WorldWideScience

Sample records for semipermeable membrane outstanding

  1. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  2. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    Science.gov (United States)

    Babcock, Walter C.; Friesen, Dwayne T.

    1988-01-01

    Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  3. The casting and mechanism of formation of semi-permeable polymer membranes in a microgravity environment

    Science.gov (United States)

    Vera, I.

    The National Electric Company of Venezuela, C.A.D.A.F.E., is sponsoring the development of this experiment which represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of polymer thin films will be contained in NASA's payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medecine, energy, and pharmaceuticals, and in general fluid separation processes such as reverse osmosis, ultra-filtration, and electro-dialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the strucutre of these membranes.

  4. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  5. Treatment of radioactive liquid wastes on semi-permeable membranes

    International Nuclear Information System (INIS)

    Antonescu, M.; Deleanu, N.; Nechifor, G.

    1997-01-01

    At present, among the currently world-wide applied separation processes, those using membranes are thought to be most advanced due to their advantages: high efficiency, cost-effectiveness in application, universality of the utilized equipment, operation in non-destructive and non-polluting conditions. The most significant results of the treatment experiments are: - a reduction of more than 70% in the chemical oxygen consumption for the solution simulating the POD waste; - the solution simulating the secondary waste from decontamination by POD procedure, appear to be the best (with retentions of 88.5%, 76.5% and 65.7% for strontium, cobalt and manganese, respectively). Important reduction of costs and efficient technological schemes can be obtained by combining the semi-permeable membrane separation techniques with other efficient currently used procedures of separation, concentration and purification, adequate for given situations

  6. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  7. Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment.

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2018-08-01

    The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. “Breakthrough” osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes

    Science.gov (United States)

    Yaroshchuk, Andriy

    2017-01-01

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis. PMID:28332607

  9. ?Breakthrough? osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes

    OpenAIRE

    Yaroshchuk, Andriy

    2017-01-01

    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allow...

  10. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    Science.gov (United States)

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    Science.gov (United States)

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  12. Evaluation of working air quality by using semipermeable membrane devices

    International Nuclear Information System (INIS)

    Esteve-Turrillas, Francesc A.; Pastor, Agustin; Guardia, Miguel de la

    2008-01-01

    It has been evaluated the use of semipermeable membrane devices (SPMDs) as passive samplers of organophosphorus pesticides from air, in order to determine the contamination of working environments. Additionally, the use of SPMDs as portable samplers has been also considered. The analytical methodology for the determination of diazinon, chlorpyrifos-methyl, pirimiphos-methyl, chlorpyrifos and fenthion in SPMDs exposed to contaminated air was based on microwave-assisted extraction and gas chromatography with mass spectrometry determination. Limit of detection (LOD) values from 2 to 4 ng SPMD -1 and repeatability from 2 to 7% were obtained by using the aforementioned methodology. Theoretical calculated sampling rates were employed for the estimation of the pesticide concentration in air, by using the pesticide mass retained in the deployed SPMD. The obtained LOD values, for a sampling time of 7 days, were from 1 to 2 ng m -3 . The evaluation of the air quality of a pesticide laboratory with an intensive use of diazinon and chlorpyrifos has been made in order to check the operation safety conditions

  13. Evaluation of working air quality by using semipermeable membrane devices

    Energy Technology Data Exchange (ETDEWEB)

    Esteve-Turrillas, Francesc A. [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50 Dr. Moliner, 46100 Burjassot, Valencia (Spain); Pastor, Agustin [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50 Dr. Moliner, 46100 Burjassot, Valencia (Spain)], E-mail: agustin.pastor@uv.es; Guardia, Miguel de la [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50 Dr. Moliner, 46100 Burjassot, Valencia (Spain)

    2008-09-19

    It has been evaluated the use of semipermeable membrane devices (SPMDs) as passive samplers of organophosphorus pesticides from air, in order to determine the contamination of working environments. Additionally, the use of SPMDs as portable samplers has been also considered. The analytical methodology for the determination of diazinon, chlorpyrifos-methyl, pirimiphos-methyl, chlorpyrifos and fenthion in SPMDs exposed to contaminated air was based on microwave-assisted extraction and gas chromatography with mass spectrometry determination. Limit of detection (LOD) values from 2 to 4 ng SPMD{sup -1} and repeatability from 2 to 7% were obtained by using the aforementioned methodology. Theoretical calculated sampling rates were employed for the estimation of the pesticide concentration in air, by using the pesticide mass retained in the deployed SPMD. The obtained LOD values, for a sampling time of 7 days, were from 1 to 2 ng m{sup -3}. The evaluation of the air quality of a pesticide laboratory with an intensive use of diazinon and chlorpyrifos has been made in order to check the operation safety conditions.

  14. A technique to investigate the mechanism of uniform corrosion in the presence of a semi-permeable membrane

    International Nuclear Information System (INIS)

    King, F.

    1987-01-01

    A technique to investigate the mechanism of uniform corrosion in the presence of a semi-permeable membrane is described. For both the anodic and cathodic half-reactions three possible rate-determining steps are considered: transport of species through the bulk solution diffusion layer, transport of species through the membrane and the electrochemical reaction itself. The technique is based on the measurement of the corrosion potential, E CORR , of a rotating disc electrode under steady-state conditions. The variation of E CORR with the oxidant concentration, the thickness of the diffusion layer and the membrane thickness is used to identify the rate-determining step for each half-reaction. This technique should be of use in the study of the corrosion behaviour of candidate materials for nuclear waste disposal containers. An understanding of the mechanism of uniform corrosion will enable confident predictions to be made concerning the long-term behaviour of such containers

  15. Processes And Apparatus For Inhibiting Membrane Bio-fouling

    KAUST Repository

    Missimer, Thomas M.

    2012-12-20

    Certain embodiments are directed to a process and apparatus for cleaning and/or regeneration of permeable or semipermeable membranes comprising modulating pressure of a feed stream feeding the permeable or semipermeable membrane and providing intermittent pressure pulses for cleaning and/or regeneration of the permeable or semipermeable membrane.

  16. Processes And Apparatus For Inhibiting Membrane Bio-fouling

    KAUST Repository

    Missimer, Thomas M.; Ng, Kim Choon; Amy, Gary

    2012-01-01

    Certain embodiments are directed to a process and apparatus for cleaning and/or regeneration of permeable or semipermeable membranes comprising modulating pressure of a feed stream feeding the permeable or semipermeable membrane and providing intermittent pressure pulses for cleaning and/or regeneration of the permeable or semipermeable membrane.

  17. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  18. ABOUT CORRELATION BETWEEN THE PERCOLATION RATE OF MOISTURE THROUGH THE SEMI-PERMEABLE MEMBRANES AND THE STANDARD MEASUREMENTS OF THEIR PERMEABILITY OR EVAPORATIVE RESISTANCE

    Directory of Open Access Journals (Sweden)

    В.Б. Роганков

    2015-02-01

    Full Text Available A variety of test methods to estimate the water vapour transmission (WVT-rate of thin membranes do not provide, unfortunately, the reliable basis to compare the permeability of different fabrics. Their results are crucially dependent on the details and construction of experimental methodologies as well as on the accepted by the different authors conditions of measurement. In this work, we propose the universal approach and demonstrate its adequate realization to compare the transport properties of any semi-permeable membranes measured by the conventional test-methods. The purpose is to avoid any confusion in such procedure of comparison. We have analysed below the WVT-rates measured by six alternative test-methods, which have been applied step-by-step to six different fabrics. In opposite to the widespread search for a pair correlation between the above results obtained by any two methods we treat them, in total, for each fabric in terms of the reduced variables. This approach is based on the novel concept of the moisture percolation (MP-rate which combines the diffusion and convective contributions in a transport process. It leads to the well-established general estimates of the normalized WVT-rates measured by the standard test-methods. Another advantage of the developed approach is its thermodynamic consistency, which offers the appropriate fluctuation model to take into account the porosity of any semi-permeable membranes.

  19. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  20. A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2013-09-01

    Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

  1. Evaluation and in situ assessment of photodegradation of polyaromatic hydrocarbons in semipermeable membrane devices deployed in ocean water

    Energy Technology Data Exchange (ETDEWEB)

    Komarova, Tatiana V. [University of Queensland, National Research Centre for Environmental Toxicology (EnTox), 39 Kessels Road, Coopers Plains, Queensland (Australia)], E-mail: t.komarova@uq.edu.au; Bartkow, Michael E. [University of Queensland, National Research Centre for Environmental Toxicology (EnTox), 39 Kessels Road, Coopers Plains, Queensland (Australia); Rutishauser, Sibylle [Swiss Federal Institute of Aquatic Science and Technology (Eawag), Department of Environmental Toxicology, CH-8600 Duebendorf (Switzerland); Carter, Steve [Queensland Health Forensic and Scientific Service (QHFSS), Queensland (Australia); Mueller, Jochen F. [University of Queensland, National Research Centre for Environmental Toxicology (EnTox), 39 Kessels Road, Coopers Plains, Queensland (Australia)

    2009-03-15

    Semipermeable membrane devices (SPMDs) were deployed in water using four different methods: a typical SPMD cage with and without a mesh cover, a bowl chamber and without any protection. In addition to routinely used performance reference compounds (PRCs), perdeuterated dibenz[a,h]anthracene was added. Due to its high sampler to water partition coefficient no measurable clearance due to diffusion was expected during the deployment period, hence any observed loss could be attributed to photodegradation. The loss of PRCs was measured and SPMD-based water concentrations determined. Results showed that a typical SPMD deployment cage covered with mesh provided the best protection from photodegradation. Samplers which had undergone the highest photodegradation underestimated PAH water concentrations by up to a factor of 5 compared to the most protected SPMDs. This study demonstrates that the potential for photodegradation needs to be addressed when samplers are deployed in water of low turbidity. - Our study indicates that photodegradation of PAHs occurs from passive water samplers (SPMDs) deployed in different devices.

  2. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    Science.gov (United States)

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  3. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction

    International Nuclear Information System (INIS)

    Leppaenen, Matti T.; Kukkonen, Jussi V.K.

    2006-01-01

    The success of the rapidly desorbing fraction as an available fraction was challenged by using sediment ingesting and non-ingesting oligochaetes (Lumbriculus variegatus) together with passive samplers (semipermeable membrane devices, SPMDs) in accumulation and kinetic modelling exercises for carbon-14 labelled model compounds (pyrene, benzo[a]pyrene and 3,4,3',4'-tetrachlorobiphenyl). Passive samplers clearly produced lower uptake rate constants and steady state factors than either of the oligochaete treatments when residue concentrations were based on animal lipid or total SPMD weight. The rapidly desorbing chemical fractions in sediments did not show a significant relationship with the biota sediment accumulation factors or SPMD accumulation factors. A distinctly better relationship was observed between the accumulation factors and the desorption rate constants. The results support the assumption that desorption plays an important role in bioavailability, although animal behaviour and the diffusional limitations of hydrophobic contaminants in sediment together probably affect the actual available pool. - Desorption and animal behaviour play major roles in the availability of hydrophobic organics in sediments

  4. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    Science.gov (United States)

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by

  5. Semipermeable membrane devices concentrate mixed function oxygenase inducers from oil sands and refinery wastewaters

    International Nuclear Information System (INIS)

    Parrott, J.L.; Hewitt, L.M.

    2002-01-01

    The health of fish in the Athabasca River was examined to determine the effects of both natural and anthropogenic oil sands exposure on liver mixed function oxygenase (MFO) enzymes. Semipermeable membrane devices (SPMD) were used to concentrate bioavailable compounds that may result in MFO induction. The SPMDs were used for a period of 2 weeks in the Steepbank River as well as in oil refinery wastewater and intake ponds. They were then tested to see if they induced ethoxyresorufin-O-deethylase (EROD) activity in hepatoma cells, a cell line derived from a liver cancer of a small fish. SPMDs from the wastewater pond contained potent EROD inducers in fish liver cells. SPMDs from the Athabasca River exhibited some EROD inducers, but they were 1/100 as potent as those of the refinery wastewater. The characteristics of MFO inducers from refinery wastewater were different from natural inducers from the oil sands in the Athabasca and Steepbank Rivers. For instance, log Kow was less than 5 for refinery wastewater, but it was greater than 5 for Athabasca River wastewater and from natural oil sands exposure. In the case of the Steepbank River, the pattern of MFO induction was similar to the MFO induction seen in wild fish.The highest MFO inducers were found to be in the area of the mine, suggesting and anthropogenic pollution source. The less potent inducers were in the area of the natural and undisturbed oil sands. Very few inducers were found outside of the oil sands formation

  6. Modelling the effects of porous and semi-permeable layers on corrosion processes

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Shoesmith, D.W.

    1996-09-01

    Porous and semi-permeable layers play a role in many corrosion processes. Porous layers may simply affect the rate of corrosion by affecting the rate of mass transport of reactants and products to and from the corroding surface. Semi-permeable layers can further affect the corrosion process by reacting with products and/or reactants. Reactions in semi-permeable layers include redox processes involving electron transfer, adsorption, ion-exchange and complexation reactions and precipitation/dissolution processes. Examples of porous and semi-permeable layers include non-reactive salt films, precipitate layers consisting of redox-active species in multiple oxidation states (e.g., Fe oxide films), clay and soil layers and biofilms. Examples of these various types of processes will be discussed and modelling techniques developed from studies for the disposal of high-level nuclear waste presented. (author). 48 refs., 1 tab., 12 figs

  7. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  8. A framework for understanding semi-permeable barrier effects on migratory ungulates

    Science.gov (United States)

    Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.

    2013-01-01

    1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement

  9. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    International Nuclear Information System (INIS)

    Ida, Jun-ichi; Yang, Zhaohui; Lin, Jerry Y.S.

    2002-01-01

    A new CO 2 semi-permeable dense inorganic membrane consisting of a porous metal phase and molten carbonate was proposed. A simple direct infiltration method was used to synthesize the metal-carbonate dual-phase membrane. Hermetic (gas-tight) dual phase membrane was successfully obtained. Permeation data showed that nitrogen or helium is not permeable through the membrane (only CO 2 , with O 2 can permeate through the membrane based on transport mechanism)

  10. Manufacture and study of osmotic metallic membranes

    International Nuclear Information System (INIS)

    Deschamps, Richard

    1970-01-01

    The manufacture of metallic membranes, which are semi-permeable to salt water, was investigated. The best results were obtained with nickel which had been deposited 'in situ' on sintered nickel, whose pore spectrum was sharp. The investigation showed that in the case of metallic membranes reverse osmosis is only a filtration. The large quantities of water produced and the low salt rejection rate compared to that with cellulose acetate membranes demonstrated that metallic membranes are better suited to depollution than desalination. (author) [fr

  11. Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Aslak, Ulf; Hélix-Nielsen, Claus

    2016-01-01

    Osmotic membrane separation processes are based on using semi-permeable membranes to remove solutes from a given feed solution. This can happen either as Reverse Osmosis (RO) where a hydraulic pressure is applied to drive separation across the membrane, or as Forward Osmosis (FO) where osmotic...

  12. The Seed Semipermeable Layer and Its Relation to Seed Quality Assessment in Four Grass Species

    Directory of Open Access Journals (Sweden)

    Yan Y. Lv

    2017-07-01

    Full Text Available The existence of a semipermeable layer in grass seeds has been extensively reported, yet knowledge of its influence on tests for seed viability and vigor that depend upon measurement of electrical conductivity (EC is limited. This study determined the presence and location of the semipermeable layer, and its relation to seed viability and vigor assessment, in seeds of four important grass species-Elymus nutans Griseb., Lolium perenne L., Leymus chinensis (Trin. Tzvel., and Avena sativa L. Intact seeds of E. nutans, Lolium perenne, and Leymus chinensis exhibited little staining with triphenyl tetrazolium chloride (TTC, and there were no differences in EC between seeds with different germination percentage (GP (P > 0.05. After piercing the seed coat, however, all three species displayed positive staining with TTC, along with a significant negative correlation between EC and GP (E. nutans: R2 = 0.7708; Lolium perenne: R2= 0.8414; Leymus chinensis: R2 = 0.859; P < 0.01. In contrast, both intact and pierced seeds of A. sativa possessed a permeable seed coat that showed positive staining with TTC and EC values that were significantly negatively correlated with GP [R2 = 0.9071 (intact and 0.9597 (pierced; P < 0.01]. In commercial seed lots of A. sativa, a field emergence test indicated that EC showed a significant negative correlation with field emergence at two sowing dates (R2= 0.6069, P < 0.01 and 0.5316, P < 0.05. Analysis of seed coat permeability revealed the presence of a semipermeable layer located in the seed coat adjacent to the endosperm in E. nutans, Lolium perenne, and Leymus chinensis; however, no semipermeable layer was observed in A. sativa. This is the first report of the absence of a semipermeable layer in a grass species. The existence of a semipermeable layer is one of the most important factors affecting seed viability and vigor testing (based on EC measurement in E. nutans, Lolium perenne, and Leymus chinensis. Increasing the

  13. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  14. Generation of membrane potential beyond the conceptual range of Donnan theory and Goldman-Hodgkin-Katz equation.

    Science.gov (United States)

    Tamagawa, Hirohisa; Ikeda, Kota

    2017-09-01

    Donnan theory and Goldman-Hodgkin-Katz equation (GHK eq.) state that the nonzero membrane potential is generated by the asymmetric ion distribution between two solutions separated by a semipermeable membrane and/or by the continuous ion transport across the semipermeable membrane. However, there have been a number of reports of the membrane potential generation behaviors in conflict with those theories. The authors of this paper performed the experimental and theoretical investigation of membrane potential and found that (1) Donnan theory is valid only when the macroscopic electroneutrality is sufficed and (2) Potential behavior across a certain type of membrane appears to be inexplicable on the concept of GHK eq. Consequently, the authors derived a conclusion that the existing theories have some limitations for predicting the membrane potential behavior and we need to find a theory to overcome those limitations. The authors suggest that the ion adsorption theory named Ling's adsorption theory, which attributes the membrane potential generation to the mobile ion adsorption onto the adsorption sites, could overcome those problems.

  15. Cleaning of liquid LLW from decontamination processes using semipermeable membranes

    International Nuclear Information System (INIS)

    Dulama, M.; Deneanu, N.; Pavelescu, M.

    2003-01-01

    Of the three processes, which have been used extensively for liquid radioactive waste purification, evaporation and ion exchange are costly and flocculation gives a low degree of purification. By comparison to that, reverse osmosis offers intermediate purification at reasonable cost. Present research is examining the potential of using a membrane filtration system for the removal of dissolved radionuclides, but chemical treatment showed as necessary to convert soluble radionuclides, organic traces and metals to insoluble, filterable species. Liquid wastes within a CANDU station are segregated into normal and low-activity waste streams. The normal-activity waste includes wastes from the laboratories, laundries, some service-building drains, upgrade drains, and decontamination center. The drains from the reactor building, the heavy-water area, the spent-fuel pool, and the resin storage area are also directed to this normal activity wastes from showers and building drains in areas of the service building that would not normally be contaminated. The aqueous liquid wastes from the decontamination center and the other collected wastes from the chemical drain system are currently treated by the membrane plant. Generally, the liquid waste streams are effectively volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis membrane technologies. Backwash chemical cleaning wastes from the membrane plant are further volume-reduced by evaporation. The concentrate from the membrane plant is ultimately immobilized with bitumen. The ability of the MF/SWRO technology to remove impurities non-selectively makes it suitable for the treatment of radioactive effluents from operating nuclear plants, with proper membrane selection, feed characterization, system configuration and system chemistry control. The choice of polysulfonate material for membrane was based on the high flow rates achievable with this

  16. PAH assessment in the main Brazilian offshore oil and gas production area using semi-permeable membrane devices (SPMD) and transplanted bivalves

    Science.gov (United States)

    André Lourenço, Rafael; Francisco de Oliveira, Fábio; Haddad Nudi, Adriana; Rebello Wagener, Ângela de Luca; Guadalupe Meniconi, Maria de Fátima; Francioni, Eleine

    2015-06-01

    The Campos Basin is Brazil's main oil and gas production area. In 2013, more than 50 million cubic meters of produced water (PW) was discharged into these offshore waters. Despite the large volumes of PW that are discharged in the Campos Basin each day, the ecological concern of the chemicals in the PW are not completely understood. Polycyclic aromatic hydrocarbons (PAH) are the most important contributors to the ecological hazards that are posed by discharged PW. This study aimed to evaluate the potential bioaccumulation of PAH using transplanted bivalves (Nodipecten nodosus) and semi-permeable membrane devices (SPMD). The study was conducted in two platforms that discharge PW (P19 and P40). Another platform that does not discharge PW (P25) was investigated for comparison with the obtained results. Time-integrated hydrocarbon concentrations using SPMD and transplanted bivalves were estimated from the seawater near the three platforms. The bioaccumulation of the PAH in the transplanted bivalves at platforms P19 and P40 were up to fivefold greater than the bioaccumulation of the PAH at platform P25. The lowest PAH concentrations were estimated for platform P25 (4.3-6.2 ng L-1), and the highest PAH concentrations were estimated for platform P19 (9.2-37.3 ng L-1). Both techniques were effective for determining the bioavailability of the PAH and for providing time-integrated hydrocarbon concentrations regarding oil and gas production activities.

