States)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  5. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  6. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan; Strekalovskiy, Evgeny; Koetter, Sabrina; Cremers, Daniel

    2013-01-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  7. Total Variation Regularization for Functions with Values in a Manifold

    KAUST Repository

    Lellmann, Jan

    2013-12-01

    While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.

  8. Rigidity of complete noncompact bach-flat n-manifolds

    Science.gov (United States)

    Chu, Yawei; Feng, Pinghua

    2012-11-01

    Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.

  9. Weyl-Euler-Lagrange Equations of Motion on Flat Manifold

    Directory of Open Access Journals (Sweden)

    Zeki Kasap

    2015-01-01

    Full Text Available This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.

  10. Graded manifolds and supermanifolds

    International Nuclear Information System (INIS)

    Batchelor, M.

    1984-01-01

    In this paper, a review is presented on graded manifolds and supermanifolds. Many theorems, propositions, corrollaries, etc. are given with proofs or sketch proofs. Graded manifolds, supereuclidian space, Lie supergroups, etc. are dealt with

  11. Manifolds, Tensors, and Forms

    Science.gov (United States)

    Renteln, Paul

    2013-11-01

    Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.

  12. Riemannian and Lorentzian flow-cut theorems

    Science.gov (United States)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  13. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.

    2011-01-01

    Purpose/Objective(s): Adaptive techniques allow for correction of spatial changes during the time course of the fractionated radiotherapy. Spatial changes include tumor shrinkage and weight loss, causing tissue deformation and residual positional errors even after translational and rotational image...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... on the original delineation and tissue deformation in the time course between scans form a better starting point than rigid propagation. There was no significant difference of locally and globally defined regularization. The method used in the present study suggests that deformed contours need to be reviewed...

  14. Transversal Dirac families in Riemannian foliations

    International Nuclear Information System (INIS)

    Glazebrook, J.F.; Kamber, F.W.

    1991-01-01

    We describe a family of differential operators parametrized by the transversal vector potentials of a Riemannian foliation relative to the Clifford algebra of the foliation. This family is non-elliptic but in certain ways behaves like a standard Dirac family in the absolute case as a result of its elliptic-like regularity properties. The analytic and topological indices of this family are defined as elements of K-theory in the parameter space. We indicate how the cohomology of the parameter space is described via suitable maps to Fredholm operators. We outline the proof of a theorem of Vafa-Witten type on uniform bounds for the eigenvalues of this family using a spectral flow argument. A determinant operator is also defined with the appropriate zeta function regularization dependent on the codimension of the foliation. With respect to a generalized coupled Dirac-Yang-Mills system, we indicate how chiral anomalies are located relative to the foliation. (orig.)

  15. Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system

    International Nuclear Information System (INIS)

    Kawabe, Tetsuji

    2003-01-01

    Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we show that this approach brings the same qualitative and quantitative information about order and chaos as has been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a sufficient condition to the criterion based on this geometric approach as to the stability condition

  16. Supersymmetric quantum mechanics on n-dimensional manifolds

    International Nuclear Information System (INIS)

    O'Connor, M.

    1990-01-01

    In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics

  17. Piecewise linear manifolds: Einstein metrics and Ricci flows

    International Nuclear Information System (INIS)

    Schrader, Robert

    2016-01-01

    This article provides an attempt to extend concepts from the theory of Riemannian manifolds to piecewise linear (p.l.) spaces. In particular we propose an analogue of the Ricci tensor, which we give the name of an Einstein vector field . On a given set of p.l. spaces we define and discuss (normalized) Einstein flows. p.l. Einstein metrics are defined and examples are provided. Criteria for flows to approach Einstein metrics are formulated. Second variations of the total scalar curvature at a specific Einstein space are calculated. (paper)

  18. Absence of positive solutions to the system of differential inequalities on manifolds

    Science.gov (United States)

    Sun, Yuhua

    2018-01-01

    We investigate the nonexistence of positive solutions to a certain system of differential inequalities on a complete connected non-compact Riemannian manifold. We show that if for some reference point x0, the volume of geodesic ball μ(B(x0, r)) ≤ Crp ln q r holds for all large enough r and for some constant C, then there exists no positive solution to the system. Here the exponents p and q are sharp and cannot be relaxed.

  19. Metric Structures on Fibered Manifolds Through Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Hulya Kadioglu

    2016-05-01

    Full Text Available The notion of partitions of unity is extremely useful as it allows one to extend local constructions on Euclidean patches to global ones. It is widely used in many fields in mathematics. Therefore, prolongation of this useful tool to another manifold may help constructing many geometric structures. In this paper, we construct a partition of unity on a fiber bundle by using a given partition of unity on the base manifold. On the other hand we show that the converse is also possible if it is a vector bundle. As an application, we define a Riemannian metric on the fiber bundle by using induced partition of unity on the fiber bundle.

  20. Introduction to differentiable manifolds

    CERN Document Server

    Auslander, Louis

    2009-01-01

    The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff

  1. Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin; Martelli, Dario; Murthy, Sameer; Yokoyama, Daisuke [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom)

    2017-03-17

    We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS{sub 3}. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.

  2. Entropy production of stationary diffusions on non-compact Riemannian manifolds

    Institute of Scientific and Technical Information of China (English)

    龚光鲁; 钱敏平

    1997-01-01

    The closed form of the entropy production of stationary diffusion processes with bounded Nelson’s current velocity is given.The limit of the entropy productions of a sequence of reflecting diffusions is also discussed.

  3. The construction of periodic unfolding operators on some compact Riemannian manifolds

    DEFF Research Database (Denmark)

    Dobberschütz, Sören; Böhm, Michael

    2014-01-01

    The notion of periodic unfolding has become a standard tool in the theory of periodic homogenization. However, all the results obtained so far are only applicable to the "flat" Euclidean space R n. In this paper, we present a generalization of the method of periodic unfolding applicable to struct...

  4. Introduction to actions of discrete groups on pseudo-Riemannian homogeneous manifolds

    CERN Document Server

    Kobayashi, T

    2001-01-01

    Based on an embedding formula of the CAR algebra into the Cuntz algebra ${\\mathcal O}_{2^p}$, properties of the CAR algebra are studied in detail by restricting those of the Cuntz algebra. Various $\\ast$-endomorphisms of the Cuntz algebra are explicitly constructed, and transcribed into those of the CAR algebra. In particular, a set of $\\ast$-endomorphisms of the CAR algebra into its even subalgebra are constructed. According to branching formulae, which are obtained by composing representations and $\\ast$-endomorphisms, it is shown that a KMS state of the CAR algebra is obtained through the above even-CAR endomorphisms from the Fock representation. A $U(2^p)$ action on ${\\mathcal O}_{2^p}$ induces $\\ast$-automorphisms of the CAR algebra, which are given by nonlinear transformations expressed in terms of polynomials in generators. It is shown that, among such $\\ast$-automorphisms of the CAR algebra, there exists a family of one-parameter groups of $\\ast$-automorphisms describing time evolutions of fermions, i...

  5. A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds (Summary

    Directory of Open Access Journals (Sweden)

    Stephen M. Paneitz

    2008-03-01

    Full Text Available This is the original manuscript dated March 9th 1983, typeset by the Editors for the Proceedings of the Midwest Geometry Conference 2007 held in memory of Thomas Branson. Stephen Paneitz passed away on September 1st 1983 while attending a conference in Clausthal and the manuscript was never published. For more than 20 years these few pages were circulated informally. In November 2004, as a service to the mathematical community, Tom Branson added a scan of the manuscript to his website. Here we make it available more formally. It is surely one of the most cited unpublished articles. The differential operator defined in this article plays a key rôle in conformal differential geometry in dimension 4 and is now known as the Paneitz operator.

  6. Existence and regularity of minimal surfaces on Riemannian manifolds (MN-27)

    CERN Document Server

    Pitts, Jon T

    2014-01-01

    Mathematical No/ex, 27 Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

  7. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    Science.gov (United States)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  8. Pseudo-Reimannian manifolds endowed with an almost para f-structure

    Directory of Open Access Journals (Sweden)

    Vladislav V. Goldberg

    1985-01-01

    Full Text Available Let M˜(U,Ω˜,η˜,ξ,g˜ be a pseudo-Riemannian manifold of signature (n+1,n. One defines on M˜ an almost cosymplectic para f-structure and proves that a manifold M˜ endowed with such a structure is ξ-Ricci flat and is foliated by minimal hypersurfaces normal to ξ, which are of Otsuki's type. Further one considers on M˜ a 2(n−1-dimensional involutive distribution P⊥ and a recurrent vector field V˜. It is proved that the maximal integral manifold M⊥ of P⊥ has V as the mean curvature vector (up to 1/2(n−1. If the complimentary orthogonal distribution P of P⊥ is also involutive, then the whole manifold M˜ is foliate. Different other properties regarding the vector field V˜ are discussed.

  9. Splitting Parabolic Manifolds

    OpenAIRE

    Kalka, Morris; Patrizio, Giorgio

    2014-01-01

    We study the geometric properties of complex manifolds possessing a pair of plurisubharmonic functions satisfying Monge-Amp\\`ere type of condition. The results are applied to characterize complex manifolds biholomorphic to $\\C^{N}$ viewed as a product of lower dimensional complex euclidean spaces.

  10. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.

  11. Ensemble manifold regularization.

    Science.gov (United States)

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  12. Hoelder continuity of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, Taoufik

    2004-10-01

    The goal of the present paper is to establish some kind of regularity of an energy minimizer map between Riemannian polyhedra. More precisely, we will show the Hoelder continuity of local energy minimizers between Riemannian polyhedra with the target spaces without focal points. With this new result, we also complete our existence theorem obtained elsewhere, and consequently we generalize completely, to the case of target polyhedra without focal points (which is a weaker geometric condition than the nonpositivity of the curvature), the Eells-Fuglede's existence and regularity theorem which is the new version of the famous Eells-Sampson's theorem. (author)

  13. Geometry of mirror manifolds

    International Nuclear Information System (INIS)

    Aspinwall, P.S.; Luetken, C.A.

    1991-01-01

    We analyze the mirror manifold hypothesis in one and three dimensions using the simplest available representations of the N = 2 superconformal algebra. The symmetries of these tensor models can be divided out to give an explicit representation of the mirror, and we give a simple group theoretical algorithm for determining which symmetries should be used. We show that the mirror of a superconformal field theory does not always have a geometrical interpretation, but when it does, deformations of complex structure of one manifold are reflected in deformations of the Kaehler form of the mirror manifold, and we show how the large radius limit of a manifold corresponds to a large complex structure limit in the mirror manifold. The mirror of the Tian-Yau three generation model is constructed both as a conformal field theory and as an algebraic variety with Euler number six. The Hodge numbers of this manifolds are fixed, but the intersection numbes are highly ambiguous, presumably reflected a rich structure of multicritical points in the moduli space of the field theory. (orig.)

  14. Curvature of fluctuation geometry and its implications on Riemannian fluctuation theory

    International Nuclear Information System (INIS)

    Velazquez, L

    2013-01-01

    Fluctuation geometry was recently proposed as a counterpart approach of the Riemannian geometry of inference theory (widely known as information geometry). This theory describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dp(x|θ). A main goal of this work is to clarify the statistical relevance of the Levi-Civita curvature tensor R ijkl (x|θ) of the statistical manifold M. For this purpose, the notion of irreducible statistical correlations is introduced. Specifically, a distribution dp(x|θ) exhibits irreducible statistical correlations if every distribution dp(x-check|θ) obtained from dp(x|θ) by considering a coordinate change x-check = φ(x) cannot be factorized into independent distributions as dp(x-check|θ) = prod i dp (i) (x-check i |θ). It is shown that the curvature tensor R ijkl (x|θ) arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar R(x|θ) allows us to introduce a criterium for the applicability of the Gaussian approximation of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distribution family dp(x|θ), which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einstein’s fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the invariant fluctuation theorems. Moreover, the curvature scalar allows us to express some asymptotic formulae that account for the system fluctuating behavior beyond the Gaussian approximation, e.g.: it appears as a second-order correction of the Legendre transformation between thermodynamic potentials, P(θ)=θ i x-bar i -s( x-bar |θ)+k 2 R(x|θ)/6. (paper)

  15. On integrability of certain rank 2 sub-Riemannian structures

    Czech Academy of Sciences Publication Activity Database

    Kruglikov, B.S.; Vollmer, A.; Lukes-Gerakopoulos, Georgios

    2017-01-01

    Roč. 22, č. 5 (2017), s. 502-519 ISSN 1560-3547 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : sub-Riemannian geodesic flow * Killing tensor * integral Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.562, year: 2016

  16. The three-body problem and equivariant Riemannian geometry

    Science.gov (United States)

    Alvarez-Ramírez, M.; García, A.; Meléndez, J.; Reyes-Victoria, J. G.

    2017-08-01

    We study the planar three-body problem with 1/r2 potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles.

  17. Geometric calculus: a new computational tool for Riemannian geometry

    International Nuclear Information System (INIS)

    Moussiaux, A.; Tombal, P.

    1988-01-01

    We compare geometric calculus applied to Riemannian geometry with Cartan's exterior calculus method. The correspondence between the two methods is clearly established. The results obtained by a package written in an algebraic language and doing general manipulations on multivectors are compared. We see that the geometric calculus is as powerful as exterior calculus

  18. A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

    DEFF Research Database (Denmark)

    Hauberg, Søren; Schober, Michael; Liptrot, Matthew George

    2015-01-01

    of the diffusion tensor as a “random Riemannian metric”, where a geodesic is a distribution over tracts. We approximate this distribution with a Gaussian process and present a probabilistic numerics algorithm for computing the geodesic distribution. We demonstrate SPT improvements on data from the Human Connectome...

  19. Aspects of quasi-Riemannian Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Viswanathan, K.S.; Wong, B.

    1985-01-01

    We consider the applications of quasi-Riemannian geometry in Kaluza-Klein theories. We find that such theories cannot be implemented for all choices of the tangent group G/sub T/ and internal space G/H for reasons of gauge invariance. Coupling of fermions to gravity poses further problems in these theories

  20. A Riemannian scalar measure for diffusion tensor images

    NARCIS (Netherlands)

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  1. On determining the isometry group of a Riemannian space

    International Nuclear Information System (INIS)

    Karlhede, A.; Maccallum, M.A.H.

    1982-01-01

    An extension of the recently discussed algorithm for deciding the equivalence problem for Riemannian metrics is presented. The extension determines the structure constants of the isometry group and enables us to obtain some information about its orbits, including the form of the Killing vectors in canonical coordinates. (author)

  2. An existence result of energy minimizer maps between Riemannian polyhedra

    International Nuclear Information System (INIS)

    Bouziane, T.

    2004-06-01

    In this paper, we prove the existence of energy minimizers in each free homotopy class of maps between polyhedra with target space without focal points. Our proof involves a careful study of some geometric properties of Riemannian polyhedra without focal points. Among other things, we show that on the relevant polyhedra, there exists a convex supporting function. (author)

  3. Transformation optics, isotropic chiral media and non-Riemannian geometry

    International Nuclear Information System (INIS)

    Horsley, S A R

    2011-01-01

    The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.

  4. Dynamics on Lorentz manifolds

    CERN Document Server

    Adams, Scot

    2001-01-01

    Within the general framework of the dynamics of "large" groups on geometric spaces, the focus is on the types of groups that can act in complicated ways on Lorentz manifolds, and on the structure of the resulting manifolds and actions. This particular area of dynamics is an active one, and not all the results are in their final form. However, at this point, a great deal can be said about the particular Lie groups that come up in this context. It is impressive that, even assuming very weak recurrence of the action, the list of possible groups is quite restricted. For the most complicated of the

  5. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  6. A special form of SPD covariance matrix for interpretation and visualization of data manipulated with Riemannian geometry

    Science.gov (United States)

    Congedo, Marco; Barachant, Alexandre

    2015-01-01

    Currently the Riemannian geometry of symmetric positive definite (SPD) matrices is gaining momentum as a powerful tool in a wide range of engineering applications such as image, radar and biomedical data signal processing. If the data is not natively represented in the form of SPD matrices, typically we may summarize them in such form by estimating covariance matrices of the data. However once we manipulate such covariance matrices on the Riemannian manifold we lose the representation in the original data space. For instance, we can evaluate the geometric mean of a set of covariance matrices, but not the geometric mean of the data generating the covariance matrices, the space of interest in which the geometric mean can be interpreted. As a consequence, Riemannian information geometry is often perceived by non-experts as a "black-box" tool and this perception prevents a wider adoption in the scientific community. Hereby we show that we can overcome this limitation by constructing a special form of SPD matrix embedding both the covariance structure of the data and the data itself. Incidentally, whenever the original data can be represented in the form of a generic data matrix (not even square), this special SPD matrix enables an exhaustive and unique description of the data up to second-order statistics. This is achieved embedding the covariance structure of both the rows and columns of the data matrix, allowing naturally a wide range of possible applications and bringing us over and above just an interpretability issue. We demonstrate the method by manipulating satellite images (pansharpening) and event-related potentials (ERPs) of an electroencephalography brain-computer interface (BCI) study. The first example illustrates the effect of moving along geodesics in the original data space and the second provides a novel estimation of ERP average (geometric mean), showing that, in contrast to the usual arithmetic mean, this estimation is robust to outliers. In

  7. Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance

    Directory of Open Access Journals (Sweden)

    Minh-Tan Pham

    2017-10-01

    Full Text Available A novel efficient method for content-based image retrieval (CBIR is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the topological feature spaces (i.e., manifolds formed by the sets of local descriptors generated from each image of the database. In this work, we propose to extract and use the local extrema pixels as our feature points. Then, the so-called local extrema-based descriptor (LED is generated for each keypoint by integrating all color, spatial as well as gradient information captured by its nearest local extrema. Hence, each image is encoded by an LED feature point cloud and Riemannian distances between these point clouds enable us to tackle CBIR. Experiments performed on several color texture databases including Vistex, STex, color Brodazt, USPtex and Outex TC-00013 using the proposed approach provide very efficient and competitive results compared to the state-of-the-art methods.

  8. Maps between Grassmann manifolds

    Indian Academy of Sciences (India)

    Parameswaran Sankaran Institute of Mathematical Sciences Chennai, India sankaran@imsc.res.in Indian Academy of Sciences Platinum Jubilee Meeting Hyderabad

    2009-07-02

    Jul 2, 2009 ... Classification of all manifolds (or maps between them) is an impossible task. The coarser, homotopical classification, is relatively easier–but only relatively! Homotopy is, roughly speaking, the study of properties of spaces and maps invariant under continuous deformations. Denote by [X, Y ] the set of all ...

  9. Lattices in group manifolds

    International Nuclear Information System (INIS)

    Lisboa, P.; Michael, C.

    1982-01-01

    We address the question of designing optimum discrete sets of points to represent numerically a continuous group manifold. We consider subsets which are extensions of the regular discrete subgroups. Applications to Monte Carlo simulation of SU(2) and SU(3) gauge theory are discussed. (orig.)

  10. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  11. Analytic manifolds in uniform algebras

    International Nuclear Information System (INIS)

    Tonev, T.V.

    1988-12-01

    Here we extend Bear-Hile's result concerning the version of famous Bishop's theorem for one-dimensional analytic structures in two directions: for n-dimensional complex analytic manifolds, n>1, and for generalized analytic manifolds. 14 refs

  12. Holonomy of Einstein Lorentzian manifolds

    International Nuclear Information System (INIS)

    Galaev, Anton S

    2010-01-01

    The classification of all possible holonomy algebras of Einstein and vacuum Einstein Lorentzian manifolds is obtained. It is shown that each such algebra appears as the holonomy algebra of an Einstein (resp. vacuum Einstein) Lorentzian manifold; the direct constructions are given. Also the holonomy algebras of totally Ricci-isotropic Lorentzian manifolds are classified. The classification of the holonomy algebras of Lorentzian manifolds is reviewed and a complete description of the spaces of curvature tensors for these holonomies is given.