  17. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  18. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  19. Development of membrane technology in BARC

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    BARC has been engaged in research and development work on pressure-driven membrane technology from laboratory to pilot plant scale and its commercial scale deployment, for sea and brackish water desalination into potable water, effluent water treatment and water reuse and in various industrial separations including decontamination of radioactive liquid effluents for their safe disposal into the environment. This paper gives a brief description of pressure-driven membrane processes, reverse osmosis, nano filtration, ultrafiltration and micro filtration. Selection of polymeric candidate materials, preparation of semi-permeable membranes and their characterization has been discussed. Various applications of these processes conducted on pilot plant scale have been presented. Large scale deployment of membrane processes for sea water desalination has been indicated. Research and development at BARC has thus resulted in the indigenous development of membrane processes for commercial scale operation. (author)

  20. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  1. Growth of single crystals from solutions using semi-permeable membranes

    Science.gov (United States)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  2. Membrane treatment of liquid wastes from radiological decontamination operations.

    Science.gov (United States)

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  3. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  4. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Twin pack hemodialyzer

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    1977-08-08

    The present invention relates to an improved design for a hemodialyzer which provides for increased contact between the blood and the dialysate fluid across the semipermeable membrane by increasing the blood flow path in the dialyzer unit, while at the same time increasing the blood velocity through the unit to prevent buildup of fibrin on the semipermeable membrane surfaces. The hemodialyzer of the present invention includes two independent stacks of parallel flattened semipermeable membrane tubes disposed within a dialyzer casing. The dialysate fluid flows through the casing within the interior of the flattened tubes, while the blood flows through the casing around and between the semipermeable membrane tubes, the two independent stacks of the tubes being arranged within the casing such that the blood passes through each of the two independent stacks in succession.

  6. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    Science.gov (United States)

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  8. Groundwater movement through mudrocks - measurement and interpretation

    International Nuclear Information System (INIS)

    Brightman, M.A.; Alexander, J.; Gostelow, T.P.

    1987-12-01

    The parameters which require measurement to determine the fluxes through mudrocks are groundwater head, hydraulic conductivity, porosity, tortuosity, groundwater chemistry, and the semi-permeable membrane properties of the mudrock. A series of measurements have been made at the Harwell Research Site to assess the occurrence and magnitude of the different fluxes across mudrocks. Head measurements have been made through perforations in the mudrocks, and the results broadly fit the previously conceived groundwater flow pattern. Measurement of the chemical potential of groundwaters is straightforward in the aquifers but more difficult in the mudrocks. If mudrocks do not behave as semi-permeable membranes then diffusion will be a more important solute transport process than advection. If mudrocks behave as ideal semi-permeable membranes the relative magnitude of advective and osmotic groundwater flows is largely dependent on the chemical potential gradient. If mudrocks behave as non-ideal semi-permeable membranes then the relative importance of the mechanisms is chiefly determined by the degree of ideality of the membrane. (author)

  9. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  10. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.

    Science.gov (United States)

    Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción

    2018-06-01

    Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable

  11. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS - TASK 1.7

    International Nuclear Information System (INIS)

    Timpe, Ronald C.

    2000-01-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl - and SO 4 2- . These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl 1- ) from sulfate (SO 4 2- ), and separation efficiency as a function of electromotive force (emf)

  12. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies

    Science.gov (United States)

    Alvarez, David A.

    2010-01-01

    the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.

  13. Polyethersulfone/clay membranes and its water permeability

    International Nuclear Information System (INIS)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena; Leite, Amanda Melissa Damiao

    2017-01-01

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  14. Effectiveness of semi-permeable dressings to treat radiation-induced skin reactions. A systematic review.

    Science.gov (United States)

    Fernández-Castro, M; Martín-Gil, B; Peña-García, I; López-Vallecillo, M; García-Puig, M E

    2017-11-01

    The aim of this systematic review is to assess the available evidence concerning the effectiveness of semi-permeable dressings, on the full range of skin reactions, related to radiation therapy in cancer patients, from local erythema to moist desquamation, including subjective symptoms such as pain, discomfort, itchiness, burning and the effect on daily life activities. The bibliographic search was carried out looking for Randomised Clinical Trials (RCTs) indexed in PubMed, Cinhal, Cochrane plus and Biblioteca Nacional de Salud, published in the English and Spanish language, between 2010 and 2015. Data extraction and evaluation of study quality was undertaken by peer reviewers using the Critical Appraisal Skills Programme (CASP). Of 181 studies, nine full texts were assessed. Finally, six RCT were included in the final synthesis: three analysed the application of Mepilex ® Lite in breast cancer and head & neck cancer; one evaluated the application of Mepitel ® Film in breast cancer; and two assessed the use of silver nylon dressings in breast cancer and in patients with lower gastrointestinal cancer. The results show that semi-permeable dressings are beneficial in the management of skin toxicity related to radiation therapy. However, rigorous trials showing stronger evidence are needed. © 2017 John Wiley & Sons Ltd.

  15. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  16. Tangential filtration technologies membrane and applications for the industry agribusiness

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Russo, Claudio

    2015-01-01

    The membrane tangential filtration technologies are separation techniques based on the use of semipermeable filters through which, under a pushing force, it is possible to achieve separation of components or suspended in solution as a function of their dimensional characteristics and / or chemical-physical. At the laboratories of the ENEA Research Center Casaccia, as part of the program activities of the Biotechnology and agro-industry division, were studied and developed various filtration processes to membrane in the food industry. The problems have been studied by following a vision sustainable overall, always trying to pair the purification treatment to that of recovery and reuse of water and high value-added components. Ultimate goal of the research conducted is to close the production circuit, ensuring a discharge cycle zero and turning in fact a so-called spread in first, from which to obtain new products. [it

  17. Forward osmosis - a novel membrane process for concentration of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Bindal, R.C.; Tewari, P.K.

    2013-01-01

    Forward osmosis (FO) is an emerging membrane process in which osmotic pressure differential across a semi-permeable membrane between the solution to be concentrated (feed) and a concentrated solution of high osmotic pressure (draw solution) than the feed is used to effect separation of water from dissolved solutes. With time, feed stream gets concentrated with dilution of draw solution and this technology recently being used as more energy efficient alternative to reverse osmosis (RO) in some of the application areas, particularly for the concentration of low volume high value products. The use of pressure driven membrane processes like reverse osmosis (RO) and ultrafiltration (UF) are already demonstrated in the treatment of radioactive laundry, laboratory effluents and some other applications in nuclear industry. The application of FO membrane process to concentrate simulated inactive ammonium-diuranate (ADU) filtered effluent solution (by mixing uranyl nitrate and ammonium nitrate) using indigenously developed cellulose acetate (CA) and thin-film composite polyamide (TFCP) membranes has been published recently from our laboratory. In this presentation, we briefly discuss our views on possibility of using FO membrane process with proper selection of membrane for concentration of low level radioactive wastes generated in various steps of nuclear fuel cycle in most effective way. (author)

  18. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  19. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  20. Carbon-based building blocks for alcohol dehydration membranes with disorder-enhanced water permeability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Etmimi, H.; Mallon, P.E.

    2017-01-01

    Graphene oxide (GO) thin films have demonstrated outstanding water permeability and excellent selectivity towards organic molecules and inorganic salts, unlocking a new exciting direction in the development of nanofiltration, desalination and pervaporation membranes. However, there are still high......-HAL membranes promising devices for alcohol dehydration technologies....

  1. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances

    International Nuclear Information System (INIS)

    Julian, A.

    2008-12-01

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H 2 + CO 2 ), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation

  2. Hydrography - RIVERS_OUTSTANDING_NRC_IN: Outstanding Rivers in Indiana Listed by the Natural Resource Commission (Bernardin-Lochmueller and Associates, 1:100,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — RIVERS_OUTSTANDING_NRC_IN represents river and stream segments on the NRC’s Outstanding Rivers list for Indiana. The source data was last updated in October 1997....

  3. Planning outstanding reserves in general insurance

    Science.gov (United States)

    Raeva, E.; Pavlov, V.

    2017-10-01

    Each insurance company have to ensure its solvency through presentation of accounts for its own reserves in the start of the year. Usually the task of the actuary is to estimate the state of the company on an annual basis and the expectation of the status of the company for a future period. One of the major problem when calculating the liabilities of the incurred claims, is related to the delay of payments. Object of consideration in the present note are the outstanding claim reserves, which are set aside to cover claims, occurred before the date of the annual account, but still not paid, and related with them expenses. There may be different reasons for the delay of claims settlement. For example, continuation the process of the liquidation of the damage waiting for necessary documents or the presence of controversial cases whose permission takes time, etc. Thus the claims, which determine the outstanding reserves could be divided in the following types: claims, which are reported, but not settled (RBNS); claims, which are incurred but not reported (IBNR); claims, whose case is finished, but it is possible to be reopened. When calculating the reserves for IBNR claims, most widely used is the Chain-ladder method and its modification presented by the Bornhuetter - Ferguson method. For modeling the outstanding claims, the available data should be presented in so called run-off triangle, which underlies in the basis of such methods. The present work provides a review of the algorithm for calculating insurance outstanding claim reserves according to the Chain-ladder method. Using available data for claims related to liability of drivers, registered in Bulgaria an example is constructed to illustrate the methodology of the Chain-Ladder method. Back-testing approach is used for validating the results.

  4. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    Science.gov (United States)

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  5. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Science.gov (United States)

    Teacher Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For more information contact: e:mail: Public Affairs Golden, Colo., May 2, 1997 -- Tracy Swedlund, biology teacher at Centauri High School in LaJara, was selected as Colorado's 1997 Outstanding Biology Teacher and will be

  6. The Journal of Consumer Policy Outstanding Reviewer Award 2016

    DEFF Research Database (Denmark)

    Reisch, Lucia A.

    2016-01-01

    The article announces the Outstanding Reviewer Award 2016 to be given by the journal to Wencke Gwozdz, Associate Professor at Copenhagen Business School, Denmark.......The article announces the Outstanding Reviewer Award 2016 to be given by the journal to Wencke Gwozdz, Associate Professor at Copenhagen Business School, Denmark....

  7. Outstanding engineering achievement

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The annual award of the South African Institution of Civil Engineers for 'The Most Outstanding Civil Engineering Achievement of 1982' was made to Escom for the Koeberg Nuclear Power Station. In the site selection a compromise had to be made between an area remote from habitation, and an area relatively close to the need for power, sources of construction materials, transportation, operational staff and large quantities of cooling water. In the construction of Koeberg the safety of the workers and the public was regarded with the utmost concern

  8. Chitosan/polyanion surface modification of styrene–butadiene–styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Yang, Jhe-Hao [Department of Electronic Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Huang, Huei Tsz [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan (China)

    2014-01-01

    The surface of styrene–butadiene–styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO{sup −} and -O=C-N- on the three [CS/polyanion] systems are [CS/Alg] > [CS/PGA] > [CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82 ± 8 g/day · m{sup 2}. It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO{sup −} and -O=C-N- on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO{sup −} and -O=C-N- on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through

  9. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-06-15

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  10. The Modification of PVDF Membrane via Crosslinking with Chitosan and Glutaraldehyde as the Crosslinking Agent

    OpenAIRE

    Silitonga, Romaya Sitha; Widiastuti, Nurul; Jaafar, Juhana; Ismail, Ahmad Fauzi; Abidin, Muhammad Nidzhom Zainol; Azelee, Ihsan Wan; Naidu, Mahesan

    2018-01-01

    Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed...

  11. 2017 Outstanding Contributions to ISCB Award: Fran Lewitter.

    Science.gov (United States)

    Fogg, Christiana N; Kovats, Diane E; Berger, Bonnie

    2017-01-01

    The Outstanding Contributions to the International Society for Computational Biology (ISCB) Award was launched in 2015 to recognize individuals who have made lasting and valuable contributions to the Society through their leadership, service, and educational work, or a combination of these areas. Fran Lewitter is the 2017 winner of the Outstanding Contributions to ISCB Award and will be recognized at the 2017 Intelligent Systems for Molecular Biology (ISMB)/European Conference on Computational Biology, meeting in Prague, Czech Republic being held from July 21-25, 2017.

  12. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    Science.gov (United States)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  13. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  14. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  15. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    DEFF Research Database (Denmark)

    Falkovich, Stanislav G.; Martinez-Seara, Hector; Nesterenko, Alexey M.

    2016-01-01

    Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations ...

  16. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  17. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  18. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.

    Science.gov (United States)

    Kim, Yu Chang; Kim, Young; Oh, Dongwook; Lee, Kong Hoon

    2013-03-19

    Pressure-retarded osmosis (PRO) uses a semipermeable membrane to produce renewable energy from salinity-gradient energy. A spiral-wound (SW) design is one module configuration of the PRO membrane. The SW PRO membrane module has two different flow paths, axial and spiral, and two different spacers, net and tricot, for draw- and feed-solution streams, respectively. This study used an experimental approach to investigate the relationship between two interacting flow streams in a prototype SW PRO membrane module, and the adverse impact of a tricot fabric spacer (as a feed spacer) on the PRO performance, including water flux and power density. The presence of the tricot spacer inside the membrane envelope caused a pressure drop due to flow resistance and reduced osmotic water permeation due to the shadow effect. The dilution of the draw solution by water permeation resulted in the reduction of the osmotic pressure difference along a pressure vessel. For a 0.6 M NaCl solution and tap water, the water flux and corresponding maximum power density were 3.7 L m(-2)h(-1) and 1.0 W/m(2) respectively at a hydraulic pressure difference of 9.8 bar. The thickness and porosity of the tricot spacer should be optimized to achieve high SW PRO module performance.

  19. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  20. Application of Modern Simulation Technology in Mechanical Outstanding Engineer Training

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2014-03-01

    Full Text Available This text has described the relationship between outstanding engineer training and modern simulation technology, have recommended the characteristics of mechanical outstanding engineer in detail. Aiming at the importance of the teaching practice link to course of theory of mechanics, mechanical design and mechanical signal analysis, have expounded the function of modern simulation technology in the mechanical outstanding engineer training, especially on teaching practice in the theory of mechanics, mechanical design and mechanical signal analysis. It has the advantages of economizing the teaching cost, overcoming the hardware constrains, model prediction, promoting student's innovation and manipulative ability, so can popularize and develop in a more cost-effective manner in the university.

  1. Polyethersulfone/clay membranes and its water permeability; Membranas de polietersulfona/argila e sua permeabilidade a agua

    Energy Technology Data Exchange (ETDEWEB)

    Cavalho, Thamyres Cardoso de; Medeiros, Vanessa da Nobrega; Araujo, Edcleide Maria de; Lira, Helio Lucena, E-mail: thamyrescc@gmail.com, E-mail: vanismedeiros@gmail.com, E-mail: edcleide.araujo@ufcg.edu.br, E-mail: helio.lira@ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Leite, Amanda Melissa Damiao, E-mail: amanda.leite@ect.ufrn.br [Universidade Federal do Rio Grande do Norte (ECT/UFRN), Natal, RN (Brazil). Escola de Ciencia e Tecnologia

    2017-04-15

    Membranes can be considered polymeric or inorganic films that function as a semipermeable barrier to filtration on a molecular scale, separating two phases and restricting, totally or partially, the transportation of one or more chemical species (solute) present in the solution. Therefore, the aim of this work is to produce polyethersulfone membranes (PES) and polyethersulfone/clay by phase inversion technique and evaluate the presence of clay in obtaining membranes for wastewater treatment. The used solvent was dimethylformamide (DMF) and clays were Brasgel PA (MMT) and Cloisite Na (CL Na) in the proportion of 3 to 5% (wt.). By Xray diffraction (XRD), the membranes with 3% of MMT and CL Na clays apparently had partially exfoliated structures. For the composition with 5% of CL Na a small peak was observed, which indicates that this is possibly an intercalated structure or microcomposite. By scanning electron microscopy (SEM), visualizes that the pure surface of the pure PES membrane a structure apparently without pores was observed in the used magnification and without roughness surface when compared to membranes with clay. The measurements of contact angle indicated that the inclusion of clay altered the wetting ability of the membranes. The flow with distilled water for all membranes started high and over time reached a stabilization level. Thus, it can be concluded that the presence and the content of clay altered the morphology of the membrane, contributing to an increase in water flow. (author)

  2. Evaluation of the Semipermeable Membrane Device (SPMD) as a Passive In Situ Concentrator of Military Chemicals in Water

    National Research Council Canada - National Science Library

    Petty, Jim

    1995-01-01

    .... This fact, that of membrane permeation as the rate controlling step in the uptake of contaminants, provides SPMD sampling rates, independent of water velocity and is extremely important in developing...

  3. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Wang, Yanjie; Chen, Hongbin; Caro, Jürgen; Wang, Haihui

    2017-02-06

    Two-dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti 3 AlC 2 , delaminated nanosheets of the composition Ti 3 C 2 T x with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m -2  h -1  bar -1 ) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long-time operation also reveals the outstanding stability of the MXene membrane for water purification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DER 83: outstanding events

    International Nuclear Information System (INIS)

    1984-01-01

    The DER's activity is presented through 82 ''outstanding events''. Each one is a stage in the effort of research and development of the DER. These events concern the following fields: new applications of electric power for customers; environment protection and new energy sources; improvements of electric power production units; electrical materials; electric network planning and control; computer codes. In the production field, one deals more particularly with nuclear reactor safety studies: analysis of the behaviour of different components; reactor safety experiments; reliability of different systems (safety, communications...) [fr

  5. 7 CFR 1901.508 - Servicing of insured notes outstanding with investors.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Servicing of insured notes outstanding with investors. 1901.508 Section 1901.508 Agriculture Regulations of the Department of Agriculture (Continued) RURAL... Ownership and Insured Notes § 1901.508 Servicing of insured notes outstanding with investors. The Director...

  6. 7 CFR 1786.162 - Outstanding loan documents.

    Science.gov (United States)

    2010-01-01

    ... outstanding notes issued to RUS, and the RUS Mortgage. (b) Nothing in this subpart shall affect any rights of... shall prohibit a borrower from making prepayments of any loans pursuant to the RE Act in accordance with...

  7. Development and characterization of a new membrane system for the environmental control of biopiles used for the treatment of contaminated soils

    International Nuclear Information System (INIS)

    Schoefs, O.; Deschenes, L.; Samson, R.

    1997-01-01

    Four biopiles containing soils contaminated with diesel oil were used in a study to evaluate whether or not to use solar energy to heat up the soil. Temperature is an important factor that controls biodegradation in biopile degradation. Extreme hot and cold temperatures make biopile treatments ineffective. A new membrane system for the environmental control of biopiles has been developed which is capable of maintaining the temperature inside the biopiles at a level where biodegradation can occur even in cold temperatures. The commonly used semi-permeable black membrane was compared to a double polyethylene membrane sealed system which had an insulating layer that at times acted as a heating layer. Probes were placed in the biopiles to monitor the temperature and water content. The study showed that solar radiation had a big impact on the soil temperature and the use of a double polyethylene membrane system increased the temperature of the biopiles to allow for an extended biopile treatment during winter and also in cold regions. A mathematical model to simulate the temperature profile inside the biopile was also developed

  8. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  9. 7 CFR 1786.209 - Outstanding loan documents.

    Science.gov (United States)

    2010-01-01

    ... all provisions of its RUS loan contract, its outstanding notes issued to RUS, and the RUS mortgage. (b... making prepayments on any loans pursuant to the RE Act in accordance with the terms thereof or as may be...

  10. Outstanding Student Paper Awards

    Science.gov (United States)

    2004-04-01

    The following members in the Space Physics & Aeronomy Section received Outstanding Student Paper Awards at the 2003 AGU Fall Meeting in San Francisco, California. Arve Aksnes; Aroh Barjatya; Jacob Bortnik; Amir Caspi; Ruben Delgado; Galen Fowler; Paul G. Hanlon; Sid Henderson; Tara B. Hiebert; Chia-Lin Huang; Steven P. Joy; Eun-Hwa Kim; Colby Lemon; Yingjuan Ma; Elizabeth A. MacDonald; Jaco Minnie; Mitsuo Oka; Yoshitaka Okazaki; Erin J. Rigler; Ina P. Robertson; Patrick A. Roddy; Sang-Il Roh; Albert Y. Shih; Christopher Smithtro; Emma Spanswick; Maria Spasojevic; Hiroki Tanaka; Linghua Wang; Deirdre E. Wendel; Jichun Zhang>

  11. How to design an outstanding poster.

    Science.gov (United States)

    Gemayel, Rita

    2018-04-01

    Poster sessions are an important forum for getting feedback on your results and engaging with the scientific community. In this instalment of the Words of Advice series, we provide you with a guide to designing an outstanding poster and offer tips on how to effectively communicate your results using your poster. © 2018 Federation of European Biochemical Societies.

  12. Saltstone Osmotic Pressure

    International Nuclear Information System (INIS)

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-01-01

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR-2013-0004. Simulated saltstone typically has very low permeability (Dixon et al. 2008) and pore water that contains a large concentration of dissolved salts (Flach and Smith 2013). Pore water in simulated saltstone has a high salt concentration relative to pore water in concrete and groundwater. This contrast in salt concentration can generate high osmotic pressures if simulated saltstone has the properties of a semipermeable membrane. Estimates of osmotic pressure using results from the analysis of pore water collected from simulated saltstone show that an osmotic pressure up to 2790 psig could be generated within the saltstone. Most semi-permeable materials are non-ideal and have an osmotic efficiency 3 , KNO 3 , Na 3 PO 4 x12H 2 O, and K 3 PO 4 when exposed to a dilute solution. Typically hydraulic head is considered the only driving force for groundwater in groundwater models. If a low permeability material containing a concentrated salt solution is present in the hydrogeologic sequence large osmotic pressures may develop and lead to misinterpretation of groundwater flow and solute transport. The osmotic pressure in the semi-permeable material can significantly impact groundwater flow in the vicinity of the semi-permeable material. One possible outcome is that

  13. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  14. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  15. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  16. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney

    Science.gov (United States)

    Gu, Ye; Miki, Norihisa

    2009-06-01

    We present a multilayered microfilter for use as a dialyzer of a wearable artificial kidney separating metabolic wastes such as urea, uric acid and creatinine from blood. The microfilter device is assembled by alternately bonding chamber layers made of Ti by wet etching and semipermeable polymeric membranes made of polyethersulfone (PES) by the wet phase inversion method. The PES membranes sandwiched between each two chamber layers act as barriers to molecules larger than 1.7 nm. The multilayered microfilter was geometrically optimized with respect to our theoretical equations and experimental results in order to obtain kidney-competitive performance. Each diffusing unit of our device, which is only 24 × 24 × 0.4 mm3 in size, was proved experimentally to be capable of allowing a flow rate of up to 1 ml min-1 under an input pressure of only 10 kPa, which is the hydrostatic pressure in human renal arteries, while having a urea removal rate of 18 µg min-1.

  18. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney

    International Nuclear Information System (INIS)

    Gu, Ye; Miki, Norihisa

    2009-01-01

    We present a multilayered microfilter for use as a dialyzer of a wearable artificial kidney separating metabolic wastes such as urea, uric acid and creatinine from blood. The microfilter device is assembled by alternately bonding chamber layers made of Ti by wet etching and semipermeable polymeric membranes made of polyethersulfone (PES) by the wet phase inversion method. The PES membranes sandwiched between each two chamber layers act as barriers to molecules larger than 1.7 nm. The multilayered microfilter was geometrically optimized with respect to our theoretical equations and experimental results in order to obtain kidney-competitive performance. Each diffusing unit of our device, which is only 24 × 24 × 0.4 mm 3 in size, was proved experimentally to be capable of allowing a flow rate of up to 1 ml min −1 under an input pressure of only 10 kPa, which is the hydrostatic pressure in human renal arteries, while having a urea removal rate of 18 µg min −1

  19. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spring 1991 Meeting outstanding papers

    Science.gov (United States)

    The Atmospheric Sciences Committee has presented Kaye Brubaker and Jichun Shi with Outstanding Student Paper awards for presentations given at the AGU 1991 Spring Meeting, held in Baltimore May 28-31.Brubaker's paper, “Precipitation Recycling Estimated from Atmospheric Data,” presented quantitative estimates of the contribution of locallyevaporated moisture to precipitation over several large continental regions. Recycled precipitation is defined as water that evaporates from the land surface of a specified region and falls again as precipitation within the region. Brubaker applied a control volume analysis based on a model proposed by Budyko.

  1. Outstanding events D.E.R. 84

    International Nuclear Information System (INIS)

    1984-01-01

    The DER's activity is presented through 72 ''outstanding envents''. For the DER, each one is a stage in its effort of research and development. These 72 events can be divided into four classes: development of materials, problems concerning works and realizations, methods and tools development and adjustment. The main subjects concerned are: electric power penetration, the quality of service, the optimization of the exploitation of nuclear power plants [fr

  2. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  3. Identification and Support of Outstanding Astronomy Students

    Science.gov (United States)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  4. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  5. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  6. Assessing the critical behavioral competencies of outstanding managed care primary care physicians.

    Science.gov (United States)

    Duberman, T L

    1999-03-01

    This study used job competence assessment to identify the behavioral characteristics that distinguish outstanding job performances of primary care physicians (PCPs) within a network-model HMO. Primary care physicians were chosen for the study based on six standard performance measures: (1) member satisfaction, (2) utilization, (3) patient complaints, (4) emergency room referrals, (5) out-of-network referrals, and (6) medical record completeness. Outstanding PCPs (N = 16) were identified as those performing within one standard deviation above the mean on all six of the performance measures. A control group of typical PCPs (N = 10) was selected from those performing outside the peer group mean on at least two performance measures. Subjects were administered the Behavioral Event Interview and the Picture Story Exercise. Higher overall competency levels of achievement orientation, concern for personal influence, empathic caregiving, and empowerment drive distinguished outstanding from typical PCPs. Outstanding PCPs also had higher overall frequency of competency in building team effectiveness and interpersonal understanding when compared with typical PCPs. This study suggests that PCP performance is the product of measurable competencies that are potentially amenable to improvement. Competency assessment and development of PCPs may benefit both organizational efficiency and physician and patient satisfaction.

  7. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  8. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances; Elaboration par coulage en bande et cofrittage de reacteurs catalytiques membranaires multicouches-performances

    Energy Technology Data Exchange (ETDEWEB)

    Julian, A

    2008-12-15

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H{sub 2} + CO{sub 2}), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation.

  10. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  11. Elastic properties of ultrathin diamond/AlN membranes

    International Nuclear Information System (INIS)

    Zuerbig, V.; Hees, J.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Kirste, L.; Heidrich, N.; Nebel, C.E.; Ambacher, O.; Lebedev, V.

    2014-01-01

    Nanocrystalline diamond- (NCD) and AlN-based ultrathin single layer and bilayer membranes are investigated towards their mechanical properties. It is shown that chemo-mechanical polishing and heavy boron doping of NCD thin films do not impact the elastic properties of NCD layers as revealed by negligible variations of the NCD Young's modulus (E). In addition, it is demonstrated that the combination of NCD elastic layer and AlN piezo-actuator is highly suitable for the fabrication of mechanically stable ultrathin membranes in comparison to AlN single layer membranes. The elastic parameters of NCD/AlN heterostructures are mainly determined by the outstanding high Young's modulus of NCD (E = 1019 ± 19 GPa). Such ultrathin unimorph membranes allow for fabrication of piezo-actuated AlN/NCD microlenses with tunable focus length. - Highlights: • Mechanical properties of nanocrystalline diamond (NCD) and AlN circular membranes • No influence of polishing of NCD thin films on the mechanical properties of NCD • No influence of heavy boron-doping on the mechanical properties of NCD • Demonstration of mechanically stable piezo-actuated NCD/AlN membranes • Reported performance of AlN/NCD microlenses with adjustable focus length

  12. Spectrophotometric flow-injection determination of sulphite in white wines involving gas diffusion through a concentric tubular membrane

    Directory of Open Access Journals (Sweden)

    Melo Denise

    2003-01-01

    Full Text Available A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8, reaction with Malachite green (MG and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100% enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC. The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 muL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2 in agreement with those obtained by an alternative procedure.

  13. A moving boundary problem for the Stokes equations involving osmosis : Variational modelling and short-time well-posedness

    NARCIS (Netherlands)

    Lippoth, F.; Peletier, M.A.; Prokert, G.

    2016-01-01

    Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for

  14. Evaluación a lo largo del tiempo de las propiedades mecánicas de los bloques de suelo-cemento utilizados en pavimentos semipermeables

    Directory of Open Access Journals (Sweden)

    M. Carvalho

    Full Text Available Un pavimento semipermeable fue construido con una capa de revestimiento de bloques de suelo-cemento hechos de suelo de desmonte (estabilizado con 30% de arena y cemento (con 20% de la mezcla y fabricados con una prensa. Este tipo de bloque no tiene estudios adicionales acerca de las mudanzas del comportamiento de las propiedades mecánicas a lo largo del tempo, entonces para realizar el estudio se seleccionaron algunos bloques (con 7, 14, 28, 130 y 1650 días de moldeado para medir las propiedades mecánicas (de durabilidad, de absorción de agua y de resistencia a compresión sencilla. Los resultados demostraron que no hubo mudanzas en las propiedades de absorción y de durabilidad de los bloques, después de 1650 días. La resistencia a la compresión tuvo un leve incremento de 9MPa (28 días de moldeados para 12MPa (1650 días de moldeados, bloques del pavimento en uso, lo que puede ser atribuido a las reacciones que todavía suceden entre cemento, suelo y agua o a la variabilidad de materia prima y de los equipamientos utilizados. Concluyese que las condiciones ambientales y el tráfico leve no afectaron las propiedades mecánicas de los bloques, entonces ellos pueden ser utilizados en pavimento semipermeable.

  15. Outstanding High School Coaches: Philosophies, Views, and Practices

    Science.gov (United States)

    Miller, Glenn A.; Lutz, Rafer; Fredenburg, Karen

    2012-01-01

    The goal of this study was to examine the coaching philosophies, views, and practices of outstanding high school coaches of various male and female sports across the United States. The intention was to determine whether these coaches used unique or innovative techniques or strategies that contributed to their success and, if so, whether these…

  16. 29 CFR 4281.18 - Outstanding claims for withdrawal liability.

    Science.gov (United States)

    2010-07-01

    ... INSOLVENCY, REORGANIZATION, TERMINATION, AND OTHER RULES APPLICABLE TO MULTIEMPLOYER PLANS DUTIES OF PLAN... in insolvency proceedings. The plan sponsor shall value an outstanding claim for withdrawal liability... title 11, United States Code, or any case or proceeding under similar provisions of state insolvency...

  17. A World of Stories: 2008 Outstanding International Books

    Science.gov (United States)

    Angus, Carolyn

    2008-01-01

    For the first time in its three-year history, the United States Board on Books for Young People's (USBBY) Outstanding International Books list includes foreign titles coming from publishers with U.S. distributors, as well as those acquired by U.S. publishers. The selection committee read 380 books published in 2007, narrowing down the best of…

  18. Outstanding Science Trade Books for Students K-12

    Science.gov (United States)

    Texley, Juliana

    2009-01-01

    Today's classrooms have no real walls! Students explore the world on field trips, during virtual journeys on the world wide web, and through the books they read. These pathways help them fly to the ends of the universe to satisfy their scientific curiosity. Again this year, the professionals of the NSTA/CBC Review Panel for Outstanding Science…

  19. Functional imaging of microdomains in cell membranes.

    Science.gov (United States)

    Duggan, James; Jamal, Ghadir; Tilley, Mark; Davis, Ben; McKenzie, Graeme; Vere, Kelly; Somekh, Michael G; O'Shea, Paul; Harris, Helen

    2008-10-01

    The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.

  20. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  1. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia; Zuo, Jian; Chung, Tai-Shung

    2016-01-01

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  2. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia

    2016-04-26

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  3. Aspects of Mathematical Modelling of Pressure Retarded Osmosis

    Science.gov (United States)

    Anissimov, Yuri G.

    2016-01-01

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696

  4. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  5. Some outstanding issues in severe accidents containment performance

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2004-01-01

    This paper describes the current status of the outstanding issues in severe accident performance of Light Water Reactor containments that have been raised in the last several years. The results of the research that has been performed on the topics concerning these issues will be described. Some of these issues have been resolved, some are close to resolution, while others need further evaluation and research results. (author)

  6. William Knocke receives 2008 Virginia Outstanding Civil Engineer Award

    OpenAIRE

    Daniilidi, Christina

    2008-01-01

    William R. Knocke, W.C. English Professor and head of the Charles E. Via, Jr. Department of Civil and Environmental Engineering at Virginia Tech, was awarded the 2008 Virginia Outstanding Civil Engineer Award at the Virginia Section of the American Society of Civil Engineers' (ASCE) banquet, held recently in Williamsburg, Va.

  7. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation

    Science.gov (United States)

    Correia, Clara R.; Pirraco, Rogério P.; Cerqueira, Mariana T.; Marques, Alexandra P.; Reis, Rui L.; Mano, João F.

    2016-02-01

    A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the “stem cell niche”, the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

  8. World Class: USBBY's Outstanding International Books for Young People

    Science.gov (United States)

    Angus, Carolyn

    2009-01-01

    Some of the world's best children's book artists got together to help Amnesty International celebrate the Universal Declaration of Human Rights' 60th anniversary in "We Are All Born Free," one of the 42 titles recommended by the fourth annual United States Board on Books for Young People's (USBBY) Outstanding International Books…

  9. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide

    Science.gov (United States)

    Huang, Haitao; Yu, Jiayu; Guo, Hanxiang; Shen, Yibo; Yang, Fan; Wang, Han; Liu, Rong; Liu, Yang

    2018-01-01

    On the basis of the outstanding fouling resistance of zwitterionic polymers, an antifouling ultrafiltration membrane was fabricated through phase inversion induced by immersion precipitation method, directly using the novel zwitterionic polyimide (Z-PI), which was synthesized via a two-step procedure including polycondensation and quaternary amination reaction, as membrane material. The chemical structure and composition of the obtained polymer were confirmed by using FTIR, 1H NMR and XPS analysis, and its thermal stability was thoroughly characterized by TGA measurement, respectively. The introduction of zwitterionic groups into polyimide could effectively increase membrane pore size, porosity and wettability, and convert the membrane surface from hydrophobic to highly hydrophilic. As a result, Z-PI membrane displayed significantly improved water permeability compared with that of the reference polyimide (R-PI) membrane without having an obvious compromise in protein rejection. According to the static adsorption and dynamic cycle ultrafiltration experiments of bovine serum albumin (BSA) solution, Z-PI membrane exhibited better fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling property and long-term performance stability. Moreover, Z-PI membrane had a water flux recovery ratio of 93.7% after three cycle of BSA solution filtration, whereas only about 68.5% was obtained for the control R-PI membrane. These findings demonstrated the advantages of Z-PI membrane material and aimed to provide a facile and scalable method for the large-scale preparation of low fouling ultrafiltration membranes for potential applications.

  10. Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications

    KAUST Repository

    Xiong, Jun Ying

    2016-01-15

    Pressure retarded osmosis (PRO) is a promising technology to harvest renewable osmotic energy using a semipermeable membrane. However, a significant flux reduction has been always observed that severely shrinks the harvestable power to a level only marginally higher or even lower than the economically feasible value. This work focuses on the elucidation of various underlying mechanisms responsible for the flux reduction. First, both inner-selective and outer-selective thin film composite (TFC) hollow fiber membranes are employed to examine how the fundamental internal factors (such as the surface salinity of the selective layer at the feed side (CF,m) and its components) interact with one another under the fixed bulk salinity gradient, resulting in various behaviours of external performance indexes such as water flux, reverse salt flux, and power density. Then, the research is extended to investigate the effects of the growing bulk feed salinity due to the accumulated reverse salt flux along PRO modules. Finally, the insights obtained from the prior two stationary conditions are combined with the advanced nucleation theory to elucidate the dynamic scaling process by visualizing how the multiple fundamental factors (such as local supersaturation, nucleation rate and nuclei size) evolve and interplay with one another in various membrane regimes during the whole scaling process. To our best knowledge, it is the first time that the advanced nucleation theory is applied to study the PRO scaling kinetics in order to provide subtle and clear pictures of the events occurring inside the membrane. This study may provide useful insights to design more suitable TFC hollow fiber membranes and to operate them with enhanced water flux so that the PRO process may become more promising in the near future.

  11. Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe-Hao; Huang, Huei Tsz

    2014-01-01

    The surface of styrene-butadiene-styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO(-) and OCN on the three [CS/polyanion] systems are [CS/Alg]>[CS/PGA]>[CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82±8g/day·m(2). It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO(-) and OCN on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO(-) and OCN on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through these [CS/polyanion] membranes was also conducted

  12. Defining core elements and outstanding practice in Nutritional Science through collaborative benchmarking.

    Science.gov (United States)

    Samman, Samir; McCarthur, Jennifer O; Peat, Mary

    2006-01-01

    Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.

  13. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  14. What separates outstanding from average leaders? A study identifies leadership competencies and implications for professional development.

    Science.gov (United States)

    Nygren, D J; Ukeritis, M D

    1992-11-01

    As the healthcare crisis mounts, healthcare organizations must be managed by especially competent leaders. It is important for executives to assess and develop the competencies necessary to become "outstanding" leaders. In our study of leadership competencies among leaders of religious orders, we found that outstanding and average leaders appear to share characteristics such as the ability to articulate their group's mission, the ability to act efficiently, and the tendency to avoid impulsive behavior or excessive emotional expression. Outstanding leaders, however, differed from average leaders in seemingly small but significant ways. For instance, nearly three times as often as average leaders, outstanding leaders expressed a desire to perform tasks well--or better than they had been performed in the past. The study also assessed how members of religious orders perceived their leaders. In general, they tended to rate leaders of their religious institutes as transformational leaders--leaders who welcomed doing things in a new way and inspiring their own staffs to search out new ways to provide services.

  15. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    Science.gov (United States)

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  17. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  18. Use of Novel Reinforced Cation Exchange Membranes for Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Kamaraj, Sathish-Kumar; Romano, Sergio Mollá; Moreno, Vicente Compañ; Poggi-Varaldo, H.M.; Solorza-Feria, O.

    2015-01-01

    This work has been focused on the synthesis and characterization of different blended membranes SPEEK-35PVA (Water), SPEEK-35PVA (DMAc) prepared by casting and nanofiber-reinforced proton exchange membranes Nafion-PVA-15, Nafion-PVA-23 and SPEEK/PVA-PVB. The two first reinforced membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The last composite membrane is considered because the PVA is a hydrophilic polymer which forms homogeneous blends with SPEEK suitable to obtain high proton conductivity, while the hydrophobic PVB can produce blends in a phase separation morphology in which very low water uptake can be found. The synthesized membranes showed an outstanding stability, high proton conductivity, and enhanced mechanical and barrier properties. The membranes were characterized in single chamber microbial fuel cells (SCMFCs) using electrochemically enriched high sodic saline hybrid H-inocula (Geobacter metallireducen, Desulfurivibrio alkaliphilus, and Marinobacter adhaerens) as biocatalyst. The best performance was obtained with Nafion-PVA-15 membrane, which achieved a maximum power density of 1053 mW/m 3 at a cell voltage of 340 mV and displayed the lowest total internal resistance (Rint ≈ 522 Ω). This result is in agreement with the low oxygen permeability and the moderate conductivity found in this kind of membranes. These results are encouraging towards obtaining high concentrated sodic saline model wastewater exploiting MFCs

  19. Study of applicability of a reverse osmosis system in the treatment of waste liquids (RAD-WASTE); Estudio de aplicabilidad de un sistema de osmosis inversa en el tratamiento de residuos liquidos (RAD-WASTE)

    Energy Technology Data Exchange (ETDEWEB)

    Hortiguela Martinez, R.; Ruiz Garcia, P.; Saiz Cuesta, A.

    2013-07-01

    Study of alternatives to the current system of water treatment line of soils of the refueling (evaporation followed by a demineralization with ion exchange resins), with a technique more respectful with the environment as it is reverse osmosis. This process removed the soluble salts through semi-permeable membranes. These membranes are permeable to water but impermeable to most ions.