  13. Riemannian geometry during the second half of the twentieth century

    CERN Document Server

    Berger, Marcel

    1999-01-01

    In the last fifty years of the twentieth century Riemannian geometry has exploded with activity. Berger marks the start of this period with Rauch's pioneering paper of 1951, which contains the first real pinching theorem and an amazing leap in the depth of the connection between geometry and topology. Since then, the field has become so rich that it is almost impossible for the uninitiated to find their way through it. Textbooks on the subject invariably must choose a particular approach, thus narrowing the path. In this book, Berger provides a truly remarkable survey of the main developments in Riemannian geometry in the last fifty years, focusing his main attention on the following five areas: Curvature and topology; the construction of and the classification of space forms; distinguished metrics, especially Einstein metrics; eigenvalues and eigenfunctions of the Laplacian; the study of periodic geodesics and the geodesic flow. Other topics are treated in less detail in a separate section. Berger's survey p...

  14. New Riemannian Priors on the Univariate Normal Model

    Directory of Open Access Journals (Sweden)

    Salem Said

    2014-07-01

    Full Text Available The current paper introduces new prior distributions on the univariate normal model, with the aim of applying them to the classification of univariate normal populations. These new prior distributions are entirely based on the Riemannian geometry of the univariate normal model, so that they can be thought of as “Riemannian priors”. Precisely, if {pθ ; θ ∈ Θ} is any parametrization of the univariate normal model, the paper considers prior distributions G( θ - , γ with hyperparameters θ - ∈ Θ and γ > 0, whose density with respect to Riemannian volume is proportional to exp(−d2(θ, θ - /2γ2, where d2(θ, θ - is the square of Rao’s Riemannian distance. The distributions G( θ - , γ are termed Gaussian distributions on the univariate normal model. The motivation for considering a distribution G( θ - , γ is that this distribution gives a geometric representation of a class or cluster of univariate normal populations. Indeed, G( θ - , γ has a unique mode θ - (precisely, θ - is the unique Riemannian center of mass of G( θ - , γ, as shown in the paper, and its dispersion away from θ - is given by γ.  Therefore, one thinks of members of the class represented by G( θ - , γ as being centered around θ - and  lying within a typical  distance determined by γ. The paper defines rigorously the Gaussian distributions G( θ - , γ and describes an algorithm for computing maximum likelihood estimates of their hyperparameters. Based on this algorithm and on the Laplace approximation, it describes how the distributions G( θ - , γ can be used as prior distributions for Bayesian classification of large univariate normal populations. In a concrete application to texture image classification, it is shown that  this  leads  to  an  improvement  in  performance  over  the  use  of  conjugate  priors.

  15. Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds

    International Nuclear Information System (INIS)

    Friedrich, Thomas; Ivanov, Stefan

    2001-12-01

    We compute the scalar curvature of 7-dimensional G 2 -manifolds admitting a connection with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation function and the NS 3-form field. In dimension n=7 the dilation function involved in the second fermionic string equation has an interpretation as a conformal change of the underlying integrable G 2 -structure into a cocalibrated one of pure type W 3 . (author)

  16. Analysis, manifolds and physics

    CERN Document Server

    Choquet-Bruhat, Y

    2000-01-01

    Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.

  17. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  18. Manifold Regularized Correlation Object Tracking

    OpenAIRE

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2017-01-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...

  19. Perturbative evaluation of the zero-point function for self-interacting scalar field on a manifold with boundary

    International Nuclear Information System (INIS)

    Tsoupros, George

    2002-01-01

    The character of quantum corrections to the gravitational action of a conformally invariant field theory for a self-interacting scalar field on a manifold with boundary is considered at third loop-order in the perturbative expansion of the zero-point function. Diagramatic evaluations and higher loop-order renormalization can be best accomplished on a Riemannian manifold of positive constant curvature accommodating a boundary of constant extrinsic curvature. The associated spherical formulation for diagramatic evaluations reveals a non-trivial effect which the topology of the manifold has on the vacuum processes and which ultimately dissociates the dynamical behaviour of the quantized field from its behaviour in the absence of a boundary. The first surface divergence is evaluated and the necessity for simultaneous renormalization of volume and surface divergences is shown

  20. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  1. Smooth Maps of a Foliated Manifold in a Symplectic Manifold

    Indian Academy of Sciences (India)

    Let be a smooth manifold with a regular foliation F and a 2-form which induces closed forms on the leaves of F in the leaf topology. A smooth map f : ( M , F ) ⟶ ( N , ) in a symplectic manifold ( N , ) is called a foliated symplectic immersion if restricts to an immersion on each leaf of the foliation and further, the ...

  2. A study of Para-Sasakian manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-08-01

    A Para-Sasakian manifold M is viewed in the light of an almost paracontact manifold. The fundamental concepts of M in spirit to Recurrent, Ricci-recurrent, 2-Recurrent and 2-Ricci-recurrent manifolds are presented. An η-Einstein manifold modelled on P-Sasakian manifold is then treated with simplified proofs of some results. (author). 7 refs

  3. Moment-angle manifolds, intersection of quadrics and higher dimensional contact manifolds

    OpenAIRE

    Barreto, Yadira; Verjovsky, Alberto

    2013-01-01

    We construct new examples of contact manifolds in arbitrarily large dimensions. These manifolds which we call quasi moment-angle manifolds, are closely related to the classical moment-angle manifolds.

  4. Quantum Riemannian geometry of phase space and nonassociativity

    Directory of Open Access Journals (Sweden)

    Beggs Edwin J.

    2017-04-01

    Full Text Available Noncommutative or ‘quantum’ differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket while the data for quantum differential forms is a Poisson-compatible connection. We give an introduction to our recent result whereby further classical data such as classical bundles, metrics etc. all become quantised in a canonical ‘functorial’ way at least to 1st order in deformation theory. The theory imposes compatibility conditions between the classical Riemannian and Poisson structures as well as new physics such as typical nonassociativity of the differential structure at 2nd order. We develop in detail the case of ℂℙn where the commutation relations have the canonical form [wi, w̄j] = iλδij similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in λ.

  5. Manifolds of positive scalar curvature

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)

    2002-08-15

    This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.

  6. Complex manifolds in relativity

    International Nuclear Information System (INIS)

    Flaherty, E.J. Jr.

    1975-01-01

    Complex manifold theory is applied to the study of certain problems in general relativity. The first half of the work is devoted to the mathematical theory of complex manifold. Then a brief review of general relativity is given. It is shown that any spacetime admits locally an almost Hermitian structure, suitably modified to be compatible with the indefinite metric of spacetime. This structure is integrable if and only if the spacetime admits two geodesic and shearfree null congruences, thus in particular if the spacetime is type D vacuum or electrified. The structure is ''half-integrable'' in a suitable sense if and only if the spacetime admits one geodesic and shearfree null congruence, thus in particular for all algebraically special vacuum spacetimes. Conditions for the modified Hermitian spacetime to be Kahlerian are presented. The most general metric for such a modified Kahlerian spacetime is found. It is shown that the type D vacuum and electrified spacetimes are conformally related to modified Kahlerian spacetimes by a generally complex conformal factor. These latter are shown to possess a very rich structure, including the existence of Killing tensors and Killing vectors. A new ''explanation'' of Newman's complex coordinate transformations is given. It is felt to be superior to previous ''explanations'' on several counts. For example, a physical interpretation in terms of a symmetry group is given. The existence of new complex coordinate transformations is established: Nt is shown that any type D vacuum spacetime is obtainable from either Schwarzschild spacetime or ''C'' spacetime by a complex coordinate transformation. Finally, some related topics are discussed and areas for future work are outlined. (Diss. Abstr. Int., B)

  7. Camera-pose estimation via projective Newton optimization on the manifold.

    Science.gov (United States)

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  8. Flux formulation of DFT on group manifolds and generalized Scherk-Schwarz compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Bosque, Pascal du [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Fakultät für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [University of North Carolina, Department of Physics and Astronomy,Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center,365 Fifth Avenue, New York, NY 10016 (United States); Columbia University, Department of Physics,Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Fakultät für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)

    2016-02-04

    A flux formulation of Double Field Theory on group manifold is derived and applied to study generalized Scherk-Schwarz compactifications, which give rise to a bosonic subsector of half-maximal, electrically gauged supergravities. In contrast to the flux formulation of original DFT, the covariant fluxes split into a fluctuation and a background part. The latter is connected to a 2D-dimensional, pseudo Riemannian manifold, which is isomorphic to a Lie group embedded into O(D,D). All fields and parameters of generalized diffeomorphisms are supported on this manifold, whose metric is spanned by the background vielbein E{sub A}{sup I}∈ GL(2D). This vielbein takes the role of the twist in conventional generalized Scherk-Schwarz compactifications. By doing so, it solves the long standing problem of constructing an appropriate twist for each solution of the embedding tensor. Using the geometric structure, absent in original DFT, E{sub A}{sup I} is identified with the left invariant Maurer-Cartan form on the group manifold, in the same way as it is done in geometric Scherk-Schwarz reductions. We show in detail how the Maurer-Cartan form for semisimple and solvable Lie groups is constructed starting from the Lie algebra. For all compact embeddings in O(3,3), we calculate E{sub A}{sup I}.

  9. Pluripotential theory on quaternionic manifolds

    Science.gov (United States)

    Alesker, Semyon

    2012-05-01

    On any quaternionic manifold of dimension greater than 4 a class of plurisubharmonic functions (or, rather, sections of an appropriate line bundle) is introduced. Then a Monge-Ampère operator is defined. It is shown that it satisfies a version of the theorems of A. D. Alexandrov and Chern-Levine-Nirenberg. For more special classes of manifolds analogous results were previously obtained in Alesker (2003) [1] for the flat quaternionic space Hn and in Alesker and Verbitsky (2006) [5] for hypercomplex manifolds. One of the new technical aspects of the present paper is the systematic use of the Baston differential operators, for which we also prove a new multiplicativity property.

  10. Smooth maps of a foliated manifold in a symplectic manifold

    Indian Academy of Sciences (India)

    Abstract. Let M be a smooth manifold with a regular foliation F and a 2-form ω which induces closed forms on the leaves of F in the leaf topology. A smooth map f : (M, F) −→ (N,σ) in a symplectic manifold (N,σ) is called a foliated symplectic immersion if f restricts to an immersion on each leaf of the foliation and further, the.

  11. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    International Nuclear Information System (INIS)

    Lawn, Marie-Amélie; Roth, Julien

    2011-01-01

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ 2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  12. Manifold Regularized Correlation Object Tracking.

    Science.gov (United States)

    Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling

    2018-05-01

    In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.

  13. Non-Kaehler attracting manifolds

    International Nuclear Information System (INIS)

    Dall'Agata, Gianguido

    2006-01-01

    We observe that the new attractor mechanism describing IIB flux vacua for Calabi-Yau compactifications has a possible extension to the landscape of non-Kaehler vacua that emerge in heterotic compactifications with fluxes. We focus on the effective theories coming from compactifications on generalized half-flat manifolds, showing that the Minkowski 'attractor points' for 3-form fluxes are special-hermitian manifolds

  14. Vector Fields on Product Manifolds

    OpenAIRE

    Kurz, Stefan

    2011-01-01

    This short report establishes some basic properties of smooth vector fields on product manifolds. The main results are: (i) On a product manifold there always exists a direct sum decomposition into horizontal and vertical vector fields. (ii) Horizontal and vertical vector fields are naturally isomorphic to smooth families of vector fields defined on the factors. Vector fields are regarded as derivations of the algebra of smooth functions.

  15. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  16. Moduli space of torsional manifolds

    International Nuclear Information System (INIS)

    Becker, Melanie; Tseng, L.-S.; Yau, S.-T.

    2007-01-01

    We characterize the geometric moduli of non-Kaehler manifolds with torsion. Heterotic supersymmetric flux compactifications require that the six-dimensional internal manifold be balanced, the gauge bundle be Hermitian Yang-Mills, and also the anomaly cancellation be satisfied. We perform the linearized variation of these constraints to derive the defining equations for the local moduli. We explicitly determine the metric deformations of the smooth flux solution corresponding to a torus bundle over K3

  17. Hazy spaces, tangent spaces, manifolds and groups

    International Nuclear Information System (INIS)

    Dodson, C.T.J.

    1977-03-01

    The results on hazy spaces and the developments leading to hazy manifolds and groups are summarized. Proofs have appeared elsewhere so here examples are considered and some motivation for definitions and constructions in the theorems is analyzed. It is shown that quite simple ideas, intuitively acceptable, lead to remarkable similarity with the theory of differentiable manifolds. Hazy n manifolds have tangent bundles that are hazy 2n manifolds and there are hazy manifold structures for groups. Products and submanifolds are easily constructed and in particular the hazy n-sphere manifolds as submanifolds of the standard hazy manifold Zsup(n+1)

  18. On some hypersurfaces with time like normal bundle in pseudo Riemannian space forms

    International Nuclear Information System (INIS)

    Kashani, S.M.B.

    1995-12-01

    In this work we classify immersed hypersurfaces with constant sectional curvature in pseudo Riemannian space forms if the normal bundle is time like and the mean curvature is constant. (author). 9 refs

  19. Spinorial characterizations of surfaces into 3-dimensional psuedo-Riemannian space forms

    OpenAIRE

    Lawn , Marie-Amélie; Roth , Julien

    2011-01-01

    9 pages; We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in $\\mathbb{R}^{2,1}$ to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well ...

  20. The topology of toric origami manifolds

    OpenAIRE

    Holm, Tara; Pires, Ana Rita

    2012-01-01

    A folded symplectic form on a manifold is a closed 2-form with the mildest possible degeneracy along a hypersurface. A special class of folded symplectic manifolds are the origami symplectic manifolds, studied by Cannas da Silva, Guillemin and Pires, who classified toric origami manifolds by combinatorial origami templates. In this paper, we examine the topology of toric origami manifolds that have acyclic origami template and co-orientable folding hypersurface. We prove that the cohomology i...

  1. Slow manifolds in chemical kinetics

    International Nuclear Information System (INIS)

    Shahzad, M.; Haq, I. U.; Sultan, F.; Wahab, A.; Faizullah, F.; Rahman, G. U.

    2016-01-01

    Modelling the chemical system, especially for complex and higher dimensional problems, gives an easy way to handle the ongoing reaction process with respect to time. Here, we will consider some of the newly developed computational methods commonly used for model reductions in a chemical reaction. An effective (simple) method is planned to measure the low dimensional manifold, which reduces the higher dimensional system in such a way that it may not affect the precision of the whole mechanism. The phase flow of the solution trajectories near the equilibrium point is observed while the initial approximation is measured with the spectral quasi equilibrium manifold, which starts from the equilibrium point. To make it an invariant curve, the approximated curve is first refined a certain number of times using the method of invariant grids. The other way of getting the reduced data in the low dimensional manifold is possible through the intrinsic low dimensional manifold. Then, we compare these two invariant curves given by both the methods. Finally, the idea is extended to the higher dimensional manifold, where more number of progress variables will be added. (author)

  2. Stein Manifolds and Holomorphic Mappings

    CERN Document Server

    Forstneric, Franc

    2011-01-01

    The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. This book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applicat

  3. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kohnel, Wolfgang

    2002-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

  4. Blowup for flat slow manifolds

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2017-01-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....

  5. Blowup for flat slow manifolds

    Science.gov (United States)

    Kristiansen, K. U.

    2017-05-01

    In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).

  6. Matrix regularization of 4-manifolds

    OpenAIRE

    Trzetrzelewski, M.

    2012-01-01

    We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...

  7. Generalized graph manifolds and their effective recognition

    International Nuclear Information System (INIS)

    Matveev, S V

    1998-01-01

    A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented

  8. A note on post-Riemannian structures of spacetime

    OpenAIRE

    Hehl, Friedrich W.; Muench, Uwe

    1997-01-01

    A four-dimensional differentiable manifold is given with an arbitrary linear connection $\\Gamma_\\alpha^\\beta=\\Gamma_{i\\alpha}^\\beta dx^i$. Megged has claimed that he can define a metric $G_{\\alpha\\beta}$ by means of a certain integral equation such that the connection is compatible with the metric. We point out that Megged's implicite definition of his metric $G_{\\alpha\\beta}$ is equivalent to the assumption of a vanishing nonmetricity. Thus his result turns out to be trivial.

  9. Cayley transform on Stiefel manifolds

    Science.gov (United States)

    Macías-Virgós, Enrique; Pereira-Sáez, María José; Tanré, Daniel

    2018-01-01

    The Cayley transform for orthogonal groups is a well known construction with applications in real and complex analysis, linear algebra and computer science. In this work, we construct Cayley transforms on Stiefel manifolds. Applications to the Lusternik-Schnirelmann category and optimization problems are presented.

  10. Collective coordinates on symplectic manifolds

    International Nuclear Information System (INIS)

    Razumov, A.V.; Taranov, A.Yu.

    1981-01-01

    For an arbitrary Lie group of canonical transformations on a symplectic manifold collective coordinates are introduced. They describe a motion of the dynamical system as a whole under the group transformations. Some properties of Lie group of canonical transformations are considered [ru

  11. Obstruction theory on 8-manifolds

    Czech Academy of Sciences Publication Activity Database

    Čadek, M.; Crabb, M.; Vanžura, Jiří

    2008-01-01

    Roč. 127, č. 2 (2008), s. 167-186 ISSN 0025-2611 R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : 8-manifolds * obstruction theory Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2008

  12. An imbedding of Lorentzian manifolds

    International Nuclear Information System (INIS)

    Kim, Do-Hyung

    2009-01-01

    A new method for imbedding a Lorentzian manifold with a non-compact Cauchy surface is presented. As an application, it is shown that any two-dimensional globally hyperbolic spacetime with a non-compact Cauchy surface can be causally isomorphically imbedded into two-dimensional Minkowski spacetime.

  13. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  14. Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds

    International Nuclear Information System (INIS)

    Yehia, Hamad M

    2013-01-01

    In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S 2 is constructed. (paper)

  15. Constructions of Calabi-Yau manifolds

    International Nuclear Information System (INIS)

    Hubsch, T.

    1987-01-01

    Among possible compactifications of Superstring Theories (defined in 9+1 dimensional space-time) it is argued that only those in Calabi-Yau manifolds may lead to phenomenologically acceptable models. Thus, constructions of such manifolds are studied and a huge sequence is presented, giving rise to many possibly applicable manifolds

  16. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  17. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  18. Flexible fuel cell gas manifold system

    Science.gov (United States)

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  19. Invariance for Single Curved Manifold

    KAUST Repository

    Castro, Pedro Machado Manhaes de

    2012-01-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  20. Invariance for Single Curved Manifold

    KAUST Repository

    Castro, Pedro Machado Manhaes de

    2012-08-01

    Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.

  1. Torsions of 3-dimensional manifolds

    CERN Document Server

    Wurzbacher, T

    2002-01-01

    From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." ―Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. …Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." ―Mathematical Reviews

  2. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  3. Anomalies, conformal manifolds, and spheres

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  4. Quivers, YBE and 3-manifolds

    Science.gov (United States)

    Yamazaki, Masahito

    2012-05-01

    We study 4d superconformal indices for a large class of {N} = 1 superconformal quiver gauge theories realized combinatorially as a bipartite graph or a set of "zig-zag paths" on a two-dimensional torus T 2. An exchange of loops, which we call a "double Yang-Baxter move", gives the Seiberg duality of the gauge theory, and the invariance of the index under the duality is translated into the Yang-Baxter-type equation of a spin system defined on a "Z-invariant" lattice on T 2. When we compactify the gauge theory to 3d, Higgs the theory and then compactify further to 2d, the superconformal index reduces to an integral of quantum/classical dilogarithm functions. The saddle point of this integral unexpectedly reproduces the hyperbolic volume of a hyperbolic 3-manifold. The 3-manifold is obtained by gluing hyperbolic ideal polyhedra in {{H}^3} , each of which could be thought of as a 3d lift of the faces of the 2d bipartite graph. The same quantity is also related with the thermodynamic limit of the BPS partition function, or equivalently the genus 0 topological string partition function, on a toric Calabi-Yau manifold dual to quiver gauge theories. We also comment on brane realization of our theories. This paper is a companion to another paper summarizing the results [1].