  20. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  1. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    Science.gov (United States)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  2. Synthesis of magnetic nanoparticles as a draw solute in forward osmosis membrane process for the treatment of radioactive liquid waste

    International Nuclear Information System (INIS)

    Yang, Heeman; Lee, Kune Woo; Moon, Jei Kwon

    2013-01-01

    These wastes contain about 0.3 ∼ 0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40 ∼ 90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. As an emerging technology forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination because FO operates at low or no hydraulic pressures. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe 3 O 4 nanoparticles can be separated from water by an external magnet field easily. If Fe 3 O 4 nanoparticles are coated with highly soluble organic substances, thus they can be used as a draw solute by concurrently generating high osmotic pressure and easy separation. The carboxylated polyglycerol coated Fe 3 O 4 nanoparticles have been successfully synthesized. The nanoparticles were about 50 nm in diameter and showed the good colloidal stability in aqueous solution. The osmolality and osmotic pressure were enough high to be used as a draw solute in FO. For the future work, we will investigate the performance of our magnetic draw solute in FO to remove boron in the simulated liquid waste

  3. EDITORIAL: Announcing the 2006 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2007-07-01

    2006 Measurement Science and Technology Outstanding Paper Award in the Measurement Science category has been awarded to A Minakov, J Morikawa, T Hashimoto, H Huth and C Schick for the article 'Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry', published in volume 17, issue 1, pp 199-207. In making their recommendation the measurement science working group chaired by Professor Richard Dewhurst gave the following endorsement: This paper is a fine example of quantitative measurement science. It describes the temperature distribution in a thin (sub-micron) silicon nitride membrane intended for advanced nanocalorimetry. A combination of experimental and theoretical analysis is used to provide a new insight into sensor performance when monitoring fast gas cooling rates of up to 10 000 K s-1. The paper contains an excellent introduction, explaining the value of thin-film calorimetry as a scientific technique for studying the kinetics of thermodynamic processes. It is a powerful technique for the investigation of a wide variety of materials and their phase transitions. In this paper, the authors have clearly explained the issues that arise in monitoring materials in non-equilibrium states generated by high cooling rates. In previous papers, they had already demonstrated the use of a microchip for temperature-modulation nanocalorimetry, as well as picocalorimetry in a differential mode. So this paper was concerned with the temperature distribution in the membrane. Supported by video-thermography, they present a detailed discussion of both the temperature distribution in the membrane and the gas temperature around the membrane. This is an in-depth study, clearly described. After analysis, they conclude that the thermal conductivity of a gas is not a limiting factor for ultra-fast-cooling experiments. It was unfortunate that this conclusion required some searching for within the paper, since the paper did not contain a concluding section that

  4. Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells

    Science.gov (United States)

    Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen

    2018-01-01

    A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.

  5. The Outstanding Universal Values of the Wadden Sea: an ecological perspective

    NARCIS (Netherlands)

    Baptist, M.J.; Dankers, N.M.J.A.; Smit, C.J.

    2007-01-01

    This report describes the Outstanding Unique Values of the Wadden Sea from an ecological perspective, that is, according to criteria IX and X for the nomination of World Heritage Sites, as defined by the IUCN World Commission on Protected Areas.

  6. 1996 outstanding facts

    International Nuclear Information System (INIS)

    1996-01-01

    This progress report of the Direction of Studies and Research (DER) of Electricite de France (EdF) reports on some outstanding studies carried out during the year 1996 and concerning: new applications of electric power (thermal comfort, heating floors, building diagnosis, energy management, customers communicating interfaces, services, air conditioning, off-peak tariffs, power demand mastery in the industry, infrared dryers for paper industry); production means (automatic systems for nuclear power plants operation, management of reactors shutdown schedules for refuelling operations, optimization of fuel loading patterns for PWRs, neutronic and thermohydraulic computer codes for steam pipes rupture accidents, thermo-hydraulic modeling of the confinement building during post-accidental situation, 3D numerical simulation of overpressures inside reactor valves and of vortex and two-phase flow inside auxiliary pipes, control of vibrating fatigue of pipe nozzles, qualification of the adjustable speed drives of the Gravelines' cooling pumps, 3D analysis of new steam turbine designs, identification of bi-metal welding surface defects, a simple method for the evaluation of in-service fatigue of components, the probabilistic dimensioning of safety coefficients, the modeling of thermo-hydro-mechanical coupling of geo-materials for radioactive wastes storage, the supply of isolated sites using renewable energies); environment protection (batteries for electric-powered vehicles, modeling of atmospheric reactive flows, chlorination of the Dampierre's cooling circuits for pathogen amoebas elimination, in-situ treatment of PCBs isolated transformers); and development and exploitation of materials for power networks. (J.S.)

  7. Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes

    NARCIS (Netherlands)

    Orive, Gorka; Emerich, Dwaine; Khademhosseini, Ali; Matsumoto, Shinichi; Hernandez, R. M.; Pedraz, J. L.; Desai, Tejal; Calafiore, Riccardo; de Vos, Paul

    Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues

  8. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  9. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  10. Reactions of nitrite with hemoglobin measured by membrane inlet mass spectrometry

    Science.gov (United States)

    Tu, Chingkuang; Mikulski, Rose; Swenson, Erik R.; Silverman, David N.

    2010-01-01

    Membrane inlet mass spectrometry was used to observe nitric oxide in the well-studied reaction of nitrite with hemoglobin. The membrane inlet was submerged in the reaction solutions and measured NO in solution via its flux across a semipermeable membrane leading to the mass spectrometer detecting the mass-to-charge ratio m/z 30. This method measures NO directly in solution and is an alternate approach compared with methods that purge solutions to measure NO. Addition to deoxy-Hb(FeII) (near 38 µM heme concentration) of nitrite in a range of 80 µM to 16 mM showed no accumulation of either NO or N2O3 on a physiologically relevant time scale with a sensitivity near 1 nM. The addition of nitrite to oxy-Hb(FeII) and met-Hb(FeIII) did not accumulate free NO to appreciable extents. These observations show that for several minutes after mixing nitrite with hemoglogin, free NO does not accumulate to levels exceeding the equilibrium level of NO. The presence of cyanide ions did not alter the appearance of the data; however, the presence of 2 mM mercuric ions at the beginning of the experiment with deoxy-Hb(FeII) shortened the initial phase of NO accumulation and increased the maximal level of free, unbound NO by about twofold. These experiments appear consistent with no role of met-Hb(FeIII) in the generation of NO and an increase in nitrite reductase activity caused by the presumed binding of mercuric to cysteine residues. These results raise questions about the ability of reduction of nitrite mediated by deoxy-Hb(FeII) to play a role in vasodilation. PMID:18848984

  11. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  12. Separation of some ionic species from solutions by membrane and centrifugation methods

    International Nuclear Information System (INIS)

    Toropov, I.G.; Toropova, V.V.; Davydov, Yu.P.; Zemskova, L.M.

    2003-01-01

    Present work is dedicated to investigation of influence on iron ion hydrolytic behavior of some anions. On the basis of this research one can propose new, quite effective ways for liquid water solution purification. This paper has shown how the knowledge of iron ions behavior in solution can be applied to solve practical tasks. The conditions of formation of Fe(III) polynuclear forms, which are detained by semipermeable membranes have been considered in this research. The influence of a range of anions, some oxidants and reducing agents, affecting the formation of polynuclear hydroxo-forms of iron in solutions, has been studied during this research. It has been demonstrated that multinuclear forms of Fe(III) can interact with an ion of the medium. In this instance anion behaves as a multinuclear particle. In this work the behaviour of iodine during dialysis of solution was investigated. Additionally, it appeared that in the presence of iron polynuclear forms phosphate ion was detained by cellophane membrane. The data show that phosphate ion interacts strongly with the polynuclear forms of iron in aqueous solution. The formation of rather coarse forms of iron takes place at the phosphate ion presence which can be sedimented by centrifugation, and increasing either phosphate ion concentration or pH of solutions results in increase of percentage of the iron sedimented. According to these data phosphate ion can be separated from water solution by way of centrifugation with polynuclear hydroxo particles of iron. (authors)

  13. Synthesis of magnetic nanoparticles as a draw solute in forward osmosis membrane process for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    These wastes contain about 0.3 ∼ 0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40 ∼ 90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. As an emerging technology forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination because FO operates at low or no hydraulic pressures. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles can be separated from water by an external magnet field easily. If Fe{sub 3}O{sub 4} nanoparticles are coated with highly soluble organic substances, thus they can be used as a draw solute by concurrently generating high osmotic pressure and easy separation. The carboxylated polyglycerol coated Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized. The nanoparticles were about 50 nm in diameter and showed the good colloidal stability in aqueous solution. The osmolality and osmotic pressure were enough high to be used as a draw solute in FO. For the future work, we will investigate the performance of our magnetic draw solute in FO to remove boron in the simulated liquid waste.

  14. Cell transplantation and immunoisolation : studies on a macroencapsulation device

    OpenAIRE

    Rafael, Ehab

    1999-01-01

    Encapsulation of cellular grafts in semipermeable membranes may provide a way to protect the graft from immune attack without the need for pharmacological immunosuppression. In this thesis, the use of immunoisolating devices consisting of a bilaminar PTFE membrane was evaluated. Previous experimental studies indicate that these devices can protect cellular allografts from rejection. This thesis aims at improving our understanding of physiological factors influencing graft su...

  15. Classical solutions for a one phase osmosis model

    NARCIS (Netherlands)

    Lippoth, F.; Prokert, G.

    2011-01-01

    For a moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension we prove the existence and uniqueness of classical solutions on small time intervals. Moreover, we construct solutions existing on arbitrary long time intervals, provided the

  16. Historical Perspectives and Current Challenges in Cell Microencapsulation

    NARCIS (Netherlands)

    de Vos, Paul; Opara, Emmanuel C.

    2017-01-01

    The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in

  17. The role of pathogen-associated molecular patterns and islet-derived danger-associated molecular patterns in longevity of microencapsulated pancreatic islets

    NARCIS (Netherlands)

    Paredes Juárez, Genaro Alberto

    2016-01-01

    Immunoisolation of cells by encapsulation in semipermeable membranes has been proposed as a cure for many endocrine diseases where a minute-to-minute regulation of metabolites is a requirement such as in anemia, dwarfism, kidney and liver failure, pituitary and central nervous system

  18. Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells.

    Science.gov (United States)

    Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin

    2017-07-01

    The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes.

    Science.gov (United States)

    Campbell, Alan S; Jeong, Yeon Joo; Geier, Steven M; Koepsel, Richard R; Russell, Alan J; Islam, Mohammad F

    2015-02-25

    Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel. These cogel electrodes had large surface area (∼ 800 m(2) g(-1)) that enabled high enzyme loading, large porosity for unhindered glucose transport and moderate electrical conductivity (∼ 0.2 S cm(-1)) for efficient charge collection. Glucose oxidase and bilirubin oxidase were physically adsorbed onto these electrodes to form anodes and cathodes, respectively, and the EBFC produced power densities up to 0.19 mW cm(-2) that correlated to 0.65 mW mL(-1) or 140 mW g(-1) of GOX with an open circuit voltage of 0.61 V. Further, the electrodes were rejuvenated by a simple wash and reloading procedure. We postulate these porous and ultrahigh surface area electrodes will be useful for biosensing applications, and will allow reuse of EBFCs.

  20. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    Science.gov (United States)

    Collinson, Ian; Corey, Robin A; Allen, William J

    2015-10-05

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation--the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. © 2015 The Authors.

  1. Validation and analysis of forward osmosis CFD model in complex 3D geometries

    DEFF Research Database (Denmark)

    Gruber, Mathias F.; Gruber, Mathias F.; Johnson, Carl J.

    2012-01-01

    In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment...

  2. Stability of equilibria for a two-phase osmosis model

    NARCIS (Netherlands)

    Lippoth, F.; Prokert, G.

    2012-01-01

    For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type

  3. Detection and molecular characterization of Methicillin Resistant Staphylococcus aureus from table eggs

    Science.gov (United States)

    Background: Table eggs are nutritionally important food consumed globally. Despite being protected inside the hard shell and a semi-permeable membrane, the egg contents may be contaminated with microbes and thus become a possible carrier of infectious agents to humans. A number of medically signific...

  4. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida

    NARCIS (Netherlands)

    Li, L.; , van, Gestel C.A.M.

    2015-01-01

    To disentangle the contribution of ionic and nanoparticulate Ag to the overall toxicity to the earthworm Eisenia fetida, a semi-permeable membrane strategy was used to separate Ag+ released from silver nanoparticles (AgNPs) in an aqueous exposure. Internal Ag fractionation, activities of antioxidant

  5. A quantitative histochemical study of D-amino acid oxidase activity in rat liver in relationship with feeding conditions

    NARCIS (Netherlands)

    Patel, H. R.; Frederiks, W. M.; Marx, F.; Best, A. J.; van Noorden, C. J.

    1991-01-01

    The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between

  6. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  7. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  8. Poly-thiosemicarbazide Membrane for Gold Adsorption and In-situ Growth of Gold Nanoparticles

    KAUST Repository

    Parra, Luis F.

    2012-12-01

    In this work the synergy between a polymer containing chelate sites and gold ions was explored by the fabrication of a polymeric membrane with embedded gold nanoparticles inside its matrix and by developing a process to recover gold from acidic solutions. After realizing that the thiosemicarbazide groups present in the monomeric unit of poly-thiosemicarbazide (PTSC) formed strong complexes with Au ions, membrane technology was used to exploit this property to its maximum. The incorporation of metal nanoparticles into polymeric matrices with current technologies involves either expensive and complicated procedures or leads to poor results in terms of agglomeration, loading, dispersion, stability or efficient use of raw materials. The fabrication procedure described in this thesis solves these problems by fabricating a PTSC membrane containing 33.5 wt% in the form of 2.9 nm gold nanoparticles (AuNPs) by a three step simple and scalable procedure. It showed outstanding results in all of the areas mentioned above and demonstrated catalytic activity for the reduction of 4-Nitrophenol (4−NP) to 4-Aminophenol (4−AP). The current exponential demand of gold for electronics has encouraged the development of efficient processes to recycle it. Several adsorbents used to recover gold from acidic solutions can be found in the literature with outstanding maximum uptakes,yet, poor kinetics leading to an overall inefficient process. The method developed in this dissertation consisted in permeating the gold-containing solution through a PTSC membrane that will capture all the Au ions by forming a metal complex with them. Forcing the ions through the pores of the membrane eliminates the diffusion limitations and the adsorption will only depended on the fast complexation kinetics, resulting in a very efficient process. A flux as high as 1868 L/h m2 was enough to capture >90% of the precious metal present in a solution of 100 ppm Au. The maximum uptake achieved without sacrificing

  9. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane

    KAUST Repository

    Kang, Zixi; Xue, Ming; Fan, Lili; Huang, Lin; Guo, Lijia; Wei, Guoying; Chen, Banglin; Qiu, Shilun

    2014-01-01

    © 2014 The Royal Society of Chemistry. Two tailor-made microporous metal-organic framework (MOF) membranes were successfully fabricated on nickel screens by secondary growth. The effect of pore structures on gas separation was examined by means of single and binary gas permeation tests. The MOF JUC-150 membrane with its ultra-micropores showed marked preferential permeance to H2 relative to other gas molecules. The selectivity factors of this membrane were 26.3, 17.1 and 38.7 for H2/CH4, H2/N2 and H2/CO2, respectively, at room temperature. To the best of our knowledge, these values represent unprecedentedly high separation selectivity among those for all MOF membranes reported to date. The JUC-150 membrane also shows high thermal stability and outstanding separation performance at a high temperature of 200 °C. The separation performance of these membranes persists even after more than 1 year exposure to air. The superiority of the tailored pore size, high selectivity for H2 over other gases, significant stability and recyclability make these materials potential candidates for industrial H2 recycling applications.

  10. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane

    KAUST Repository

    Kang, Zixi

    2014-09-12

    © 2014 The Royal Society of Chemistry. Two tailor-made microporous metal-organic framework (MOF) membranes were successfully fabricated on nickel screens by secondary growth. The effect of pore structures on gas separation was examined by means of single and binary gas permeation tests. The MOF JUC-150 membrane with its ultra-micropores showed marked preferential permeance to H2 relative to other gas molecules. The selectivity factors of this membrane were 26.3, 17.1 and 38.7 for H2/CH4, H2/N2 and H2/CO2, respectively, at room temperature. To the best of our knowledge, these values represent unprecedentedly high separation selectivity among those for all MOF membranes reported to date. The JUC-150 membrane also shows high thermal stability and outstanding separation performance at a high temperature of 200 °C. The separation performance of these membranes persists even after more than 1 year exposure to air. The superiority of the tailored pore size, high selectivity for H2 over other gases, significant stability and recyclability make these materials potential candidates for industrial H2 recycling applications.

  11. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  12. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  13. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  14. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....

  15. 21 CFR 862.2720 - Plasma oncometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... use is a device intended to measure plasma oncotic pressure, which is that portion of the total plasma osmotic pressure contributed by protein and other molecules too large to pass through a specified semipermeable membrane. Because variations in plasma oncotic pressure are indications of certain disorders...

  16. Van't Hoff's law for active suspensions: the role of the solvent chemical potential

    NARCIS (Netherlands)

    Rodenburg, Jeroen; Dijkstra, Marjolein; van Roij, Rene

    2017-01-01

    We extend Van’t Hoff's law for the osmotic pressure to a suspension of active Brownian particles. The propelled particles exert a net reaction force on the solvent, and thereby either drive a measurable solvent flow from the connecting solvent reservoir through the semipermeable membrane, or

  17. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane.

    Science.gov (United States)

    Chen, Danke; Ying, Wen; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-12-20

    Two-dimensional (2D) materials-based membranes show great potential for gas separation. Herein an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), was confined in the 2D channels of MoS 2 -laminated membranes via an infiltration process. Compared with the corresponding bulk [BMIM][BF 4 ], nanoconfined [BMIM][BF 4 ] shows an obvious incremental increase in freezing point and a shift of vibration bands. The resulting MoS 2 -supported ionic liquid membrane (MoS 2 SILM) exhibits excellent CO 2 separation performance with high CO 2 permeance (47.88 GPU) and superb selectivity for CO 2 /N 2 (131.42), CO 2 /CH 4 (43.52), and CO 2 /H 2 (14.95), which is much better than that of neat [BMIM][BF 4 ] and [BMIM][BF 4 ]-based membranes. The outstanding performance of MoS 2 SILMs is attributed to the nanoconfined [BMIM][BF 4 ], which enables fast transport of CO 2 . Long-term operation also reveals the durability and stability of the prepared MoS 2 SILMs. The method of confining ILs in the 2D nanochannels of 2D materials may pave a new way for CO 2 capture and separation.

  18. Osmotic Pressure in the Physics Course for Students of the Life Sciences

    Science.gov (United States)

    Hobbie, Russell K.

    1974-01-01

    Discusses the use of an ideal gas model to explain osmotic equilibrium and nonequilibrium flows through an ideal semipermeable membrane. Included are a justification of the relationship between an ideal gas and a dilute solution, a review of the irreversible thermodynamic flow, and some sample applications to physiology. (CC)

  19. Nanotechnology, resources, and pollution control

    Science.gov (United States)

    Gillett, Stephen L.

    1996-09-01

    The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.

  20. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  1. The Training Project of Star Researchers, Outstanding Teaching Staff and Leaders with Facilities Available

    Directory of Open Access Journals (Sweden)

    Ömer KARAHAN

    2015-12-01

    Full Text Available There is a general consensus on the requirement of a serious regulation at our universities. It is argued that it is necessary to change Constitution and Institution of Higher Education Law for the serious regulation. However, it is impossible to say that all the facilities of the present legislation are used. Our aim is to create a project based on benefiting from continuing education centers to meet the need of star researchers, outstanding teaching staff and leaders in Turkey via the legislation in force. In this study, accessible studies from publications related to university, higher education and continuing education centers are studied. Th e current situation and solution off ers, applications and continuing education centers'activities have been determined. In accordance with these data, solution off ers have been proposed and discussed in line with the literature. According to the data obtained, our students who come with deficiencies from high schools to universities are not given the adequate undergraduate, graduate and postgraduate education. Th ere are studies such as ‘Double Major Program', ‘Medical-Science Physicians Integrated (MD-PhD Doctorate Program which upgrade the qualities. However, these programs are not suff icient and common. Th erefore, it is imposssible to train outstanding teaching staff , star researchesr and leaders who will meet the needs of our country and contribute to the World. Our academic potential needs a quality training except for branch training. On the other hand, the contribution of the Continuing Education Centers existing in university embodiments is limited. It is possible to provide basic skills, integration and research education to the outstanding teaching staff , star researcher and leader candidates. Th ese trainings should be given in a continuous instutionalization and in the formal education system. For this purpose, an academician school can be established within the body continuing

  2. Sources and distribution of organic compounds using passive samplers in Lake Mead National Recreation Area, Nevada and Arizona, and their implications for potential effects on aquatic biota.