  5. Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces

    International Nuclear Information System (INIS)

    Konderak, J.

    1988-09-01

    Defined here is an orthogonal multiplication for vector spaces with indefinite nondegenerate scalar product. This is then used, via the Hopf construction, to obtain harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces. Examples of harmonic maps are constructed using Clifford algebras. (author). 6 refs

  6. Cobordism independence of Grassmann manifolds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    ν(m) divides m. Given a positive integer d, let G(d) denote the set of bordism classes of all non-bounding. Grassmannian manifolds Gk(Fn+k) having real dimension d such that k < n. The restric- tion k

  7. Minimal genera of open 4-manifolds

    OpenAIRE

    Gompf, Robert E.

    2013-01-01

    We study exotic smoothings of open 4-manifolds using the minimal genus function and its analog for end homology. While traditional techniques in open 4-manifold smoothing theory give no control of minimal genera, we make progress by using the adjunction inequality for Stein surfaces. Smoothings can be constructed with much more control of these genus functions than the compact setting seems to allow. As an application, we expand the range of 4-manifolds known to have exotic smoothings (up to ...

  8. Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.

    Science.gov (United States)

    Pan, Han; Jing, Zhongliang; Qiao, Lingfeng; Li, Minzhe

    2017-09-25

    Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.

  9. Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds

    Science.gov (United States)

    Liu, Yang

    2017-11-01

    We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the j-function (which defines the A ˆ -class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.

  10. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  11. Topology of high-dimensional manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, F T [State University of New York, Binghamton (United States); Goettshe, L [Abdus Salam ICTP, Trieste (Italy); Lueck, W [Westfaelische Wilhelms-Universitaet Muenster, Muenster (Germany)

    2002-08-15

    The School on High-Dimensional Manifold Topology took place at the Abdus Salam ICTP, Trieste from 21 May 2001 to 8 June 2001. The focus of the school was on the classification of manifolds and related aspects of K-theory, geometry, and operator theory. The topics covered included: surgery theory, algebraic K- and L-theory, controlled topology, homology manifolds, exotic aspherical manifolds, homeomorphism and diffeomorphism groups, and scalar curvature. The school consisted of 2 weeks of lecture courses and one week of conference. Thwo-part lecture notes volume contains the notes of most of the lecture courses.

  12. Analysis of mixed mode microwave distribution manifolds

    International Nuclear Information System (INIS)

    White, T.L.

    1982-09-01

    The 28-GHz microwave distribution manifold used in the ELMO Bumpy Torus-Scale (EBT-S) experiments consists of a toroidal metallic cavity, whose dimensions are much greater than a wavelength, fed by a source of microwave power. Equalization of the mixed mode power distribution ot the 24 cavities of EBT-S is accomplished by empirically adjusting the coupling irises which are equally spaced around the manifold. The performance of the manifold to date has been very good, yet no analytical models exist for optimizing manifold transmission efficiency or for scaling this technology to the EBT-P manifold design. The present report develops a general model for mixed mode microwave distribution manifolds based on isotropic plane wave sources of varying amplitudes that are distributed toroidally around the manifold. The calculated manifold transmission efficiency for the most recent EBT-S coupling iris modification is 90%. This agrees with the average measured transmission efficiency. Also, the model predicts the coupling iris areas required to balance the distribution of microwave power while maximizing transmission efficiency, and losses in waveguide feeds connecting the irises to the cavities of EBT are calculated using an approach similar to the calculation of mainfold losses. The model will be used to evaluate EBT-P manifold designs

  13. Holomorphic bundles over elliptic manifolds

    International Nuclear Information System (INIS)

    Morgan, J.W.

    2000-01-01

    In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves

  14. Nonassociative geometry of manifold with trajectories

    International Nuclear Information System (INIS)

    Bouetou, T.B.; Matveev, O.A.

    2004-12-01

    We give some properties of solution of second order differential or system of differential equations on the manifold. It turns out that such manifolds can be seen as quasigroups or loop under certain circumstances. Output of the operations are given and the connection defined. (author)

  15. Strictly convex functions on complete Finsler manifolds

    Indian Academy of Sciences (India)

    convex functions on the metric structures of complete Finsler manifolds. More precisely we discuss ... map expp at some point p ∈ M (and hence at every point on M) is defined on the whole tangent space Mp to M at ... The influence of the existence of convex functions on the metric and topology of under- lying manifolds has ...

  16. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  17. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  18. Hirzebruch genera of manifolds with torus action

    International Nuclear Information System (INIS)

    Panov, T E

    2001-01-01

    A quasitoric manifold is a smooth 2n-manifold M 2n with an action of the compact torus T n such that the action is locally isomorphic to the standard action of T n on C n and the orbit space is diffeomorphic, as a manifold with corners, to a simple polytope P n . The name refers to the fact that topological and combinatorial properties of quasitoric manifolds are similar to those of non-singular algebraic toric varieties (or toric manifolds). Unlike toric varieties, quasitoric manifolds may fail to be complex. However, they always admit a stably (or weakly almost) complex structure, and their cobordism classes generate the complex cobordism ring. Buchstaber and Ray have recently shown that the stably complex structure on a quasitoric manifold is determined in purely combinatorial terms, namely, by an orientation of the polytope and a function from the set of codimension-one faces of the polytope to primitive vectors of the integer lattice. We calculate the χ y -genus of a quasitoric manifold with a fixed stably complex structure in terms of the corresponding combinatorial data. In particular, this gives explicit formulae for the classical Todd genus and the signature. We also compare our results with well-known facts in the theory of toric varieties

  19. Transversal lightlike submanifolds of indefinite sasakian manifolds

    OpenAIRE

    YILDIRIM, Cumali; Yıldırım, Cumali; Şahin, Bayram

    2014-01-01

    We study both radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds. We give examples, investigate the geometry of distributions and obtain necessary and sufficient conditions for the induced connection on these submanifolds to be metric connection. We also study totally contact umbilical radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds and obtain a classification theorem for totally contact umbilical tr...

  20. Transversal lightlike submanifolds of indefinite sasakian manifolds

    OpenAIRE

    YILDIRIM, Cumali

    2010-01-01

    We study both radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds. We give examples, investigate the geometry of distributions and obtain necessary and sufficient conditions for the induced connection on these submanifolds to be metric connection. We also study totally contact umbilical radical transversal and transversal lightlike submanifolds of indefinite Sasakian manifolds and obtain a classification theorem for totally contact umbilical tr...

  1. Holomorphic curves in exploded manifolds: Kuranishi structure

    OpenAIRE

    Parker, Brett

    2013-01-01

    This paper constructs a Kuranishi structure for the moduli stack of holomorphic curves in exploded manifolds. To avoid some technicalities of abstract Kuranishi structures, we embed our Kuranishi structure inside a moduli stack of curves. The construction also works for the moduli stack of holomorphic curves in any compact symplectic manifold.

  2. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2013-12-01

    Full Text Available Divergence functions are the non-symmetric “distance” on the manifold, Μθ, of parametric probability density functions over a measure space, (Χ,μ. Classical information geometry prescribes, on Μθ: (i a Riemannian metric given by the Fisher information; (ii a pair of dual connections (giving rise to the family of α-connections that preserve the metric under parallel transport by their joint actions; and (iii a family of divergence functions ( α-divergence defined on Μθ x Μθ, which induce the metric and the dual connections. Here, we construct an extension of this differential geometric structure from Μθ (that of parametric probability density functions to the manifold, Μ, of non-parametric functions on X, removing the positivity and normalization constraints. The generalized Fisher information and α-connections on M are induced by an α-parameterized family of divergence functions, reflecting the fundamental convex inequality associated with any smooth and strictly convex function. The infinite-dimensional manifold, M, has zero curvature for all these α-connections; hence, the generally non-zero curvature of M can be interpreted as arising from an embedding of Μθ into Μ. Furthermore, when a parametric model (after a monotonic scaling forms an affine submanifold, its natural and expectation parameters form biorthogonal coordinates, and such a submanifold is dually flat for α = ± 1, generalizing the results of Amari’s α-embedding. The present analysis illuminates two different types of duality in information geometry, one concerning the referential status of a point (measurable function expressed in the divergence function (“referential duality” and the other concerning its representation under an arbitrary monotone scaling (“representational duality”.

  3. Harmonic space and quaternionic manifolds

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievetsky, O.; Ivanov, E.

    1992-10-01

    A principle of harmonic analyticity underlying the quaternionic (quaternion-Kaehler) geometry is found, and the differential constraints which define this geometry are solved. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group rotating the complex structures. An one-to-one correspondence is established between the quaternionic spaces and off-shell N=2 supersymmetric sigma-models coupled to N=2 supergravity. Coordinates of the analytic subspace are identified with superfields describing N=2 matter hypermultiplets and a compensating hypermultiplet of N=2 supergravity. As an illustration the potentials for the symmetric quaternionic spaces are presented. (K.A.) 22 refs

  4. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  5. Hamiltonian PDEs and Frobenius manifolds

    International Nuclear Information System (INIS)

    Dubrovin, Boris A

    2008-01-01

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  6. Hamiltonian PDEs and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-12-31

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  7. Function theory on symplectic manifolds

    CERN Document Server

    Polterovich, Leonid

    2014-01-01

    This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...

  8. Conformal manifolds: ODEs from OPEs

    Science.gov (United States)

    Behan, Connor

    2018-03-01

    The existence of an exactly marginal deformation in a conformal field theory is very special, but it is not well understood how this is reflected in the allowed dimensions and OPE coefficients of local operators. To shed light on this question, we compute perturbative corrections to several observables in an abstract CFT, starting with the beta function. This yields a sum rule that the theory must obey in order to be part of a conformal manifold. The set of constraints relating CFT data at different values of the coupling can in principle be written as a dynamical system that allows one to flow arbitrarily far. We begin the analysis of it by finding a simple form for the differential equations when the spacetime and theory space are both one-dimensional. A useful feature we can immediately observe is that our system makes it very difficult for level crossing to occur.

  9. Strongly not relatives Kähler manifolds

    Directory of Open Access Journals (Sweden)

    Zedda Michela

    2017-02-01

    Full Text Available In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds.

  10. Heterotic model building: 16 special manifolds

    International Nuclear Information System (INIS)

    He, Yang-Hui; Lee, Seung-Joo; Lukas, Andre; Sun, Chuang

    2014-01-01

    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

  11. Differential geometry of quasi-Sasakian manifolds

    International Nuclear Information System (INIS)

    Kirichenko, V F; Rustanov, A R

    2002-01-01

    The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind

  12. The trace formula and the distribution of eigenvalues of Schroedinger operators on manifolds all of whose geodesics are closed

    International Nuclear Information System (INIS)

    Schubert, R.

    1995-05-01

    We investigate the behaviour of the remainder term R(E) in the Weyl formula {nvertical stroke E n ≤E}=Vol(M).E d/2 /[(4π) d/2 Γ(d/2+1)]+R(E) for the eigenvalues E n of a Schroedinger operator on a d-dimensional compact Riemannian manifold all of whose geodesics are closed. We show that R(E) is of the form E (d-1)/2 Θ(√E), where Θ(x) is an almost periodic function of Besicovitch class B 2 which has a limit distribution whose density is a box-shaped function. Furthermore we derive a trace formula and study higher order terms in the asymptotics of the coefficients related to the periodic orbits. The periodicity of the geodesic flow leads to a very simple structure of the trace formula which is the reason why the limit distribution can be computed explicitly. (orig.)

  13. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    Science.gov (United States)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  14. Discriminative sparse coding on multi-manifolds

    KAUST Repository

    Wang, J.J.-Y.; Bensmail, H.; Yao, N.; Gao, Xin

    2013-01-01

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  15. Discriminative sparse coding on multi-manifolds

    KAUST Repository

    Wang, J.J.-Y.

    2013-09-26

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  16. Space time manifolds and contact structures

    Directory of Open Access Journals (Sweden)

    K. L. Duggal

    1990-01-01

    Full Text Available A new class of contact manifolds (carring a global non-vanishing timelike vector field is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.

  17. Path integrals on curved manifolds

    International Nuclear Information System (INIS)

    Grosche, C.; Steiner, F.

    1987-01-01

    A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)

  18. Pseudo-Kaehler quantization on flag manifolds

    International Nuclear Information System (INIS)

    Karabegov, A.V.

    1997-07-01

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kaehler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols. (author). 16 refs

  19. Project Development Specification for Valve Pit Manifold

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Establishes the performance, design development, and test requirements for the valve pit manifolds. The system engineering approach was used to develop this document in accordance with the guidelines laid out in the Systems Engineering Management Plan for Project W-314

  20. Moduli space of Calabi-Yau manifolds

    International Nuclear Information System (INIS)

    Candelas, P.; De la Ossa, X.C.

    1991-01-01

    We present an accessible account of the local geometry of the parameter space of Calabi-Yau manifolds. It is shown that the parameter space decomposes, at least locally, into a product with the space of parameters of the complex structure as one factor and a complex extension of the parameter space of the Kaehler class as the other. It is also shown that each of these spaces is itself a Kaehler manifold and is moreover a Kaehler manifold of restricted type. There is a remarkable symmetry in the intrinsic structures of the two parameter spaces and the relevance of this to the conjectured existence of mirror manifolds is discussed. The two parameter spaces behave differently with respect to modular transformations and it is argued that the role of quantum corrections is to restore the symmetry between the two types of parameters so as to enforce modular invariance. (orig.)

  1. On Kähler–Norden manifolds

    Indian Academy of Sciences (India)

    Kähler–Norden manifolds using the theory of Tachibana operators is presented. ... arguments is subject to the action of the affinor structure ϕ. ..... [20] Vishnevskii V V, Integrable affinor structures and their plural interpretations, J. Math. Sci.

  2. Generalized regular genus for manifolds with boundary

    Directory of Open Access Journals (Sweden)

    Paola Cristofori

    2003-05-01

    Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].

  3. Polynomial chaos representation of databases on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)

    2017-04-15

    Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.

  4. Geometry of superconformal manifolds. Part 1

    International Nuclear Information System (INIS)

    Roslyi, A.A.; Schwarz, A.S.; Voronov, A.A.

    1987-01-01

    The main facts about complex curves are generalized to superconformal manifolds. The results thus obtained are relevant to the dermion string theory and, in particular, they are useful for computation of determinants of superlaplacians which enter the string partition function

  5. Stable harmonic maps from complete manifolds

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1986-01-01

    By choosing distinguished cross-sections in the second variational formula for harmonic maps from manifolds with not too fast volume growth into certain submanifolds in the Euclidean space some Liouville type theorems have been proved in this article. (author)

  6. Noncommutative gauge theory for Poisson manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2000-09-25

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  7. Noncommutative gauge theory for Poisson manifolds

    International Nuclear Information System (INIS)

    Jurco, Branislav; Schupp, Peter; Wess, Julius

    2000-01-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem

  8. Computer calculation of Witten's 3-manifold invariant

    International Nuclear Information System (INIS)

    Freed, D.S.; Gompf, R.E.

    1991-01-01

    Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)

  9. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  10. Online Manifold Regularization by Dual Ascending Procedure

    OpenAIRE

    Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui

    2013-01-01

    We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...

  11. The manifold model for space-time

    International Nuclear Information System (INIS)

    Heller, M.

    1981-01-01

    Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)

  12. Robinson manifolds and Cauchy-Riemann spaces

    CERN Document Server

    Trautman, A

    2002-01-01

    A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n >= 4 with a bundle N subset of C centre dot TM such that the fibres of N are maximal totally null and there holds the integrability condition [Sec N, Sec N] subset of Sec N. The real part of N intersection N-bar is a bundle of null directions tangent to a congruence of null geodesics. This generalizes the notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural regularity assumption, the set M of all these geodesics has the structure of a Cauchy-Riemann manifold of dimension 2n - 1. Conversely, every such CR manifold lifts to many Robinson manifolds. Three definitions of a CR manifold are described here in considerable detail; they are equivalent under the assumption of real analyticity, but not in the smooth category. The distinctions between these definitions have a bearing on the validity of the Robinson theorem on the existence of null Maxwell fields associated with SNGs. This paper is largely a re...

  13. Right-angled polyhedra and hyperbolic 3-manifolds

    Science.gov (United States)

    Vesnin, A. Yu.

    2017-04-01

    Hyperbolic 3-manifolds whose fundamental groups are subgroups of finite index in right-angled Coxeter groups are under consideration. The construction of such manifolds is associated with regular colourings of the faces of polyhedra and, in particular, with 4-colourings. The following questions are discussed: the structure of the set of right-angled polytopes in Lobachevskii space; examples of orientable and non-orientable manifolds, including the classical Löbell manifold constructed in 1931; connections between the Hamiltonian property of a polyhedron and the existence of hyperelliptic involutions of manifolds; the volumes and complexity of manifolds; isometry between hyperbolic manifolds constructed from 4-colourings. Bibliography: 89 titles.

  14. On some classes of super quasi-Einstein manifolds

    International Nuclear Information System (INIS)

    Ozguer, Cihan

    2009-01-01

    Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study, we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the curvature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We also consider the condition C ∼ .S=0 on a super quasi-Einstein manifold, where C ∼ and S denote the quasi-conformal curvature tensor and Ricci tensor of the manifold, respectively.

  15. Control of nonholonomic systems from sub-Riemannian geometry to motion planning

    CERN Document Server

    Jean, Frédéric

    2014-01-01

    Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

  16. Duality on Geodesics of Cartan Distributions and Sub-Riemannian Pseudo-Product Structures

    Directory of Open Access Journals (Sweden)

    Ishikawa Goo

    2015-06-01

    Full Text Available Given a five dimensional space endowed with a Cartan distribution, the abnormal geodesics form another five dimensional space with a cone structure. Then it is shown in (15, that, if the cone structure is regarded as a control system, then the space of abnormal geodesics of the cone structure is naturally identified with the original space. In this paper, we provide an exposition on the duality by abnormal geodesics in a wider framework, namely, in terms of quotients of control systems and sub-Riemannian pseudo-product structures. Also we consider the controllability of cone structures and describe the constrained Hamiltonian equations on normal and abnormal geodesics.

  17. Unsupervised image matching based on manifold alignment.

    Science.gov (United States)

    Pei, Yuru; Huang, Fengchun; Shi, Fuhao; Zha, Hongbin

    2012-08-01

    This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.

  18. Slow Invariant Manifolds in Chemically Reactive Systems

    Science.gov (United States)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  19. Online Manifold Regularization by Dual Ascending Procedure

    Directory of Open Access Journals (Sweden)

    Boliang Sun

    2013-01-01

    Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.

  20. Manifolds for pose tracking from monocular video

    Science.gov (United States)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  1. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  2. Matrix regularization of embedded 4-manifolds

    International Nuclear Information System (INIS)

    Trzetrzelewski, Maciej

    2012-01-01

    We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).

  3. Hermitian Yang-Mills equations and pseudo-holomorphic bundles on nearly Kaehler and nearly Calabi-Yau twistor 6-manifolds

    International Nuclear Information System (INIS)

    Popov, Alexander D.

    2010-01-01

    We consider the Hermitian Yang-Mills (HYM) equations for gauge potentials on a complex vector bundle E over an almost complex manifold X 6 which is the twistor space of an oriented Riemannian manifold M 4 . Each solution of the HYM equations on such X 6 defines a pseudo-holomorphic structure on the bundle E. It is shown that the pull-back to X 6 of any anti-self-dual gauge field on M 4 is a solution of the HYM equations on X 6 . This correspondence allows us to introduce new twistor actions for bosonic and supersymmetric Yang-Mills theories. As examples of X 6 we consider homogeneous nearly Kaehler and nearly Calabi-Yau manifolds which are twistor spaces of S 4 , CP 2 and B 4 , CB 2 (real 4-ball and complex 2-ball), respectively. Various explicit examples of solutions to the HYM equations on these spaces are provided. Applications in flux compactifications of heterotic strings are briefly discussed.

  4. Four-manifolds, geometries and knots

    CERN Document Server

    Hillman, Jonathan A

    2007-01-01

    The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18). In many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. The strongest results are characterizations of manifolds which fibre homotopically over S^1 or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruc...

  5. M-theory and G2 manifolds

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel

    2015-01-01

    In this talk we report on recent progress in describing compactifications of string theory and M-theory on G 2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza–Klein modes resulting from such compactifications. (invited comment)

  6. The Koch curve as a smooth manifold

    International Nuclear Information System (INIS)

    Epstein, Marcelo; Sniatycki, Jedrzej

    2008-01-01

    We show that there exists a homeomorphism between the closed interval [0,1] is contained in R and the Koch curve endowed with the subset topology of R 2 . We use this homeomorphism to endow the Koch curve with the structure of a smooth manifold with boundary

  7. Toric geometry of G2-manifolds

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    We consider G2-manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of T3-actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons-Hawking type ansatz...

  8. Conservative systems with ports on contact manifolds

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; van der Schaft, Arjan; Piztek, P.

    In this paper we propose an extension of port Hamiltonian systems, called conservative systems with ports, which encompass systems arising from the Irreversible Thermodynamics. Firstly we lift a port Hamiltonian system from its state space manifold to the thermodynamic phase space to a contact

  9. A generalized construction of mirror manifolds

    International Nuclear Information System (INIS)

    Berglund, P.; Huebsch, T.

    1993-01-01

    We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known. (orig.)

  10. Foliations and the geometry of 3-manifolds

    CERN Document Server

    Calegari, Danny

    2014-01-01

    This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

  11. The structure of some classes of K-contact manifolds

    Indian Academy of Sciences (India)

    Abstract. We study projective curvature tensor in K-contact and Sasakian manifolds. We prove that (1) if a K-contact manifold is quasi projectively flat then it is Einstein and (2) a K-contact manifold is ξ-projectively flat if and only if it is Einstein Sasakian. Necessary and sufficient conditions for a K-contact manifold to be quasi ...

  12. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  13. Hyperbolic manifolds as vacuum solutions in Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1985-08-01

    The relevance of compact hyperbolic manifolds in the context of Kaluza-Klein theories is discussed. Examples of spontaneous compactification on hyperbolic manifolds including d dimensional (d>=8) Einstein-Yang-Mills gravity and 11-dimensional supergravity are considered. Some mathematical facts about hyperbolic manifolds essential for the physical content of the theory are briefly summarized. Non-linear σ-models based on hyperbolic manifolds are discussed. (author)

  14. Fluid manifold design for a solar energy storage tank

    Science.gov (United States)

    Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.

    1975-01-01

    A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.

  15. A Combination Theorem for Convex Hyperbolic Manifolds, with Applications to Surfaces in 3-Manifolds

    OpenAIRE

    Baker, Mark; Cooper, Daryl

    2005-01-01

    We prove the convex combination theorem for hyperbolic n-manifolds. Applications are given both in high dimensions and in 3 dimensions. One consequence is that given two geometrically finite subgroups of a discrete group of isometries of hyperbolic n-space, satisfying a natural condition on their parabolic subgroups, there are finite index subgroups which generate a subgroup that is an amalgamated free product. Constructions of infinite volume hyperbolic n-manifolds are described by gluing lo...

  16. Wave equations on anti self dual (ASD) manifolds

    Science.gov (United States)

    Bashingwa, Jean-Juste; Kara, A. H.

    2017-11-01

    In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.

  17. Local conformal symmetry in non-Riemannian geometry and the origin of physical scales

    Energy Technology Data Exchange (ETDEWEB)

    De Cesare, Marco [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Moffat, John W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Sakellariadou, Mairi [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2017-09-15

    We introduce an extension of the Standard Model and General Relativity built upon the principle of local conformal invariance, which represents a generalization of a previous work by Bars, Steinhardt and Turok. This is naturally realized by adopting as a geometric framework a particular class of non-Riemannian geometries, first studied by Weyl. The gravitational sector is enriched by a scalar and a vector field. The latter has a geometric origin and represents the novel feature of our approach. We argue that physical scales could emerge from a theory with no dimensionful parameters, as a result of the spontaneous breakdown of conformal and electroweak symmetries. We study the dynamics of matter fields in this modified gravity theory and show that test particles follow geodesics of the Levi-Civita connection, thus resolving an old criticism raised by Einstein against Weyl's original proposal. (orig.)

  18. Do extended bodies move alon.o the geodesics of the Riemannian space-time

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.

    1980-01-01

    Motion of a massive self-gravitating body in the gravitational field of a distant massive source has been considered in the post-Newtonian approximation of the arbitrary metric gravitational theory. The comparison of the massive body center of mass acceleration with that of a point one, moving in Riemannian space-time, whose metrics formally is equivalent to the metrics of two moving massive bodies, makes it clear that in any metric gravitation theory, possessing energy-momentum conservation lows for matter and gravitational field, taken together, massive body does not move generally speaking along the geodesics of Riemannian space-time. Application of the obtained general formulae to the system Earth-Sun and using of the experimental results from lunar-laser-ranging has shown that the Earth during its motion along the orbit, oscillates with respect to the reference geodesic of the geometry with the period of 1 hour and the amplitude not less than 10 -2 cm, which is a post-Newtonian quantity. Therefore the deviation of the Earth motion from the geodesic may be observed in a relevant experiment, which will have a post-Newtonian accuracy. The difference in accelerations of the Earth c.m. and a prob body makes up 10 -7 in the post-Newtonian approximation from the value of the Earth acceleration. The ratio of the passive gravitational mass (defined according to Will) to the inertial mass for the Earth is not equal to unity, and differs from it by the value of approximately 10 -8

  19. Topological quantum field theory and four manifolds

    CERN Document Server

    Marino, Marcos

    2005-01-01

    The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...

  20. Modular categories and 3-manifold invariants

    International Nuclear Information System (INIS)

    Tureav, V.G.

    1992-01-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds

  1. Echocardiogram enhancement using supervised manifold denoising.

    Science.gov (United States)

    Wu, Hui; Huynh, Toan T; Souvenir, Richard

    2015-08-01

    This paper presents data-driven methods for echocardiogram enhancement. Existing denoising algorithms typically rely on a single noise model, and do not generalize to the composite noise sources typically found in real-world echocardiograms. Our methods leverage the low-dimensional intrinsic structure of echocardiogram videos. We assume that echocardiogram images are noisy samples from an underlying manifold parametrized by cardiac motion and denoise images via back-projection onto a learned (non-linear) manifold. Our methods incorporate synchronized side information (e.g., electrocardiography), which is often collected alongside the visual data. We evaluate the proposed methods on a synthetic data set and real-world echocardiograms. Quantitative results show improved performance of our methods over recent image despeckling methods and video denoising methods, and a visual analysis of real-world data shows noticeable image enhancement, even in the challenging case of noise due to dropout artifacts. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Topological anomalies for Seifert 3-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Imbimbo, Camillo [Dipartimento di Fisica, Università di Genova,Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova,Via Dodecaneso 33, 16146, Genova (Italy); Rosa, Dario [School of Physics and Astronomy andCenter for Theoretical Physics Seoul National University,Seoul 151-747 (Korea, Republic of); Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN - Sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2015-07-14

    We study globally supersymmetric 3d gauge theories on curved manifolds by describing the coupling of 3d topological gauge theories, with both Yang-Mills and Chern-Simons terms in the action, to background topological gravity. In our approach, the Seifert condition for manifolds supporting global supersymmetry is elegantly deduced from the BRST transformations of topological gravity. A cohomological characterization of the geometrical moduli which affect the partition function is obtained. In the Seifert context the Chern-Simons topological (framing) anomaly is BRST trivial. We compute explicitly the corresponding local Wess-Zumino functional. As an application, we obtain the dependence on the Seifert moduli of the partition function of 3d supersymmetric gauge theory on the squashed sphere by solving the anomalous topological Ward identities, in a regularization independent way and without the need of evaluating any functional determinant.

  3. Dynamical systems on 2- and 3-manifolds

    CERN Document Server

    Grines, Viacheslav Z; Pochinka, Olga V

    2016-01-01

    This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...

  4. Convex nonnegative matrix factorization with manifold regularization.

    Science.gov (United States)

    Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong

    2015-03-01

    Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Some functional inequalities on non-reversible Finsler manifolds

    Indian Academy of Sciences (India)

    SHIN-ICHI OHTA

    2017-11-13

    Nov 13, 2017 ... In the reversible case, these inequalities were obtained by. Cavalletti and ... active area. The classical Riemannian theory has been generalized to weighted Rieman- .... Define the dual Minkowski norm F. ∗: T. ∗ .... We also define Ric∞(v) and Ricn(v) as the limits and set RicN (cv) := c2RicN (v) for c ≥ 0.

  6. Sasakian manifolds with purely transversal Bach tensor

    Science.gov (United States)

    Ghosh, Amalendu; Sharma, Ramesh

    2017-10-01

    We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).

  7. CFD simulations for engine intake manifolds

    International Nuclear Information System (INIS)

    Witry, A.; Zhao, A.

    2002-01-01

    This paper attempts to explain a procedure for using Computational Fluid Dynamics (CFD) for product development of engine intake manifolds. The paper uses the development of an intake manifold as an example of such a process. Using the commercial FLUENT solver, its standard wall functions and k-ε model, a four runner intake manifold with an average mesh size of 300, 000 hexa elements created in ICEM-CFD with a maximum skewness of 0.85 produces rapid results for quick product turn-around times. The setup used allows for compressibility and viscous heating effects to be modeled whilst ignoring wall heat transfer due to the high speeds of the air/foil mixture and low residence times. Eight consecutive models were modeled here whilst carrying out continuous enhancements. For every iteration, four different so called 'static' runs with only one runner open at any one time using a steady state assumption were calculated further assuming that only one intake valve is open at any one time. Even flow distributions between the runner are deemed to be 'dynamically' obtained once the pressure drops between the manifold's inlet and runner outlets are equalized. Furthermore, different modifications were attempted to ensure that the fluid's particle tracks show very little particle return tendencies along with excellent nonuniformity indexes at the runners outlets. Confirmation of these results were obtained from test data showing CFD pressure drop predictions to be within 4% error with 67% of any runner's pressure losses being caused in the runner itself due to the small cross sectional area(s). (author)

  8. Fine topology and locally Minkowskian manifolds

    Science.gov (United States)

    Agrawal, Gunjan; Sinha, Soami Pyari

    2018-05-01

    Fine topology is one of the several well-known topologies of physical and mathematical relevance. In the present paper, it is obtained that the nonempty open sets of different dimensional Minkowski spaces with the fine topology are not homeomorphic. This leads to the introduction of a new class of manifolds. It turns out that the technique developed here is also applicable to some other topologies, namely, the s-topology, space topology, f-topology, and A-topology.

  9. Sasaki-Einstein Manifolds and Volume Minimisation

    CERN Document Server

    Martelli, D; Yau, S T; Martelli, Dario; Sparks, James; Yau, Shing-Tung

    2006-01-01

    We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theo...

  10. Manifold learning in machine vision and robotics

    Science.gov (United States)

    Bernstein, Alexander

    2017-02-01

    Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.

  11. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  13. Monoids of moduli spaces of manifolds

    DEFF Research Database (Denmark)

    Galatius, Søren; Randal-Williams, Oscar

    2010-01-01

    We study categories of d–dimensional cobordisms from the perspective of Tillmann [Invent. Math. 130 (1997) 257–275] and Galatius, Madsen, Tillman and Weiss [Acta Math. 202 (2009) 195–239]. There is a category C¿ of closed smooth (d - 1)–manifolds and smooth d–dimensional cobordisms, equipped...... with generalised orientations specified by a map ¿: X ¿ BO(d). The main result of [Acta Math. 202 (2009) 195–239] is a determination of the homotopy type of the classifying space BC¿. The goal of the present paper is a systematic investigation of subcategories D¿C¿ with the property that BD¿ BC¿, the smaller...

  14. Manifold structure preservative for hyperspectral target detection

    Science.gov (United States)

    Imani, Maryam

    2018-05-01

    A nonparametric method termed as manifold structure preservative (MSP) is proposed in this paper for hyperspectral target detection. MSP transforms the feature space of data to maximize the separation between target and background signals. Moreover, it minimizes the reconstruction error of targets and preserves the topological structure of data in the projected feature space. MSP does not need to consider any distribution for target and background data. So, it can achieve accurate results in real scenarios due to avoiding unreliable assumptions. The proposed MSP detector is compared to several popular detectors and the experiments on a synthetic data and two real hyperspectral images indicate the superior ability of it in target detection.

  15. Rational Homological Stability for Automorphisms of Manifolds

    DEFF Research Database (Denmark)

    Grey, Matthias

    In this thesis we prove rational homological stability for the classifying spaces of the homotopy automorphisms and block di↵eomorphisms of iterated connected sums of products of spheres of a certain connectivity.The results in particular apply to the manifolds       Npg,q  = (#g(Sp x Sq)) - int...... with coefficients in the homology of the universal covering, which is studied using rational homology theory. The result for the block di↵eomorphisms is deduced from the homological stability for the homotopy automorphisms upon using Surgery theory. Themain theorems of this thesis extend the homological stability...

  16. Laplacian embedded regression for scalable manifold regularization.

    Science.gov (United States)

    Chen, Lin; Tsang, Ivor W; Xu, Dong

    2012-06-01

    Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real

  17. Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

    OpenAIRE

    Weeks, Jeffrey R.

    2005-01-01

    Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...

  18. Strong Proximities on Smooth Manifolds and Vorono\\" i Diagrams

    OpenAIRE

    Peters, J. F.; Guadagni, C.

    2015-01-01

    This article introduces strongly near smooth manifolds. The main results are (i) second countability of the strongly hit and far-miss topology on a family $\\mathcal{B}$ of subsets on the Lodato proximity space of regular open sets to which singletons are added, (ii) manifold strong proximity, (iii) strong proximity of charts in manifold atlases implies that the charts have nonempty intersection. The application of these results is given in terms of the nearness of atlases and charts of proxim...

  19. Some problems of dynamical systems on three dimensional manifolds

    International Nuclear Information System (INIS)

    Dong Zhenxie.

    1985-08-01

    It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)

  20. Total Generalized Variation for Manifold-valued Data

    OpenAIRE

    Bredies, K.; Holler, M.; Storath, M.; Weinmann, A.

    2017-01-01

    In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for syntheti...

  1. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  2. Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.

    Science.gov (United States)

    Ruppeiner, George

    2005-07-01

    A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.

  3. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    Science.gov (United States)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  4. On the trace-manifold generated by the deformations of a body-manifold

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2003-01-01

    Full Text Available In this paper, concerned to the study of continuous deformations of material media using some tools of modem differential geometry, a moving frame of Frenet type along the orbits of an one-parameter group acting on a so-called "trace-manifold", M, associated to the deformations, is constructed. The manifold M is defined as an infinite union of non-disjoint compact manifolds, generated by the consecutive positions in the Euclidean affine 3-space of a body-manifold under deformations in a closed time interval. We put in evidence a skew-symmetric band tensor of second order, ω, which describes the deformation in a small neighborhood of any point along the orbits. The non-null components ωi,i+i, (i =1,2, of ω are assimilated as like curvatures at each point of an orbit in the planes generated by the pairs of vectors (ĕi,ĕi+i of a moving frame in M associated to the orbit in a similar way as the Frenet's frame is. Also a formula for the energy of the orbits is given and its relationship with some stiffness matrices is established.

  5. LCD OF AIR INTAKE MANIFOLDS PHASE 2: FORD F250 AIR INTAKE MANIFOLD

    Science.gov (United States)

    The life cycle design methodology was applied to the design analysis of three alternatives for the lower plehum of the air intake manifold for us with a 5.4L F-250 truck engine: a sand cast aluminum, a lost core molded nylon composite, and a vibration welded nylon composite. The ...

  6. Variable area manifolds for ring mirror heat exchangers

    Science.gov (United States)

    Eng, Albert; Senterfitt, Donald R.

    1988-05-01

    A laser ring mirror assembly is disclosed which supports and cools an annular ring mirror of a high powered laser with a cooling manifold which has a coolant flow design which is intended to reduce thermal distortions of the ring mirror by minimizing azimuthal variations in temperature around its circumference. The cooling manifold has complementary pairs of cooling passages each of which conduct coolant in opposite flow directions. The manifold also houses adjusters which vary the depth between the annular ring mirror and each cooling, and which vary the flow area of the cooling passage to produce a control over the cooling characteristics of the cooling manifold.

  7. Totally Contact Umbilical Lightlike Hypersurfaces of Indefinite -Manifolds

    Directory of Open Access Journals (Sweden)

    Rachna Rani

    2013-01-01

    Full Text Available We study totally contact umbilical lightlike hypersurfaces of indefinite -manifolds and prove the nonexistence of totally contact umbilical lightlike hypersurface in indefinite -space form.

  8. Efficient orbit integration by manifold correction methods.

    Science.gov (United States)

    Fukushima, Toshio

    2005-12-01

    Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.

  9. Manifold-Based Visual Object Counting.

    Science.gov (United States)

    Wang, Yi; Zou, Yuexian; Wang, Wenwu

    2018-07-01

    Visual object counting (VOC) is an emerging area in computer vision which aims to estimate the number of objects of interest in a given image or video. Recently, object density based estimation method is shown to be promising for object counting as well as rough instance localization. However, the performance of this method tends to degrade when dealing with new objects and scenes. To address this limitation, we propose a manifold-based method for visual object counting (M-VOC), based on the manifold assumption that similar image patches share similar object densities. Firstly, the local geometry of a given image patch is represented linearly by its neighbors using a predefined patch training set, and the object density of this given image patch is reconstructed by preserving the local geometry using locally linear embedding. To improve the characterization of local geometry, additional constraints such as sparsity and non-negativity are also considered via regularization, nonlinear mapping, and kernel trick. Compared with the state-of-the-art VOC methods, our proposed M-VOC methods achieve competitive performance on seven benchmark datasets. Experiments verify that the proposed M-VOC methods have several favorable properties, such as robustness to the variation in the size of training dataset and image resolution, as often encountered in real-world VOC applications.

  10. Lagrangian descriptors of driven chemical reaction manifolds.

    Science.gov (United States)

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  11. Manifold corrections on spinning compact binaries

    International Nuclear Information System (INIS)

    Zhong Shuangying; Wu Xin

    2010-01-01

    This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov

  12. Metric Relativity and the Dynamical Bridge: highlights of Riemannian geometry in physics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, Mario [Centro Brasileiro de Pesquisas Fisicas (ICRA/CBPF), Rio de Janeiro, RJ (Brazil). Instituto de Cosmologia Relatividade e Astrofisica; Bittencourt, Eduardo, E-mail: eduardo.bittencourt@icranet.org [Physics Department, La Sapienza University of Rome (Italy)

    2015-12-15

    We present an overview of recent developments concerning modifications of the geometry of space-time to describe various physical processes of interactions among classical and quantum configurations. We concentrate in two main lines of research: the Metric Relativity and the Dynamical Bridge. We describe the notion of equivalent (dragged) metric ĝ μ υ which is responsible to map the path of any accelerated body in Minkowski space-time onto a geodesic motion in such associatedĝ geometry. Only recently, the method introduced by Einstein in general relativity was used beyond the domain of gravitational forces to map arbitrary accelerated bodies submitted to non-Newtonian attractions onto geodesics of a modified geometry. This process has its roots in the very ancient idea to treat any dynamical problem in Classical Mechanics as nothing but a problem of static where all forces acting on a body annihilates themselves including the inertial ones. This general procedure, that concerns arbitrary forces - beyond the uses of General Relativity that is limited only to gravitational processes - is nothing but the relativistic version of the d'Alembert method in classical mechanics and consists in the principle of Metric Relativity. The main difference between gravitational interaction and all other forces concerns the universality of gravity which added to the interpretation of the equivalence principle allows all associated geometries-one for each different body in the case of non-gravitational forces-to be unified into a unique Riemannian space-time structure. The same geometrical description appears for electromagnetic waves in the optical limit within the context of nonlinear theories or material medium. Once it is largely discussed in the literature, the so-called analogue models of gravity, we will dedicate few sections on this emphasizing their relation with the new concepts introduced here. Then, we pass to the description of the Dynamical Bridge formalism

  13. The quantum equivariant cohomology of toric manifolds through mirror symmetry

    OpenAIRE

    Baptista, J. M.