    Science.gov (United States)

    Rosen, Michael R.; Alvarez, David A.; Goodbred, Steven L.; Leiker, Thomas J.; Patino, Reynaldo

    2009-01-01

    Th e delineation of lateral and vertical gradients of organic contaminants in lakes is hampered by low concentrations and nondetection of many organic compounds in water. Passive samplers (semipermeable membrane devices [SPMDs] and polar organic chemical integrative samplers [POCIS]) are well suited for assessing gradients because they can detect synthetic organic

  3. An Interactive Computer Model for Improved Student Understanding of Random Particle Motion and Osmosis

    Science.gov (United States)

    Kottonau, Johannes

    2011-01-01

    Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…

  4. 21 CFR 349.3 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... semipermeable membranes. Applied topically to the eye, a hypertonicity agent creates an osmotic gradient which draws water out of the cornea. (h) Isotonicity. A state or quality in which the osmotic pressure in two... flushing the eye. (g) Hypertonicity agent. An agent which exerts an osmotic gradient greater than that...

  5. Flux behaviour under different operational conditions in osmosis process

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Zarebska, Agata; Buksek, Hermina

    the active membrane layer is facing draw solution. Osmosis process can be affected by several factors, such as operating conditions (temperature and cross flow velocity), feed and draw solution properties, and membrane characteristics. These factors can significantly contribute to the efficiency......, and total dissolved solids. Taken together our results can contribute understanding of the how performance of asymmetric FO membranes can be enhanced by feed and draw properties, membrane characteristics and operational conditions.......The transport of water molecules across a semi-permeable membrane is driven by the osmotic pressure difference between feed and draw solution. Two different operational modes can be distinguished, namely FO mode when the active membrane layer is facing the wastewater (feed), and PRO mode when...

  6. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen

    Science.gov (United States)

    Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He

    2018-01-01

    A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.

  7. Faculty and Student Perceptions of Outstanding University Teachers in the USA and Russia

    Science.gov (United States)

    Lammers, William John; Savina, Elena; Skotko, David; Churlyaeva, Maria

    2010-01-01

    The majority of research that relates teacher characteristics to student learning in the university has come from Western universities. Using various methodologies, research continues to examine the characteristics of outstanding university teachers. Much of that research in the USA assesses faculty and student perspectives. However, there are…

  8. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

    Science.gov (United States)

    Moomaw, Ellen W; Uberto, Richard; Tu, Chingkuang

    2014-07-18

    Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    Science.gov (United States)

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.

  10. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride

    Directory of Open Access Journals (Sweden)

    Afifa Bathool

    2012-01-01

    Full Text Available Microporous osmotic tablet of diltiazem hydrochloride was developed for colon targeting. These prepared microporous osmotic pump tablet did not require laser drilling to deliver the drug to the specific site of action. The tablets were prepared by wet granulation method. The prepared tablets were coated with microporous semipermeable membrane and enteric polymer using conventional pan coating process. The incorporation of sodium lauryl sulfate (SLS, a leachable pore-forming agent, could form in situ delivery pores while coming in contact with gastrointestinal medium. The effect of formulation variables was studied by changing the amounts of sodium alginate and NaCMC in the tablet core, osmogen, and that of pore-forming agent (SLS used in the semipermeable coating. As the amount of hydrophilic polymers increased, drug release rate prolonged. It was found that drug release was increased as the concentration of osmogen and pore-former was increased. Fourier transform infrared spectroscopy and Differential scanning calorimetry results showed that there was no interaction between drug and polymers. Scanning electron microscopic studies showed the formation of pores after predetermined time of coming in contact with dissolution medium. The formation of pores was dependent on the amount of pore former used in the semipermeable membrane. in vitro results showed acid-resistant, timed release at an almost zero order up to 24 hours. The developed osmotic tablets could be effectively used for prolonged delivery of Diltiazem HCl.

  11. Thermodynamic Charge-to-Mass Sensor for Colloids, Proteins, and Polyelectrolytes

    NARCIS (Netherlands)

    van Rijssel, Jos; Costo, Rocio; Vrij, Agienus; Philipse, Albert P.; Erne, Ben H.

    2016-01-01

    A sensor is introduced that gauges the ratio of charge z to mass m of macro-ions in liquid media. The conductivity is measured in a small volume of salt solution, separated from the macro-ions by a semipermeable membrane. The mobile counterions released by the macro-ions increase the measured salt

  12. In memoriam of Professor Theodore L. Munsat (1930-2013): his outstanding legacy with the WFN.

    Science.gov (United States)

    Medina, Marco T

    2014-04-15

    The World Federation of Neurology (WFN) lost an outstanding leader on November 22, 2013 with the death of Professor Theodore Leon Munsat ("Ted"), in Waltham, Massachusetts, USA. Professor Munsat was Emeritus professor of Neurology at Tufts University School of Medicine and served the WFN in several capacities as trustee, chairman of the WFN Education and research committees, chairman of the WFN ALS Research group and founding director of the WFN Seminars in Clinical Neurology. He was president of the American Academy of Neurology (AAN), 1989-1991, chairman of the Continuing Educational Committee of the AAN and founding director of AAN's premier continuing medical education journal Continuum: Lifelong Learning in Neurology. He left an outstanding legacy with the WFN. Copyright © 2014. Published by Elsevier B.V.

  13. Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea.

    Science.gov (United States)

    Garg, Kritika M; Chattopadhyay, Balaji; Wilton, Peter R; Malia Prawiradilaga, Dewi; Rheindt, Frank E

    2018-08-01

    Cyclical periods of global cooling have been important drivers of biotic differentiation throughout the Quaternary. Ice age-induced sea level fluctuations can lead to changing patterns of land connections, both facilitating and disrupting gene flow. In this study, we test if species with differing life histories are differentially affected by Quaternary land connections. We used genome-wide SNPs in combination with mitochondrial gene sequences to analyse levels of divergence and gene flow between two songbird complexes across two Wallacean islands that have been repeatedly connected during glaciations. Although the two bird complexes are similar in ecological attributes, the forest and edge-inhabiting golden whistler Pachycephala pectoralis is comparatively flexible in its diet and niche requirements as compared to the henna-tailed jungle-flycatcher Cyornis colonus, which is largely restricted to the forest interior. Using population-genomic and coalescent approaches, we estimated levels of gene flow, population differentiation and divergence time between the two island populations. We observed higher levels of differentiation, an approximately two to four times deeper divergence time and near-zero levels of gene flow between the two island populations of the more forest-dependent henna-tailed jungle-flycatcher as compared to the more generalist golden whistler. Our results suggest that Quaternary land bridges act as semipermeable agents of gene flow in Wallacea, allowing only certain taxa to connect between islands while others remain isolated. Quaternary land bridges do not accommodate all terrestrial species equally, differing in suitability according to life history and species biology. More generalist species are likely to use Quaternary land connections as a conduit for gene flow between islands whereas island populations of more specialist species may continue to be reproductively isolated even during periods of Quaternary land bridges. Copyright © 2018

  14. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future

    KAUST Repository

    Ge, Qingchun

    2013-09-01

    Forward osmosis (FO) has emerged as one of potential technologies to mitigate clean water and energy shortage. Not only can it produce clean water but also energy by employing draw solutes to induce osmotic gradients across semipermeable membranes as the driving force for water production and power generation. Ideally, the semipermeable membrane performs as a barrier that allows only water to pass through but rejects all others. However, in reality, depending on draw solute\\'s chemistry property and physical structure, the reverse flux of draw solutes may take place across FO membranes which not only results in a lower effective osmotic driving force but also facilitates fouling. In addition, the asymmetric structure of FO membranes and the transport resistance of draw solutes within the FO membranes cause concentration polarization and lower the water flux. Furthermore, the regeneration of draw solutes from diluted draw solutions and the production of clean water might be energy-intensive if inappropriate draw solutes and recycle processes are utilized. Therefore, in this work we aim to give a comprehensive review on the progress of draw solution for FO processes. An assessment on the advantages and limitations of the existing draw solutes are made. Various FO integrated processes for water production and draw solute regeneration are exemplified. We also highlight the challenges and future research directions for the molecular design of better draw solutes. © 2013 Elsevier B.V.

  15. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  16. Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    KAUST Repository

    Puspasari, Tiara

    2018-05-01

    Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents. In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics. Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes. Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes

  17. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    Science.gov (United States)

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH 4 Cl. The pH transients at the point of NH 4 Cl addition/withdrawal originated from the free permeation of NH 3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in

  18. Generalized Darcy–Oseen resolvent problem

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar; Ptashnyk, M.; Varnhorn, W.

    2016-01-01

    Roč. 39, č. 6 (2016), s. 1621-1630 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : Darcy-Oseen resolvent problem * semipermeable membrane * Brinkman-Darcy equations * fluid flow between free-fluid domains and porous media Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3872/abstract

  19. Coupling Sodium Dodecyl Sulfate–Capillary Polyacrylamide Gel Electrophoresis with MALDI-TOF-MS via a PTFE Membrane

    Science.gov (United States)

    Lu, Joann J.; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-01-01

    Sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS–capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI–TOF–MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  20. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Science.gov (United States)

    2010-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  1. Development of an Atmospheric Dispersion Model for Heavier-Than-Air Gas Mixtures. Volume 1.

    Science.gov (United States)

    1985-05-01

    aspirated concentration sensor used a balanced Wheatstone bridge to measure the heat loss from a sensing element placed in the sample stream. Shaded...a semipermeable membrane and electrochemical cell. A fast response sensor (10 Hz) basically aspirated a sample past the cell membrane. Reported...ramp function around the freezing point of water by X11., X= vap for T 273.15 K vap fus 263.15 for 263.15 <T < 273.15 Xvap +x fus for T < 263.15 (A-4

  2. Preparation of polymer composite nanomembranes with a conductivity asymmetry

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Satulu, B.; Mitu, B.; Dinescu, G.

    2009-01-01

    The structure and charge transport properties of the poly(ethylene terephthalate) track membrane modified by a pyrrole plasma have been studied. It was found that polymer deposition on the surface of a track membrane via the plasma polymerization of pyrrole results in the creation of a composite nanomembrane that, in the case of the formation of a semipermeable layer covering the pores, possesses conductivity asymmetry in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membrane of two layers with different functional groups and also by the pore geometry. Such a type of membranes can be used for creation of chemical and biochemical sensors

  3. Tracking individual membrane proteins and their biochemistry: The power of direct observation.

    Science.gov (United States)

    Barden, Adam O; Goler, Adam S; Humphreys, Sara C; Tabatabaei, Samaneh; Lochner, Martin; Ruepp, Marc-David; Jack, Thomas; Simonin, Jonathan; Thompson, Andrew J; Jones, Jeffrey P; Brozik, James A

    2015-11-01

    The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Properties of PTFE tape as a semipermeable membrane in fluorous reactions

    OpenAIRE

    Brendon A. Parsons; Olivia Lin Smith; Myeong Chae; Veljko Dragojlovic

    2015-01-01

    Summary In a PTFE tape phase-vanishing reaction (PV-PTFE), a delivery tube sealed with PTFE tape is inserted into a vessel which contains the substrate. The reagent diffuses across the PTFE tape barrier into the reaction vessel. PTFE co-polymer films have been found to exhibit selective permeability towards organic compounds, which was affected by the presence of solvents. In this study, we attempted to establish general trends of permeability of PTFE tape to different compounds and to better...

  5. Properties of PTFE tape as a semipermeable membrane in fluorous reactions

    Directory of Open Access Journals (Sweden)

    Brendon A. Parsons

    2015-06-01

    Full Text Available In a PTFE tape phase-vanishing reaction (PV-PTFE, a delivery tube sealed with PTFE tape is inserted into a vessel which contains the substrate. The reagent diffuses across the PTFE tape barrier into the reaction vessel. PTFE co-polymer films have been found to exhibit selective permeability towards organic compounds, which was affected by the presence of solvents. In this study, we attempted to establish general trends of permeability of PTFE tape to different compounds and to better describe the process of solvent transport in PV-PTFE bromination reactions. Though PTFE tape has been reported as impermeable to some compounds, such as dimethyl phthalate, solvent adsorption to the tape altered its permeability and allowed diffusion through channels of solvent within the PTFE tape. In this case, the solvent-filled pores of the PTFE tape are chemically more akin to the adsorbed solvent rather than to the PTFE fluorous structure. The solvent uptake effect, which was frequently observed in the course of PV-PTFE reactions, can be related to the surface tension of the solvent and the polarity of the solvent relative to the reagent. The lack of pores in bulk PTFE prevents solvents from altering its permeability and, therefore, bulk PTFE is impermeable to most solvents and reagents. However, bromine, which is soluble in liquid fluorous media, diffused through the bulk PTFE. A better understanding of the PTFE phase barrier will make it possible to further optimize the PV-PTFE reaction design.

  6. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    Science.gov (United States)

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  7. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    Science.gov (United States)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  8. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  10. Progress report for an Outstanding Junior Investigator Award in experimental high energy physics

    International Nuclear Information System (INIS)

    Partridge, R.

    1990-01-01

    An experimental program based upon the study of hadron collisions at the highest available energy is being carried out with the support of an Outstanding Junior Investigator Award to Prof. Richard Partridge. The work described in this report includes the development of the Level 0 trigger for the D0 experiment at Fermilab preparation for the D0 physics program, and studies of detector design for the Superconducting Super Collider (SSC)

  11. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  12. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    Science.gov (United States)

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  13. Salvator Karabaić (1884-1956): the profile of an eyceptional Psychiatrist/Neuropsychiatrist with outstanding managing capabilities.

    Science.gov (United States)

    Pavlovic, Eduard

    2008-01-01

    Salvator Karabaić was born in Krk in 1884. In 1904, he finished a grammar school in Susak, and in 1910 graduated from the Vienna Medical School. From 1910 to 1919, he worked in Pula/Pola and Kovin. From 1919 to 1929 he worked at the Institute for Mental illnesses Stenjevec (today the Psychiatric Hospital Vrapce) where in 1921 he became the head physician (orig. primarius) at the age of 37 years only. Between 1929 and 1945, he worked in Sarajevo as a Head of the State Hospital's Neuropsychiatry Department. In 1948 he was appointed the director of the Hospital for Mental Illnesses in Sarajevo. The hospital was in fact a remodelled rope factory with a favourable position near a homestead. He managed this institution until 1956. He died on 24 September 1956 at a hospital surgery ward in Sarajevo. Judging by Dr Karabaić's ability to take care of 200 psychiatric patients alone, he was an outstanding figure with enormous experience. A lot of it he earned during the Vrapce hospital period between 1919 and 1929. He had the opportunity to work with the outstanding figures of Croatian psychiatry such as Dr Ivo Zirovcić, Dr Laza Stanojević, Dr Ivan Barbot, and Dr Aleksej KuljZenko The author suggests that a more systematic research is needed to understand the work and the life of Dr Salvator Karabaić, who was a talented and hardworking psychiatrist/ neuropsychiatrist with outstanding managing capabilities, and a person who above all cared for his patients.

  14. 41 CFR 301-71.304 - Are we responsible for ensuring the collection of outstanding travel advances?

    Science.gov (United States)

    2010-07-01

    ... ensuring the collection of outstanding travel advances? 301-71.304 Section 301-71.304 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 71-AGENCY TRAVEL ACCOUNTABILITY REQUIREMENTS Accounting for Travel Advances § 301-71.304 Are we...

  15. 1996 outstanding facts; Faits marquants 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This progress report of the Direction of Studies and Research (DER) of Electricite de France (EdF) reports on some outstanding studies carried out during the year 1996 and concerning: new applications of electric power (thermal comfort, heating floors, building diagnosis, energy management, customers communicating interfaces, services, air conditioning, off-peak tariffs, power demand mastery in the industry, infrared dryers for paper industry); production means (automatic systems for nuclear power plants operation, management of reactors shutdown schedules for refuelling operations, optimization of fuel loading patterns for PWRs, neutronic and thermohydraulic computer codes for steam pipes rupture accidents, thermo-hydraulic modeling of the confinement building during post-accidental situation, 3D numerical simulation of overpressures inside reactor valves and of vortex and two-phase flow inside auxiliary pipes, control of vibrating fatigue of pipe nozzles, qualification of the adjustable speed drives of the Gravelines` cooling pumps, 3D analysis of new steam turbine designs, identification of bi-metal welding surface defects, a simple method for the evaluation of in-service fatigue of components, the probabilistic dimensioning of safety coefficients, the modeling of thermo-hydro-mechanical coupling of geo-materials for radioactive wastes storage, the supply of isolated sites using renewable energies); environment protection (batteries for electric-powered vehicles, modeling of atmospheric reactive flows, chlorination of the Dampierre`s cooling circuits for pathogen amoebas elimination, in-situ treatment of PCBs isolated transformers); and development and exploitation of materials for power networks. (J.S.).

  16. 1996 outstanding facts; Faits marquants 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This progress report of the Direction of Studies and Research (DER) of Electricite de France (EdF) reports on some outstanding studies carried out during the year 1996 and concerning: new applications of electric power (thermal comfort, heating floors, building diagnosis, energy management, customers communicating interfaces, services, air conditioning, off-peak tariffs, power demand mastery in the industry, infrared dryers for paper industry); production means (automatic systems for nuclear power plants operation, management of reactors shutdown schedules for refuelling operations, optimization of fuel loading patterns for PWRs, neutronic and thermohydraulic computer codes for steam pipes rupture accidents, thermo-hydraulic modeling of the confinement building during post-accidental situation, 3D numerical simulation of overpressures inside reactor valves and of vortex and two-phase flow inside auxiliary pipes, control of vibrating fatigue of pipe nozzles, qualification of the adjustable speed drives of the Gravelines` cooling pumps, 3D analysis of new steam turbine designs, identification of bi-metal welding surface defects, a simple method for the evaluation of in-service fatigue of components, the probabilistic dimensioning of safety coefficients, the modeling of thermo-hydro-mechanical coupling of geo-materials for radioactive wastes storage, the supply of isolated sites using renewable energies); environment protection (batteries for electric-powered vehicles, modeling of atmospheric reactive flows, chlorination of the Dampierre`s cooling circuits for pathogen amoebas elimination, in-situ treatment of PCBs isolated transformers); and development and exploitation of materials for power networks. (J.S.).

  17. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  18. Branched tetraether membrane lipids: A versatile group of molecular fossils as testimony of past climate change (Outstanding Young Scientist Lecture)

    Science.gov (United States)

    Weijers, J. W. H.

    2009-04-01

    Studying fossils of any kind provides a small window into past times and could learn us why the world around us is as it is today (and might become in the near future). Like paleontologists studying bone remains and palaeobotanists studying fossil plant remains, many organic geochemists study fossil molecules to learn about geochemical cycles, evolution, ecology and climate. Branched Glycerol Dialkyl Glycerol Tetraether (GDGT) membrane lipids are an example of such molecular fossils and have been the core subject of my research. These molecules were initially detected a decade ago in near coastal marine sediments and structurally resemble isoprenoid GDGTs, a group of membrane lipids synthesised by Archaea, a Domain of life separate from Bacteria and Eukarya. With nuclear magnetic resonance techniques we showed, however, that branched GDGTs are of bacterial rather than archaeal origin and analysis of soils, peat bogs and marine surface sediments pointed to a terrestrial origin. As isoprenoid GDGTs are mainly produced by marine archaea the ratio between the two groups, the Branched vs. Isoprenoid Tetraether (BIT) index, could be used to trace the input of soil organic matter into marine sediments. In this lecture I will provide examples of applications of this BIT index in the Channel River during the last Glacial Maximum and the Congo deep sea fan over the last deglaciation. Meanwhile, it appeared that in soils the distribution of individual branched GDGTs, which differ in their content of methyl branches and cyclopentane rings, was different from place to place. Analysis of over 100 soils at different locations revealed that the distribution of the branched GDGTs is most strongly related to both soil pH and annual mean air temperature. This is explained by the fact that bacteria have to adapt the composition of their cell membrane to ambient conditions in order to keep it properly functioning. This empirical relation opened opportunities to reconstruct past annual

  19. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4

    International Nuclear Information System (INIS)

    Osman, Y.A.; Ingram, L.O.

    1985-01-01

    Accumulation of alcohol during fermentation is accompanied by a progressive decrease in the rate of sugar conversion to ethanol. In this study, the authors provided evidence that inhibition of fermentation by ethanol can be attributed to an indirect effect of ethanol on the enzymes of glycolysis involving the plasma membrane. Ethanol decreased the effectiveness of the plasma membrane as a semipermeable barrier, allowing leakage of essential cofactors and coenzymes. This leakage of cofactors and coenzymes, coupled with possible additional leakage of intermediary metabolites en route to ethanol formation, is sufficient to explain the inhibitory effects of ethanol on fermentation in Zymomonas mobilis

  20. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  1. Spontaneous direct and reverse osmosis

    International Nuclear Information System (INIS)

    Valitov, N.Kh.