    2008-01-01

    Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold.

  14. Conformal Vector Fields on Doubly Warped Product Manifolds and Applications

    Directory of Open Access Journals (Sweden)

    H. K. El-Sayied

    2016-01-01

    Full Text Available This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector fields are considered.

  15. The quantum equivariant cohomology of toric manifolds through mirror symmetry

    NARCIS (Netherlands)

    Baptista, J.M.

    2009-01-01

    Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold.

  16. Variable volume combustor with nested fuel manifold system

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  17. Generalized Transversal Lightlike Submanifolds of Indefinite Sasakian Manifolds

    OpenAIRE

    Yaning Wang; Ximin Liu

    2012-01-01

    We introduce and study generalized transversal lightlike submanifold of indefinite Sasakian manifolds which includes radical and transversal lightlike submanifolds of indefinite Sasakian manifolds as its trivial subcases. A characteristic theorem and a classification theorem of generalized transversal lightlike submanifolds are obtained.

  18. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  19. Contact manifolds, Lagrangian Grassmannians and PDEs

    Directory of Open Access Journals (Sweden)

    Eshkobilov Olimjon

    2018-02-01

    Full Text Available In this paper we review a geometric approach to PDEs. We mainly focus on scalar PDEs in n independent variables and one dependent variable of order one and two, by insisting on the underlying (2n + 1-dimensional contact manifold and the so-called Lagrangian Grassmannian bundle over the latter. This work is based on a Ph.D course given by two of the authors (G. M. and G. M.. As such, it was mainly designed as a quick introduction to the subject for graduate students. But also the more demanding reader will be gratified, thanks to the frequent references to current research topics and glimpses of higher-level mathematics, found mostly in the last sections.

  20. Evolutionary global optimization, manifolds and applications

    CERN Document Server

    Aguiar e Oliveira Junior, Hime

    2016-01-01

    This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....

  1. Transition Manifolds of Complex Metastable Systems

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  2. Manifold Adaptive Label Propagation for Face Clustering.

    Science.gov (United States)

    Pei, Xiaobing; Lyu, Zehua; Chen, Changqing; Chen, Chuanbo

    2015-08-01

    In this paper, a novel label propagation (LP) method is presented, called the manifold adaptive label propagation (MALP) method, which is to extend original LP by integrating sparse representation constraint into regularization framework of LP method. Similar to most LP, first of all, MALP also finds graph edges from given data and gives weights to the graph edges. Our goal is to find graph weights matrix adaptively. The key advantage of our approach is that MALP simultaneously finds graph weights matrix and predicts the label of unlabeled data. This paper also derives efficient algorithm to solve the proposed problem. Extensions of our MALP in kernel space and robust version are presented. The proposed method has been applied to the problem of semi-supervised face clustering using the well-known ORL, Yale, extended YaleB, and PIE datasets. Our experimental evaluations show the effectiveness of our method.

  3. Model Transport: Towards Scalable Transfer Learning on Manifolds

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.

    2014-01-01

    We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...... “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image...

  4. Quaternionic Kaehler and hyperkaehler manifolds with torsion and twistor spaces

    International Nuclear Information System (INIS)

    Ivanov, Stefan; Minchev, Ivan

    2001-12-01

    The target space of a (4,0) supersymmetric two-dimensional sigma model with Wess-Zumino term has a connection with totally skew-symmetric torsion and holonomy contained in Sp(n)Sp(l) (resp. Sp(n)), QKT (resp. HKT)-spaces. We study the geometry of QKT, HKT manifold and their twistor spaces. We show that the Swann bundle of a QKT manifold admits a HKT structure with special symmetry if and only if the twistor space of the QKT manifold admits an almost hermitian structure with totally skew-symmetric Nijenhuis tensor, thus connecting two structures arising from quantum field theories and supersymmetric sigma models with Wess- Zumino term. We discovered that a HKT manifold has always co-closed Lee form. Applying this property to compact HKT manifold we get information about the plurigenera. (author)

  5. Investigating performance of microchannel evaporators with different manifold structures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junye; Qu, Xiaohua; Qi, Zhaogang; Chen, Jiangping [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240 (China)

    2011-01-15

    In this paper, the performances of microchannel evaporators with different manifold structures are experimentally investigated. Eight evaporator samples with 7 different designs of the I/O manifold and 5 different designs of the return manifold are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant 134A at a real automotive AC condition. The results on the variations of the cooling capacity and air temperature distribution of the evaporator due to the deflector designs in the I/O manifold and flow hole arrangements in the return manifold are presented and analyzed. By studying the KPI's for the performance of an evaporator, the design trade-off for an evaporator designer is summarized and discussed. (author)

  6. Tensors and Manifolds With Applications to Physics (2nd edn)

    International Nuclear Information System (INIS)

    Dray, T

    2005-01-01

    On the one hand, this is an excellent introduction for mathematicians to the differential geometry underlying general relativity. On the other hand, this is definitely a book for mathematicians. The book's greatest strength is its clear, precise presentation of the basic ideas in differential geometry, combined with equally clear and precise applications to theoretical physics, notably general relativity. But the book's precision is also its greatest weakness; this is not an easy book to read for non-mathematicians, who may not appreciate the notational complexity, some of which is nonstandard. The present edition is very similar to the original, published in 1992. In addition to minor revisions and clarifications of the material, there is now a brief introduction to fibre bundles, and a (very) brief discussion of the gauge theory description of fundamental particles. The index to the symbols used is also a more complete than in the past, but without the descriptive material present in the previous edition. The bulk of the book consists of a careful introduction to tensors and their properties. Tensors are introduced first as linear maps on vector spaces, and only later generalized to tensor fields on manifolds. The differentiation and integration of differential forms is discussed in detail, including Stokes' theorem, Lie differentiation and Hodge duality, and connections, curvature and torsion. To this point, Wasserman's text can be viewed as an expanded version of Bishop and Goldberg's classic text, one major difference being Wasserman's inclusion of the pseudo-Riemannian case from the beginning (in particular, when discussing Hodge duality). Whether one prefers Wasserman's approach to Bishop and Goldberg's is largely a matter of taste: Wasserman's treatment is both more complete and more precise, making it easier to check calculations in detail, but occasionally more difficult to remember what one is calculating. An instructor using this text would be well

  7. Tensors and Manifolds With Applications to Physics (2nd edn)

    Energy Technology Data Exchange (ETDEWEB)

    Dray, T [Oregon State University (United States)

    2005-10-21

    On the one hand, this is an excellent introduction for mathematicians to the differential geometry underlying general relativity. On the other hand, this is definitely a book for mathematicians. The book's greatest strength is its clear, precise presentation of the basic ideas in differential geometry, combined with equally clear and precise applications to theoretical physics, notably general relativity. But the book's precision is also its greatest weakness; this is not an easy book to read for non-mathematicians, who may not appreciate the notational complexity, some of which is nonstandard. The present edition is very similar to the original, published in 1992. In addition to minor revisions and clarifications of the material, there is now a brief introduction to fibre bundles, and a (very) brief discussion of the gauge theory description of fundamental particles. The index to the symbols used is also a more complete than in the past, but without the descriptive material present in the previous edition. The bulk of the book consists of a careful introduction to tensors and their properties. Tensors are introduced first as linear maps on vector spaces, and only later generalized to tensor fields on manifolds. The differentiation and integration of differential forms is discussed in detail, including Stokes' theorem, Lie differentiation and Hodge duality, and connections, curvature and torsion. To this point, Wasserman's text can be viewed as an expanded version of Bishop and Goldberg's classic text, one major difference being Wasserman's inclusion of the pseudo-Riemannian case from the beginning (in particular, when discussing Hodge duality). Whether one prefers Wasserman's approach to Bishop and Goldberg's is largely a matter of taste: Wasserman's treatment is both more complete and more precise, making it easier to check calculations in detail, but occasionally more difficult to remember what one is calculating. An

  8. Discriminative clustering on manifold for adaptive transductive classification.

    Science.gov (United States)

    Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang

    2017-10-01

    In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  10. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  11. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  12. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  13. Topological field theory and surgery on three-manifolds

    International Nuclear Information System (INIS)

    Guadagnini, E.; Panicucci, S.

    1992-01-01

    The solution of the SU(2) quantum Chern-Simons field theory defined on a closed, connected and orientable three-manifold is presented. The vacuum expectation values of Wilson line operators, associated with framed links in a generic manifold, are computed in terms of the expectation values of the three-sphere. The method consists of using an operator realization of Dehn surgery. The rules, corresponding to the surgery instructions in the three-sphere, are derived and the three-manifold invariant defined by the Chern-Simons theory is constructed. Several examples are considered and explicit results are reported. (orig.)

  14. Geometric transitions, flops and non-Kahler manifolds: I

    International Nuclear Information System (INIS)

    Becker, Melanie; Dasgupta, Keshav; Knauf, Anke; Tatar, Radu

    2004-01-01

    We construct a duality cycle which provides a complete supergravity description of geometric transitions in type II theories via a flop in M-theory. This cycle connects the different supergravity descriptions before and after the geometric transitions. Our construction reproduces many of the known phenomena studied earlier in the literature and allows us to describe some new and interesting aspects in a simple and elegant fashion. A precise supergravity description of new torsional manifolds that appear on the type IIA side with branes and fluxes and the corresponding geometric transition are obtained. A local description of new G2 manifolds that are circle fibrations over non-Kahler manifolds is presented

  15. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  16. Manifold Regularized Experimental Design for Active Learning.

    Science.gov (United States)

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  17. Ricci flow and geometrization of 3-manifolds

    CERN Document Server

    Morgan, John W

    2010-01-01

    This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincar� Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences. The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of ...

  18. Killing superalgebras for Lorentzian four-manifolds

    International Nuclear Information System (INIS)

    Medeiros, Paul de; Figueroa-O’Farrill, José; Santi, Andrea

    2016-01-01

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  19. Killing superalgebras for Lorentzian four-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de [Department of Mathematics and Natural Sciences, University of Stavanger,4036 Stavanger (Norway); Figueroa-O’Farrill, José; Santi, Andrea [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland (United Kingdom)

    2016-06-20

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  20. Geometric transitions on non-Kaehler manifolds

    International Nuclear Information System (INIS)

    Knauf, A.

    2007-01-01

    We study geometric transitions on the supergravity level using the basic idea of an earlier paper (M. Becker et al., 2004), where a pair of non-Kaehler backgrounds was constructed, which are related by a geometric transition. Here we embed this idea into an orientifold setup. The non-Kaehler backgrounds we obtain in type IIA are non-trivially fibered due to their construction from IIB via T-duality with Neveu-Schwarz flux. We demonstrate that these non-Kaehler manifolds are not half-flat and show that a symplectic structure exists on them at least locally. We also review the construction of new non-Kaehler backgrounds in type I and heterotic theory. They are found by a series of T- and S-duality and can be argued to be related by geometric transitions as well. A local toy model is provided that fulfills the flux equations of motion in IIB and the torsional relation in heterotic theory, and that is consistent with the U-duality relating both theories. For the heterotic theory we also propose a global solution that fulfills the torsional relation because it is similar to the Maldacena-Nunez background. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Solution path for manifold regularized semisupervised classification.

    Science.gov (United States)

    Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H

    2012-04-01

    Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.

  2. Quantization of a symplectic manifold associated to a manifold with projective structure

    International Nuclear Information System (INIS)

    Biswas, Indranil

    2009-01-01

    Let X be a complex manifold equipped with a projective structure P. There is a holomorphic principal C*-bundle L P ' over X associated with P. We show that the holomorphic cotangent bundle of the total space of L P ' equipped with the Liouville symplectic form has a canonical deformation quantization. This generalizes the construction in the work of and Ben-Zvi and Biswas [''A quantization on Riemann surfaces with projective structure,'' Lett. Math. Phys. 54, 73 (2000)] done under the assumption that dim C X=1.

  3. On the construction of inertial manifolds under symmetry constraints II: O(2) constraint and inertial manifolds on thin domains

    International Nuclear Information System (INIS)

    Rodriguez-Bernal, A.

    1993-01-01

    On a model example, the Kuramoto-Velarde equation, which includes the Kuramoto-Sivashin-sky and the Cahn-Hilliard models, and under suitable and reasonable hypothesis, we show the dimension and determining modes of inertial manifolds for several classes of solutions. We also give bounds for the dimensions of inertial manifolds of the full system as a parameter is varied. The results are pointed out to be almost model-independent. The same ideas are also applied to a class of parabolic equations in higher space dimension, obtaining results about inertial manifolds on thin and small domains. (Author). 30 refs

  4. Pseudo-Kähler Quantization on Flag Manifolds

    Science.gov (United States)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  5. Natural differential operations on manifolds: an algebraic approach

    International Nuclear Information System (INIS)

    Katsylo, P I; Timashev, D A

    2008-01-01

    Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles V,W→M all the natural differential operations D:Γ(V)→Γ(W) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds. Bibliography: 21 titles.

  6. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  7. Example-driven manifold priors for image deconvolution.

    Science.gov (United States)

    Ni, Jie; Turaga, Pavan; Patel, Vishal M; Chellappa, Rama

    2011-11-01

    Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this paper, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the deblurring problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.

  8. Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems

    OpenAIRE

    Steur, Erik; van Leeuwen, Cees; Michiels, Wim

    2014-01-01

    Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...

  9. Two-dimensional manifolds with metrics of revolution

    International Nuclear Information System (INIS)

    Sabitov, I Kh

    2000-01-01

    This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R 3 other than a sphere and a torus (moreover, in the smoothness class C ∞ such surfaces, understood in a certain generalized sense, exist in any topological class)

  10. Radical Transversal Lightlike Submanifolds of Indefinite Para-Sasakian Manifolds

    OpenAIRE

    Shukla S.S.; Yadav Akhilesh

    2014-01-01

    In this paper, we study radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds giving some non-trivial examples of these submanifolds. Integrability conditions of distributions D and RadTM on radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds, have been obtained. We also study totally contact umbilical radical transvers...

  11. Renormalization, unstable manifolds, and the fractal structure of mode locking

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.

    1985-01-01

    The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed

  12. Reduction of Nambu-Poisson Manifolds by Regular Distributions

    Science.gov (United States)

    Das, Apurba

    2018-03-01

    The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.

  13. Dimensionality reduction of collective motion by principal manifolds

    Science.gov (United States)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  14. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  15. Folding-retraction of chaotic dynamical manifold and the VAK of vacuum fluctuation

    International Nuclear Information System (INIS)

    El-Ghoul, M.; El-Ahmady, A.E.; Rafat, H.

    2004-01-01

    In this paper we introduce the retraction of chaos dynamical manifold. Some properties of chaos dynamical manifold will be deduced. Theorems governing the relation between the folding and retraction of chaos dynamical manifold will be discussed. Some applications of chaos dynamical manifolds and their retractions are achieved in particular high energy particle physics

  16. Stochastic parameterizing manifolds and non-Markovian reduced equations stochastic manifolds for nonlinear SPDEs II

    CERN Document Server

    Chekroun, Mickaël D; Wang, Shouhong

    2015-01-01

    In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

  17. Simulating triangulations. Graphs, manifolds and (quantum) spacetime

    International Nuclear Information System (INIS)

    Krueger, Benedikt

    2016-01-01

    Triangulations, which can intuitively be described as a tessellation of space into simplicial building blocks, are structures that arise in various different branches of physics: They can be used for describing complicated and curved objects in a discretized way, e.g., in foams, gels or porous media, or for discretizing curved boundaries for fluid simulations or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it possible to use them in graph theory or statistical physics, e.g., as small-world networks, as networks of spins or in biological physics as actin networks. Since one can find an analogue of the Einstein-Hilbert action on triangulations, they can even be used for formulating theories of quantum gravity. Triangulations have also important applications in mathematics, especially in discrete topology. Despite their wide occurrence in different branches of physics and mathematics, there are still some fundamental open questions about triangulations in general. It is a prior unknown how many triangulations there are for a given set of points or a given manifold, or even whether there are exponentially many triangulations or more, a question that relates to a well-defined behavior of certain quantum geometry models. Another major unknown question is whether elementary steps transforming triangulations into each other, which are used in computer simulations, are ergodic. Using triangulations as model for spacetime, it is not clear whether there is a meaningful continuum limit that can be identified with the usual and well-tested theory of general relativity. Within this thesis some of these fundamental questions about triangulations are answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic method for calculating statistical expectation values, or more generally a tool for calculating high-dimensional integrals. Additionally, some details about the Wang-Landau algorithm, which is the primary used

  18. Simulating triangulations. Graphs, manifolds and (quantum) spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Benedikt

    2016-07-01

    Triangulations, which can intuitively be described as a tessellation of space into simplicial building blocks, are structures that arise in various different branches of physics: They can be used for describing complicated and curved objects in a discretized way, e.g., in foams, gels or porous media, or for discretizing curved boundaries for fluid simulations or dissipative systems. Interpreting triangulations as (maximal planar) graphs makes it possible to use them in graph theory or statistical physics, e.g., as small-world networks, as networks of spins or in biological physics as actin networks. Since one can find an analogue of the Einstein-Hilbert action on triangulations, they can even be used for formulating theories of quantum gravity. Triangulations have also important applications in mathematics, especially in discrete topology. Despite their wide occurrence in different branches of physics and mathematics, there are still some fundamental open questions about triangulations in general. It is a prior unknown how many triangulations there are for a given set of points or a given manifold, or even whether there are exponentially many triangulations or more, a question that relates to a well-defined behavior of certain quantum geometry models. Another major unknown question is whether elementary steps transforming triangulations into each other, which are used in computer simulations, are ergodic. Using triangulations as model for spacetime, it is not clear whether there is a meaningful continuum limit that can be identified with the usual and well-tested theory of general relativity. Within this thesis some of these fundamental questions about triangulations are answered by the use of Markov chain Monte Carlo simulations, which are a probabilistic method for calculating statistical expectation values, or more generally a tool for calculating high-dimensional integrals. Additionally, some details about the Wang-Landau algorithm, which is the primary used

  19. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    Science.gov (United States)

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  20. A tensor formulation of the equation of transfer for spherically symmetric flows. [radiative transfer in seven dimensional Riemannian space

    Science.gov (United States)

    Haisch, B. M.

    1976-01-01

    A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.

  1. Wave fields in Weyl spaces and conditions for the existence of a preferred pseudo-Riemannian structure

    International Nuclear Information System (INIS)

    Audretsch, J.; Gaehler, F.; Straumann, N.

    1984-01-01

    Previous axiomatic approaches to general relativity which led to a Weylian structure of space-time are supplemented by a physical condition which implies the existence of a preferred pseudo-Riemannian structure. It is stipulated that the trajectories of the short wave limit of classical massive fields agree with the geodesics of the Weyl connection and it is shown that this is equivalent to the vanishing of the covariant derivative of a ''mass function'' of nontrivial Weyl type.This in turn is proven to be equivalent to the existence of a preferred metric of the conformal structure such that the Weyl connection is reducible to a connection of the bundle of orthonormal frames belonging to this distinguished metric. (orig.)