    1996-01-01

    It has been ascertained experimentally that in the course of separation of CsCl, KCl, NaCl aqueous solutions by semi-permeable membrane from distilled water the direct and then reverse osmosis are observed. The same sequence is observed in case of separation of CsCl aqueous solutions from NaCl of different concentrations. The reason for the direct and reverse osmosis has been explained. 5 refs.; 3 figs. 1 tab

  2. Development of prodioxin ointment

    OpenAIRE

    Puodžiūnienė, Genė; Vaičiuvėnas, Vytautas Petras; Janulis, Valdimaras; Steponavičius, Juozas

    2003-01-01

    There was a purpose to create a composite ointment of proteolytic and antimicrobial activity, the formulation of which would contain the proteolytic enzyme procelan and the antimicrobial preparation with wide spectrum of action dioxidin. During the development of prodioxin ointment by means of biological experiments the optimal concentration of dioxidin was evaluated; it was 1 percent. The optimal dispersity value of dioxidin particles was estimated by dialysis through a semipermeable membran...

  3. The technologies used in desalination plants

    International Nuclear Information System (INIS)

    Curto, G.; Napoli, E.; Rizzuti, L.

    2009-01-01

    In the research the main desalination processes of sea and brackish water are analyzed and discussed. The processes can be separated into the categories of Thermal and Membrane Processes. The thermal processes can be further divided between those in which heat is supplied to the water, causing its evaporation (single-step evaporation processes, Multi flash processes and multiple effects processes of evaporation), and those, less frequently used, where the heat is instead subtracted, causing a phenomenon of crystallization. The membrane processes, on the other side, are based on the passage of salt or brackish water through synthetic semi-permeable membranes. They can be subdivided between those employing reverse osmosis processes, where the selective solvent passage through the membranes is guaranteed by high pressure differences and those based on electrodialysis. [it

  4. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    Directory of Open Access Journals (Sweden)

    Ksenia V. Otvagina

    2016-06-01

    Full Text Available CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS–poly(styrene (PS and chitosan (CS–poly(acrylonitrile (PAN copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL. CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS. Ionic liquid (IL doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2 = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C.

  5. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  6. 48{sup th} Annual meeting on nuclear technology (AMNT). Key topic / Outstanding know-how and sustainable innovations

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR - Consulting on Nuclear Law, Licensing and Regulation, Leipzig (Germany)

    2017-08-15

    Summary report on the Key Topic Outstanding Know-How and Sustainable Innovations, Focus Session: International Regulation: Leveraging the Experience of Established Nuclear Countries for Regulations and Projects in Newcomer Countries, of the 48th Annual Meeting on Nuclear Technology (AMNT 2017) held in Berlin, 16 to 17 May 2017.

  7. Toxicity assessment of water at different stages of treatment using Microtox assay

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available Number of potentially toxic hydrophobic organic contaminants e.g. polycyclic aromatic hydrocarbons, pesticides, polychlorinated biphenyls and dioxins having entered aquatic environment, including potential sources of drinking water. Unfortunately, not all micropollutants can be removed during water treatment processes. What is more, disinfectants can react with some organic compounds already present in the water, and form disinfection by-products which also can be toxic. The aim of this study was to assess toxicity of water at different stages of water treatment and to verify usefulness semipermeable membrane devices in monitoring of drinking water. For this purpose, semipermeable membrane devices (SPMDs were deployed in a surface water treatment plant. To determine the effect of water treatment on the presence of toxic micropollutants, study was conducted for a period of 5 months. Three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After sampling dialysis in organic solvent was carried out and extracts were then analyzed with the Microtox acute toxicity test. The study has indicated the utility as well as some limitations of combining SPMDs with bioluminescence assay in the monitoring of biological effects of bioavailable hydrophobic pollutants in drinking water.

  8. Osmocapsules for direct measurement of osmotic strength.

    Science.gov (United States)

    Kim, Shin-Hyun; Lee, Tae Yong; Lee, Sang Seok

    2014-03-26

    Monodisperse microcapsules with ultra-thin membranes are microfluidically designed to be highly sensitive to osmotic pressure, thereby providing a tool for the direct measurement of the osmotic strength. To make such osmocapsules, water-in-oil-in-water double-emulsion drops with ultra-thin shells are prepared as templates through emulsification of core-sheath biphasic flow in a capillary microfluidic device. When photocurable monomers are used as the oil phase, the osmocapsules are prepared by in-situ photopolymerization of the monomers, resulting in semipermeable membranes with a relatively large ratio of membrane thickness to capsule radius, approximately 0.02. These osmocapsules are buckled by the outward flux of water when they are subjected to a positive osmotic pressure difference above 125 kPa. By contrast, evaporation-induced consolidation of middle-phase containing polymers enables the production of osmocapsules with a small ratio of membrane thickness to capsule radius of approximately 0.002. Such an ultra-thin membrane with semi-permeability makes the osmocapsules highly sensitive to osmotic pressure; a positive pressure as small as 12.5 kPa induces buckling of the capsules. By employing a set of distinct osmocapsules confining aqueous solutions with different osmotic strengths, the osmotic strength of unknown solutions can be estimated through observation of the capsules that are selectively buckled. This approach provides the efficient measurement of the osmotic strength using only a very small volume of liquid, thereby providing a useful alternative to other measurement methods which use complex setups. In addition, in-vivo measurement of the osmotic strength can be potentially accomplished by implanting these biocompatible osmocapsules into tissue, which is difficult to achieve using conventional methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    Science.gov (United States)

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.

  10. Peningkatan Mutu Pendidikan SMA Muhammadiyah 2 Sidoarjo sebagai Sekolah Berkategori The Outstanding School of Muhammadiyah

    OpenAIRE

    Hidayatulloh Hidayatulloh

    2016-01-01

    This article examines about improving the education quality of SMA Muhammadiyah 2 Sidoarjo as the Outstanding School of Muhammadiyah. This article reveals that the quality improvement of SMA Muhammadiyah 2 Sidoarjo was conducted through: the arrangement of school program and self evaluation, the reinforcement of vision, mission and education objective, the reinforcement of leadership and teamwork, the improvement of teachers and educators competence, the improvement learners quality input, th...

  11. The potential Outstanding Universal Value and natural heritage values of Bonaire National Marine Park: an ecological perspective

    NARCIS (Netherlands)

    Beek, van I.J.M.; Cremer, J.S.M.; Meesters, H.W.G.; Becking, L.E.; Langley, J.M.

    2014-01-01

    The Bonaire National Marine Park is an outstanding example of a fringing coral reef that has evolved to one of the most diverse reef in the Caribbean. The Bonaire Marine Park, protected since 1979 and declared a National Park in 1999, includes one of the healthiest coral reef in the Caribbean and

  12. Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries

    Science.gov (United States)

    Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus

    2012-01-01

    In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428

  13. Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries

    Directory of Open Access Journals (Sweden)

    Lars Yde

    2012-11-01

    Full Text Available In forward osmosis (FO, an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.

  14. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  15. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.

    Science.gov (United States)

    Han, Gang; de Wit, Jos S; Chung, Tai-Shung

    2015-09-15

    By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  17. Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters.

    Science.gov (United States)

    Almeida, M Inês G S; Silva, Adélia M L; Coleman, Rhys A; Pettigrove, Vincent J; Cattrall, Robert W; Kolev, Spas D

    2016-05-01

    A passive sampler for determining the time-weighted average total ammonia (i.e. molecular ammonia and the ammonium cation) concentration (C TWA) in freshwaters, which incorporated a polymer inclusion membrane (PIM) as a semi-permeable barrier separating the aqueous source solution from the receiving solution (i.e. 0.8 mol L(-1) HCl), was developed for the first time. The PIM was composed of dinonylnaphthalene sulfonic acid (DNNS) as a carrier, poly (vinyl chloride) (PVC) as a base polymer and 1-tetradecanol as a modifier. Its optimal composition was found to be 35 wt% commercial DNNS, 55 wt% PVC and 10 wt% 1-tetradecanol. The effect of environmental variables such as the water matrix, pH and temperature were also studied using synthetic freshwaters. The passive sampler was calibrated under laboratory conditions using synthetic freshwaters and exhibited a linear response within the concentration range 0.59-2.8 mg L(-1) NH4(+) (0.46-2.1 mg N L(-1)) at 20 °C. The performance of the sampler was further investigated under field conditions over 7 days. A strong correlation between spot sampling and passive sampling was achieved, thus providing a proof-of-concept for the passive sampler for reliably measuring the C(TWA) of total ammonia in freshwaters, which can be used as an indicator in tracking sources of faecal contamination in stormwater drains.

  18. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  19. Semi-Permeable Paleochannels as Conduits for Submarine Groundwater Discharge to the Coast in Barataria Bay, Louisiana

    Science.gov (United States)

    Breaux, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.

    2014-12-01

    Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the river into its delta is relatively unknown. Hydrological budgets indicate that there is a large magnitude of surface water lost in the Mississippi's delta as the river flows into the Gulf of Mexico. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy bodies that were former distributaries of the river, allow for water to discharge out of the Mississippi's main channel and into its delta driven by a difference in hydraulic head between the river and the lower lying coastal embayments. Our study uses geophysical data, including sonar and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. High resolution CHIRP sonar data shows that these paleochannel features are ubiquitous in the Mississippi Delta, whereas resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the river. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta and estimate values of permeability and hydraulic conductivity of sediments taken from two locations in Barataria Bay. The geophysical and sediment core data will likewise be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding the potential global magnitude of hydrological and geochemical fluxes of other large rivers with

  20. Outstanding Issues and Future Directions of Inner Magnetospheric Research (Invited)

    Science.gov (United States)

    Brandt, P. C.

    2009-12-01

    Several research areas of the inner magnetosphere and ionosphere (MI) system have reached a state, where the coupling mechanisms can no longer be treated as boundary conditions or ad-hoc assumptions in our physical models. It is nothing new that our community has become increasingly aware of the necessity to use global measurements from multiple observation platforms and missions, in order to understand both the system as a whole as well as its individual subsystems. In this presentation we briefly review the current status and outstanding issues of inner MI research. We attempt to establish a working definition of the term "Systems Approach", then present observational tools and techniques that enable such an approach. Physical modeling plays a central role not only in understanding the mechanisms at work, but also in determining the key quantities to be measured. We conclude by discussing questions relevant to future directions. Are there new techniques that need more attention? Should multi-platform observations be included as a default component already at the mission-level in the future? Is solar minimum uninteresting from an MI perspective? Should we actively compare to magnetospheres of other planets? Examples of outstanding issues in inner MI research include the circulation of ionospheric plasma from low to high latitudes and its escape to the magnetosphere, where it is energized by magnetospheric processes and becomes a part of the plasma pressure that in turn affects the ionospheric and magnetospheric electric field. The electric field, in turn, plays a controlling role in the transport of both magnetospheric and ionospheric plasma, which is intimately linked with ionospheric conductance. The conductance, in turn, is controlled by thermospheric chemistry coupled with plasma flow and heating and magnetospheric precipitation and Joule heating. Several techniques have emerged as important tools: auroral imaging, inversions of ENA images to retrieve the

  1. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition

    Science.gov (United States)

    Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.

    2018-06-01

    The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.

  2. Covalent functionalization of silicon nitride surfaces for anti-biofouling and bioselective capture

    NARCIS (Netherlands)

    Nguyen, A.T.

    2011-01-01

    Microsieves – microengineered membranes – have been introduced in microfiltration technology as a new generation of inorganic membranes. The thin membranes are made of silicon nitride (SixN4), which gives the membranes outstanding features, such as chemical inertness and high mechanical

  3. Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extracts.

    Science.gov (United States)

    Minhas, Fozia T; Arslan, Gulsin; Gubbuk, I Hilal; Akkoz, Cengiz; Ozturk, Betul Yılmaz; Asıkkutlu, Baran; Arslan, Ugur; Ersoz, Mustafa

    2018-02-01

    Polysulfone (PS) composite membrane using green synthesized biogenic silver nanoparticles (Ag-NPs) with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extract were prepared by spin coating technique and are tested for antimicrobial activity using a direct contact test for the first time. Initially green synthesis of Ag-NPs was accomplished utilizing green macro algae i.e. U. compressa (L.) Kütz. and C. glomerata (L.) Kütz. by the reduction of AgNO 3 . The Ag-NPs/PS composite membranes from both algae revealed outstanding antimicrobial activity against all bacteria i.e. K. pneumonia, P. aeruginasa, E. coli, E. faecium and S. aureus. Bacterial growth was monitored for 17h with a temperature controlled microplate spectrophotometer. The kinetics of the outgrowth in each well were recorded continuously at 630nm every 60min. Thus present work remarkably offers a feasible, cheap and efficient alternative for making Ag-NPs and their utilization as antimicrobial agent on the PS composite membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  5. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  6. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  7. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  8. Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure

    Directory of Open Access Journals (Sweden)

    Paul Glogener

    2018-02-01

    Full Text Available A microelectronic biosensor was subjected to in vivo exposure by implanting it in the vicinity of m. trapezii (Trapezius muscle from cattle. The implant is intended for the continuous monitoring of glucose levels, and the study aimed at evaluating the biostability of exposed semiconductor surfaces. The sensor chip was a microelectromechanical system (MEMS prepared using 0.25 µm complementary metal–oxide–semiconductor CMOS/BiCMOS technology. Sensing is based on the principle of affinity viscometry with a sensoric assay, which is separated by a semipermeable membrane from the tissue. Outer dimensions of the otherwise hermetically sealed biosensor system were 39 × 49 × 16 mm. The test system was implanted into cattle in a subcutaneous position without running it. After 17 months, the device was explanted and analyzed by comparing it with unexposed chips and systems. Investigations focused on the MEMS chip using SEM, TEM, and elemental analysis by EDX mapping. The sensor chip turned out to be uncorroded and no diminishing of the topmost passivation layer could be determined, which contrasts remarkably with previous results on CMOS biosensors. The negligible corrosive attack is understood to be a side effect of the semipermeable membrane separating the assay from the tissue. It is concluded that the separation has enabled a prolonged biostability of the chip, which will be of relevance for biosensor implants in general.

  9. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  10. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment.

    Science.gov (United States)

    Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-05-21

    Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.

  11. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Science.gov (United States)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  12. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key topic / Outstanding know-how and sustainable innovations

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, Winfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany). Forschungszentrum

    2016-11-15

    Summary report on the Key Topic ''Outstanding Know-How and Sustainable Innovations'' Technical Session ''Reactor Physics, Thermo, and Fluid Dynamics'' of the 47th Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  14. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  15. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors

    Science.gov (United States)

    Luo, Qiu-Ping; Huang, Liang; Gao, Xiang; Cheng, Yongliang; Yao, Bin; Hu, Zhimi; Wan, Jun; Xiao, Xu; Zhou, Jun

    2015-07-01

    Activated carbon (AC) was prepared via carbonizing melaleuca bark in an argon atmosphere at 600 °C followed with KOH activation for high-rate supercapacitors. This AC electrode has a high capacitance of 233 F g-1 at a scan rate of 2 mV s-1 and an excellent rate capability of ˜80% when increasing the sweep rate from 2 to 500 mV s-1. The symmetric supercapacitor assembled by the above electrode can deliver a high energy density of 4.2 Wh kg-1 with a power density of 1500 W kg-1 when operated in the voltage range of 0-1 V in 1 M H2SO4 aqueous electrolyte while maintaining great cycling stability (less than 5% capacitance loss after 10 000 cycles at sweep rate of 100 mV s-1). All the outstanding electrochemical performances make this AC electrode a promising candidate for potential energy storage application.

  16. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  18. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  19. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  20. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  1. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  2. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  3. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  4. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  5. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  6. Unconscious and Unnoticed Professional Practice within an Outstanding School for Children and Young People with Complex Learning Difficulties and Disabilities

    Science.gov (United States)

    Crombie, Richard; Sullivan, Lesley; Walker, Kate; Warnock, Rebecca

    2014-01-01

    This article describes a three-year project undertaken at Pear Tree School for children and young people with severe and multiple and profound learning difficulties. Lesley Sullivan, the school's head teacher, believed that much of the value within the work of this outstanding school went unidentified by existing approaches to planning, monitoring…

  7. Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application

    Science.gov (United States)

    Fan, Xiaoqiang; Wang, Liping

    2015-07-01

    Multialkylated cyclopentanes (MACs), a class of synthetic hydrocarbon fluid have attracted intensive interest as possible space lubricants due to a series of unique physical and chemical properties. Here, we used graphene with high mechanical strength and chemical inertness as lubricant additive to explore its potential for space application. The effects of space irradiation on graphene and the tribological properties of graphene as lubricant additive were firstly investigated in detail under simulated space environment composed of high vacuum, high/low temperature and irradiation. Results demonstrate that graphene not only possesses outstanding anti-irradiation capacity but also significantly improves the space performance and tribological properties of MACs, which depends on the excellent physicochemical properties and high load-carrying ability of graphene as well as more effective separation of the sliding surfaces.

  8. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    Science.gov (United States)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  9. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  10. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  11. Aquatic Communities and Selected Water Chemistry in St. Vrain Creek near the City of Longmont, Colorado, Wastewater-Treatment Plant, 2005 and 2006

    Science.gov (United States)

    Zuellig, Robert E.; Sprague, Lori A.; Collins, Jim A.; Cox, Oliver N.

    2007-01-01

    In 2005, the U.S. Geological Survey and the City of Longmont, Colo., began a study to document chemical characteristics of St. Vrain Creek that had previously been unavailable either due to high cost of analysis or lack of analytical capability. Stream samples were collected at seven sites on St. Vrain Creek during the spring of 2005 and 2006 for analysis of wastewater compounds. A Lagrangian-sampling design was followed during each sampling event, and time-of-travel studies were conducted just prior to each sampling event to determine appropriate sampling times for the synoptic. In addition, semipermeable membrane devices, passive samplers that concentrate hydrophobic organic chemicals, were installed at six sites during the spring of 2005 and 2006 for approximately 4 weeks. After retrieval, contaminant residues concentrated in the semipermeable membrane devices were recovered and used in a toxicity assay that provided a screen for aryl hydrocarbon receptor type compounds, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, and furans. In addition, the U.S. Geological Survey summarized information on macroinvertebrate and fish communities known from St. Vrain Creek dating back to the early 1900s in order to assess their utility in evaluating wastewater-treatment plant upgrades and habitat improvement projects. Unfortunately, because of inconsistencies in data collection these data cannot be used as intended; however, they are useful for understanding to some degree gross patterns in fish species distribution, but less so for macroinvertebrates.

  12. Modelling the coupled chemico-osmotic and advective-diffusive transport of nitrate salts in the Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Baechler, S.; Croise, J.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. Fine-grained saturated porous materials can act as a semi-permeable osmotic membrane when exposed to a solute concentration gradient. The ions diffusion is hindered while water movement towards higher concentrations takes place in the semi-permeable membrane. The capacity of the fine-grained porous material to act as a semi permeable osmotic membrane is referred to as the osmotic efficiency (its value is 1 when the membranes is ideal, less than 1 when the membrane is leaky, allowing diffusion). The efficiency to retain ions in solution is dependent on the thickness of the diffuse double layer which itself depends on the solution concentration in the membrane. Clay rich formations have been shown to act as non-ideal semi-permeable membrane. Andra is investigating the Callovo-Oxfordian clay as a host rock for intermediate-level to high-level radioactive waste. In this context, it has been feared that osmotic water flows generated by the release of sodium nitrate salt in high concentrations, out of intermediate radioactive bituminous waste, could induce important over-pressures. The latest would eventually lead to fracturing of the host rock around the waste disposal drifts. The purpose of the present study was to develop a simulation code with the capacity to assess the potential impact of osmosis on: the re-saturation of the waste disposal drifts, the pressure evolution and the solute transport in and around a waste disposal drift. A chemo-osmotic coupled flow and transport model was implemented using the FlexPDE-finite element library. Our model is based on the chemo-osmotic formulation developed by Bader and Kooi, 2005. The model has been extended to highly concentrated solutions based on Pitzer's equation. In order to assess the impact of osmotic flow on the re-saturation time, the model was also designed to allow unsaturated flow modelling. The model configuration consists of an initially unsaturated 2D

  13. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  14. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  15. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  16. Not all that glitters is gold - Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artefacts

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Skjolding, Lars Michael; Thit, Amalie

    2017-01-01

    techniques are used to investigate internalization of 10 nm gold nanoparticles in Daphnia magna gut lumen and gut epithelial cells upon 24h exposure and outline potential artefacts, i.e. high contract precipitates from sample preparation related to these techniques. Light sheet microscopy confirmed...... accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut epithelium...