  2. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  3. Algebras and manifolds: Differential, difference, simplicial and quantum

    International Nuclear Information System (INIS)

    Finkelstein, D.; Rodriguez, E.

    1986-01-01

    Generalized manifolds and Clifford algebras depict the world at levels of resolution ranging from the classical macroscopic to the quantum microscopic. The coarsest picture is a differential manifold and algebra (dm), direct integral of familiar local Clifford algebras of spin operators in curved time-space. Next is a finite difference manifold (Δm) of Regge calculus. This is a subalgebra of the third, a Minkowskian simplicial manifold (Σm). The most detailed description is the quantum manifold (Qm), whose algebra is the free Clifford algebra S of quantum set theory. We surmise that each Σm is a classical 'condensation' of a Qm. Quantum simplices have both integer and half-integer spins in their spectrum. A quantum set theory of nature requires a series of reductions leading from the Qm and a world descriptor W up through the intermediate Σm and Δm to a dm and an action principle. What may be a new algebraic language for topology, classical or quantum, is a by-product of the work. (orig.)

  4. Group manifold approach to gravity and supergravity theories

    International Nuclear Information System (INIS)

    d'Auria, R.; Fre, P.; Regge, T.

    1981-05-01

    Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed

  5. Quasi-Newton Exploration of Implicitly Constrained Manifolds

    KAUST Repository

    Tang, Chengcheng

    2011-08-01

    A family of methods for the efficient update of second order approximations of a constraint manifold is proposed in this thesis. The concept of such a constraint manifold corresponds to an abstract space prescribed by implicit nonlinear constraints, which can be a set of objects satisfying certain desired properties. This concept has a variety of applications, and it has been successfully introduced to fabrication-aware architectural design as a shape space consisting of all the implementable designs. The local approximation of such a manifold can be first order, in the tangent space, or second order, in the osculating surface, with higher precision. For a nonlinearly constrained manifold with rather high dimension and codimension, the computation of second order approximants (osculants) is time consuming. In this thesis, a type of so-called quasi-Newton manifold exploration methods which approximate the new osculants by updating the ones of a neighbor point by 1st-order information is introduced. The procedures are discussed in detail and the examples implemented to visually verify the methods are illustrated.

  6. Enhanced manifold regularization for semi-supervised classification.

    Science.gov (United States)

    Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong

    2016-06-01

    Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.

  7. Para-Hermitian and para-quaternionic manifolds

    International Nuclear Information System (INIS)

    Ivanov, S.; Zamkovoy, S.

    2003-10-01

    A set of canonical para-Hermitian connections on an almost para-Hermitian manifold is defined. A Para-hermitian version of the Apostolov-Gauduchon generalization of the Goldberg-Sachs theorem in General Relativity is given. It is proved that the Nijenhuis tensor of a Nearly para-Kaehler manifolds is parallel with respect to the canonical connection. Salamon's twistor construction on quaternionic manifold is adapted to the para-quaternionic case. A locally conformally hyper-para-Kaehler (hypersymplectic) flat structure with parallel Lee form on the Kodaira-Thurston complex surfaces modeled on S 1 x SL (2, R)-tilde is constructed. Anti-self-dual locally conformally hyper-para-Kaehler (hypersymplectic) neutral metrics with non vanishing Weyl tensor are obtained on the Inoe surfaces. An example of anti-self-dual neutral metric which is not locally conformally hyper-para-Kaehler (hypersymplectic) is constructed. (author)

  8. Multiscale singular value manifold for rotating machinery fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)

    2017-01-15

    Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.

  9. Schoen manifold with line bundles as resolved magnetized orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-12-15

    We give an alternative description of the Schoen manifold as the blow-up of a Z{sub 2} x Z{sub 2} orbifold in which one Z{sub 2} factor acts as a roto-translation. Since for this orbifold the fixed tori are only identified in pairs but not orbifolded, four-dimensional chirality can never be obtained using standard techniques alone. However, chirality is recovered when its tori become magnetized. To exemplify this, we construct an SU(5) GUT on the Schoen manifold with Abelian gauge fluxes, which becomes an MSSM with three generations after an appropriate Wilson line is associated to its freely acting involution. We reproduce this model as a standard orbifold CFT of the (partially) blown down Schoen manifold with a magnetic flux. Finally, in analogy to a proposal for non-perturbative heterotic models by Aldazabal et al. we suggest modifications to the heterotic orbifold spectrum formulae in the presence of magnetized tori.

  10. Pseudo-differential operators on manifolds with singularities

    CERN Document Server

    Schulze, B-W

    1991-01-01

    The analysis of differential equations in domains and on manifolds with singularities belongs to the main streams of recent developments in applied and pure mathematics. The applications and concrete models from engineering and physics are often classical but the modern structure calculus was only possible since the achievements of pseudo-differential operators. This led to deep connections with index theory, topology and mathematical physics. The present book is devoted to elliptic partial differential equations in the framework of pseudo-differential operators. The first chapter contains the Mellin pseudo-differential calculus on R+ and the functional analysis of weighted Sobolev spaces with discrete and continuous asymptotics. Chapter 2 is devoted to the analogous theory on manifolds with conical singularities, Chapter 3 to manifolds with edges. Employed are pseudo-differential operators along edges with cone-operator-valued symbols.

  11. Adaptive Sampling for Nonlinear Dimensionality Reduction Based on Manifold Learning

    DEFF Research Database (Denmark)

    Franz, Thomas; Zimmermann, Ralf; Goertz, Stefan

    2017-01-01

    We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approxi...... to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime.......We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space...

  12. Para-Hermitian and para-quaternionic manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S [University of Sofia ' St. Kl. Ohridski' , Faculty of Mathematics and Informatics, Sofia (Bulgaria) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Zamkovoy, S [University of Sofia ' St. Kl. Ohridski' , Faculty of Mathematics and Informatics, Sofia (Bulgaria)

    2003-10-01

    A set of canonical para-Hermitian connections on an almost para-Hermitian manifold is defined. A Para-hermitian version of the Apostolov-Gauduchon generalization of the Goldberg-Sachs theorem in General Relativity is given. It is proved that the Nijenhuis tensor of a Nearly para-Kaehler manifolds is parallel with respect to the canonical connection. Salamon's twistor construction on quaternionic manifold is adapted to the para-quaternionic case. A locally conformally hyper-para-Kaehler (hypersymplectic) flat structure with parallel Lee form on the Kodaira-Thurston complex surfaces modeled on S{sup 1} x SL (2, R)-tilde is constructed. Anti-self-dual locally conformally hyper-para-Kaehler (hypersymplectic) neutral metrics with non vanishing Weyl tensor are obtained on the Inoe surfaces. An example of anti-self-dual neutral metric which is not locally conformally hyper-para-Kaehler (hypersymplectic) is constructed. (author)

  13. Unimodularity criteria for Poisson structures on foliated manifolds

    Science.gov (United States)

    Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury

    2018-03-01

    We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.

  14. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca [Department of Computer and Software Engineering, Ecole Polytechnique Montreal, Montréal, Québec H3C 3A7 (Canada); Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca [CHU Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5 (Canada)

    2016-03-15

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.

  15. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    International Nuclear Information System (INIS)

    Kadoury, Samuel; Labelle, Hubert; Parent, Stefan

    2016-01-01

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities

  16. Hamilton's gradient estimate for the heat kernel on complete manifolds

    OpenAIRE

    Kotschwar, Brett

    2007-01-01

    In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with $Rc \\geq -Kg$. We accomplish this extension via a maximum principle of L. Karp and P. Li and a Bernstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifol...

  17. Distributed mean curvature on a discrete manifold for Regge calculus

    International Nuclear Information System (INIS)

    Conboye, Rory; Miller, Warner A; Ray, Shannon

    2015-01-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)

  18. Tops as building blocks for G 2 manifolds

    Science.gov (United States)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  19. M Theory, G2-manifolds and four dimensional physics

    International Nuclear Information System (INIS)

    Acharya, B.S.

    2003-01-01

    M theory on a manifold of G 2 -holonomy is a natural framework for obtaining vacua with four large spacetime dimensions and N = 1 supersymmetry. In order to obtain, within this framework, the standard features of particle physics, namely non-Abelian gauge groups and chiral fermions, we consider G 2 -manifolds with certain kinds of singularities at which these features reside. The aim of these lectures is to describe in detail how the above picture emerges. Along the way we will see how interesting aspects of strongly coupled gauge theories, such as confinement, receive relatively simple explanations within the context of M theory. (author)

  20. Distributed mean curvature on a discrete manifold for Regge calculus

    Science.gov (United States)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  1. Gauge groups and topological invariants of vacuum manifolds

    International Nuclear Information System (INIS)

    Golo, V.L.; Monastyrsky, M.I.

    1978-01-01

    The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed

  2. Spontaneous compactification and Ricci-flat manifolds with torsion

    International Nuclear Information System (INIS)

    McInnes, B.

    1985-06-01

    The Freund-Rubin mechanism is based on the equation Rsub(ik)=lambdagsub(ik) (where lambda>0), which, via Myers' Theorem, implies ''spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and lambda set equal to zero, but then compactification ''by hand'' is necessary, since the equation Rsub(ik)=0 can be satisfied both on compact and on non-compact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ''spontaneity'' of the compactification. (author)

  3. Markov's theorem and algorithmically non-recognizable combinatorial manifolds

    International Nuclear Information System (INIS)

    Shtan'ko, M A

    2004-01-01

    We prove the theorem of Markov on the existence of an algorithmically non-recognizable combinatorial n-dimensional manifold for every n≥4. We construct for the first time a concrete manifold which is algorithmically non-recognizable. A strengthened form of Markov's theorem is proved using the combinatorial methods of regular neighbourhoods and handle theory. The proofs coincide for all n≥4. We use Borisov's group with insoluble word problem. It has two generators and twelve relations. The use of this group forms the base for proving the strengthened form of Markov's theorem

  4. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  5. The topology of certain 3-Sasakian 7-manifolds

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2007-01-01

    We calculate the integer cohomology ring and stable tangent bundle of a family of compact, 3-Sasakian 7-manifolds constructed by Boyer, Galicki, Mann, and Rees. Previously only the rational cohomology ring was known. The most important part of the cohomology ring is a torsion group that we descri...

  6. Conceptual development of the Laser Beam Manifold (LBM)

    Science.gov (United States)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  7. Local gradient estimate for harmonic functions on Finsler manifolds

    OpenAIRE

    Xia, Chao

    2013-01-01

    In this paper, we prove the local gradient estimate for harmonic functions on complete, noncompact Finsler measure spaces under the condition that the weighted Ricci curvature has a lower bound. As applications, we obtain Liouville type theorem on Finsler manifolds with nonnegative Ricci curvature.

  8. Characteristic Lightlike Submanifolds of an Indefinite S-Manifold

    Directory of Open Access Journals (Sweden)

    Jae Won Lee

    2011-01-01

    Full Text Available We study characteristic r-lightlike submanifolds M tangent to the characteristic vector fields in an indefinite metric S-manifold, and we also discuss the existence of characteristic lightlike submanifolds of an indefinite S-space form under suitable hypotheses: (1 M is totally umbilical or (2 its screen distribution S(TM is totally umbilical in M.

  9. Gauge theory and the topology of four-manifolds

    CERN Document Server

    Friedman, Robert Marc

    1998-01-01

    The lectures in this volume provide a perspective on how 4-manifold theory was studied before the discovery of modern-day Seiberg-Witten theory. One reason the progress using the Seiberg-Witten invariants was so spectacular was that those studying SU(2)-gauge theory had more than ten years' experience with the subject. The tools had been honed, the correct questions formulated, and the basic strategies well understood. The knowledge immediately bore fruit in the technically simpler environment of the Seiberg-Witten theory. Gauge theory long predates Donaldson's applications of the subject to 4-manifold topology, where the central concern was the geometry of the moduli space. One reason for the interest in this study is the connection between the gauge theory moduli spaces of a Kähler manifold and the algebro-geometric moduli space of stable holomorphic bundles over the manifold. The extra geometric richness of the SU(2)-moduli spaces may one day be important for purposes beyond the algebraic invariants that ...

  10. Holomorphic two-spheres in complex Grassmann manifold

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 3. Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4). Xiaowei Xu ... Author Affiliations. Xiaowei Xu1 Xiaoxiang Jiao1. School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China ...

  11. Nonparametric Bayes Classification and Hypothesis Testing on Manifolds

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David

    2012-01-01

    Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028

  12. On equations of motion on complex grassman manifold

    International Nuclear Information System (INIS)

    Berceanu, S.; Gheorghe, A.

    1989-02-01

    We investigate the equations of motion on the 'classical' phase space which corresponds to quantum state space in the case of the complex Grassmann manifold appearing in the Hartree-Fock problem. First and second degree polynomial Hamiltonians in bifermion operators are considered. The 'classical' motion corresponding to linear Hamiltonians is described by a Matrix Riccati equation.(authors)

  13. An algorithmic approach to construct crystallizations of 3-manifolds ...

    Indian Academy of Sciences (India)

    Gagliardi introduced an algorithm to find a presentation of the fundamental group of a closed connected ..... ij is the sum over 1 ≤ imanifold which.

  14. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  15. Discrete method for design of flow distribution in manifolds

    International Nuclear Information System (INIS)

    Wang, Junye; Wang, Hualin

    2015-01-01

    Flow in manifold systems is encountered in designs of various industrial processes, such as fuel cells, microreactors, microchannels, plate heat exchanger, and radial flow reactors. The uniformity of flow distribution in manifold is a key indicator for performance of the process equipment. In this paper, a discrete method for a U-type arrangement was developed to evaluate the uniformity of the flow distribution and the pressure drop and then was used for direct comparisons between the U-type and the Z-type. The uniformity of the U-type is generally better than that of the Z-type in most of cases for small ζ and large M. The U-type and the Z-type approach each other as ζ increases or M decreases. However, the Z-type is more sensitive to structures than the U-type and approaches uniform flow distribution faster than the U-type as M decreases or ζ increases. This provides a simple yet powerful tool for the designers to evaluate and select a flow arrangement and offers practical measures for industrial applications. - Highlights: • Discrete methodology of flow field designs in manifolds with U-type arrangements. • Quantitative comparison between U-type and Z-type arrangements. • Discrete solution of flow distribution with varying flow coefficients. • Practical measures and guideline to design of manifold systems.

  16. Deformations of coisotropic submanifolds in locally conformal symplectic manifolds

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Oh, Y.-G.

    2016-01-01

    Roč. 20, č. 3 (2016), s. 553-596 ISSN 1093-6106 Institutional support: RVO:67985840 Keywords : locally conformal symplectic manifold * coisotropic submanifold * b-twisted differential * bulk deformation Subject RIV: BA - General Mathematics Impact factor: 0.895, year: 2016 http://intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0020/0003/a007/index.html

  17. Quantum cohomology of flag manifolds and Toda lattices

    International Nuclear Information System (INIS)

    Givental, A.; Kim, B.

    1995-01-01

    We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice. (orig.)

  18. Enhancing Low-Rank Subspace Clustering by Manifold Regularization.

    Science.gov (United States)

    Liu, Junmin; Chen, Yijun; Zhang, JiangShe; Xu, Zongben

    2014-07-25

    Recently, low-rank representation (LRR) method has achieved great success in subspace clustering (SC), which aims to cluster the data points that lie in a union of low-dimensional subspace. Given a set of data points, LRR seeks the lowest rank representation among the many possible linear combinations of the bases in a given dictionary or in terms of the data itself. However, LRR only considers the global Euclidean structure, while the local manifold structure, which is often important for many real applications, is ignored. In this paper, to exploit the local manifold structure of the data, a manifold regularization characterized by a Laplacian graph has been incorporated into LRR, leading to our proposed Laplacian regularized LRR (LapLRR). An efficient optimization procedure, which is based on alternating direction method of multipliers (ADMM), is developed for LapLRR. Experimental results on synthetic and real data sets are presented to demonstrate that the performance of LRR has been enhanced by using the manifold regularization.

  19. Robust Semi-Supervised Manifold Learning Algorithm for Classification

    Directory of Open Access Journals (Sweden)

    Mingxia Chen

    2018-01-01

    Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.

  20. Manifold regularization for sparse unmixing of hyperspectral images.

    Science.gov (United States)

    Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin

    2016-01-01

    Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.

  1. Morphological appearance manifolds for group-wise morphometric analysis.

    Science.gov (United States)

    Lian, Nai-Xiang; Davatzikos, Christos

    2011-12-01

    Computational anatomy quantifies anatomical shape based on diffeomorphic transformations of a template. However, different templates warping algorithms, regularization parameters, or templates, lead to different representations of the same exact anatomy, raising a uniqueness issue: variations of these parameters are confounding factors as they give rise to non-unique representations. Recently, it has been shown that learning the equivalence class derived from the multitude of representations of a given anatomy can lead to improved and more stable morphological descriptors. Herein, we follow that approach, by approximating this equivalence class of morphological descriptors by a (nonlinear) morphological appearance manifold fitting to the data via a locally linear model. Our approach parallels work in the computer vision field, in which variations lighting, pose and other parameters lead to image appearance manifolds representing the exact same figure in different ways. The proposed framework is then used for group-wise registration and statistical analysis of biomedical images, by employing a minimum variance criterion to perform manifold-constrained optimization, i.e. to traverse each individual's morphological appearance manifold until group variance is minimal. The hypothesis is that this process is likely to reduce aforementioned confounding effects and potentially lead to morphological representations reflecting purely biological variations, instead of variations introduced by modeling assumptions and parameter settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds

    OpenAIRE

    Lehn, Christian

    2011-01-01

    We generalize Voisin's theorem on deformations of pairs of a symplectic manifold and a Lagrangian submanifold to the case of Lagrangian normal crossing subvarieties. Partial results are obtained for arbitrary Lagrangian subvarieties. We apply our results to the study of singular fibers of Lagrangian fibrations.

  3. Valve and Manifold considerations for Efficient Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Nørgård, Christian; Bech, Michael Møller

    2016-01-01

    strict requirements to the switching valves and the overall manifold design. To investigate this topic, the largest known digital motor (3.5 megawatt) is studied using models and optimization. Based on the limited information available about this motor, a detailed reconstruction of the motor architecture...

  4. Experimental investigation of a manifold heat-pipe heat exchanger

    International Nuclear Information System (INIS)

    Konev, S.V.; Wang Tszin' Lyan'; D'yakov, I.I.

    1995-01-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered

  5. On some properties of the superposition operator on topological manifolds

    Directory of Open Access Journals (Sweden)

    Janusz Dronka

    2010-01-01

    Full Text Available In this paper the superposition operator in the space of vector-valued, bounded and continuous functions on a topological manifold is considered. The acting conditions and criteria of continuity and compactness are established. As an application, an existence result for the nonlinear Hammerstein integral equation is obtained.

  6. Modeling Diesel engine combustion using pressure dependent Flamelet Generated Manifolds

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2011-01-01

    Flamelet Generated Manifolds (FGMs) are constructed and applied to simulations of a conventional compression ignition engine cycle. To study the influence of pressure and temperature variations on the ignition process after the compression stroke, FGMs with several pressure levels are created. These

  7. Quantum invariants of knots and 3-manifolds. 2. rev. ed.

    International Nuclear Information System (INIS)

    Turaev, Vladimir G.

    2010-01-01

    Due to the strong appeal and wide use of this monograph, it is now available in its second revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. From the contents: - Invariants of graphs in Euclidean 3-space and of closed 3-manifolds - Foundations of topological quantum field theory - Three-dimensional topological quantum field theory - Two-dimensional modular functors - 6j-symbols - Simplicial state sums on 3-manifolds - Shadows of manifolds and state sums on shadows - Constructions of modular categories. (orig.)