  17. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  18. The Challenge of Being Outstanding: A Look Back and Ahead After 25 Years of Guiding Business Excellence

    Directory of Open Access Journals (Sweden)

    Harry S. Hertz

    2015-03-01

    Full Text Available The management of organizational performance is a challenge faced by every business, nonprofit, and government organization. The attributes of an outstanding organization have evolved over time as complexity has increased and change has become constant. The Baldrige Performance Excellence Program has closely tracked these attributes and changes to always reflect the leading edge of management practice. What these attributes and changes are, the challenges CEOs and organizations face today, and performance management areas that will need attention in the future are explored.

  19. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  20. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  1. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  2. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  3. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  4. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  5. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  6. Use of chemical analysis and assays of semipermeable membrane devices extracts to assess the response of bioavailable organic pollutants in streams to urbanization in six metropolitan areas of the United States

    Science.gov (United States)

    Bryant, Wade L.; Goodbred, Steve L.; Leiker, Thomas L.; Inouye, Laura; Johnson, B. Thomas

    2007-01-01

    Studies to assess the effects of urbanization on stream ecosystems are being conducted as part of the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program. The overall objectives of these studies are to (1) determine how hydrologic, geomorphic, water quality, habitat, and biological characteristics respond to land-use changes associated with urbanization in specific environmental settings, and (2) compare these responses across environmental settings. As part of an integrated assessment, semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around Atlanta, Georgia; Raleigh-Durham, North Carolina; and Denver-Fort Collins, Colorado, in 2003; and Dallas-Fort Worth, Texas; Milwaukee-Green Bay, Wisconsin; and Portland, Oregon, in 2004. Sites were selected to avoid point-source discharge and to minimize natural variability within each of the six metropolitan areas. In addition to standard chemical analysis for hydrophobic organic contaminants, three assays were used to address mixtures and potential toxicity: (1) Fluoroscan provides an estimate of the total concentration of polycyclic aromatic hydrocarbons (PAHs); (2) the P450RGS assay indicates the presence and levels of aryl hydrocarbon receptor agonists; and (3) Microtox® measures toxicological effects on photo-luminescent bacteria.Of the 140 compounds targeted or identified by gas chromatography/mass spectrometry analysis in this study, 67 were not detected. In terms of numbers and types of compounds, the following were detected: 2 wood preservatives, 6 insecticides (parent compounds), 5 herbicides, 22 polycyclic aromatic hydrocarbons, 2 dibenzofurans, 4 polychlorinated biphenyls, 7 compounds associated with fragrances or personal care products, 4 steroids associated with wastewater, 5 polydibromated diphenyl ethers (flame retardants), 3 plasticizers, 3 antimicrobials/disinfectants, and 3 detergent metabolites.Of the 73

  7. Modelling of solute and water transport in semi-permeable clay membranes: comparission with experiments

    NARCIS (Netherlands)

    Bader, S.; Kooi, H.

    2005-01-01

    Theories of osmosis in groundwater flow are increasingly used to explain anomalies of salinity in clayey environments. However, predictive modelling through mathematical analysis can hardly be found in literature. In this paper, a model of chemical osmosis based on non-equilibrium thermodynamics, is

  8. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films

    Science.gov (United States)

    Soldatkina, O. V.; Kucherenko, I. S.; Pyeshkova, V. M.; Alekseev, S. A.; Soldatkin, O. O.; Dzyadevych, S. V.

    2017-11-01

    In this work, we studied the conditions of deposition of a semipermeable polyphenylenediamine (PPD)-based membrane on amperometric disk platinum electrodes. Restricting an access of interfering substances to the electrode surface, the membrane prevents their impact on the sensor operation. Two methods of membrane deposition by electropolymerization were compared—at varying potential (cyclic voltammetry) and at constant potential. The cyclic voltammetry was shown to be easier in performing and providing better properties of the membrane. The dependence of PPD membrane effectiveness on the number of cyclic voltammograms and phenylenediamine concentration was analyzed. It was shown that the impact of interfering substances (ascorbic acid, dopamine, cysteine, uric acid) on sensor operation could be completely avoided using three cyclic voltammograms in 30 mM phenylenediamine. On the other hand, when working with diluted samples, i.e., at lower concentrations of electroactive substances, it is reasonable to decrease the phenylenediamine concentration to 5 mM, which would result in a higher sensitivity of transducers to hydrogen peroxide due to a thinner PPD layer. The PPD membrane was tested during continuous operation and at 8-day storage and turned out to be efficient in sensor and biosensors.

  9. It's Not Just about Value for Money: A Case Study of Values-Led Implementation of the Pupil Premium in Outstanding Schools

    Science.gov (United States)

    Abbott, Ian; Middlewood, David; Robinson, Sue

    2015-01-01

    This article draws on data collected from a series of semi-structured interviews with headteachers and other stakeholders on the use of the Pupil Premium in Ofsted-rated outstanding schools. It has a focus on the significance of fundamental principles in determining how effective use is made of additional resources. In particular, the importance…

  10. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  11. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  12. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  13. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  14. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  15. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  16. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Outstanding Junior Investigator Award in experimental high energy physics: Progress report, January 1, 1989 to December 31, 1989

    International Nuclear Information System (INIS)

    Partridge, R.

    1989-01-01

    An experimental program based upon the study of hadron collisions at the highest available energy is being carried out with the support of an Outstanding Junior Investigator Award to Dr. Richard Partridge. The work described in this report includes the development of the Level 0 trigger for the D/null/ experiment at Fermilab, preparation for the D/null/ physics program, and studies of detector design and physics at the Superconducting Super Collider

  18. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  19. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  20. EDITORIAL: Announcing the 2005 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2006-06-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, in 2005 the Editorial Board decided to present 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. 2005 Award Winners—Fluid Mechanics The Fluid Mechanics working group, chaired by Professor John Foss, was unanimous in its recommendation for the paper authored by J Chen and J Katz (Johns Hopkins University, USA) 'Elimination of peak-locking error in PIV analysis using the correlation mapping method', published in volume 16, issue 8, pp 1605 1618. The essence of the following citation was provided by Board Member Dr Mark Wernet: The paper of Chen and Katz describes a technique for eliminating the 'peak locking' bias error endemic to estimating the PIV correlation peak location. Particle image velocimetry (PIV) is used widely in both fundamental and applied fluid mechanics. In essence, a two-dimensional velocity map is extracted from two successive high-resolution images of light scattered by minute tracer particles. The incident light is derived from two laser beams which have been expanded into sheets. A precise time delay is imposed between the two laser light sheets. The cross-correlation of the scattered light intensity within corresponding small interrogation regions in the two images gives the displacement of the particles and hence the local velocity. Typically, in PIV processing, the correlation peak location is determined by fitting a curve through the correlation peak. This process is known to suffer from a bias error where the estimated

  1. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  2. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  3. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  4. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  5. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    Science.gov (United States)

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  6. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    Science.gov (United States)

    Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.

    2016-03-01

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.

  7. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    International Nuclear Information System (INIS)

    Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.

    2016-01-01

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.Graphical Abstract

  8. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevich, Raul A. [U.S. Food and Drug Administration, Division of Biochemical Toxicology, National Center for Toxicological Research (United States); Fernandez, Avelina, E-mail: velifdez@ific.uv.es [Consejo Superior de Investigaciones Científicas-Universitat de València, Parc Científic, Instituto de Física Corpuscular (Spain); Watanabe, Fumiya; Mustafa, Thikra [University Arkansas at Little Rock, Center for Integrative Nanotechnology Sciences (United States); Bryant, Matthew S. [U.S. Food and Drug Administration, Division of Biochemical Toxicology, National Center for Toxicological Research (United States)

    2016-03-15

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.Graphical Abstract.

  9. The Composition and Organization of Cytoplasm in Prebiotic Cells

    Directory of Open Access Journals (Sweden)

    Jack T. Trevors

    2011-03-01

    Full Text Available This article discusses the hypothesized composition and organization of cytoplasm in prebiotic cells from a theoretical perspective and also based upon what is currently known about bacterial cytoplasm. It is unknown if the first prebiotic, microscopic scale, cytoplasm was initially contained within a primitive, continuous, semipermeable membrane, or was an uncontained gel substance, that later became enclosed by a continuous membrane. Another possibility is that the first cytoplasm in prebiotic cells and a primitive membrane organized at the same time, permitting a rapid transition to the first cell(s capable of growth and division, thus assisting with the emergence of life on Earth less than a billion years after the formation of the Earth. It is hypothesized that the organization and composition of cytoplasm progressed initially from an unstructured, microscopic hydrogel to a more complex cytoplasm, that may have been in the volume magnitude of about 0.1–0.2 µm3 (possibly less if a nanocell prior to the first cell division.

  10. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  11. CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium.

    Science.gov (United States)

    Wang, Yuanwei; Zhu, Yihua; Huang, Jianfei; Cai, Jin; Zhu, Jingrun; Yang, Xiaoling; Shen, Jianhua; Jiang, Hao; Li, Chunzhong

    2016-11-03

    Perovskite quantum dots with excellent optical properties and robust durability stand as an appealing and desirable candidate for fluorescence resonance energy transfer (FRET) based fluorescence detection, a powerful technique featuring excellent accuracy and convenience. In this work, a monolithic superhydrophobic polystyrene fiber membrane with CsPbBr 3 perovskite quantum dots encapsulated within (CPBQDs/PS FM) was prepared via one-step electrospinning. Coupling CPBQDs with PS matrix, this CPBQDs/PS FM composite exhibits high quantum yields (∼91%), narrow half-peak width (∼16 nm), nearly 100% fluorescence retention after being exposed to water for 10 days and 79.80% fluorescence retention after 365 nm UV-light (1 mW/cm 2 ) illumination for 60 h. Thanks to the outstanding optical property of CPBQDs, an ultralow detection limit of 0.01 ppm was obtained for Rhodamine 6G (R6G) detection, with the FRET efficiency calculated to be 18.80% in 1 ppm R6G aqueous solution. Electrospun as well-designed fiber membranes, CPBQDs/PS FM composite also possesses good tailorability and recyclability, showing exciting potential for future implementation into practical applications.

  12. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  13. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  14. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2016-12-01

    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  15. Outstanding personalities in German-speaking mycology : Dedicated to Professor Dr. Johannes Müller.

    Science.gov (United States)

    Seebacher, Claus; Lotti, Torello; Roccia, Maria Grazia; Fioranelli, Massimo; Wollina, Uwe

    2017-10-01

    The history of medical and veterinary mycology in general has been reviewed in the excellent monography by G.C. Ainsworth (1905-1998) published in 1986. Here, we will focus on German-speaking mycology and their outstanding personalities. We will start with the early years when medical mycology was in its infancy. Microscopy was a most valuable tool for the identification of fungi followed by cultivation and staining methods. Human pathologies became linked to fungi. After World War I, medical mycology flourished as an integral part of dermatology at universities and in private institutes. The development was interrupted by World War II, which divided Germany. In both parts of Germany, medical mycology had to be re-established. After re-unification the two different medical societies joined together. The development of DMyK (Deutschsprachigen Mykologischen Gesellschaft - Mykologie) is illustrated. Important personalities and some of their achievements are mentioned. Mycology has attracted other fields of medicine including internal medicine, pediatrics, microbiology, and veterinary medicine.

  16. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  17. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.

    Science.gov (United States)

    Sun, Bingyun; Hood, Leroy

    2014-06-06

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.

  18. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  19. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  20. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-08-29

    Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which

  1. [Outstanding Soviet zoologist and parasitologist E. N. Pavlovsky--the creator of the theory of natural foci of disease].

    Science.gov (United States)

    Pavlovskyĭ, L N

    2011-01-01

    The article presents information on the outstanding Soviet Zoology and Parasitology, Academician of the Academy of Sciences of the USSR Academy of Medical Sciences of the USSR, Hero of Socialist Labour, Lieutenant-General of the Medical Service E. N. Pavlovsky, the author of more than 1500 scientific papers, the founder of scientific school, one of the few scholars the twentieth century, approaching the level of scientists and encyclopedists. Considered its contribution to the study of natural foci of diseases has promoted the development of environmental trends in parasitology.

  2. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  3. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  4. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  5. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    Science.gov (United States)

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  6. Osmotic power. A great energy source for renewable energy; Una gran fuente de energia renovable para electricidad. Potencia osmotica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Alvarez, J.

    2009-07-01

    When freshwater meets saltwater, for example, where a river flows out into the sea, enormous quantities of energy can be utilised to generate power, through the natural phenomenon of osmosis. Osmotic power is based on the natural phenomenon of osmosis, defined as the transport of water through a semi-permeable membranes, enclosing their cells, and tho produce osmotic power one has to design similar, artificial membranes. In an osmotic power plant we feed freshwater into separate chambers, separated by an artificial membranes. The salt molecules in the seawater then draw the freshwater through the membranes, causing the pressure on the seawater side to increase. This pressure corresponds to a water column of 120 meters or a large waterfall, and can be utilised in a turbine which generated electricity. The idea to generate power through osmosis is originates from the 1970s. At the time, however, the membranes had low efficiency and power price were too low to enable anyone to profitable invest in such a project. many years later, research scientists al SINTEF brought the idea to STAT kraft. The collaboration was initiated in 1997, and the development of a new, renewable energy source was initiated. (Author)

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  9. A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia

    Science.gov (United States)

    Wyers, G. P.; Otjes, R. P.; Slanina, J.

    A new diffusion denuder is described for the continuous measurement of atmospheric ammonia. Ammonia is collected in an absorption solution in a rotating denuder, separated from interfering compounds by diffusion through a semi-permeable membrane and detected by conductometry. The method is free from interferences by other atmospheric gases, with the exception of volatile amines. The detection limit is 6 ng m -3 for a 30-min integration time. This compact instrument is fully automated and suited for routine deployment in field studies. The precision is sufficiently high for micrometeorological studies of air-surface exchange of ammonia.

  10. Intercomparison study of sampling methods for the determination of polychlorinated biphenyl (PCB) in seawater

    International Nuclear Information System (INIS)

    Schulz-Bull, D.E.

    1999-01-01

    The determination of organic pollutants in seawater is a serious problem, as their concentrations in the water column are typical in the fg - ng/L range. Available methods therefore includes extensive sampling and laboratory work. The development of simple sampling techniques for organochlorines (e.g. passive sampling with semipermeable membrane device (SPMD), mussel watch) is required. Three methods for the measurement of trace organochlorines in seawater were investigated: (1) the filtration (GF/F) and extraction (XAD-2 resin) of seawater with an in-situ pumping system, (2) biological-accumulation by mussels (mytilus edulis) and (3) passive sampling with SPMD

  11. Classification of alpha-active workplace aerosols based on coefficient of transportability as measured by the dialysis method

    International Nuclear Information System (INIS)

    Khokhryakov, V.F.; Suslova, K.G.; Tseveloyova, I.A.; Aladova, E.E.; Filipy, R.E.

    1998-01-01

    This report describes a method by which potentially inhaled workplace aerosols containing plutonium compounds are classified on the basis of measured transportability in Ringer's solution. It is suggested that the criterion 'transportability' be used in the ICRP respiratory tract model. Transportability is measured as the fraction of plutonium alpha activity, deposited on a collecting filter, that passes through a semi-permeable membrane in Ringer's physiological solution during two days of dialysis. First order kinetic equations are used for explanation of dialysis results. The dissolution characteristics of alpha-active aerosols are important in interpretation of their passage from the lungs after inhalation. (author)

  12. Efficiency of osmotic pipe flows

    DEFF Research Database (Denmark)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Helix Nielsen, Claus

    2013-01-01

    efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c......We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping...

  13. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  14. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  15. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  16. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment

    Directory of Open Access Journals (Sweden)

    Minwei Yao

    2017-01-01

    Full Text Available Electrospun membranes are gaining interest for use in membrane distillation (MD due to their high porosity and interconnected pore structure; however, they are still susceptible to wetting during MD operation because of their relatively low liquid entry pressure (LEP. In this study, post-treatment had been applied to improve the LEP, as well as its permeation and salt rejection efficiency. The post-treatment included two continuous procedures: heat-pressing and annealing. In this study, annealing was applied on the membranes that had been heat-pressed. It was found that annealing improved the MD performance as the average flux reached 35 L/m2·h or LMH (>10% improvement of the ones without annealing while still maintaining 99.99% salt rejection. Further tests on LEP, contact angle, and pore size distribution explain the improvement due to annealing well. Fourier transform infrared spectroscopy and X-ray diffraction analyses of the membranes showed that there was an increase in the crystallinity of the polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP membrane; also, peaks indicating the α phase of polyvinylidene fluoride (PVDF became noticeable after annealing, indicating some β and amorphous states of polymer were converted into the α phase. The changes were favorable for membrane distillation as the non-polar α phase of PVDF reduces the dipolar attraction force between the membrane and water molecules, and the increase in crystallinity would result in higher thermal stability. The present results indicate the positive effect of the heat-press followed by an annealing post-treatment on the membrane characteristics and MD performance.

  17. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  18. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  19. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  20. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian; Bonyadi, Sina; Chung, Neal Tai-Shung

    2015-01-01

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  1. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian

    2015-09-26

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  2. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption.

    Science.gov (United States)

    DeCoste, Jared B; Denny, Michael S; Peterson, Gregory W; Mahle, John J; Cohen, Seth M

    2016-04-21

    Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology.

  3. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  4. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  5. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  6. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  7. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  8. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  9. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  10. EDITORIAL: Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Yacoot, Andrew; Regtien, Paul; Peters, Kara

    2013-07-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of 'Measurement Science' and 'Fluid Mechanics'. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2012 Award Winners—Measurement Science Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications J Hiller1, M Maisl2 and L M Reindl3 1 Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 425, 2800 Kgs Lyngby, Denmark 2 Development Center for X-Ray Technology (EZRT), Fraunhofer Institute for Non-Destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany 3 Laboratory for Electrical Instrumentation, Institute for Microsystem Technology (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany This year's award goes to another paper [1] dealing with micro-measurements, using a scientific measurement technique that is both old and traditional. However, it is the advent of modern technology with computational techniques that have offered new insights into the capability of the measurement method. The paper describes an x-ray computed tomography (CT) system. Such systems are increasingly used in production engineering, where non-destructive measurements of the internal geometries of workpieces can be made with high information density. CT offers important alternatives to tactile

  11. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  12. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  13. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  14. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  15. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    Science.gov (United States)

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  16. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  17. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  18. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair.

    Science.gov (United States)

    Soni, Shelly; Moldenhauer, Julie S; Spinner, Susan S; Rendon, Norma; Khalek, Nahla; Martinez-Poyer, Juan; Johnson, Mark P; Adzick, N Scott

    2016-05-01

    Since the results of the Management of Myelomeningocele Study were published, maternal-fetal surgery for the in utero treatment of spina bifida has become accepted as a standard of care alternative. Despite promise with fetal management of myelomeningocele repair, there are significant complications to consider. Chorioamniotic membrane separation and preterm premature rupture of membranes are known complications of invasive fetal procedures. Despite their relative frequency associated with fetal procedures, few data exist regarding risk factors that may be attributed to their occurrence or the natural history of pregnancies that are affected with chorionic membrane separation or preterm premature rupture of membranes related to the procedure. The objective of this study was to review chorioamniotic membrane separation and preterm premature rupture of membranes in a cohort of patients undergoing fetal management of myelomeningocele repair including identification of risk factors and outcomes. This was a retrospective review of patients undergoing fetal management of myelomeningocele repair and subsequent delivery from January 2011 through December 2013 at 1 institution. Patients were identified through the institutional fetal management of myelomeningocele repair database and chart review was performed. Perioperative factors and outcomes among patients with chorioamniotic membrane separation and preterm premature rupture of membranes were compared to those without. Risk factors associated with the development of chorioamniotic membrane separation and preterm premature rupture of membranes were determined. A total of 88 patients underwent fetal management of myelomeningocele repair and subsequently delivered during the study period. In all, 21 patients (23.9%) were diagnosed with chorioamniotic membrane separation by ultrasound and preterm premature rupture of membranes occurred in 27 (30.7%). Among the chorioamniotic membrane separation patients, 10 (47.6%) were

  19. 47{sup th} Annual conference on nuclear technology (AMNT 2016). Key topics / Outstanding know-how and sustainable innovations - enhanced safety and operation excellence

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR - Consulting on Nuclear Law, Licensing and Regulation, Leipzig (Germany); Fischer, Erwin [PreussenElektra GmbH, Hannover (Germany). Management Board; Mohrbach, Ludger [VGB PowerTech e.V., Essen (Germany). Competence Center ' ' Nuclear Power Plants' '

    2016-08-15

    Summary report on the Key Topics ''Outstanding Know-How and Sustainable Innovations'' and ''Enhanced Safety and Operation Excellence'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 will be covered in further issues of atw.