  8. Person-Independent Head Pose Estimation Using Biased Manifold Embedding

    Directory of Open Access Journals (Sweden)

    Sethuraman Panchanathan

    2008-02-01

    Full Text Available Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications. To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose angle variations at a granularity of 1∘. Since biometric applications in the real world may not contain this level of granularity in training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up to 2∘ average pose angle estimation error in the results from our experiments, which matched the best results obtained for head pose estimation using related approaches.

  9. Slow Integral Manifolds and Control Problems in Critical and Twice Critical Cases

    International Nuclear Information System (INIS)

    Sobolev, Vladimir

    2016-01-01

    We consider singularly perturbed differential systems in cases where the standard theory to establish a slow integral manifold existence does not work. The theory has traditionally dealt only with perturbation problems near normally hyperbolic manifold of singularities and this manifold is supposed to isolated. Applying transformations we reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by several examples. (paper)

  10. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  11. Action-angle variables and a KAM theorem for b-Poisson manifolds

    OpenAIRE

    Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

    2015-01-01

    In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

  12. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    International Nuclear Information System (INIS)

    Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.

    2002-01-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)

  13. Higher dimensional maximally symmetric stationary manifold with pure gauge condition and codimension one flat submanifold

    International Nuclear Information System (INIS)

    Wiliardy, Abednego; Gunara, Bobby Eka

    2016-01-01

    An n dimensional flat manifold N is embedded into an n +1 dimensional stationary manifold M. The metric of M is derived from a general form of stationary manifold. By taking several assumption, such as 1) the ambient manifold M to be maximally symmetric space and satisfying a pure gauge condition, and 2) the submanifold is taken to be flat, then we find the solution that satisfies Ricci scalar of N . Moreover, we determine whether the solution is compatible with the Ricci and Riemann tensor of manifold N depending on the dimension. (paper)

  14. Birkhoff’s theorem in Lovelock gravity for general base manifolds

    Science.gov (United States)

    Ray, Sourya

    2015-10-01

    We extend the Birkhoff’s theorem in Lovelock gravity for arbitrary base manifolds using an elementary method. In particular, it is shown that any solution of the form of a warped product of a two-dimensional transverse space and an arbitrary base manifold must be static. Moreover, the field equations restrict the base manifold such that all the non-trivial intrinsic Lovelock tensors of the base manifold are constants, which can be chosen arbitrarily, and the metric in the transverse space is determined by a single function of a spacelike coordinate which satisfies an algebraic equation involving the constants characterizing the base manifold along with the coupling constants.

  15. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Science.gov (United States)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  16. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  17. The Hantzsche-Wendt manifold in cosmic topology

    Science.gov (United States)

    Aurich, R.; Lustig, S.

    2014-08-01

    The Hantzsche-Wendt space is one of the 17 multiply connected spaces of the three-dimensional Euclidean space {{{E}}^{3}}. It is a compact and orientable manifold which can serve as a model for a spatial finite universe. Since it possesses much fewer matched back-to-back circle pairs on the cosmic microwave background (CMB) sky than the other compact flat spaces, it can escape the detection by a search for matched circle pairs. The suppression of temperature correlations C(\\vartheta ) on large angular scales on the CMB sky is studied. It is shown that the large-scale correlations are of the same order as for the three-torus topology but express a much larger variability. The Hantzsche-Wendt manifold provides a topological possibility with reduced large-angle correlations that can hide from searches for matched back-to-back circle pairs.

  18. On the scalar curvature of self-dual manifolds

    International Nuclear Information System (INIS)

    Kim, J.

    1992-08-01

    We generalize LeBrun's explicit ''hyperbolic ansatz'' construction of self-dual metrics on connected sums of conformally flat manifolds and CP 2 's through a systematic use of the theory of hyperbolic geometry and Kleinian groups. (This construction produces, for example, all self-dual manifolds with semi-free S 1 -action and with either nonnegative scalar curvature or positive-definite intersection form.) We then point out a simple criterion for determining the sign of the scalar curvature of these conformal metrics. Exploiting this, we then show that the sign of the scalar curvature can change on connected components of the moduli space of self-dual metrics, thereby answering a question raised by King and Kotschick. (author). Refs

  19. Gravity duals of supersymmetric gauge theories on three-manifolds

    International Nuclear Information System (INIS)

    Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James

    2016-01-01

    We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.

  20. M theory and singularities of exceptional holonomy manifolds

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Gukov, Sergei

    2004-12-01

    M theory compactifications on G 2 holonomy manifolds, whilst supersymmetric, require singularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a simple explanation in M theory. (author)

  1. Understanding 3D human torso shape via manifold clustering

    Science.gov (United States)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  2. Harmonic spinors on a family of Einstein manifolds

    Science.gov (United States)

    Franchetti, Guido

    2018-06-01

    The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.

  3. Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2017-01-27

    We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.

  4. Laplacian manifold regularization method for fluorescence molecular tomography

    Science.gov (United States)

    He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei

    2017-04-01

    Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.

  5. Multiview vector-valued manifold regularization for multilabel image classification.

    Science.gov (United States)

    Luo, Yong; Tao, Dacheng; Xu, Chang; Xu, Chao; Liu, Hong; Wen, Yonggang

    2013-05-01

    In computer vision, image datasets used for classification are naturally associated with multiple labels and comprised of multiple views, because each image may contain several objects (e.g., pedestrian, bicycle, and tree) and is properly characterized by multiple visual features (e.g., color, texture, and shape). Currently, available tools ignore either the label relationship or the view complementarily. Motivated by the success of the vector-valued function that constructs matrix-valued kernels to explore the multilabel structure in the output space, we introduce multiview vector-valued manifold regularization (MV(3)MR) to integrate multiple features. MV(3)MR exploits the complementary property of different features and discovers the intrinsic local geometry of the compact support shared by different features under the theme of manifold regularization. We conduct extensive experiments on two challenging, but popular, datasets, PASCAL VOC' 07 and MIR Flickr, and validate the effectiveness of the proposed MV(3)MR for image classification.

  6. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Directory of Open Access Journals (Sweden)

    S. Touzard

    2018-04-01

    Full Text Available Manipulating the state of a logical quantum bit (qubit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  7. Curved manifolds with conserved Runge-Lenz vectors

    International Nuclear Information System (INIS)

    Ngome, J.-P.

    2009-01-01

    van Holten's algorithm is used to construct Runge-Lenz-type conserved quantities, induced by Killing tensors, on curved manifolds. For the generalized Taub-Newman-Unti-Tamburino metric, the most general external potential such that the combined system admits a conserved Runge-Lenz-type vector is found. In the multicenter case, the subclass of two-center metric exhibits a conserved Runge-Lenz-type scalar.

  8. Interacting Quintessence Dark Energy Models in Lyra Manifold

    International Nuclear Information System (INIS)

    Khurshudyan, M.; Myrzakulov, R.; Sadeghi, J.; Farahani, H.; Pasqua, Antonio

    2014-01-01

    We consider two-component dark energy models in Lyra manifold. The first component is assumed to be a quintessence field while the second component may be a viscous polytropic gas, a viscous Van der Waals gas, or a viscous modified Chaplygin gas. We also consider the possibility of interaction between components. By using the numerical analysis, we study some cosmological parameters of the models and compare them with observational data.

  9. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    Science.gov (United States)

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  10. One-loop effective potential on hyperbolic manifolds

    International Nuclear Information System (INIS)

    Cognola, G.; Kirsten, K.; Zerbini, S.

    1993-01-01

    The one-loop effective potential for a scalar field defined on an ultrastatic space-time whose spatial part is a compact hyperbolic manifold is studied using ζ-function regularization for the one-loop effective action. Other possible regularizations are discussed in detail. The renormalization group equations are derived, and their connection with the conformal anomaly is pointed out. The symmetry breaking and the topological mass generation are also discussed

  11. On symplectomorphisms of the symplectisation of a compact contact manifold

    International Nuclear Information System (INIS)

    Banyaga, A.

    2004-03-01

    Let (N, α) be a compact contact manifold and (N x R, d(e t α)) its symplectisation. We show that the group G which is the identity component in the group of symplectic diffeomorphisms Φ of (N x R, d(e t α)) that cover diffeomorphisms of Φ of N x S 1 is simple, by showing that G is isomorphic to the kernel of the Calabi homomorphism of the associated locally conformal symplectic structure. (author)

  12. GPU accelerated manifold correction method for spinning compact binaries

    Science.gov (United States)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  13. Ultrasonic defect characterization using parametric-manifold mapping

    Science.gov (United States)

    Velichko, A.; Bai, L.; Drinkwater, B. W.

    2017-06-01

    The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.

  14. Multidimensional flamelet-generated manifolds for partially premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam; Domingo, Pascale [CORIA - CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France)

    2010-01-15

    Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which is tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)

  15. Quantum fields on manifolds: PCT and gravitationally induced thermal states

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1982-01-01

    We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field

  16. Hyperspherical Manifold for EEG Signals of Epileptic Seizures

    Directory of Open Access Journals (Sweden)

    Tahir Ahmad

    2012-01-01

    Full Text Available The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping then is devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad's approach to use topological modelling.

  17. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Classical boundary-value problem in Riemannian quantum gravity and self-dual Taub-NUT-(anti)de Sitter geometries

    International Nuclear Information System (INIS)

    Akbar, M.M.; D'Eath, P.D.

    2003-01-01

    The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S 3 ) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a 'cusp catastrophe' structure with a non-self-intersecting 'catastrophe manifold' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to -a 3 for large a (∼b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a 'bolt' is investigated in a forthcoming paper

  19. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  20. Dictionary Pair Learning on Grassmann Manifolds for Image Denoising.

    Science.gov (United States)

    Zeng, Xianhua; Bian, Wei; Liu, Wei; Shen, Jialie; Tao, Dacheng

    2015-11-01

    Image denoising is a fundamental problem in computer vision and image processing that holds considerable practical importance for real-world applications. The traditional patch-based and sparse coding-driven image denoising methods convert 2D image patches into 1D vectors for further processing. Thus, these methods inevitably break down the inherent 2D geometric structure of natural images. To overcome this limitation pertaining to the previous image denoising methods, we propose a 2D image denoising model, namely, the dictionary pair learning (DPL) model, and we design a corresponding algorithm called the DPL on the Grassmann-manifold (DPLG) algorithm. The DPLG algorithm first learns an initial dictionary pair (i.e., the left and right dictionaries) by employing a subspace partition technique on the Grassmann manifold, wherein the refined dictionary pair is obtained through a sub-dictionary pair merging. The DPLG obtains a sparse representation by encoding each image patch only with the selected sub-dictionary pair. The non-zero elements of the sparse representation are further smoothed by the graph Laplacian operator to remove the noise. Consequently, the DPLG algorithm not only preserves the inherent 2D geometric structure of natural images but also performs manifold smoothing in the 2D sparse coding space. We demonstrate that the DPLG algorithm also improves the structural SIMilarity values of the perceptual visual quality for denoised images using the experimental evaluations on the benchmark images and Berkeley segmentation data sets. Moreover, the DPLG also produces the competitive peak signal-to-noise ratio values from popular image denoising algorithms.

  1. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    Science.gov (United States)

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  2. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  3. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.

    Science.gov (United States)

    Cooksey, Gregory A; Plant, Anne L; Atencia, Javier

    2009-05-07

    The lack of simple interfaces for microfluidic devices with a large number of inlets significantly limits production and utilization of these devices. In this article, we describe the fabrication of a reusable manifold that provides rapid world-to-chip connectivity. A vacuum network milled into a rigid manifold holds microdevices and prevents leakage of fluids injected into the device from ports in the manifold. A number of different manifold designs were explored, and all performed similarly, yielding an average of 100 kPa (15 psi) fluid holding pressure. The wide applicability of this manifold concept is demonstrated by interfacing with a 51-inlet microfluidic chip containing 144 chambers and hundreds of embedded pneumatic valves. Due to the speed of connectivity, the manifolds are ideal for rapid prototyping and are well suited to serve as "universal" interfaces.

  4. Compactifications of heterotic strings on non-Kaehler complex manifolds II

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Dasgupta, Keshav; Green, Paul S.; Sharpe, Eric

    2004-01-01

    We continue our study of heterotic compactifications on non-Kaehler complex manifolds with torsion. We give further evidence of the consistency of the six-dimensional manifold presented earlier and discuss the anomaly cancellation and possible supergravity description for a generic non-Kaehler complex manifold using the newly proposed superpotential. The manifolds studied in our earlier papers had zero Euler characteristics. We construct new examples of non-Kaehler complex manifolds with torsion in lower dimensions, that have nonzero Euler characteristics. Some of these examples are constructed from consistent backgrounds in F-theory and therefore are solutions to the string equations of motion. We discuss consistency conditions for compactifications of the heterotic string on smooth non-Kaehler manifolds and illustrate how some results well known for Calabi-Yau compactifications, including counting the number of generations, apply to the non-Kaehler case. We briefly address various issues regarding possible phenomenological applications

  5. Symplectic manifolds, coadjoint orbits, and Mean Field Theory

    International Nuclear Information System (INIS)

    Rosensteel, G.

    1986-01-01

    Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit

  6. Tensor calculus for supergravity on a manifold with boundary

    International Nuclear Information System (INIS)

    Belyaev, Dmitry V.; Nieuwenhuizen, Peter van

    2008-01-01

    Using the simple setting of 3D N = 1 supergravity, we show how the tensor calculus of supergravity can be extended to manifolds with boundary. We present an extension of the standard F-density formula which yields supersymmetric bulk-plus-boundary actions. To construct additional separately supersymmetric boundary actions, we decompose bulk supergravity and bulk matter multiplets into co-dimension one submultiplets. As an illustration we obtain the supersymmetric extension of the York-Gibbons-Hawking extrinsic curvature boundary term. We emphasize that our construction does not require any boundary conditions on off-shell fields. This gives a significant improvement over the existing orbifold supergravity tensor calculus

  7. Computation of saddle-type slow manifolds using iterative methods

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2015-01-01

    with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz......This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...

  8. Dynamics of dark energy models and centre manifolds

    International Nuclear Information System (INIS)

    Böhmer, Christian G.; Chan, Nyein; Lazkoz, Ruth

    2012-01-01

    We analyse dark energy models where self-interacting three-forms or phantom fields drive the accelerated expansion of the Universe. The dynamics of such models is often studied by rewriting the cosmological field equations in the form of a system of autonomous differential equations, or simply a dynamical system. Properties of these systems are usually studied via linear stability theory. In situations where this method fails, for instance due to the presence of zero eigenvalues in the Jacobian, centre manifold theory can be applied. We present a concise introduction and show explicitly how to use this theory in two concrete examples.

  9. On ruled surface in 3-dimensional almost contact metric manifold

    Science.gov (United States)

    Karacan, Murat Kemal; Yuksel, Nural; Ikiz, Hasibe

    In this paper, we study ruled surface in 3-dimensional almost contact metric manifolds by using surface theory defined by Gök [Surfaces theory in contact geometry, PhD thesis (2010)]. We also studied the theory of curves using cross product defined by Camcı. In this study, we obtain the distribution parameters of the ruled surface and then some results and theorems are presented with special cases. Moreover, some relationships among asymptotic curve and striction line of the base curve of the ruled surface have been found.

  10. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.

    Science.gov (United States)

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin

    2016-01-01

    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We

  11. Dynamic determinants of the uncontrolled manifold during human quiet stance

    Directory of Open Access Journals (Sweden)

    Yasuyuki Suzuki

    2016-12-01

    Full Text Available Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM. A control strategy related to this hypothesis (CoM-control-strategy claims that the central nervous system (CNS aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and

  12. The quantum 2-sphere as a complex quantum manifold

    International Nuclear Information System (INIS)

    Chu Chongsun; Ho Peiming; Zumino, B.

    1996-01-01

    We describe the quantum sphere of Podles for c=0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q (2) coefficients as well as under the action of SU q (2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane. (orig.)

  13. Coset models and D-branes in group manifolds

    International Nuclear Information System (INIS)

    Orlando, Domenico

    2006-01-01

    We conjecture the existence of a duality between heterotic closed strings on homogeneous spaces and symmetry-preserving D-branes on group manifolds, based on the observation about the coincidence of the low-energy field description for the two theories. For the closed string side we also give an explicit proof of a no-renormalization theorem as a consequence of a hidden symmetry and infer that the same property should hold true for the higher order terms of the dbi action

  14. Generalised discrete torsion and mirror symmetry for G2 manifolds

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Kaste, Peter

    2004-01-01

    A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)

  15. Geometry of minimal rational curves on Fano manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J -M [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2001-12-15

    This lecture is an introduction to my joint project with N. Mok where we develop a geometric theory of Fano manifolds of Picard number 1 by studying the collection of tangent directions of minimal rational curves through a generic point. After a sketch of some historical background, the fundamental object of this project, the variety of minimal rational tangents, is defined and various examples are examined. Then some results on the variety of minimal rational tangents are discussed including an extension theorem for holomorphic maps preserving the geometric structure. Some applications of this theory to the stability of the tangent bundles and the rigidity of generically finite morphisms are given. (author)

  16. Homotopy L-infinity spaces and Kuranishi manifolds, I: categorical structures

    OpenAIRE

    Tu, Junwu

    2016-01-01

    Motivated by the definition of homotopy $L_\\infty$ spaces, we develop a new theory of Kuranishi manifolds, closely related to Joyce's recent theory. We prove that Kuranishi manifolds form a $2$-category with invertible $2$-morphisms, and that certain fiber product property holds in this $2$-category. In a subsequent paper, we construct the virtual fundamental cycle of a compact oriented Kuranishi manifold, and prove some of its basic properties. Manifest from this new formulation is the fact ...

  17. Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning

    OpenAIRE

    Lai, Rongjie; Li, Jia

    2017-01-01

    Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear approximation of manifold dimension. This regularization is less restricted than the global low-rank regu...

  18. A TQFT associated to the LMO invariant of three-dimensional manifolds

    DEFF Research Database (Denmark)

    Cheptea, Dorin; Le, Thang

    2007-01-01

    We construct a Topological Quantum Field Theory associated to the universal finite-type invariant of 3-dimensional manifolds, as a functor from a category of 3-dimensional manifolds with parametrized boundary, satisfying some additional conditions, to an algebraic-combinatorial category. This is ......We construct a Topological Quantum Field Theory associated to the universal finite-type invariant of 3-dimensional manifolds, as a functor from a category of 3-dimensional manifolds with parametrized boundary, satisfying some additional conditions, to an algebraic-combinatorial category...

  19. A stable-manifold-based method for chaos control and synchronization

    International Nuclear Information System (INIS)

    Chen Shihua; Zhang Qunjiao; Xie Jin; Wang Changping

    2004-01-01

    A stable-manifold-based method is proposed for chaos control and synchronization. The novelty of this new and effective method lies in that, once the suitable stable manifold according to the desired dynamic properties is constructed, the goal of control is only to force the system state to lie on the selected stable manifold because once the stable manifold is reached, the chaotic system will be guided towards the desired target. The effectiveness of the approach and idea is tested by stabilizing the Newton-Leipnik chaotic system which possesses more than one strange attractor and by synchronizing the unified chaotic system which unifies both the Lorenz system and the Chen system

  20. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  1. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    Science.gov (United States)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  2. The Origin of Chern-Simons Modified Gravity from an 11 + 3-Dimensional Manifold

    Directory of Open Access Journals (Sweden)

    J. A. Helayël-Neto

    2017-01-01

    Full Text Available It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.

  3. Reconstructing spatial organizations of chromosomes through manifold learning.

    Science.gov (United States)

    Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang

    2018-02-02

    Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Nonlinear dynamical modes of climate variability: from curves to manifolds

    Science.gov (United States)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  5. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  6. Computational studies of an intake manifold for restricted engine application

    Science.gov (United States)

    Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar

    2018-02-01

    The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.