  20. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  1. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  2. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  3. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  4. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  5. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  6. Outstanding visible photocatalytic activity of a new mixed bismuth titanatate material

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, P. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Americo Vespucio 49, 410092, Sevilla (Spain); Departamento Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González s/n, 41012 Sevilla (Spain); Sayagués, M.J.; Navío, J.A. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Americo Vespucio 49, 410092, Sevilla (Spain); Hidalgo, M.C., E-mail: carmen.hidalgo@csic.es [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Americo Vespucio 49, 410092, Sevilla (Spain)

    2017-02-01

    Highlights: • Photocatalyst based on bismuth titanates with high visible activity. • Its visible activity as high as UV activity of TiO{sub 2} P25 for phenol degradation. • Photocatalyst is majority of phase Bi{sub 20}TiO{sub 32} with Bi{sub 4}Ti{sub 3}O{sub 12} and amorphous TiO{sub 2}. • High visible activity due to low BG, interconnected phases and high surface area. - Abstract: In this work, a new photocatalyst based on bismuth titanates with outstanding visible photocatalytic activity was prepared by a facile hydrothermal method. The synthesised material showed visible activity as high as UV activity of commercial TiO{sub 2} P25 under the same experimental conditions for phenol degradation. A wide characterisation of the photocatalyst was performed. The material was composed of three phases; majority of Bi{sub 20}TiO{sub 32} closely interconnected to Bi{sub 4}Ti{sub 3}O{sub 12} and amorphous TiO{sub 2}. The high visible activity showed by this material could be ascribed to a combination of several features; i.e. low band gap energy value (2.1 eV), a structure allowing a good separation path for visible photogenerated electron-holes pairs and a relatively high surface area. This photocatalyst appeared as a promising material for solar and visible applications of photocatalysis.

  7. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  8. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  9. Outstanding Questions In First Amendment Law Related To Food Labeling Disclosure Requirements For Health.

    Science.gov (United States)

    Pomeranz, Jennifer L

    2015-11-01

    The federal and state governments are increasingly focusing on food labeling as a method to support good health. Many such laws are opposed by the food industry and may be challenged in court, raising the question of what is legally feasible. This article analyzes outstanding questions in First Amendment law related to commercial disclosure requirements and conducts legal analysis and policy evaluation for three current policies. These include the Food and Drug Administration's draft regulation requiring an added sugar disclosure on the Nutrition Facts panel, California's proposed sugar-sweetened beverage safety warning label bill, and Vermont's law requiring labels of genetically engineered food to disclose this information. I recommend several methods for policy makers to enact food labeling laws within First Amendment parameters, including imposing factual commercial disclosure requirements, disclosing the government entity issuing a warning, collecting evidence, and identifying legitimate governmental interests. Project HOPE—The People-to-People Health Foundation, Inc.

  10. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  11. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  12. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  13. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  14. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  15. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  16. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    Science.gov (United States)

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  17. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  18. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  20. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  1. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  2. Studies on membrane for redox flow battery. 9. Crosslinking of the membrane by the electron radiation and durability of the membrane

    International Nuclear Information System (INIS)

    Ohya, Haruhiko; Minamihira, Kazunori; Hwang, Gab-Jin; Kawahara, Takashi; Aihara, Masahiko; Negishi, Youichi; Kang, An-Soo.

    1995-01-01

    Chlorosulfonated homogeneous and asymmetric cation exchange membranes were tested as separators for the all-vanadium redox flow battery. The membrane was prepared by chlorosulfonation of the polyethylene film in vapour phase. In the case of the polyethylene film of 20 μm thickness used for the homogeneous membrane, area resistivity of 0.5 Ω · cm 2 in 2M KCl aq. solution was reached at 120 min. chlorosulfonation time. In the case of heat laminated 20 μm thick PE film on a neutral porous polyolefin film of 200 μm thickness used for the asymmetric membrane, a minimum area resistivity of 1 Ω · cm 2 in 2M KCl was achieved at 120 min. chlorosulfonation time. The performance evaluation of the membranes as separators in the all-vanadium redox flow battery was also measured. The area resistivity of the membranes in the measuring-cell using charge-discharge current density 63.7 mA/cm 2 was 1.4 Ω · cm 2 and 2.2 Ω · cm 2 for charge and discharge respectively for the homogeneous membrane, and 3.6 Ω · cm 2 and 4.3 Ω · cm 2 for charge discharge cycles respectively for the asymmetric membrane. The chlorosulfonated homogeneous cation exchange membrane was cross-linked by the electron radiation to improve durability of the membrane. The crosslinked membrane which has the high degree of cross-linking, did not shown the mechanical breakage by swelling or shrinking in the acidic vanadium solution, but its area resistivity in the all-vanadium redox flow battery was increased. (author)

  3. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  4. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  5. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  6. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  7. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  8. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  9. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  10. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L.

    2013-01-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission

  11. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    Science.gov (United States)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  12. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  13. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  14. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  15. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes.

    Science.gov (United States)

    Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar

    2018-03-01

    Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: jhli_2005@163.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)

    2012-06-15

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  17. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    International Nuclear Information System (INIS)

    Li Jianhua; Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng; Zhang Qiqing

    2012-01-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  18. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  19. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  20. Paired single cell co-culture microenvironments isolated by two-phase flow with continuous nutrient renewal.

    Science.gov (United States)

    Chen, Yu-Chih; Cheng, Yu-Heng; Kim, Hong Sun; Ingram, Patrick N; Nor, Jacques E; Yoon, Euisik

    2014-08-21

    Cancer-stromal cell interactions are a critical process in tumorigenesis. Conventional dish-based assays, which simply mix two cell types, have limitations in three aspects: 1) limited control of the cell microenvironment; 2) inability to study cell behavior in a single-cell manner; and 3) have difficulties in characterizing single cell behavior within a highly heterogeneous cell population (e.g. tumor). An innovative use of microfluidic technology is for improving the spatial resolution for single cell assays. However, it is challenging to isolate the paired interacting cells while maintaining nutrient renewal. In this work, two-phase flow was used as a simple isolation method, separating the microenvironment of each individual chamber. As nutrients in an isolated chamber are consumed by cells, media exchange is required. To connect the cell culture chamber to the media exchange layer, we demonstrated a 3D microsystem integration technique using vertical connections fabricated by deep reactive-ion etching (DRIE). Compared to previous approaches, the presented process allows area reduction of vertical connections by an order of magnitude, enabling compact 3D integration. A semi-permeable membrane was sandwiched between the cell culture layer and the media exchange layer. The selectivity of the semi-permeable membrane results in the retention of the signaling proteins within the chamber while allowing free diffusion of nutrients (e.g., glucose and amino acids). Thus, paracrine signals are accumulated inside the chamber without cross-talk between cells in other chambers. Utilizing these innovations, we co-cultured UM-SCC-1 (head and neck squamous cell carcinoma) cells and endothelial cells to simulate tumor proliferation enhancement in the vascular endothelial niche.

  1. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2016-10-01

    Full Text Available A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF membrane and compare with a commercially available polymeric membrane (polyimide through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP/m2 h bar and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure. The highest performance recorded through experiments (CHF and PORCHF was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV was calculated for base case and optimal pressure (50 bar for CHF and PORCHF. The results indicated that recycle ratio (recycle/feed ranged from 0.2 to 10, specific energy from 0.15 to 0.8 (kW/Nm3feed and specific membrane area from 45 to 4700 (m2/Nm3feed. The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for

  2. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Haylett, T.; Thilo, L.

    1986-01-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D 1 , was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  3. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  4. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  5. Cholesteatoma behind an intact tympanic membrane: histopathologic evidence for a tympanic membrane origin.

    Science.gov (United States)

    Sudhoff, H; Linthicum, F H

    2001-07-01

    Several theories have been proposed with respect to the origin and pathogenesis of cholesteatoma behind an intact tympanic membrane. The authors describe a case of cholesteatoma behind an intact tympanic membrane in a 71-year-old man with a history of tympanic membrane retraction fixed to the incus without evidence of a perforation. The membrane eventually became detached, and remnants of keratinizing squamous epithelium were found on the incus. Mechanisms such as metaplasia, ectopic epidermis rests, or ingrowth of meatal epidermis have been proposed to explain the pathogenesis of cholesteatoma behind an intact tympanic membrane. These findings, based on temporal bone histopathology, support the role of an acquired epidermal rest. This case report provides evidence that cholesteatoma behind an intact tympanic membrane can be established from a resolved retraction of the pars tensa of the tympanic membrane.

  6. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  7. Studies in the development of a bridging device for guiding regenerating axons

    Science.gov (United States)

    Wen, Xuejun

    At present there is no clinically effective treatment for injuries or pathological processes that disrupt the continuity of axons in the mature central nervous system. However, a number of studies suggest that a tremendous potential exists for developing therapies. In particular biomaterials in the form of bridging substrates been shown to support at least some level of axonal regeneration across the lesion site, but display a limited capacity for directing axons toward their targets. To influence the directionality of the regeneration process filaments and tubes appear promising but the technology is far from optimized. As a step toward optimization, we investigated various components of a tissue-engineered bridging device consisting of numerous filaments surrounded by a semipermeable biodegradable hollow fiber membrane (HFM). In the first part of the thesis, we studied the influence of filament diameter and various extracellular matrix coatings on neuron regeneration suing a dorsal root ganglion explant model. We found that laminin surface treated filaments that approached the size of spinal axons support significantly longer regenerative outgrowth than similarly treated filaments of larger diameter, and exceed outgrowth distance on similarly sized filaments treated with fibronectin. Such substrates also consistently supported the attachment and alignment of glial cells and directed the outgrowth of regenerating axons along the long axis of the filaments. In the last part of the thesis, biodegradable hollow fiber membranes were fabricated and their physical, chemical and degradation properties were analyzed. We found that it is possible to use phase inversion methods to fabricate hollow fiber membranes of widely varying properties that degrade of the course of several months. We then evaluated the biocompatibility of the new materials after implantation in the CNS using an adult rat model. We found that the implants were well tolerated and elicited a reaction

  8. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  9. The physics of osmotic pressure

    Science.gov (United States)

    Bowler, M. G.

    2017-09-01

    Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.

  10. Radioactive waste processing method for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kuriyama, O

    1976-06-04

    Object is to subject radioactive liquid waste in a nuclear power plant to reverse permeation process after which it is vaporized and concentrated thereby decreasing the quantity of foam to be used to achieve effective concentration of the liquid waste. Liquid waste containing a radioactive material produced from a nuclear power plant is first applied with pressure in excess of osmotic pressure by a reverse permeation device and is separated into clean water and concentrated liquid by semi-permeable membrane. Next, the thus reverse-permeated and concentrated waste is fed to an evaporator which control foaming by the foam and then further reconcentrated for purification of the liquid waste.

  11. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian; Chung, Neal Tai-Shung

    2016-01-01

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young's Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  12. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian

    2016-05-12

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  13. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  14. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  15. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  16. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  17. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  18. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m......A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1......W cm–2 using oxygen and air, respectively, at 175 °C....

  19. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  20. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  1. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  2. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2013-01-01

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  3. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo

    2013-11-26

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  4. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  5. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    Science.gov (United States)

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  7. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials...

  8. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.

    Science.gov (United States)

    Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing

    2018-02-20

    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

  9. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  10. Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface?

    Directory of Open Access Journals (Sweden)

    Patricia I. Oteiza

    2005-01-01

    Full Text Available Flavonoids can exert beneficial health effects through multiple mechanisms. In this paper, we address the important, although not fully understood, capacity of flavonoids to interact with cell membranes. The interactions of polyphenols with bilayers include: (a the partition of the more non-polar compounds in the hydrophobic interior of the membrane, and (b the formation of hydrogen bonds between the polar head groups of lipids and the more hydrophilic flavonoids at the membrane interface. The consequences of these interactions are discussed. The induction of changes in membrane physical properties can affect the rates of membrane lipid and protein oxidation. The partition of certain flavonoids in the hydrophobic core can result in a chain breaking antioxidant activity. We suggest that interactions of polyphenols at the surface of bilayers through hydrogen bonding, can act to reduce the access of deleterious molecules (i.e. oxidants, thus protecting the structure and function of membranes.

  11. Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane

    OpenAIRE

    Doudová, Lenka

    2017-01-01

    Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane Yeast plasma membrane is divided into several different compartments. Membrane compartment of Can1 is specific for its protein and lipid composition, furthermore it creates furrow-like invaginations on the plasma membrane. These invaginations are made by multiprotein complexes called eisosomes, which are located in the cytosolic side of MCCs. It was established that this domain plays an importa...

  12. Radio-chemical applications of functionalized membranes

    International Nuclear Information System (INIS)

    Pandey, Ashok K.

    2011-01-01

    Functionalized polymer membranes have many potential applications as they are task specific. We have developed many functionalized membranes like polymer inclusion membranes, pore-filled membranes and nano-membranes. Radiotracers and other methods have been used to understand the diffusional-transport properties of the Nafion-117 membrane as well as home-made membranes. These membranes have been used to develop novel analytical and separation methods for toxic metal ions and radionuclides. In this talk, an overview of our work on functionalized membrane is presented. (author)

  13. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  14. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  15. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    Science.gov (United States)

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  16. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  17. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  18. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  19. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  20. Fetal membrane healing after spontaneous and iatrogenic membrane rupture: A review of current evidence

    OpenAIRE

    Devlieger, R.; Millar, L. K.; Bryant-Greenwood, G.; Lewi, L.; Deprest, J. A.

    2006-01-01

    In view of the important protective role of the fetal membranes, wound sealing, tissue regeneration, or wound healing could be life saving in cases of preterm premature rupture of the membranes. Although many investigators are studying the causes of preterm premature rupture of membranes, the emphasis has not been on the wound healing capacity of the fetal membranes. In this review, the relevant literature on the pathophysiologic condition that leads to preterm premature rupture of membranes ...

  1. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  2. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  3. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  4. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  5. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    Science.gov (United States)

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  7. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  8. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  10. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  11. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    Science.gov (United States)

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2018-01-01

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH 3 )-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  12. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  13. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.

    2017-05-01

    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature

  14. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  15. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  16. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  17. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  18. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  19. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  20. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  1. Review on Development of Ceramic Membrane From Sol-Gel Route: Parameters Affecting Characteristics of the Membrane

    Directory of Open Access Journals (Sweden)

    M. R. Othman and H. Mukhtar

    2012-08-01

    Full Text Available The importance of laboratory scale ceramic membrane preparation using sol-gel technique with pore sizes in the range of 1-10nm is reviewed. Parameters affecting the characteristics of membrane during membrane development are highlighted and discussed in detail. Experimental results from literatures have shown that the correct amount of acid, water, PVA, appropriate membrane thickness, proper control of drying rate, and appropriate temperature profile selection during sintering process are necessary in order to acquire sufficient strength and reduce the formation of crack in the membrane. The different temperature setting during sintering process also influences the size of pore formed.Key Words: Sol-Gel, Inorganic Membrane, Ceramic Membrane, Gas Permeation, Sintering, Sol Properties, Membrane Morphologies, Pore Size Distribution.

  2. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  3. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  4. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Influenza type A virus: an outstandingly protean pathogen and a potent modular weapon.

    Science.gov (United States)

    Shoham, Dany

    2013-05-01

    A remarkable debate recently arose on a global scale, about bioethics, biohazard, bioweaponry and bioterrorism issues related to scientific research concerning the induced transition of the highly lethal H5N1 avian flu virus from a non-pandemic to a tentatively pandemic strain, which might fall into malevolent hands. Appreciable ecogenetic complexity marks the main attributes of influenza type A viruses, namely infectivity, virulence, antigenicity, transmissibility, host range, endemicity, and epidemicity. They all shape, conjunctively, the outstanding protean nature of this pathogen, hence the modularity of the latter as a potent weapon. The present analysis inquires into those attributes, so as to profile and gauge threat, usability, impact and coping, particularly that the dimension of genetic engineering of this virus largely amplifies its potential. Within that context, various human interventions and misuses, including human experimental infections, undesirable vaccinations, as well as unauthorized and unskillful operations, led to bad corollaries and are also discussed in the present study. Altogether, a variety of interrelated properties underlying the complicatedness of and menaces posed by influenza A virus as a grave medical challenge, a dually explorable pathogen, and a modular biological warfare agent, are thereby illuminated, alongside with their scientific, strategic and practical implications.

  6. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  7. Performance Improvement of Membrane Stress Measurement Equipment through Evaluation of Added Mass of Membrane and Error Correction

    Directory of Open Access Journals (Sweden)

    Sang-Wook Jin

    2017-01-01

    Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.

  8. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  9. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  10. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting with lipos......Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting...... with liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...

  11. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  12. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  13. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  16. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  17. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation

    Science.gov (United States)

    Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy

    2012-01-01

    Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931

  18. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  19. Membranes for Environmentally Friendly Energy Processes

    Science.gov (United States)

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  20. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  1. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  2. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  3. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  4. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  5. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  6. Preparation of thermo-responsive membranes. II.

    Science.gov (United States)

    Nozawa, I; Suzuki, Y; Sato, S; Sugibayashi, K; Morimoto, Y

    1991-05-01

    Two types of liquid crystal (LC)-immobilized membranes were prepared by a soaking method and sandwich method to control the permeation of indomethacin, as a model drug, in response to local and systemic fever. Monooxyethylene trimethylolpropane tristearate (MTTS) was used as a model LC because it has a gel-liquid crystal phase transition temperature near the body temperature, 39-40 degrees C in phosphate buffered saline (pH 7.4). Two porous polypropylene (PP) membranes were soaked into 20% MTTS chloroform solution in the soaking method, and two PP membranes were poured with the melted MTTS and pressed in the sandwich method. Thermo-response efficacy of the soaked membrane was dependent upon the content of MTTS in MTTS membrane, and the MTTS content above the void volume of PP membrane (38%) was needed for high efficacy. On the other hand, the sandwich membrane exhibited higher thermo-response efficacy than the soaked membrane, because more LC was embedded in the pores of sandwich membrane than that of the soaked membrane. The sandwich membrane permeation of indomethacin was sharply controlled by temperature changes between 32 and 38 degrees C.

  7. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    Science.gov (United States)

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Organic fluid permeation through fluoropolymer membranes

    Science.gov (United States)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  9. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  10. FAS grafted superhydrophobic ceramic membrane

    Science.gov (United States)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  11. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  12. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  13. [Research on ultrasonic permeability of low intensity pulsed ultrasound through PTFE membrane and Bio-Gide collagen membrane].

    Science.gov (United States)

    Chai, Zhaowu; Zhao, Chunliang; Song, Jinlin; Deng, Feng; Yang, Ji; Gao, Xiang; Liu, Minyi

    2013-12-01

    The aim of the present study was to detect the transmission rate of ultrasonic low intensity pulsed ultrasound (LIPUS) through polytetrafluoroethylene (PTFE) membrane (Thickness: 0.01 mm) and Bio-Gide collagen membrane, and to provide the basis for the barrier membrane selection on the study of LIPUS combined with guided tissue regeneration (GTR). The ultrasonic (LIPUS, frequency 1.5 MHz, pulse width 200 micros, repetition rate 1.0 kHz) transmission coefficient of the two kinds of barrier membrane were detected respectively through setting ten groups from 10 to 100mW/cm2 every other 10 mW/cm2. We found in the study that the ultrasonic transmission coefficient through 0.01 mm PTFE membrane was 78.1% to 92.%, and the ultrasonic transmission coefficient through Bio-Gide collagen membrane was 43.9% to 55.8%. The ultrasonic transmission coefficient through PTFE membrane was obviously higher than that through Bio-Gide collagen membrane. The transmission coefficient of the same barrier membrane of the ultrasonic ion was statistically different under different powers (P PTFE membrane and Bio-Gide collagen membrane were relatively high. We should select barrier membranes based on different experimental needs, and exercise ultrasonic transmission coefficient experiments to ensure effective power.

  14. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  15. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  16. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  17. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  18. A comparative study of reverse osmosis and activated charcoal, two inexpensive and very effective ways to remove waterborne radon

    International Nuclear Information System (INIS)

    Sullivan, K.T.; Mose, D.G.; Mushrush, G.W.

    1994-01-01

    A two year comparative study of waterborne radon removal reveals that reverse osmosis is consistently more effective than the use of activated charcoal. Reverse osmosis is a process by which water is forced under a pressure sufficient to overcome osmotic pressure through a semipermeable membrane, leaving behind impurities. Removal effectiveness for dissolved organic, dissolved ionic and suspended impurities are typically above 90%. Systems designed for home use to remove impurities from water dispensed at a convenient tap cost about $2000 and commonly consist of a sediment filter, a carbon prefilter, and a reverse osmosis container. A tank of activated charcoal can work equally well, and cost $500-$1000. However, the tank of charcoal becomes measurably enriched in gamma-emitters

  19. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  20. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.