  7. Cyclic coverings, Calabi-Yau manifolds and complex multiplication

    CERN Document Server

    Rohde, Christian

    2009-01-01

    The main goal of this book is the construction of families of Calabi-Yau 3-manifolds with dense sets of complex multiplication fibers. The new families are determined by combining and generalizing two methods. Firstly, the method of E. Viehweg and K. Zuo, who have constructed a deformation of the Fermat quintic with a dense set of CM fibers by a tower of cyclic coverings. Using this method, new families of K3 surfaces with dense sets of CM fibers and involutions are obtained. Secondly, the construction method of the Borcea-Voisin mirror family, which in the case of the author's examples yields families of Calabi-Yau 3-manifolds with dense sets of CM fibers, is also utilized. Moreover fibers with complex multiplication of these new families are also determined. This book was written for young mathematicians, physicists and also for experts who are interested in complex multiplication and varieties with complex multiplication. The reader is introduced to generic Mumford-Tate groups and Shimura data, which are a...

  8. Manifold learning to interpret JET high-dimensional operational space

    International Nuclear Information System (INIS)

    Cannas, B; Fanni, A; Pau, A; Sias, G; Murari, A

    2013-01-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption. (paper)

  9. The Dirac quantisation condition for fluxes on four-manifolds

    International Nuclear Information System (INIS)

    Alvarez, M.; Olive, D.I.

    2000-01-01

    A systematic treatment is given of the Dirac quantisation condition for electromagnetic fluxes through two-cycles on a four-manifold space-time which can be very complicated topologically, provided only that it is connected, compact, oriented and smooth. This is sufficient for the quantised Maxwell theory on it to satisfy electromagnetic duality properties. The results depend upon whether the complex wave function needed for the argument is scalar or spinorial in nature. An essential step is the derivation of a ''quantum Stokes' theorem'' for the integral of the gauge potential around a closed loop on the manifold. This can only be done for an exponentiated version of the line integral (the ''Wilson loop'') and the result again depends on the nature of the complex wave functions, through the appearance of what is known as a Stiefel-Whitney cohomology class in the spinor case. A nice picture emerges providing a physical interpretation, in terms of quantised fluxes and wave-functions, of mathematical concepts such as spin structures, spin C structures, the Stiefel-Whitney class and Wu's formula. Relations appear between these, electromagnetic duality and the Atiyah-Singer index theorem. Possible generalisation to higher dimensions of space-time in the presence of branes are mentioned. (orig.)

  10. Center manifold for nonintegrable nonlinear Schroedinger equations on the line

    International Nuclear Information System (INIS)

    Weder, R.

    2000-01-01

    In this paper we study the following nonlinear Schroedinger equation on the line, where f is real-valued, and it satisfies suitable conditions on regularity, on growth as a function of u and on decay as x → ± ∞. The generic potential, V, is real-valued and it is chosen so that the spectrum of H:= -d 2 /dx 2 +V consists of one simple negative eigenvalue and absolutely-continuous spectrum filling (0,∞). The solutions to this equation have, in general, a localized and a dispersive component. The nonlinear bound states, that bifurcate from the zero solution at the energy of the eigenvalue of H, define an invariant center manifold that consists of the orbits of time-periodic localized solutions. We prove that all small solutions approach a particular periodic orbit in the center manifold as t→ ± ∞. In general, the periodic orbits are different for t→ ± ∞. Our result implies also that the nonlinear bound states are asymptotically stable, in the sense that each solution with initial data near a nonlinear bound state is asymptotic as t→ ± ∞ to the periodic orbits of nearby nonlinear bound states that are, in general, different for t→ ± ∞. (orig.)

  11. Manifold regularized multitask feature learning for multimodality disease classification.

    Science.gov (United States)

    Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang

    2015-02-01

    Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. © 2014 Wiley Periodicals, Inc.

  12. Supersymmetric 3-branes on smooth ALE manifolds with flux

    International Nuclear Information System (INIS)

    Bertolini, M.; Campos, V.L.; Ferretti, G.; Fre, P.; Salomonson, P.; Trigiante, M.

    2001-01-01

    We construct a new family of classical BPS solutions of type IIB supergravity describing 3-branes transverse to a 6-dimensional space with topology R 2 xALE. They are characterized by a non-trivial flux of the supergravity 2-forms through the homology 2-cycles of a generic smooth ALE manifold. Our solutions have two Killing spinors and thus preserve N=2 supersymmetry. They are expressed in terms of a quasi harmonic function H (the 'warp factor'), whose properties we study in the case of the simplest ALE, namely the Eguchi-Hanson manifold. The equation for H is identified as an instance of the confluent Heun equation. We write explicit power series solutions and solve the recurrence relation for the coefficients, discussing also the relevant asymptotic expansions. While, as in all such N=2 solutions, supergravity breaks down near the brane, the smoothing out of the vacuum geometry has the effect that the warp factor is regular in a region near the cycle. We interpret the behavior of the warp factor as describing a three-brane charge 'smeared' over the cycle and consider the asymptotic form of the geometry in that region, showing that conformal invariance is broken even when the complex type IIB 3-form field strength is assumed to vanish. We conclude with a discussion of the basic features of the gauge theory dual

  13. Critical manifold of the kagome-lattice Potts model

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Scullard, Christian R

    2012-01-01

    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B⊆G; we call B a basis of G. We introduce a two-parameter graph polynomial P B (q, v) that depends on B and its embedding in G. The algebraic curve P B (q, v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = e K − 1, defined on G. This curve predicts the phase diagram not only in the physical ferromagnetic regime (v > 0), but also in the antiferromagnetic (v B (q, v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G—or for the Ising model (q = 2) on any G—the polynomial P B (q, v) factorizes for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P B (q, v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for two choices of G: the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker–Kadanoff phase at certain Beraha numbers. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F Y Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu’s approach. We perform large-scale numerical computations for comparison and find excellent agreement with the polynomial predictions. For v > 0 the accuracy of the predicted critical coupling v c is of the order 10 −4 or 10 −5 for the six-edge basis, and improves to 10 −6 or 10 −7 for the largest basis studied (with 36 edges). This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of

  14. The index of Fourier integral operators on manifolds with conical singularities

    International Nuclear Information System (INIS)

    Nazaikinskii, Vladimir E; Sternin, B Yu; Schulze, B-W

    2001-01-01

    We describe homogeneous canonical transformations of the cotangent bundle of a manifold with conical singular points and compute the index of an elliptic Fourier integral operator obtained by the quantization of such a transformation. The answer involves the index of an elliptic Fourier integral operator on a smooth manifold and the residues of the conormal symbol

  15. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds

    International Nuclear Information System (INIS)

    Xi Zhang

    2004-07-01

    In this paper, we prove the long-time existence of the Hermitian-Einstein flow on a holomorphic vector bundle over a compact Hermitian (non-kaehler) manifold, and solve the Dirichlet problem for the Hermitian-Einstein equations. We also prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete noncompact Hermitian manifolds. (author)

  16. Dirac-like operators on the Hilbert space of differential forms on manifolds with boundaries

    Science.gov (United States)

    Pérez-Pardo, Juan Manuel

    The problem of self-adjoint extensions of Dirac-type operators in manifolds with boundaries is analyzed. The boundaries might be regular or non-regular. The latter situation includes point-like interactions, also called delta-like potentials, in manifolds of dimension higher than one. Self-adjoint boundary conditions for the case of dimension 2 are obtained explicitly.

  17. Generalized metric formulation of double field theory on group manifolds

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Bosque, Pascal du; Hassler, Falk; Lüst, Dieter

    2015-01-01

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT WZW and of original DFT from tori is clarified. Furthermore, we show how to relate DFT WZW of the WZW background with the flux formulation of original DFT.

  18. Holographic RG flows on curved manifolds and quantum phase transitions

    Science.gov (United States)

    Ghosh, J. K.; Kiritsis, E.; Nitti, F.; Witkowski, L. T.

    2018-05-01

    Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS d , AdS d , and S d ) are considered in the framework of Einstein-dilaton gravity in d + 1 dimensions. A general dilaton potential is used and the flows are driven by a scalar relevant operator. The general properties of such flows are analyzed and the UV and IR asymptotics computed. New RG flows can appear at finite curvature which do not have a zero curvature counterpart. The so-called `bouncing' flows, where the β-function has a branch cut at which it changes sign, are found to persist at finite curvature. Novel quantum first-order phase transitions are found, triggered by a variation in the d-dimensional curvature in theories allowing multiple ground states.

  19. Manifolds, tensors and differential forms: some applications in physics

    International Nuclear Information System (INIS)

    Datta, S.

    1989-01-01

    The style of mathematics used in contemporary physics has evolved considerably during the last twentyfive years. Groups, topology and differential geometry have become an intergral part of the physicist's jargon in their attempt to express the laws of the nature in lucid and compact terms. The notes prepared are based on the lectures given by the author in the Mathematics Seminar of the Theoretical Physics Division in the latter half of 1985. These lecture notes contain an introduction to manifolds and differential forms in the most succinct manner that is possible. It is essentially an attempt to familiarise the reader with the requisite vocabulary in this area of mathematical physics without scaring them with excess of rigour. This hopefully will help in following the contemporary literature in physics. (author). 6 refs

  20. Existence and equivalence of twisted products on a symplectic manifold

    International Nuclear Information System (INIS)

    Lichnerowicz, A.

    1979-01-01

    The twisted products play an important role in Quantum Mechanics. A distinction is introduced between Vey *sub(γ) products and strong Vey *sub(γ) products and it is proved that each *sub(γ) product is equivalent to a Vey *sub(γ) product. If b 3 (W) = 0, the symplectic manifold (W,F) admits strong Vey *sub(Gn) products. If b 2 (W) = 0, all *sub(γ) products are equivalent as well as the Vey Lie algebras. In the general case the formal Lie algebras are characterized which are generated by a *sub(γ) product and it proved that the existance of a *sub(γ)-product is equivalent to the existance of a formal Lie algebra infinitesimally equivalent to a Vey Lie algebra at the first order. (Auth.)

  1. Balanced metrics for vector bundles and polarised manifolds

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Ross, Julius

    2012-01-01

    leads to a Hermitian-Einstein metric on E and a constant scalar curvature Kähler metric in c_1(L). For special values of α, limits of balanced metrics are solutions of a system of coupled equations relating a Hermitian-Einstein metric on E and a Kähler metric in c1(L). For this, we compute the top two......We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...

  2. Lightlike Hypersurfaces in Indefinite Trans-Sasakian Manifolds

    International Nuclear Information System (INIS)

    Massamba, Fortune

    2010-07-01

    This paper deals with lightlike hypersurfaces of indefinite trans-Sasakian manifolds of type (α, β), tangent to the structure vector field. Characterization Theorems on parallel vector fields, integrable distributions, minimal distributions, Ricci-semi symmetric, geodesibility of lightlike hypersurfaces are obtained. The geometric configuration of lightlike hypersurfaces is established. We prove, under some conditions, that there are no parallel and totally contact umbilical lightlike hypersurfaces of trans-Sasakian space forms, tangent to the structure vector field. We show that there exists a totally umbilical distribution in an Einstein parallel lightlike hypersurface which does not contain the structure vector field. We characterize the normal bundle along any totally contact umbilical leaf of an integrable screen distribution. We finally prove that the geometry of any leaf of an integrable distribution is closely related to the geometry of a normal bundle and its image under φ-bar. (author)

  3. System theory on group manifolds and coset spaces.

    Science.gov (United States)

    Brockett, R. W.

    1972-01-01

    The purpose of this paper is to study questions regarding controllability, observability, and realization theory for a particular class of systems for which the state space is a differentiable manifold which is simultaneously a group or, more generally, a coset space. We show that it is possible to give rather explicit expressions for the reachable set and the set of indistinguishable states in the case of autonomous systems. We also establish a type of state space isomorphism theorem. Our objective is to reduce all questions about the system to questions about Lie algebras generated from the coefficient matrices entering in the description of the system and in that way arrive at conditions which are easily visualized and tested.

  4. Gauge theory of gravity and supergravity on a group manifold

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Regge, T.

    1977-12-01

    The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory

  5. Retrieving handwriting by combining word spotting and manifold ranking

    Science.gov (United States)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  6. Generalized metric formulation of double field theory on group manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Bosque, Pascal du [Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); CERN, PH-TH,1211 Geneva 23 (Switzerland)

    2015-08-13

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT{sub WZW} and of original DFT from tori is clarified. Furthermore, we show how to relate DFT{sub WZW} of the WZW background with the flux formulation of original DFT.

  7. Kaluza-Klein bundles and manifolds of exceptional holonomy

    International Nuclear Information System (INIS)

    Kaste, Peter; Minasian, Ruben; Petrini, Michela; Tomasiello, Alessandro

    2002-01-01

    We show how in the presence of RR two-form field strength the conditions for preserving supersymmetry on six- and seven-dimensional manifolds lead to certain generalizations of monopole equations. For six dimensions the string frame metric is Kaehler with the complex structure that descends from the octonions if in addition we assume F (1,1) =0. The susy generator is a gauge covariantly constant spinor. For seven dimensions the string frame metric is conformal to a G 2 metric if in addition we assume the field strength to obey a self-duality constraint. Solutions to these equations lift to geometries of G 2 and Spin(7) holonomy respectively. (author)

  8. Low-rank matrix approximation with manifold regularization.

    Science.gov (United States)

    Zhang, Zhenyue; Zhao, Keke

    2013-07-01

    This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.

  9. Selecting protein families for environmental features based on manifold regularization.

    Science.gov (United States)

    Jiang, Xingpeng; Xu, Weiwei; Park, E K; Li, Guangrong

    2014-06-01

    Recently, statistics and machine learning have been developed to identify functional or taxonomic features of environmental features or physiological status. Important proteins (or other functional and taxonomic entities) to environmental features can be potentially used as biosensors. A major challenge is how the distribution of protein and gene functions embodies the adaption of microbial communities across environments and host habitats. In this paper, we propose a novel regularization method for linear regression to adapt the challenge. The approach is inspired by local linear embedding (LLE) and we call it a manifold-constrained regularization for linear regression (McRe). The novel regularization procedure also has potential to be used in solving other linear systems. We demonstrate the efficiency and the performance of the approach in both simulation and real data.

  10. Topological strings on Grassmannian Calabi-Yau manifolds

    International Nuclear Information System (INIS)

    Haghighat, Babak; Klemm, Albrecht

    2009-01-01

    We present solutions for the higher genus topological string amplitudes on Calabi-Yau-manifolds, which are realized as complete intersections in Grassmannians. We solve the B-model by direct integration of the holomorphic anomaly equations using a finite basis of modular invariant generators, the gap condition at the conifold and other local boundary conditions for the amplitudes. Regularity of the latter at certain points in the moduli space suggests a CFT description. The A-model amplitudes are evaluated using a mirror conjecture for Calabi-Yau complete intersections in Grassmannians by Batyrev, Ciocan-Fontanine, Kim and Van Straten. The integrality of the BPS states gives strong evidence for the conjecture.

  11. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Science.gov (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  12. Multimodal manifold-regularized transfer learning for MCI conversion prediction.

    Science.gov (United States)

    Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang

    2015-12-01

    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods.

  13. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    Science.gov (United States)

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  14. Multi-view clustering via multi-manifold regularized non-negative matrix factorization.

    Science.gov (United States)

    Zong, Linlin; Zhang, Xianchao; Zhao, Long; Yu, Hong; Zhao, Qianli

    2017-04-01

    Non-negative matrix factorization based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, non-negative matrix factorization fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized non-negative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF incorporates consensus manifold and consensus coefficient matrix with multi-manifold regularization to preserve the locally geometrical structure of the multi-view data space. We use two methods to construct the consensus manifold and two methods to find the consensus coefficient matrix, which leads to four instances of the framework. Experimental results show that the proposed algorithms outperform existing non-negative matrix factorization based algorithms for multi-view clustering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. T4 fibrations over Calabi–Yau two-folds and non-Kähler manifolds in string theory

    Directory of Open Access Journals (Sweden)

    Hai Lin

    2016-08-01

    Full Text Available We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi–Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU(4 structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU(4 structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.

  16. Solving variational problems and partial differential equations that map between manifolds via the closest point method

    Science.gov (United States)

    King, Nathan D.; Ruuth, Steven J.

    2017-05-01

    Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.

  17. Causal relationship: a new tool for the causal characterization of Lorentzian manifolds

    International Nuclear Information System (INIS)

    Garcia-Parrado, Alfonso; Senovilla, Jose M M

    2003-01-01

    We define and study a new kind of relation between two diffeomorphic Lorentzian manifolds called a causal relation, which is any diffeomorphism characterized by mapping every causal vector of the first manifold onto a causal vector of the second. We perform a thorough study of the mathematical properties of causal relations and prove in particular that two given Lorentzian manifolds (say V and W) may be causally related only in one direction (say from V to W, but not from W to V). This leads us to the concept of causally equivalent (or isocausal in short) Lorentzian manifolds as those mutually causally related and to a definition of causal structure over a differentiable manifold as the equivalence class formed by isocausal Lorentzian metrics upon it. Isocausality is a more general concept than the conformal relationship, because we prove the remarkable result that a conformal relation φ is characterized by the fact of being a causal relation of the particular kind in which both φ and φ -1 are causal relations. Isocausal Lorentzian manifolds are mutually causally compatible, they share some important causal properties, and there are one-to-one correspondences, which are sometimes non-trivial, between several classes of their respective future (and past) objects. A more important feature is that they satisfy the same standard causality constraints. We also introduce a partial order for the equivalence classes of isocausal Lorentzian manifolds providing a classification of all the causal structures that a given fixed manifold can have. By introducing the concept of causal extension we put forward a new definition of causal boundary for Lorentzian manifolds based on the concept of isocausality, and thereby we generalize the traditional Penrose constructions of conformal infinity, diagrams and embeddings. In particular, the concept of causal diagram is given. Many explicit clarifying examples are presented throughout the paper

  18. ON A FAIR MANIFOLD FARE RATING ON A LONG TRAFFIC LINE

    Directory of Open Access Journals (Sweden)

    Stanislav PALÚCH

    2017-06-01

    Full Text Available The paper studies the possibilities to design a fair manifold tariff on a long traffic line. If a single tariff is used on a long bus or railway line, passengers travelling long distances are favoured at the expense of those travelling short distances. The fairest approach to tariff is setting an individual tariff for every origin–destination relation of line stops that expresses real travel costs. However, sometimes the individual tariff is too complicated and is therefore replaced by double-, triple- or manifold tariff. This paper shows how to design a manifold tariff in order to minimize unfairness to passengers.

  19. Higher efficiency with cylinder-bank comprehensive exhaust manifold; Effizienzsteigerung durch Zylinderbank-uebergreifenden Kruemmer

    Energy Technology Data Exchange (ETDEWEB)

    Diez, Rainer; Kornherr, Heinz; Pirntke, Frank; Schmidt, Juergen [Friedrich Boysen GmbH und Co. KG, Altensteig (Germany)

    2010-05-15

    In close interdisciplinary cooperation with BMW Group, Boysen has developed an air-gap-insulated exhaust manifold that encompasses both banks of the 4.4 l V8 spark-ignition twin turbo engine of the BMW X5 M and BMW X6 M. The manifold merges the exhaust gas flow from the cylinders of the left-hand and right-hand cylinder banks in opposing pairs, thus optimising gas exchange. Due to improvements in response, torque and power characteristics of the engine, the cylinder-bank comprehensive exhaust manifold helps achieve high fuel efficiency. (orig.)

  20. From Stein to Weinstein and back symplectic geometry of affine complex manifolds

    CERN Document Server

    Cieliebak, Kai

    2013-01-01

    A beautiful and comprehensive introduction to this important field. -Dusa McDuff, Barnard College, Columbia University This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors' new results. -Tomasz Mrowka, MIT This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine co