WorldWideScience

Sample records for semiconductor tracker final

  1. Semiconductor tracker final integration and commissioning in the ATLAS detector

    International Nuclear Information System (INIS)

    Robichaud-Veronneau, Andree

    2008-01-01

    The SemiConductor Tracker (SCT) is part of the Inner Detector of the ATLAS experiment at the LHC. It is located between the Pixel detector and the Transition Radiation Tracker (TRT). During 2006 and 2007, the SCT was installed in its final position inside the ATLAS detector. The SCT barrel was lowered in 2006 and was tested for connectivity and noise. Common tests with the TRT to look for pick-up noise and grounding issues were also performed. The SCT end-caps were installed during summer 2007 and will undergo similar checks. The results from the various tests done before and after installation will be presented here.

  2. The ATLAS semiconductor tracker (SCT)

    International Nuclear Information System (INIS)

    Jackson, J.N.

    2005-01-01

    The ATLAS detector (CERN,LHCC,94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10 34 cm -2 s -1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN,LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN,LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed

  3. Integration and test of the ATLAS Semiconductor Tracker

    CERN Document Server

    Pernegger, H

    2007-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment and is one of the major new silicon detector systems for LHC. The paper summarizes the system integration of the SCT from individual components to the completed tracker barrel and endcaps ready for installation in the pit. Particular attention will be given to the test results obtained during the different integration steps: from single barrels and disks to the final tests inside the ID before installation in the pit. The tests provided us with operational experience for a significant fraction of the full detector system and showed the very good performance of the final assembled detector.

  4. The construction of the ATLAS semi-conductor tracker

    International Nuclear Information System (INIS)

    Jones, Tim

    2006-01-01

    The ATLAS (A Toroidal LHC ApparatuS) experiment at the Large Hadron Collider (LHC) at CERN has been designed to explore physics at the TeV energy scale and will be commissioned in 2007. In the innermost region of the experiment is a charged particle tracker, the Inner Detector of which the Semiconductor Tracker (SCT) is a major component. The SCT comprises a central barrel section enclosed by two endcaps (A and C). The construction of the major components of the ATLAS Semi-conductor tracker (SCT) is now nearing completion. Following a brief description of the design of the SCT, the logistics and organisation of the construction phase of the project are discussed. Central to the delivery of a high quality detector is the testing of large numbers of modules both during assembly and after they are mounted on their final support structures. The results of these tests for endcap C are presented showing that the electrical performance of the 988 modules to be installed in ATLAS is compatible with the specifications required

  5. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  6. Semiconductor Strip Tracker Endcaps come to CERN

    CERN Multimedia

    P. Bell

    The first few months of 2006 saw the delivery to CERN of the final components of the ATLAS Semi-Conductor Tracker (SCT), namely the completed SCT end-caps. Regular ATLAS eNews readers will recall that the SCT barrel arrived in sections in 2005 and was assembled later that year (see the April 2005 and December 2005 issues, respectively.) And as reported in this issue of the eNews, the barrel SCT has recently been integrated with the barrel Transition Radiation Tracker. The end-caps were constructed in Liverpool (side C) and NIKHEF (side A), using components manufactured at many different sites across the world. End-cap C left Liverpool on Monday 20 February and arrived at CERN after a two-day journey by road and through the Channel Tunnel. Accelerations in all three dimensions were monitored during the trip, as was temperature and humidity inside the container; all values remained within pre-specified safe ranges. The end-cap was visually inspected upon arrival, with no obvious damage being seen. Subsequent ...

  7. UK semiconductor tracker parts head for CERN

    CERN Multimedia

    Holland, Colin

    2005-01-01

    The last of the 4 barrels that make up the central part of the Semiconductor Tracker (SCT), the heart of the biggest physics collaboration in the world have left Oxford for its new home at the European Particle Physics Laboratory, CERN, near Geneva

  8. Operation and performance of the ATLAS semiconductor tracker

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernabéu, José; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; Garcia Argos, Carlos; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodrick, Maurice; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivarsson, Jenny; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joseph, John; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubik, Petr; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pieron, Jacek Piotr; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Rick; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sopko, Bruno; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warren, Matthew; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

  9. The ATLAS semi-conductor tracker operation and performance

    International Nuclear Information System (INIS)

    Robinson, D.

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been used to exploit fully the physics potential of the LHC since the first proton–proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed. -- Highlights: ► The operation and performance of the ATLAS Semi-Conductor Tracker (SCT) is reviewed. ► More than 99% of the SCT strips have remained operational in all data taking periods so far. ► Tracking performance indicators have met or exceeded design specifications. ► Radiation damage effects match closely expectations from delivered fluence.

  10. Operation and performance of the ATLAS Semiconductor Tracker

    CERN Document Server

    Barlow, N; The ATLAS collaboration

    2013-01-01

    The Semiconductor Tracker (SCT) is a crucial component of the ATLAS detector at the Large Hadron Collider at CERN. It is a silicon microstrip device, design to measure the trajectories of charged particles produced in pp collisions. In this talk I will briefly describe the design of the SCT, and various aspects of its performance during LHC Run 1.

  11. Performance of the ATLAS semiconductor tracker

    CERN Document Server

    Alpigiani, C; The ATLAS collaboration

    2014-01-01

    We report the operation and performance of the ATLAS Semi-Conductor Tracker (SCT) functioning in a high luminosity and high radiation environment. The SCT is part of the inner tracking system of the ATLAS experiment at CERN and is constructed of 4088 modules assembled from silicon-strip sensors for a total of 6.3 million channels more than 99 % of which were fully functional throughout all data taking periods. Noise occupancy and hit efficiency as well as the Lorentz angle and radiation damage measurements will be discussed in details.

  12. The integration and engineering of the ATLAS SemiConductor Tracker Barrel

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, A; Barr, A J [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Allport, P P; Austin, N [Oliver Lodge Laboratory, University of Liverpool, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Anastopoulos, C [University of Sheffield, Department of Physics and Astronomy, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Anderson, B; Attree, D J [Department of Physics and Astronomy, University College London (United Kingdom); Andricek, L; Bangert, A [Max-Planck-Institut fuer Physik, (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Anghinolfi, F [CERN, CH - 1211 Geneva 23 (Switzerland); Apsimon, R; Barclay, P; Batchelor, L E [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Atkinson, T [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Barbier, G [Universite de Geneve, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Geneve 4 (Switzerland); Bates, R L; Bell, W H [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Batley, J R [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Beck, G A [Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Bell, P J [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)] (and others)

    2008-10-15

    The ATLAS SemiConductor Tracker (SCT) was built in three sections: a barrel and two end-caps. This paper describes the design, construction and final integration of the barrel section. The barrel is constructed around four nested cylinders that provide a stable and accurate support structure for the 2112 silicon modules and their associated services. The emphasis of this paper is directed at the aspects of engineering design that turned a concept into a fully-functioning detector, as well as the integration and testing of large sub-sections of the final SCT barrel detector. The paper follows the chronology of the construction. The main steps of the assembly are described with the results of intermediate tests. The barrel service components were developed and fabricated in parallel so that a flow of detector modules, cooling loops, opto-harnesses and Frequency-Scanning-Interferometry (FSI) alignment structures could be assembled onto the four cylinders. Once finished, each cylinder was conveyed to the next site for the mounting of modules to form a complete single barrel. Extensive electrical and thermal function tests were carried out on the completed single barrels. In the next stage, the four single barrels and thermal enclosures were combined into the complete SCT barrel detector so that it could be integrated with the Transition Radiation Tracker (TRT) barrel to form the central part of the ATLAS inner detector. Finally, the completed SCT barrel was tested together with the TRT barrel in noise tests and using cosmic rays.

  13. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    Science.gov (United States)

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be LHC) operation and 10 d of cooling.

  14. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  15. The silicon microstrip sensors of the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS

  16. The ATLAS Semiconductor tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    Tracker After more than 3 years of successful operation at the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very cl...

  17. ATLAS SemiConductor Tracker Operation and Performance

    CERN Document Server

    Tojo, J; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi- Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the stri...

  18. The Silicon Microstrip Sensors of the ATLAS SemiConductor Tracker

    CERN Document Server

    Ahmad, A; Allport, P P; Alonso, J; Andricek, L; Apsimon, R J; Barr, A J; Bates, R L; Beck, G A; Bell, P J; Belymam, A; Benes, J; Berg, C M; Bernabeu, J; Bethke, S; Bingefors, N; Bizzell, J P; Bohm, J; Brenner, R; Brodbeck, T J; Bruckman De Renstrom, P; Buttar, C M; Campbell, D; Carpentieri, C; Carter, A A; Carter, J R; Charlton, D G; Casse, G-L; Chilingarov, A; Cindro, V; Ciocio, A; Civera, J V; Clark, A G; Colijn, A-P; Costa, M J; Dabrowski, W; Danielsen, K M; Dawson, I; Demirkoz, B; Dervan, P; Dolezal, Z; Dorholt, O; Duerdoth, I P; Dwuznik, M; Eckert, S; Ekelöf, T; Eklund, L; Escobar, C; Fasching, D; Feld, L; Ferguson, D P S; Ferrere, D; Fortin, R; Foster, J M; Fox, H; French, R; Fromant, B P; Fujita, K; Fuster, J; Gadomski, S; Gallop, B J; Garcia, C; Garcia-Navarro, J E; Gibson, M D; Gonzalez, S; Gonzalez-Sevilla, S; Goodrick, M J; Gornicki, E; Green, C; Greenall, A; Grigson, C; Grillo, A A; Grosse-Knetter, J; Haber, C; Handa, T; Hara, K; Harper, R S; Hartjes, F G; Hashizaki, T; Hauff, D; Hessey, N P; Hill, J C; Hollins, T I; Holt, S; Horazdovsky, T; Hornung, M; Hovland, K M; Hughes, G; Huse, T; Ikegami, Y; Iwata, Y; Jackson, J N; Jakobs, K; Jared, R C; Johansen, L G; Jones, R W L; Jones, T J; de Jong, P; Joseph, J; Jovanovic, P; Kaplon, J; Kato, Y; Ketterer, C; Kindervaag, I M; Kodys, P; Koffeman, E; Kohriki, T; Kohout, Z; Kondo, T; Koperny, S; van der Kraaij, E; Kral, V; Kramberger, G; Kudlaty, J; Lacasta, C; Limper, M; Linhart, V; Llosa, G; Lozano, M; Ludwig, I; Ludwig, J; Lutz, G; Macpherson, A; McMahon, S J; Macina, D; Magrath, C A; Malecki, P; Mandic, I; Marti-Garcia, S; Matsuo, T; Meinhardt, J; Mellado, B; Mercer, I J; Mikestikova, M; Mikuz, M; Minano, M; Mistry, J; Mitsou, V; Modesto, P; Mohn, B; Molloy, S D; Moorhead, G; Moraes, A; Morgan, D; Morone, M C; Morris, J; Moser, H-G; Moszczynski, A; Muijs, A J M; Nagai, K; Nakamura, Y; Nakano, I; Nicholson, R; Niinikoski, T; Nisius, R; Ohsugi, T; O'Shea, V; Oye, O K; Parzefall, U; Pater, J R; Pernegger, H; Phillips, P W; Posisil, S; Ratoff, P N; Reznicek, P; Richardson, J D; Richter, R H; Robinson, D; Roe, S; Ruggiero, G; Runge, K; Sadrozinski, H F W; Sandaker, H; Schieck, J; Seiden, A; Shinma, S; Siegrist, J; Sloan, T; Smith, N A; Snow, S W; Solar, M; Solberg, A; Sopko, B; Sospedra, L; Spieler, H; Stanecka, E; Stapnes, S; Stastny, J; Stelzer, F; Stradling, A; Stugu, B; Takashima, R; Tanaka, R; Taylor, G; Terada, S; Thompson, R J; Titov, M; Tomeda, Y; Tovey, D R; Turala, M; Turner, P R; Tyndel, M; Ullan, M; Unno, Y; Vickey, T; Vos, M; Wallny, R; Weilhammer, P; Wells, P S; Wilson, J A; Wolter, M; Wormald, M; Wu, S L; Yamashita, T; Zontar, D; Zsenei, A

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd supplied 92.2% of the 15,392 installed sensors, with the remainder supplied by CiS.

  19. The ATLAS Semi-Conductor Tracker Operation and Performance

    CERN Document Server

    Robinson, D; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT), is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been has been used to fully exploit the physics potential of the LHC since the first proton-proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed.

  20. Tests and final integration of the ATLAS semiconductor tracker

    CERN Document Server

    Mikulec, Bettina

    2005-01-01

    The Silicon Tracker (SCT) is part of the Inner Detector at the ATLAS experiment at CERN. Its basic building blocks are 5 different types of silicon strip modules. In total more than 15000 p-on-n single-sided silicon strip sensors of an area of about 61 m2 were used to produce 4088 SCT modules. An overall module production yield of 92% could be achieved, where the silicon modules comply with the tight electrical, thermal and mechanical specifications. The macro-assembly of 2112 barrel modules to the four barrel support cylinders was successfully carried out. The nine disks of one endcap are fully populated with 988 modules, and for the second endcap more than 50% of the modules are already mounted. Test results operating complete barrels will be presented as well as a description of the test setup. The different integration steps of the SCT with the surrounding Transition Radiation Tracker (TRT) will be explained. The installation of SCT and TRT into the ATLAS pit will happen during 2006.

  1. Operation and Performance of the ATLAS Semiconductor Tracker

    International Nuclear Information System (INIS)

    Barlow, Nick

    2013-06-01

    The ATLAS detector is the largest of the four main particle detectors at the Large Hadron Collider at CERN, Switzerland. A crucial requirement for it to accomplish its physics goals is efficient and precise tracking of charged particles in the region around the point where proton-proton collisions take place. This role is performed by the ATLAS Inner Detector, of which the Semiconductor Tracker (SCT) is a key component. I will briefly describe the design and layout of the SCT, before discussing the commissioning of the detector and its operation over the course of LHC Run 1. (authors)

  2. Operation and Performance of the ATLAS Semiconductor Tracker

    CERN Document Server

    Barlow, N; The ATLAS collaboration

    2013-01-01

    The ATLAS detector is the largest of the four main particle detectors at the Large Hadron Collider at CERN, Switzerland. A crucial requirement for it to accomplish its physics goals is efficient and precise tracking of charged particles in the region around the point where proton-proton collisions take place. This role is performed by the ATLAS Inner Detector, of which the Semiconductor Tracker (SCT) is a key component. I will briefly describe the design and layout of the SCT, before discussing the commissioning of the detector and its operation over the course of LHC Run 1.

  3. Two ATLAS trackers become one

    CERN Multimedia

    2006-01-01

    The ATLAS inner detector barrel comes one step closer to completion as the semiconductor tracker is merged with the transition radiation tracker. ATLAS collaborators prepare for the insertion of the semiconductor tracker (SCT, behind) into the transition radiation tracker (TRT, in front). Some had hoped it would fall on Valentine's Day. But despite the slight delay, Friday 17 February was lovingly embraced as 'Conception Day,' when dozens of physicists and engineers from the international collaboration gathered to witness the insertion of the ATLAS semiconductor tracker into the transition radiation tracker, a major milestone in the assembly of the experiment's inner detector. With just millimeters of room for error, the cylindrical trackers were slid into each other as inner detector integration coordinator Heinz Pernegger issued commands and scientists held out flashlights, lay on their backs and stood on ladders to take careful measurements. Each tracker is the result of about 10 years of international ...

  4. Operation of the ATLAS Semiconductor Tracker: commissioning and performance results with cosmic ray data

    OpenAIRE

    González-Sevilla, S

    2009-01-01

    The Semiconductor Tracker (SCT) is one of the three sub-systems of the ATLAS internal tracker. Its complete installation and sign-off took about 18 months and was finished at the beginning of 2008. Since then, the SCT has been run successfully taking data in combined mode with the other ATLAS sub-systems. The major problems related with cooling failures and the mortality of off-detector opto-chips have been solved. As in summer 2009, more than 99% of the main detector components are fully wor...

  5. Performance and operation experience of the Atlas Semiconductor Tracker and Pixel Detector at the LHC.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Pixel Detector and Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment.

  6. The ATLAS Semiconductor Tracker: operations and performance

    CERN Document Server

    Pani, P; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at 2 the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, 4 high radiation environment. The SCT is part of the inner tracking system of the ATLAS 6 experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. We find 99.3% of the 8 SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to 10 the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation and performance 12 of the detector including an overview of the issues encountered. The observables employed to monitor online and offline the 14 quality and the performance of the data acquired by the SCT will be described and discussed.

  7. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  8. Engineering for the ATLAS SemiConductor Tracker (SCT) End-cap

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, A; Barr, A [Department of Physics, Oxford University, Oxford (United Kingdom); Allport, P P [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Anderson, B [Department of Physics, University College, University of London, London (United Kingdom); Andricek, L; Becker, H [Max-Planck-Institut fuer Physik, Muenchen (Germany); Anghinolfi, F [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Apsimon, R J; Austin, A; Barclay, P; Batchelor, L E; Benes, J [Centro Nacional de Microelectronica de Barcelona, CNM-IMB, CSIC, Barcelona (Spain); Atkinson, T [University of Melbourne, Parkville, Victoria 3052 (Australia); Band, H [NIKHEF, Amsterdam (Netherlands); Bates, R L; Bell, W H [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Batley, J R [Cavendish Laboratory, Cambridge University, Cambridge (United Kingdom); Beck, G; Belymam, A [Department of Physics, Queen Mary and Westfield College, University of London, London (United Kingdom); Bell, P [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)], E-mail: S.J.Haywood@rl.ac.uk (and others)

    2008-05-15

    The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008.

  9. The Detector Control System of the ATLAS SemiCondutor Tracker during Macro-Assembly and Integration

    CERN Document Server

    Abdesselam, A; Basiladze, S; Bates, R L; Bell, P; Bingefors, N; Böhm, J; Brenner, R; Chamizo-Llatas, M; Clark, A; Codispoti, G; Colijn, A P; D'Auria, S; Dorholt, O; Doherty, F; Ferrari, P; Ferrère, D; Górnicki, E; Koperny, S; Lefèvre, R; Lindquist, L-E; Malecki, P; Mikulec, B; Mohn, B; Pater, J; Pernegger, H; Phillips, P; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sfyrla, A; Stanecka, E; Stastny, J; Viehhauser, G; Vossebeld, J; Wells, P

    2008-01-01

    The ATLAS SemiConductor Tracker (SCT) is one of the largest existing semiconductor detectors. It is situated between the Pixel detector and the Transition Radiation Tracker at one of the four interaction points of the Large Hadron Collider (LHC). During 2006-2007 the detector was lowered into the ATLAS cavern and installed in its final position. For the assembly, integration and commissioning phase, a complete Detector Control System (DCS) was developed to ensure the safe operation of the tracker. This included control of the individual powering of the silicon modules, a bi-phase cooling system and various types of sensors monitoring the SCT environment and the surrounding test enclosure. The DCS software architecture, performance and operational experience will be presented in the view of a validation of the DCS for the final SCT installation and operation phase.

  10. The ATLAS semiconductor tracker: operations and performance

    CERN Document Server

    D'Auria, S; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar {it p}-in-{it n} technology. The signals are processed in the front-end ASICS ABCD3TA, working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current results from the successful operation of the SCT Detector at the LHC and its status af...

  11. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Zhijun

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. Well also report on the few im- provements of the SCT foreseen for the high energy run of the LHC. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruc- tion and invariant mass determination. We will report on the operation and performance of the detector including an overview of the issues encountered. We observe a significant increase in leakage currents from bulk damage due to non-ionizing radiation and make comparisons with the predictions.

  12. Operation of the ATLAS Semiconductor Tracker: commissioning and performance results with cosmic ray data

    CERN Document Server

    González-Sevilla, S; The ATLAS collaboration

    2009-01-01

    The Semiconductor Tracker (SCT) is one of the three sub-systems of the ATLAS internal tracker. Its complete installation and sign-off took about 18 months and was finished at the beginning of 2008. Since then, the SCT has been run successfully taking data in combined mode with the other ATLAS sub-systems. The major problems related with cooling failures and the mortality of off-detector opto-chips have been solved. As in summer 2009, more than 99% of the main detector components are fully working. Detailed calibration procedures have been applied to optimize the detector performance. An initial alignment has been achieved using cosmic ray real data. Some results in terms of tracking performance and Lorentz angle measurements are also shown.

  13. Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

    International Nuclear Information System (INIS)

    Clark, A.G.; Donega, M.; D'Onofrio, M.

    2005-01-01

    The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes the design and layout of the module and present results of a limited prototype production, which has been extensively tested in the laboratory and testbeam. The module design was not finally adopted for series production because a dedicated forward hybrid layout was pursued

  14. Production Performance of the ATLAS Semiconductor Tracker Readout System

    CERN Document Server

    Mitsou, V A

    2006-01-01

    The ATLAS Semiconductor Tracker (SCT) together with the pixel and the transition radiation detectors will form the tracking system of the ATLAS experiment at LHC. It will consist of 20000 single-sided silicon microstrip sensors assembled back-to-back into modules mounted on four concentric barrels and two end-cap detectors formed by nine disks each. The SCT module production and testing has finished while the macro-assembly is well under way. After an overview of the layout and the operating environment of the SCT, a description of the readout electronics design and operation requirements will be given. The quality control procedure and the DAQ software for assuring the electrical functionality of hybrids and modules will be discussed. The focus will be on the electrical performance results obtained during the assembly and testing of the end-cap SCT modules.

  15. System tests of radiation hard optical links for the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    Charlton, D.G.; Dowell, J.D.; Homer, R.J.; Jovanovic, P.; Kenyon, I.R.; Mahout, G.; Shaylor, H.R.; Wilson, J.A.; Rudge, A.; Fopma, J.; Mandic, I.; Nickerson, R.B.; Shield, P.; Wastie, R.; Weidberg, A.R.; Eek, L.-O.; Go, A.; Lund-Jensen, B.; Pearce, M.; Soederqvist, J.; Morrissey, M.; White, D.J.

    2000-01-01

    A prototype optical data and Timing, Trigger and Control transmission system based on LEDs and PIN-diodes has been constructed. The system would be suitable in terms of radiation hardness and radiation length for use in the ATLAS SemiConductor Tracker. Bit error rate measurements were performed for the data links and for the links distributing the Timing, Trigger and Control data from the counting room to the front-end modules. The effects of cross-talk between the emitters and receivers were investigated. The advantages of using Vertical Cavity Surface Emitting Lasers (VCSELs) instead of LEDs are discussed

  16. Cosmic tests and performance of the ATLAS SemiConductor Tracker Barrels

    International Nuclear Information System (INIS)

    Demirkoez, Bilge M.

    2007-01-01

    ATLAS is a multi-purpose particle detector for the LHC and will detect proton collisions with center of mass energy of 14TeV. Part of the central inner detector, the SemiConductor Tracker (SCT) barrel, is now fully integrated with the Transition Radiation Tracker (TRT) barrel. The SCT module performance has been measured after module production, after macro-assembly of modules onto barrels, after arrival at CERN and again partially after integration with the TRT. The module noise average per channel has been stable and is 4.5x10 -5 , well below the design specification of 5x10 -4 . There is no evidence for common mode noise problems and 99.8% of the 3.2 million channels of the SCT barrels are functional. The cosmics running of the SCT and TRT was the first large scale test of the physics mode of the SCT online software framework. A large sector, 468 SCT modules, has been timed in and read out during the cosmic tests. Tracks have been reconstructed through the SCT and the TRT sectors. Present residuals from tracks (without alignment) are better than the specified building tolerances of the SCT

  17. Performance and operation of the semiconductor tracker (SCT)

    CERN Document Server

    Dervan, P; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational and the hit efficiency exceeds the design specifications. We will report on the operation and performance of the detector, including an ove...

  18. Performance and operation experience of the Atlas Semiconductor Tracker

    CERN Document Server

    Liang, Z; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in the high luminosity, high radiation environment of the Large Hadron Collider at CERN. We’ll also report on the few improvements of the SCT foreseen for the high energy run of the LHC. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alig...

  19. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J; The ATLAS collaboration

    2013-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find 99.3% of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation an...

  20. Performance and Operation Experience of the ATLAS Semiconductor Tracker

    CERN Document Server

    Gallop, B J

    2014-01-01

    We report on the operation and performance of the ATLAS Semi-Conductor Tracker (SCT), which has been functioning for 3 years in a high luminosity, high radiation environment. The SCT is constructed of 4088 silicon detector modules, for a total of 6.3 million strips. Each module operates as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel, made of 4 cylinders, and two end-cap systems made of 9 disks. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibres. We find $99.3\\%$ of the SCT modules are operational, the noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to the ideal to allow on-line track reconstruction and invariant mass determination. We will report on the operation...

  1. Total Ionizing Dose Testing of the ABC130 ASIC for the ATLAS Phase-II Semiconductor Tracker Upgrade

    CERN Document Server

    Morningstar, Alan

    2015-01-01

    The Large Hadron Collider's (LHC) current inner detector was not built to withstand the radiation damage from the 3000 $\\text{fb}^{-1}$ of integrated luminosity that is planned for the high luminosity LHC (HL-LHC). Therefore, the ATLAS inner detector (ID) must be completely upgraded. As a part of this upgrade, the semiconductor tracker (SCT) and transition radiation tracker (TRT) will be replaced with new silicon microstrip sensors {[}1{]}. These silicon strips will be read out by the ABC130 chip and thus the ABC130 must be able to withstand an expected 30 Mrad of radiation over 10 years. The ABC130 chip was irradiated with 70 Mrad of x-ray radiation over the course of 2 days and the results are discussed in this report.

  2. The Data Acquisition and Calibration System for the ATLAS Semiconductor Tracker

    CERN Document Server

    Abdesselam, A; Barr, A J; Bell, P; Bernabeu, J; Butterworth, J M; Carter, J R; Carter, A A; Charles, E; Clark, A; Colijn, A P; Costa, M J; Dalmau, J M; Demirkoz, B; Dervan, P J; Donega, M; D'Onifrio, M; Escobar, C; Fasching, D; Ferguson, D P S; Ferrari, P; Ferrère, D; Fuster, J; Gallop, B; García, C; González, S; González-Sevilla, S; Goodrick, M J; Gorisek, A; Greenall, A; Grillo, A A; Hessey, N P; Hill, J C; Jackson, J N; Jared, R C; Johannson, P D C; de Jong, P; Joseph, J; Lacasta, C; Lane, J B; Lester, C G; Limper, M; Lindsay, S W; McKay, R L; Magrath, C A; Mangin-Brinet, M; Martí i García, S; Mellado, B; Meyer, W T; Mikulec, B; Minano, M; Mitsou, V A; Moorhead, G; Morrissey, M; Paganis, E; Palmer, M J; Parker, M A; Pernegger, H; Phillips, A; Phillips, P W; Postranecky, M; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sciacca, F; Sfyrla, A; Stanecka, E; Stapnes, S; Stradling, A; Tyndel, M; Tricoli, A; Vickey, T; Vossebeld, J H; Warren, M R M; Weidberg, A R; Wells, P S; Wu, S L

    2008-01-01

    The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap assembly and for performance confirmation tests after transport of the barrels and endcaps to CERN. Operating in data-taking mode, the DAQ has recorded nearly twenty million synchronously-triggered events during commissioning tests including almost a million cosmic ray triggered events. In this paper we describe the components of the data acquisition system, discuss its operation in calibration and data-taking modes and present some detector performance results from these tests.

  3. The data acquisition and calibration system for the ATLAS Semiconductor Tracker

    International Nuclear Information System (INIS)

    Abdesselam, A; Barr, A J; Demirkoez, B; Barber, T; Carter, J R; Bell, P; Bernabeu, J; Costa, M J; Escobar, C; Butterworth, J M; Carter, A A; Dalmau, J M; Charles, E; Fasching, D; Ferguson, D P S; Clark, A; Donega, M; D'Onifrio, M; Colijn, A-P; Dervan, P J

    2008-01-01

    The SemiConductor Tracker (SCT) data acquisition (DAQ) system will calibrate, configure, and control the approximately six million front-end channels of the ATLAS silicon strip detector. It will provide a synchronized bunch-crossing clock to the front-end modules, communicate first-level triggers to the front-end chips, and transfer information about hit strips to the ATLAS high-level trigger system. The system has been used extensively for calibration and quality assurance during SCT barrel and endcap assembly and for performance confirmation tests after transport of the barrels and endcaps to CERN. Operating in data-taking mode, the DAQ has recorded nearly twenty million synchronously-triggered events during commissioning tests including almost a million cosmic ray triggered events. In this paper we describe the components of the data acquisition system, discuss its operation in calibration and data-taking modes and present some detector performance results from these tests

  4. Performance and operation experience of the ATLAS SemiConductor Tracker

    CERN Document Server

    Robichaud Veronneau, A; The ATLAS collaboration

    2014-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the SemiConductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors were produced in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to th...

  5. The ATLAS SemiConductor Tracker operation and performance

    Science.gov (United States)

    Pater, J. R.

    2012-04-01

    The ATLAS SemiConductor Tracker (SCT) is a key precision tracking detector in the ATLAS experiment at CERN's Large Hadron Collider. The SCT is composed of 4088 planar p-in-n silicon micro-strip detectors. The signals from the strips are processed in the front-end ABCD3TA ASICs, which operate in binary readout mode; data are transferred to the off-detector readout electronics via optical fibres. The SCT was completed in 2007. An extensive commissioning phase followed, during which calibration data were collected and analysed to determine the noise performance of the system, and further performance parameters of the detector were determined using cosmic ray data, both with and without magnetic field. After the commissioning phase, the SCT was ready for the first LHC proton-proton collisions in December 2009. From the beginning of data taking, the completed SCT has been in very good shape with more than 99% of its 6.3 million strips operational; the detector is well timed-in and the operational channels are 99.9% efficient in data acquisition. The noise occupancy and hit efficiency are better than the design specifications. The detector geometry is monitored continuously with a laser-based alignment system and is stable to the few-micron level; the alignment accuracy as determined by tracks is near specification and improving as statistics increase. The sensor behaviour in the 2T solenoidal magnetic field has been studied by measuring the Lorentz angle. Radiation damage in the silicon is monitored by periodic measurements of the leakage current; these measurements are in reasonable agreement with predictions.

  6. ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra; The ATLAS collaboration

    2010-01-01

    The SemiConductor Tracker (SCT), made up from silicon micro-strip detectors is the key precision tracking device in ATLAS, one of the experiments at CERN LHC. The completed SCT is in very good shape: 99.3% of the SCT strips are operational, noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector and observed problems, with stress on the sensor and electronics performance. TWEPP Summary In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton- proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data i...

  7. An investigation of frequency scanning interferometery for the alignment of the ATLAS semiconductor tracker

    CERN Document Server

    Coe, P A

    2001-01-01

    The relative alignment of the silicon detector modules of the ATLAS semiconductor tracker will need remote monitoring during operation, within a high radiation environment. A geodetic grid of distance measurement fibre-coupled interferometers will monitor changes in the shape of the support structure. Eight hundred fibre-coupled grid line interferometers (GLIs) will be compared simultaneously to a stable, evacuated reference interferometer using Frequency Scanning Interferometry (FSI). The GLIs, (from 70 mm to 1400mm long, with pW level return signals) must be measured to a precision of 1 micron, to reconstruct the grid shape, in three dimensions, to a precision of 10 microns. In this work two important limitations were overcome: 1. Inflated errors due to relative interferometer drift were significantly reduced using two lasers scanned in opposite directions. 2. The fine tuning range was effectively extended by linking the phase information in two 30 GHz fine tuning subscans, separated by a 3.5 THz coarse tun...

  8. Charged Higgs boson searches and SemiConductor Tracker commissioning for the ATLAS experiment

    CERN Document Server

    Mohn, Bjarte Alsaker

    The ATLAS (A Toroidal Lhc ApparatuS) experiment is one of four major experiments presently being installed at the upcoming Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN) outside Geneva. In this thesis we present work done on both the simulation of the ATLAS physics potential for a charged Higgs boson and the construction of the Semiconductor Tracker (SCT) - a subdetector within the ATLAS Inner Detector. The discovery of a charged Higgs boson would be an unambiguous sign of physics beyond the Standard Model (SM) and it is thus of great interest to study the ATLAS potential for a charged Higgs discovery. Two such studies have been conducted for this thesis. In the first study a large-mass-splitting Minimal Supersymmetric Standard Model (MSSM) is assumed in which the charged Higgs boson decays into a W boson and a neutral Higgs may receive a large branching ratio.We conclude, however, that charged Higgs searches in this decay channel are made difficult by a large irreducible SM ba...

  9. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-13

    ... Semiconductors From the Republic of Korea: Final Results of Countervailing Duty Administrative Review AGENCY... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... to a change in the net subsidy rate. The final net subsidy rate for Hynix Semiconductor, Inc. is...

  10. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  11. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi-Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the strip...

  12. ASIC Wafer Test System for the ATLAS Semiconductor Tracker Front-End Chip

    International Nuclear Information System (INIS)

    Anghinolfi, F.; Bialas, W.; Busek, N.; Ciocio, A.; Cosgrove, D.; Fadeyev, V.; Flacco, C.; Gilchriese, M.; Grillo, A.A.; Haber, C.; Kaplon, J.; Lacasta, C.; Murray, W.; Niggli, H.; Pritchard, T.; Rosenbaum, F.; Spieler, H.; Stezelberger, T.; Vu, C.; Wilder, M.; Yaver, H.; Zetti, F.

    2002-01-01

    An ASIC wafer test system has been developed to provide comprehensive production screening of the ATLAS Semiconductor Tracker front-end chip (ABCD3T). The ABCD3T[1] features a 128-channel analog front-end, a digital pipeline, and communication circuitry, clocked at 40 MHz, which is the bunch crossing frequency at the LHC (Large Hadron Collider). The tester measures values and tolerance ranges of all critical IC parameters, including DC parameters, electronic noise, time resolution, clock levels and clock timing. The tester is controlled by an FPGA (ORCA3T) programmed to issue the input commands to the IC and to interpret the output data. This allows the high-speed wafer-level IC testing necessary to meet the production schedule. To characterize signal amplitudes and phase margins, the tester utilizes pin-driver, delay, and DAC chips, which control the amplitudes and delays of signals sent to the IC under test. Output signals from the IC under test go through window comparator chips to measure their levels. A probe card has been designed specifically to reduce pick-up noise that can affect the measurements. The system can operate at frequencies up to 100 MHz to study the speed limits of the digital circuitry before and after radiation damage. Testing requirements and design solutions are presented

  13. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Rosendahl, P L; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon microstrip detector part of the ATLAS experiment at the CERN Large Hadron Collider (LHC). Together with the rest for the ATLAS Inner Detector (ID) it provides vital precision tracking information of charged particles. In this paper the performance and operational status of the SCT in the last two years of ATLAS data taking are reviewed.

  14. Novel approach to improve the attitude update rate of a star tracker.

    Science.gov (United States)

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  15. Performance and Operation Experience of the ATLAS SemiConductor Tracker in LHC Run 1 (2009-2012)

    CERN Document Server

    Robichaud-Veronneau, A; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment. The SCT is part of the ATLAS experiment at CERN and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals are processed in the front-end ABCD3TA ASICs, which use a binary readout architecture. Data is transferred to the off-detector readout electronics via optical fibers. We find 99.3% of the SCT modules are operational, noise occupancy and hit efficiency exceed the design specifications; the alignment is very close to t...

  16. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Nagai, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is one of the key precision tracking devices in the ATLAS experiment at CERN Large Hadron Collider (LHC). The SCT was constructed of 4088 modules for a total of 6.3 million silicon strips and was installed into the ATLAS experiment in 2007. The SCT has been fully operational since then, and achieves a good tracking performance from the startup of the LHC operation.

  17. ATLAS silicon microstrip Semiconductor Tracker (SCT)

    International Nuclear Information System (INIS)

    Unno, Y.

    2000-01-01

    Silicon microstrip semiconductor tracking system (SCT) will be in operation in the ATLAS detector in the Large Hadron Collider (LHC) at CERN. Challenging issues in the SCT are the radiation tolerance to the fluence of 2x10 14 1-MeV-neutron-equivalent particles/cm 2 at the designed luminosity of 1x10 34 cm -2 /s of the proton-proton collisions and the speed of the electronics to identify the crossing bunches at 25 ns. The developments and the status of the SCT are presented from the point of view of these issues. Series production of the SCT will start in the year 2001 and the SCT will be installed into the ATLAS detector during 2003-2004

  18. Clementine Star Tracker Stellar Compass: Final report part 1

    Energy Technology Data Exchange (ETDEWEB)

    Priest, R.E.; Kordas, J.F.; Lewis, I.T. [and others

    1995-07-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. Two star stracker stellar compasses (star tracker camera + stellar compass software) were included on the spacecraft, serving a primary function of providing angle updates to the guidance and navigation system. These cameras served a secondary function by providing a wide field of view imaging capability for lunar horizon glow and other dark-side imaging data. This 290 g camera using a 576 x 384 focal plane array and a 17 mm entrance pupil, detected and centroided stars as dim and dimmer than 4.5 m{sub v}, providing rms pointing accuracy of better than 100 {mu}rad pitch and yaw and 450 {mu}rad roll. A description of this light-weight, low power star tracker camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights. Documentation generated during the design, analysis, build, test and characterization of the star tracker cameras are presented. Collectively, this documentation represents a small library of information for this camera, and may be used as a framework for producing copy units by commercial enterprises, and therefore satisfies a Department of Defense and Department of Energy goal to transfer technology to industry. However, the considerable knowledge gained from the experience of the individuals involved in the system trades, design, analysis, production, testing and characterization of the star tracker stellar compass is not contained in this documentation.

  19. The ATLAS Fast Tracker Processing Units - input and output data preparation

    CERN Document Server

    Bolz, Arthur Eugen; The ATLAS collaboration

    2016-01-01

    The ATLAS Fast Tracker is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger system. The Fast Tracker will allow the trigger to utilize tracking information from the entire detector at an earlier event selection stage than ever before, allowing for more efficient event rejection. The connection of the system from to the detector read-outs and to the high level trigger computing farms are made through custom boards implementing Advanced Telecommunications Computing Technologies standard. The input is processed by the Input Mezzanines and Data Formatter boards, designed to receive and sort the data coming from the Pixel and Semi-conductor Tracker. The Fast Tracker to Level-2 Interface Card connects the system to the computing farm. The Input Mezzanines are 128 boards, performing clustering, placed on the 32 Data Formatter mother boards that sort the information into 64 logical regions required by the downstream processing units. This necessitat...

  20. Star trackers for attitude determination

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing...... a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included...... in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed...

  1. The results of the irradiations of microstrip detectors for the ATLAS tracker (SCT)

    International Nuclear Information System (INIS)

    Dervan, P.J.

    2003-01-01

    The SemiConductor Tracker (SCT) of ATLAS will operate in the Large Hadron Collider (LHC) at CERN, which will reach luminosities of 10 34 cm 2 s -1 . Silicon single-sided microstrip detectors will be used for particle tracking. Due to the proximity to the beam, the silicon detectors need to withstand damage from ionising radiation (10 Mrad total dose) and from non-ionising radiation such as neutrons (2x10 14 1 MeV equivalent neutrons/cm 2 total fluence). The final characteristics of the silicon SCT detectors which are needed to operate under LHC conditions and the conclusions reached after various years of test irradiation studies will be reported. The integration and performance of these detectors in complete SCT modules is also discussed

  2. The ATLAS inner detector semiconductor tracker (Si and GaAs strips): review of the 1995 beam tests at the CERN SPS H8 beamline

    International Nuclear Information System (INIS)

    Moorhead, G.F.

    1995-01-01

    This talk will consist of a brief review of the ATLAS Inner Detector (ID) Semiconductor Tracker (SCT) strip detector (both silicon and gallium arsenide) beam tests conducted at the ATLAS test beam facility at the CERN SPS H8 beamline. It will include a brief overview of the H8 facilities, the experimental layout of the SCT/Strip apparatus, the data acquisition system, some of the online software tools and the high precision silicon hodoscope and timing modules used. A very brief indication of some of the main varieties of detector systems tested and the measurements performed will be given. Throughout some emphasis will be placed on the contributions and-interests of members of the Melbourne group. (author)

  3. TRACKER

    CERN Document Server

    Bora Akgun

    2013-01-01

    Pixel Tracker Maintenance of the Pixel Tracker has been ongoing since it was extracted from inside CMS and safely stored at low temperatures in Pixel laboratory at Point 5 (see previous Bulletin).    All four half cylinders of the forward Pixel detector (FPIX) have been repaired and the failures have been understood. In October, a team of technicians from Fermilab replaced a total of three panels that were not repairable in place. The replacement of panels is a delicate operation that involves removing the half disks that hold the panels from the half cylinders, removing the damaged panels from the half disks, installing the new panels on the half disks, and finally putting the half disks back into the half cylinders and hooking up the cooling connections. The work was completed successfully. The same team also prepared the installation of the Phase 1 Pixel pilot blade system, installing a third half disk mechanics in the half cylinders; these half disks will host new Phase 1 P...

  4. Magnet Test Setup of the CMS Tracker ready for installation

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The pieces of the Tracker that will be operated in the forthcoming Magnet Test and Cosmic Challenge (MTCC) have been transported inside the dummy tracker support tube to the CMS experimental hall (Point 5, Cessy). The operation took place during the night of 12th May, covering the ~15km distance in about three hours. The transport was monitored for shocks, temperature and humidity with the help of the CERN TS-IC section. The Tracker setup comprises segments of the Tracker Inner Barrel (TIB), the Tracker Outer Barrel (TOB) and Tracker EndCaps (TEC) detectors. It represents roughly 1% of the final CMS Tracker. Installation into the solenoid is foreseen to take place on Wednesday 17th May.

  5. The LHCb Silicon Inner Tracker

    International Nuclear Information System (INIS)

    Sievers, P.

    2002-01-01

    A silicon strip detector has been adopted as baseline technology for the LHCb Inner Tracker system. It consists of nine planar stations covering a cross-shaped area around the LHCb beam pipe. Depending on the final layout of the stations the sensitive surface of the Inner Tracker will be of the order of 14 m 2 . Ladders have to be 22 cm long and the pitch of the sensors should be as large as possible in order to reduce costs of the readout electronics. Major design criteria are material budget, short shaping time and a moderate spatial resolution of about 80 μm. After an introduction on the requirements of the LHCb Inner Tracker we present a description and characterization of silicon prototype sensors. First, laboratory and test beam results are discussed

  6. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Yamada, M; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance.

  7. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  8. The DELPHI Silicon Tracker in the global pattern recognition

    International Nuclear Information System (INIS)

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  9. TRACKER

    CERN Multimedia

    C. Barth

    2012-01-01

      Strip Tracker In the end of 2011, the Silicon Strip Tracker participated in the very successful heavy-ion collision data-taking. With zero downtime attributed to the Strip Tracker, CMS could achieve the excellent efficiency of 96%. Thus we were able to improve on the already good uptime during pp collisions, and completed an excellent year for the Strip Tracker. The shift of responsibility to raise the high voltages at the declaration of Stable Beams from the Tracker DOC to the central crew went smoothly. The new scheme is working reliably and we improved our automatic DQM and DCS SMS services. With this further improvement we plan to discontinue calling the TK DOC at each Stable Beam; so far the TK DOC personally checked all systems. The biggest effort of this Year-End Technical Stop was a comprehensive evaluation of the C6F14 cooling system performance with respect to future cold operation. The analysis allows a dedicated planning of system refurbishments to be executed during 2012 and LS1....

  10. The LHCb Silicon Tracker Project

    International Nuclear Information System (INIS)

    Agari, M.; Bauer, C.; Baumeister, D.; Blouw, J.; Hofmann, W.; Knoepfle, K.T.; Loechner, S.; Schmelling, M.; Pugatch, V.; Bay, A.; Carron, B.; Frei, R.; Jiminez-Otero, S.; Tran, M.-T.; Voss, H.; Adeva, B.; Esperante, D.; Lois, C.; Vasquez, P.; Bernhard, R.P.; Bernet, R.; Ermoline, Y.; Gassner, J.; Koestner, S.; Lehner, F.; Needham, M.; Siegler, M.; Steinkamp, O.; Straumann, U.; Vollhardt, A.; Volyanskyy, D.

    2006-01-01

    Two silicon strip detectors, the Trigger Tracker(TT) and the Inner Tracker(Italy) will be constructed for the LHCb experiment. Transverse momentum information extracted from the TT will be used in the Level 1 trigger. The IT is part of the main tracking system behind the magnet. Both silicon detectors will be read out using a custom-developed chip by the ASIC lab in Heidelberg. The signal-over-noise behavior and performance of various geometrical designs of the silicon sensors, in conjunction with the Beetle read-out chip, have been extensively studied in test beam experiments. Results from those experiments are presented, and have been used in the final choice of sensor geometry

  11. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  12. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  13. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00512833; The ATLAS collaboration

    2017-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  14. ATLAS' inner silicon tracker on track for completion

    CERN Multimedia

    2005-01-01

    Last week, the team working at the SR1 facility on the inner detector of the ATLAS experiment reached a project milestone after the delivery of the last Semi-conductor Tracker (SCT) barrel to CERN. The third barrel before its insertion into the support structure.The insertion of a completed barrel to its support structure is one of the highlights of the assembly and test sequence of the SCT in SR1. The inner detector will eventually sit in the 2 teslas magnetic field of the ATLAS solenoid, tracking charged particles from proton-proton collisions at the centre of ATLAS. The particles will be measured by a pixel detector (consisting of 3 pixel layers), an SCT (4 silicon strip layers) and a transition radiation tracker (TRT) (consisting of more than 52,000 straw tubes - see Bulletin 14/2005). The SCT has a silicon surface area of 61m2 with about 6 million operational channels so that all tracks can be identified and precisely measured. During 2004 a team of physicists, engineers, and technicians from several...

  15. Experience in the Development of the CMS Inner Tracker Analog Optohybrid Circuits: Project, Qualification, Volume Production, Quality Assurance and Final Performance

    CERN Document Server

    Ricci, Daniel; Bilei, Gian Mario; Casinini, F; Postolache, Vasile

    2005-01-01

    The Tracker system of the Compact Muon Solenoid (CMS) Experiment, will employ approximately 40,000 analog fibre-optic data and control links. The optical readout system is responsible for converting and transmitting the electrical signals coming out from the front-end to the outside counting room. Concerning the inner part of the Tracker, about 3,600 Analog Optohybrid circuits are involved in this tasks. These circuits have been designed and successfully produced in Italy under the responsibility of INFN Perugia CMS group completing the volume production phase by February 2005. Environmental features, reliability and performances of these circuits have been extensively tested and qualified. This paper reviews the most relevant steps of the manufacturing and quality assurance process: from prototypes to mass-production for the final CMS use.

  16. INNER TRACKER

    CERN Multimedia

    Karl Gill

    A series of important milestones have been passed during the last 3 months. With the delivery of refurbished cooling systems, pixels and strip systems have been brought back into operation after long shutdowns. Pixels has been operating since reinsertion of FPIX in April, and has been running at 4°C since May 16 when the bulkhead thermal screen was commissioned. More recently, on June 10 the Strip Tracker was powered up in its entirety, with cooling fluid circulating at 4°C, allowing commissioning of the Strip Tracker to proceed at full speed. The full Tracker is well on course to be ready for CRAFT, with Strip Tracker readout operation in ‘peak’ mode remaining also on track to be ready for beam operations in the Autumn in ‘deconvolution’ readout mode. The main Tracker activity during the shutdown was the cooling plant refurbishment for Strips and Pixels systems. The objectives were to reduce the serious leaks observed in 2008 and improve the longevity...

  17. TRACKER INSERTED INTO YB0 & HEAVY LOWERING COMPLETED

    CERN Multimedia

          The Tracker travelled very smoothly from Meyrin to Point 5 during the early hours of December 13th. Lowered later the same day, insertion was completed 18th December. The intense campaign of Tracker connections, involving 980 pipes, 2330 cables and 3623 fibre ribbons, has since begun and is making good progress. The final large element of CMS YE-1 was lowered gently into the cavern on January 22nd. This marks the end of fourteen months of heavy lowering operations.  

  18. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  19. INNER TRACKER

    CERN Multimedia

    P. Sharp

    The CMS Inner Tracking Detector continues to make good progress. The Objective for 2007 is to deliver to CMS a completed, installed, commissioned and calibrated Tracking System (Silicon Strip and Pixels) aligned to < 100µ in April 2008 ready for the first physics collisions at LHC. On 21 March 2007, the integration of the CMS Silicon Strip Tracker was completed with the successful integration of TEC- into the Tracker Support Tube (TST). Since then ~25% of the complete Tracker Systems has been commission at the TIF at both room temperature and operating temperature (-100 C), and the Tracker Community has gained very valuable experience in operating, calibrating and aligning the Tracker at the TIF before it is prepared for transportation to P5 in July 2007. The CMS Pixel System continues to make good progress. Module and Plaquette production is very well advanced. The first 25% of the Forward Pixel detector (Fpix) was delivered to CERN in April and the second 25% will shipped to CERN on 19 ...

  20. INNER TRACKER

    CERN Multimedia

    K. Gill.

    The clear highlight of recent months was switching on the Tracker to capture the first LHC collisions with 450GeV beams. This was during the first trial run of the LHC on 23rd November. On that day, the Tracker Outer Barrel (TOB) was powered and the detector performance was excellent, in accord with our expectations. Since then, the full Tracker, strips and pixels, has been powered up during “quiet” beam periods when there was judged to be little risk of damage due to sudden beam losses. All Tracker systems performed very well, considering the beam and trigger conditions in place, and we now eagerly anticipate the first collisions with stable beams. Besides this very intense and exciting recent period there has been a lot of other activity in the last 6 months. The full Tracker participated in CRAFT09 and operations of all systems went very smoothly for both pixels and strips, validating all the meticulous work that had taking place during the long shutdown, the subsequent re-commissionin...

  1. Technical Training Seminar: Laser Trackers: the Local Positioning Technology (LPT)

    CERN Document Server

    Davide Vitè

    2005-01-01

    Friday 20 May from 10:00 to 16:00, Training Centre (bldg. 593) Laser Trackers: the Local Positioning Technology (LPT) Simon Moser, Michael Lettau, Achim Lupus, Niklaus Suter, Leica GEOSYSTEMS AG, Switzerland Laser trackers are used at CERN for different applications within the LHC Project. Leica Geosystems AG have been developing during the last four years the revolutionary Local Positioning Technology (LPT). Laser trackers are increasingly used to ensure accuracy of large fabrications, and alignment in the final assembly process. Competing portable Coordinate Measuring Machines (CMM) with articulated arms require a frequent repositioning, known to lead to a loss of accuracy and efficiency. Leica Geosystems developed armless solutions, the T-Probe and T-Scan, for use with its laser trackers. The combination of the tracker technology with photogrammetry is the base of LPT, enabling real time measurements with free hand-held devices, such as the T-Probe and T-Scan. T-Probe and T-Scan overcome the proble...

  2. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna [Univ. of Geneva (Switzerland)

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  3. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  4. Development and characterization of semiconductor materials by ion beams. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2002-06-01

    This CRP was recommended by the Consultants meeting on Ion Beam Techniques Applied to Semiconductor and Related Advanced Materials, held in April 1997 in Vienna. The consultants proposed to have a CRP in the field of application of MeV ion beams for the development and characterization of semiconductor materials. The CRP was approved and a first RCM was held in Vienna between 2-5 June 1998, in order to stimulate ideas and to promote collaborations among CRP participants. The goals and practical outcomes of the CRP were defined and several specific topics were identified including: optoelectronic characterization of semiconductor materials and devices by ion microbeams, characterization of thin films, defect transformations in semiconductors, light element analysis. One important recommendation was that sample exchanges among different laboratories be strongly encouraged. The participants presented individual activities on their projects, all subjects of research were identified and linked with approved individual projects. Collaboration among the participants was discussed and established. Some modifications to work plans were adopted. As proposed during the first RCM, the final RCM was held at the Ruder Boskovic Institute, Zagreb, Croatia, between 25 and 29 September 2000, with the purpose of reviewing/discussing the results achieved during the course of the CRP and to prepare a draft of the final report and associated publication. This document contains summary of the CRP and ten individual reports presented by participants. Each of the reports has been indexed separately

  5. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arteche, F.; /CERN /Imperial Coll., London; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  6. The design, construction and performance of the MICE scintillating fibre trackers

    International Nuclear Information System (INIS)

    Ellis, M.; Hobson, P.R.; Kyberd, P.; Nebrensky, J.J.; Bross, A.; Fagan, J.; Fitzpatrick, T.; Flores, R.; Kubinski, R.; Krider, J.; Rucinski, R.; Rubinov, P.; Tolian, C.; Hart, T.L.; Kaplan, D.M.; Luebke, W.; Freemire, B.; Wojcik, M.; Barber, G.; Clark, D.

    2011-01-01

    Charged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on 350μm diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.

  7. The design, construction and performance of the MICE scintillating fibre trackers

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, M.; Hobson, P.R.; Kyberd, P.; Nebrensky, J.J. [Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Bross, A.; Fagan, J.; Fitzpatrick, T.; Flores, R.; Kubinski, R.; Krider, J.; Rucinski, R.; Rubinov, P.; Tolian, C. [Fermilab, P.O. Box 500, Batavia, IL 60510-0500 (United States); Hart, T.L.; Kaplan, D.M.; Luebke, W.; Freemire, B.; Wojcik, M. [Physics Division, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, IL 60616 (United States); Barber, G.; Clark, D. [Department of Physics, Blackett Laboratory, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); and others

    2011-12-11

    Charged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on 350{mu}m diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.

  8. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  9. TRACKER

    CERN Multimedia

    L. Demaria

    2011-01-01

    Strip Tracker The Silicon Strip Tracker has maintained excellent operational performance during the 2011 data-taking period. The increase of instantaneous luminosity up to 1033 cm-2s-1 did not introduce any new issues in the detector. The detector has collected high-quality physics data with an uptime greater than 98%. Sources of downtime have been identified and problems were properly addressed. Improved firmware in the Front-End Driver (FED) firmware was deployed to increase the robustness of the readout against spurious extra frames coming from the detector. When a FED detects bad data, it goes into Out-Of-Sync (OOS) status, waits for a L1 resynchronisation command (resync) to clean up the culprit data and restarts. Resync commands are now sent automatically to the Strip Tracker when it signals OOS and, as a result, this source of downtime has been reduced significantly. The dead-time, caused by recoveries from OOS, accounts for less than 0.1%. Downtime was also found to be caused by a FED occasionally ge...

  10. TRACKER

    CERN Multimedia

    G. Dirkes

    2010-01-01

    The strip system has generally exhibited stable and high performance operation during the last six months of pp and heavy ion collisions. The up-time during pp collision from June onwards was 99.0% and during the first weeks of heavy-ion running we reached 99.7%. Most of the down-time during the proton runs came from Tracker DAQ problems. Spurious extra events from individual front-end channels caused ‘sync loss draining’ errors at the central DAQ system downstream of the Tracker FEDs. Once the problem was understood, new firmware that detects this error condition was installed on the FEDs. This has reduced the recovery procedure from this particular condition from a full reconfiguration requiring 170 s, to a simple re-synchronisation taking only ~1 s. We have also streamlined the instructions for the central DAQ shifters in order to minimise the time needed to decide the proper reaction to a given problem. The average down-time for problems triggered by the strip tracker DAQ is 395 s. Th...

  11. TRACKER

    CERN Multimedia

    D. Strom

    2011-01-01

    Strip Tracker Since the June CMS Week, the Silicon Strip Tracker has had another period of excellent detector operation with more than 97% system uptime. The focus on stable proton physics collection was fruitful, as CMS recorded greater than 5 fb–1 by the completion of the 2011 pp run. Following the November machine development and technical stop, the Strip Tracker now aims to provide the highest quality data during the heavy-ion run. The detector health, measured by the fraction of alive channels, is largely stable at around 97.8%. Recent failures include a TOB control ring, which now requires redundancy, and a TEC control ring with intermittent failures. These will be investigated during the Year-End Technical Stop. Critical services are very stable. The cooling system has a low total leak rate of less than 1 kg per day, and the power supply exchange rate is less than 1 unit per month. Two operational changes recently went into effect to optimise data-taking efficiency: (1) a tripped power su...

  12. TRACKER

    CERN Multimedia

    Frank Hartmann

    2012-01-01

      Strip Tracker In general, the Strip Tracker is operating smoothly with the current peak instantaneous luminosity beyond 6.5E33, high L1 rate and large pile-up. With several improvements in automatic DQM checks and an enhanced SMS and e-mail service system plus additional audio alarms, we have reduced the work-load of our TK DOC and stopped the calls made at the beginning of each fill. We successfully collected more than two million cosmic tracks in peak mode during inter-fill periods before June, fulfilling the request from the Tracker alignment group. Around 500k cosmic tracks were also collected at zero Tesla. All planned special measurements, namely DCU calibration and I-V scans, have been taken during the YETS and other technical stops. A peak-mode run, a delay run and two HV scans have also been taken during early collisions at the initial low-lumi runs as well as during the fill where CMS had a problem with the magnet. The largest source of downtime comes from TIB-2.8.1 a.k.a. FED 101, ...

  13. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  14. Final Report: ATLAS Phase-2 Tracker Upgrade Layout Task Force

    CERN Document Server

    Clark, A; The ATLAS collaboration; Hessey, N; Mättig, P; Styles, N; Wells, P; Burdin, S; Cornelissen, T; Todorov, T; Vankov, P; Watson, I; Wenig, S

    2012-01-01

    he mandate of the Upgrade Layout Task Force was to develop a benchmark layout proposal for the ATLAS Phase-2 Upgrade Letter of Intent (LOI), due in late 2012. The work described in this note has evolved from simulation and design studies made using an earlier "UTOPIA" upgrade tracker layout, and experience gained from the current ATLAS Inner Detector during the first years of data taking. The layout described in this document, called the LoI-layout, will be used as a benchmark layout for the LoI and will be used for simulation and engineering studies described in the LoI.

  15. Data Quality Monitoring of the CMS Tracker

    International Nuclear Information System (INIS)

    Dutta, Suchandra

    2011-01-01

    The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. It has been designed to be used during online data taking as well as during offline reconstruction. The main goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken to fix it. On the other hand any issue with data reconstruction or calibration can be detected during offline processing using the same tool. The monitoring is performed using histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data taking and it has been optimised to fulfill the condition of collision data taking. In this paper we describe the functionality of the CMS Tracker DQM system and the experience acquired during proton-proton collision.

  16. The ATLAS Silicon Microstrip Tracker

    CERN Document Server

    Haefner, Petra

    2010-01-01

    In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV. This was followed by collisions at the unprecedented energy of 7 TeV in March 2010. The SemiConductor Tracker (SCT) is a precision tracking device in ATLAS made up from silicon micro-strip detectors processed in the planar p-in-n technology. The signal from the strips is processed in the front-end ASICs working in binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experiment. Since then the detector was operated for two years under realistic conditions. Calibration data has been taken and analysed to determine the performance of the system. In addition, extensive commissioning with cosmic ray events has been performed both with and without magnetic field. The sensor behaviour in magnetic field was studied by measurements of the Lorentz angle. After ...

  17. Kansas Advanced Semiconductor Project: Final Report

    International Nuclear Information System (INIS)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-01-01

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  18. Straw Performance Studies and Quality Assurance for the ATLAS Transition Radiation Tracker

    CERN Document Server

    Cwetanski, Peter; Orava, Risto

    2006-01-01

    The Transition Radiation Tracker (TRT) of the ATLAS experiment at the LHC is part of the Inner Detector. It is designed as a robust and powerful gaseous detector that provides tracking through individual drift-tubes (straws) as well as particle identification via transition radiation (TR) detection. The straw tubes are operated with Xe-CO2-O2 70/27/3, a gas that combines the advantages of efficient TR absorption, a short electron drift time and minimum ageing effects. The modules of the barrel part of the TRT were built in the United States while the end-cap wheels are assembled at two Russian institutes. Acceptance tests of barrel modules and end-cap wheels are performed at CERN before assembly and integration with the Semiconductor Tracker (SCT) and the Pixel Detector. This thesis first describes simulations the TRT straw tube. The argon-based acceptance gas mixture as well as two xenon-based operating gases are examined for its properties. Drift velocities and Townsend coefficients are computed with the he...

  19. Data evaluation and CNGS beam localization with the precision tracker of the OPERA detector

    International Nuclear Information System (INIS)

    Bick, D.

    2007-04-01

    In this diploma thesis, the data evaluation for the OPERA precision tracker is presented. Furthermore investigations of a precise CNGS beam localization with the precision tracker are performed. After an overview of past and present developments in neutrino physics, the OPERA detector is presented in this thesis. Emphasis is given to the precision tracker which has been partly commissioned in the end of the last year. A first analysis of the functionality with cosmic muons has been performed, as well as the inclusion of data in the OPERA software framework. Within this thesis some useful tools have been developed which are also presented. Finally, divergence effects from the nominal beam line of the CNGS neutrino beam and possible detection with the precision tracker are studied. (orig.)

  20. Data evaluation and CNGS beam localization with the precision tracker of the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bick, D.

    2007-04-15

    In this diploma thesis, the data evaluation for the OPERA precision tracker is presented. Furthermore investigations of a precise CNGS beam localization with the precision tracker are performed. After an overview of past and present developments in neutrino physics, the OPERA detector is presented in this thesis. Emphasis is given to the precision tracker which has been partly commissioned in the end of the last year. A first analysis of the functionality with cosmic muons has been performed, as well as the inclusion of data in the OPERA software framework. Within this thesis some useful tools have been developed which are also presented. Finally, divergence effects from the nominal beam line of the CNGS neutrino beam and possible detection with the precision tracker are studied. (orig.)

  1. INNER TRACKER

    CERN Multimedia

    K. Gill

    During the winter shutdown several parts of the Tracker system are undergoing maintenance, revision or upgrade. The main items are the revision of the strips and pixels cooling plants, removal and maintenance of FPIX, sealing of Tracker patch-panels and the bulkhead, integration of strips and pixels DCS, and further development of the DAQ, Online and commissioning software and firmware. The revision of the cooling system involves the complete replacement of the tanks, distribution lines, valves and manifolds on the SS1 and SS2 strip tracker (182 circuits) and pixels (36 circuits) cooling plants. The objectives are to eliminate the large leaks experienced during 2008 operations and to assure the long-term reliability of the cooling systems. Additional instrumentation is being added to provide more detailed monitoring of the performance of the cooling system. This work is proceeding smoothly under close supervision. Procurements are almost completed and the quality of delivered parts and the subsequent assembl...

  2. Data Quality Monitoring of the CMS Tracker

    CERN Document Server

    Dutta, Suchandra

    2010-01-01

    histograms which are filled with information from raw and reconstructed data computed at the level of individual detectors. Furthermore, statistical tests are performed on these histograms to check the quality and flags are generated automatically. Results are visualized with web based graphical user interfaces. Final data certification is done combining these automatic flags and manual inspection. The Tracker DQM system has been successfully used during cosmic data tak...

  3. SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MCBRAYER,JOHN D.

    2000-12-01

    This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

  4. SED16 autonomous star tracker night sky testing

    Science.gov (United States)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  5. Track Reconstruction with Cosmic Ray Data at the Tracker Integration Facility

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Elgammal, J.-P. Dewulf. S; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; Focardi, R. D'Alessandro. E; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2008-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15\\,\\% of the final silicon strip detector, and over 4.7~million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  6. The effect of latitude on the performance of different solar trackers in Europe and Africa

    International Nuclear Information System (INIS)

    Bahrami, Arian; Okoye, Chiemeka Onyeka; Atikol, Ugur

    2016-01-01

    Highlights: • The effect of latitude on the performance of seven solar trackers is analyzed in Europe and Africa. • The performance of the trackers is ranked according to the area location latitude. • The results showed five ranking patterns. • Based on the five patterns and the site latitude, designers can select the best available tracker. - Abstract: In this paper, the effect of latitude on the performance of different solar trackers is examined. The hourly solar radiation data of different locations around Europe and Africa measured on a horizontal surface is collected and utilized. Widely validated Perez anisotropic model is used to predict the diffuse component of the solar radiation on an inclined surface. Different solar trackers namely, Full/dual-axis, East–West (EW), North–South (NS), Inclined East–West (IEW), and Vertical-axis (V) trackers are considered in calculating the available solar potential of the locations. The performance of the solar trackers in terms of the energy gain is ranked according to the area location latitudes. The results show that the tracking performance is highly dependent on the locations, thus changes with the latitude. The percentage variation among the implemented one-axis tracking options relative to dual-axis trackers ranges from 0.42% to 23.4%. Overall, the increase in the energy gain of dual-axis trackers compared to the optimal fixed panel for the locations varies from 17.72% to 31.23%, thus emphasizes the importance of solar trackers. Finally, the study is expected to aid designers in the selection and installation of appropriate solar trackers in the regions.

  7. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.

    Science.gov (United States)

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi

    2015-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  9. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  10. Commissioning and Performance of the LHCb Silicon Tracker

    CERN Multimedia

    van Tilburg, J; Buechler, A; Bursche , A; Chiapolini, N; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Staumann, U; Tobin, M; Vollhardt, A; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Fave, V; Frei, R; Gauvin, N; Gonzalez, R; Haefeli, G; Hicheur, A; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Perrin, A; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Adeva, B; Esperante, D; Fungueiriño Pazos, J; Gallas, A; Pazos-Alvarez, A; Pérez-Trigo, E; Pló Casasús, M; Rogríguez Pérez, P; Saborido, J; Vázquez, P; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m$^2$ and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its finals stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20 $\\mu$m. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector.

  11. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    Science.gov (United States)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  12. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  13. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  14. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  15. MediaTracker system

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, D. M. (Dana M.); Strittmatter, R. B. (Richard B.); Abeyta, J. D. (Joline D.); Brown, J. (John); Marks, T. (Thomas), Jr.; Martinez, B. J. (Benny J.); Jones, D. B. (Dana Benelli); Hsue, W.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access to the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can

  16. MediaTracker system

    International Nuclear Information System (INIS)

    Sandoval, D.M.; Strittmatter, R.B.; Abeyta, J.D.; Brown, J.; Marks, T. Jr.; Martinez, B.J.; Jones, D.B.; Hsue, W.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access to the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can accommodate

  17. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    CERN Document Server

    Gill, K; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main environmental effects expected for optical links operating within the Tracker are summarised. A special feature of the environmental QA programme is the plan for Advance Validation Tests (AVT's) developed in close collaboration with the various industrial partners. AVT procedures involve validation of a relatively small set of basic samples in advance of the full production of the corresponding batch of devices. Only those lots that have been confirmed as sufficiently rad-tolerant will be purchased and used in the final prod...

  18. Reduction of low frequency error for SED36 and APS based HYDRA star trackers

    Science.gov (United States)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc

    2017-11-01

    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  19. TRACKER

    CERN Multimedia

    K. Gill and G. Bolla

    2010-01-01

    Silicon strips During the first collisions the strip-Tracker operated with excellent performance and stability. The results obtained were very impressive and this exciting experience marked a fine end to another intense year. Several issues were identified during 2009 operations that could benefit from improvement: to suppress the increased output data volume when in STANDBY state (LV ON, HV OFF), which is due to the larger noise amplitudes when the sensors are unbiased; to reduce the strips configuration time; to increase the stability of the power system, particularly during state transitions, and to decrease the powering up time. The strip-Tracker FEDs now react to changes in the HV conditions of the strips. Upon a transition to STAND-BY, central DAQ starts a PAUSE-RESUME cycle and a flag is issued to the FEDSupervisor. This results in forcing the common mode noise artificially to the maximum value, which effectively suppresses the analogue data output. This forced offset is removed as soon as the strips ...

  20. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  1. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  2. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  3. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  4. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  5. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices of the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of $4088$ silicon detector modules for a total of 6.3 million channels. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel ($4$ cylinders) and two end-cap systems (9 disks on each). The current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. The operation of the detector including an overview of the main issues encountered is reported. The main emphasis is be given to the tracking performance of the SCT and the data quality during the $>2$ years of data taking of proton-proton collision data at $7$ TeV (and short periods of heavy ion collisions). The SCT has been fully operational throughout a...

  6. Mechanical stability of the CMS Tracker

    CERN Document Server

    CMS Collaboration

    2015-01-01

    reconstructs the absolute position of individual detector modules with a similar accuracy but after days of data taking. During the long term operation at fixed temperature of +4$^o$C in years 2011--2013 the alignment of tracker components was stable within 10 microns. Temperature variations in the Tracker volume are found to cause the displacements of tracker structures of abou...

  7. CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software

    Science.gov (United States)

    Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.

  8. Small star trackers for modern space vehicles

    Science.gov (United States)

    Kouzmin, Vladimir; Jushkov, Vladimir; Zaikin, Vladimir

    2017-11-01

    Based on experience of many years creation of spacecrafts' star trackers with diversified detectors (from the first star trackers of 60's to tens versions of star trackers in the following years), using technological achievements in the field of optics and electronics the NPP "Geofizika-Cosmos" has provided celestial orientation for all the space vehicles created in Russia and now has developed a series of new star trackers with CCD matrix and special processors, which are able to meet needs in celestial orientation of the modern spacecrafts for the nearest 10-15 years. In the given article the main characteristics and description of some star trackers' versions are presented. The star trackers have various levels of technical characteristics and use both combined (Russian and foreign) procurement parts, and only national (Russian) procurement parts for the main units.

  9. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  10. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  11. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  12. Optical model and calibration of a sun tracker

    International Nuclear Information System (INIS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-01-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker. - Highlights: • We present an optimal optical sun tracker model for atmospheric spectroscopy. • The problem of loss of stability of tracker pointing at the Sun has been solved. • We propose an optimal method for tracker calibration at a measurement site. • Test results demonstrate the efficiency of the proposed optimization methods.

  13. A CONCEPT OF SOLAR TRACKER SYSTEM DESIGN

    OpenAIRE

    Meita Rumbayan *, Muhamad Dwisnanto Putro

    2017-01-01

    Improvement of solar panel efficiency is an ongoing research work recently. Maximizing the output power by integrating with the solar tracker system becomes a interest point of the research. This paper presents the concept in designing a solar tracker system applied to solar panel. The development of solar panel tracker system design that consist of system display prototype design, hardware design, and algorithm design. This concept is useful as the control system for solar tracker to improve...

  14. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  15. Stand-alone Cosmic Muon Reconstruction Before Installation of the CMS Silicon Strip Tracker

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; Daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenpaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A .S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinness, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15% of the final silicon strip detector, and over 4.7 million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  16. TRACKER

    CERN Multimedia

    K. Gill

    2010-01-01

    The Tracker has continued to operate with excellent performance during this first period with 7 TeV collisions. Strips operations have been very smooth. The up-time during collisions was 98.5%, up to end of May, with a large fraction of the down-time coming during the planned fine-timing scan with early 7 TeV collisions. Pixels operations are also going very well, besides problems related to background beam-gas collisions where the particles produced generate very large clusters in the barrel modules. When CMS triggers on these events, the FEDs affected overflow and then timeout. Effort was mobilised very quickly to understand and mitigate this problem, with modifications made to the pixel FED firmware in order to provide automatic recovery. With operations becoming more and more routine at P5, Pixels have begun the transition to centrally attended operation, which means that the P5 shifters will no longer be required to be on duty. The strip-Tracker is also planning to make this transition at the end of Ju...

  17. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  18. The MICE scintillating-fibre tracker

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, T [Imperial College London (United Kingdom)], E-mail: T.Matsushita@imperial.ac.uk

    2008-06-15

    The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic investigation of the ionization cooling of a muon beam. An ionization cooling channel is required to compress the phase-space volume occupied by the muon beam prior to acceleration in the baseline conceptual designs for both the Neutrino Factory and the Muon Collider. Muons entering and leaving the cooling channel will be measured in two solenoidal spectrometers, each of which is instrumented with a scintillating-fibre tracker. Each tracker is composed of five planar scintillating fibre stations, each station being composed of three planar layers of 350 micron scintillating fibres. The devices will be read out using the Visible Light Photon Counters (VLPCs) developed for use in the D0 experiment at the Tevatron. The design of the system will be presented along with the status of the tracker-construction project. The expected performance of prototypes of the full tracker will be summarised.

  19. Silicon Tracker Design for the ILC

    International Nuclear Information System (INIS)

    Nelson, T.; SLAC

    2005-01-01

    The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that comprises a typical silicon microstrip tracker can be eliminated from a design for the ILC. This realization is the inspiration for a tracker design using lightweight, short, mass-producible modules to tile closed, nested cylinders with silicon microstrips. This design relies upon a few key technologies to provide excellent performance with low cost and complexity. The details of this concept are discussed, along with the performance and status of the design effort

  20. CMS tracker slides into centre stage

    CERN Document Server

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  1. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    Science.gov (United States)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  2. "Sturdy as a house with four windows," the star tracker of the future

    Science.gov (United States)

    Duivenvoorde, Tom; Leijtens, Johan; van der Heide, Erik J.

    2017-11-01

    Ongoing miniaturization of spacecraft demands the reduction in size of Attitude and Orbit Control Systems (AOCS). Therefore TNO has created a new design of a multi aperture, high performance, and miniaturized star tracker. The innovative design incorporates the latest developments in camera technology, attitude calculation and mechanical design into a system with 5 arc seconds accuracy, making the system usable for many applications. In this paper the results are presented of the system design and analysis, as well as the performance predictions for the Multi Aperture Baffled Star Tracker (MABS). The highly integrated system consists of multiple apertures without the need for external baffles, resulting in major advantages in mass, volume, alignment with the spacecraft and relative aperture stability. In the analysis part of this paper, the thermal and mechanical stability are discussed. In the final part the simulation results will be described that have lead to the predicted accuracy of the star tracker system and a peek into the future of attitude sensors is given.

  3. Technician Training for the Semiconductor Microdevices Industry. Final Report.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    The Center for Occupational Research and Development (CORD) carried out four activities to foster semiconductor manufacturing technician (SMT) training: (1) collaboration with industry experts and educators while developing a curriculum to train SMTs; (2) implementation and testing of the curriculum at a technical college; (3) dissemination of…

  4. LHCb upstream tracker

    CERN Multimedia

    Artuso, Marina

    2016-01-01

    The detector for the LHCb upgrade is designed for 40MHz readout, allowing the experiment to run at an instantaneous luminosity of 2x10^33 cm$^2$s$^-1$. The upgrade of the tracker subsystem in front of the dipole magnet, the Upstream Tracker, is crucial for charged track reconstruction and fast trigger decisions based on a tracking algorithm involving also vertex detector information. The detector consists of 4 planes with a total area of about 8.5m$^2$, made of single sided silicon strip sensors read-out by a novel custom-made ASIC (SALT). Details on the performance of prototype sensors, front-end electronics, near-detector electronics and mechanical components are presented.

  5. CMS Tracker Visualisation

    CERN Document Server

    Mennea, Maria Santa; Zito, Giuseppe

    2004-01-01

    To provide improvements in the performance of existing tracker data visualization tools in IGUANA, a 2D visualisation software has been developed, using the object oriented paradigm and software engineering techniques. We have designed 2D graphics objects and some of them have been implemented. The access to the new objects is made in ORCA plugin of IGUANA CMS. A new tracker object oriented model has been designed for developing these 2D graphics objects. The model consists of new classes which represent all its components (layers, modules, rings, petals, rods).The new classes are described here. The last part of this document contains a user manual of the software and will be updated with new releases.

  6. Model of CMS Tracker

    CERN Multimedia

    Breuker

    1999-01-01

    A full scale CMS tracker mock-up exposed temporarily in the hall of building 40. The purpose of the mock-up is to study the routing of services, assembly and installation. The people in front are only a small fraction of the CMS tracker collaboration. Left to right : M. Atac, R. Castaldi, H. Breuker, D. Pandoulas,P. Petagna, A. Caner, A. Carraro, H. Postema, M. Oriunno, S. da Mota Silva, L. Van Lancker, W. Glessing, G. Benefice, A. Onnela, M. Gaspar, G. M. Bilei

  7. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  8. Laser tracker error determination using a network measurement

    International Nuclear Information System (INIS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-01-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies

  9. The New Silicon Strip Detectors for the CMS Tracker Upgrade

    CERN Document Server

    Dragicevic, Marko

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the ...

  10. The CMS Tracker upgrade for HL-LHC

    CERN Document Server

    Ahuja, Sudha

    2017-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 $\\times$ $10^{34} $cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running beyond design specifications, and CMS Phase1 Pixel Detector will not be able to survive HL-LHC radiation conditions and CMS will need completely new devices, in order to fully exploit the high-demanding operating conditions and the delivered luminosity. The new Outer Tracker should have also trigger capabilities. To achieve such goals, R$\\&$D activities are ongoing to explore options both for the Outer Tracker, and for the pixel Inner Tracker. Solutions are being developed that would allow including tracking information at Level-1. The design choices for the Tracker upgrades are discussed along with some highlights...

  11. The LHCb Silicon Tracker, first operational results

    CERN Document Server

    Esperante, D; Adeva, B; Gallas, A; Pérez Trigo, E; Rodríguez Pérez, P; Pazos Álvarez, A; Saborido, J; Vàzquez, P; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; de Cian, M; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The Large Hadron Collider beauty (LHCb) experiment at CERN (Conseil Européen pour la Recherche Nucléaire) is designed to perform precision measurements of b quark decays. The LHCb Silicon Tracker consists of two sub-detectors, the Tracker Turicensis and the Inner Tracker, which are built from silicon micro-strip technology. First performance results of both detectors using data from Large Hadron Collider synchronization tests are presented.

  12. Simulation studies for the ATLAS upgrade Strip tracker

    CERN Document Server

    Wang, Jike; The ATLAS collaboration

    2017-01-01

    ATLAS is making extensive efforts towards preparing a detector upgrade for the High luminosity operations of the LHC (HL-LHC), which will commence operation in ~10 years. The current ATLAS Inner Detector will be replaced by a all-silicon tracker (comprising an inner Pixel tracker and outer Strip tracker). The software currently used for the new silicon tracker is broadly inherited from that used for the LHC Run 1 and 2, but many new developments have been made to better fulfil the future detector and operation requirements. One aspect in particular which will be highlighted is the simulation software for the Strip tracker. The available geometry description software (including the detailed description for all the sensitive elements, the services, etc.) did not allow for accurate modeling of the planned detector design. A range of sensors/layouts for the Strip tracker are being considered and must be studied in detailed simulations in order to assess the performance and ascertain that requirements are met. For...

  13. Analyzing Virtual Physics Simulations with Tracker

    Science.gov (United States)

    Claessens, Tom

    2017-12-01

    In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.

  14. Star Tracker Performance Estimate with IMU

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Swank, Aaron J.

    2015-01-01

    A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.

  15. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    OpenAIRE

    Gill, K; Grabit, R; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main env...

  16. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  17. Evaluation of a remote webcam-based eye tracker

    DEFF Research Database (Denmark)

    Skovsgaard, Henrik; Agustin, Javier San; Johansen, Sune Alstrup

    2011-01-01

    In this paper we assess the performance of an open-source gaze tracker in a remote (i.e. table-mounted) setup, and compare it with two other commercial eye trackers. An experiment with 5 subjects showed the open-source eye tracker to have a significantly higher level of accuracy than one...

  18. Tracker Performance Metric

    National Research Council Canada - National Science Library

    Olson, Teresa; Lee, Harry; Sanders, Johnnie

    2002-01-01

    .... We have developed the Tracker Performance Metric (TPM) specifically for this purpose. It was designed to measure the output performance, on a frame-by-frame basis, using its output position and quality...

  19. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  20. First cosmic rays seen in the CMS Tracker Endcap

    CERN Multimedia

    Lutz Feld, RWTH Aachen

    2006-01-01

    On March 14, 2006, first cosmic muon tracks have been measured in the Tracker EndCap TEC+ of the CMS silicon strip tracker. The end caps have silicon strip modules mounted onto wedge-shaped carbon fiber support plates called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an end cap (called sector) is populated with 18 petals. The TEC+ endcap is currently being integrated at RWTH Aachen. 400 silicon modules with a total of 241664 channels, corresponding to one eighth of the endcap, are read-out simultaneously by final power supply and DAQ components. On the left is the TEC+ in Aachen, whilst on the right is a computer image of a cosmic ray traversing the many layers of silicon sensors. To understand the response to real particles, basic functionality testing was followed by a cosmic muon run. A total of 400 silicon strip modules are read out with a channel inefficiency of below 1% and a common mode noise of only 25% of the intrinsic noise.

  1. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  2. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, Paolo

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade.

  3. LHCb Upstream Tracker

    CERN Multimedia

    Gandini, P

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator (VELO) and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade

  4. INNER TRACKER

    CERN Multimedia

    Peter Sharp

    In March the Silicon Strip Detector had been successfully connected to the PP1 patch panels on the CMS Cryostat, and every thing had been prepared to check out the Tracker and commission it with CMS with the ambition of joining the CMS Global Cosmic Run in April.  There followed serious problems with the cooling plant which through tremendous effort have been overcome and recently allowed commissioning of the tracker to proceed. In November 2007 there had been a failure of the heat exchanger in one of the seven cooling plants in the UXC cavern. After an analysis of the failure it was decided to replace this heat exchanger with a well-proven commercial heat exchanger and to re-commission the system. Re-commissioning the system proved to be more difficult than anticipated as on May 8 there was a second failure of a heat exchanger, in the main chiller plant in the USC service cavern. The analysis of the failure showed it was very similar to the previous failure. It was decided to replace all the heat ...

  5. Developments for the TOF Straw Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, A.

    2006-07-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp{yields}d{pi}{sup +} data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  6. Developments for the TOF Straw Tracker

    International Nuclear Information System (INIS)

    Ucar, A.

    2006-01-01

    COSY-TOF is a very large acceptance spectrometer for charged particles using precise information on track geometry and time of flight of reaction products. It is an external detector system at the Cooler Synchrotron and storage ring COSY in Juelich. In order to improve the performance of the COSY-TOF, a new tracking detector ''Straw Tracker'' is being constructed which combines very low mass, operation in vacuum, very good resolution, high sampling density and very high acceptance. A comparison of pp→dπ + data and a simulation using the straw tracker with geometry alone indicates big improvements with the new tracker. In order to investigate the straw tracker properties a small tracking hodoscope ''cosmic ray test facility'' was constructed in advance. It is made of two crossed hodoscopes consisting of 128 straw tubes arranged in 4 double planes. For the first time Juelich straws have been used for 3 dimensional reconstruction of cosmic ray tracks. In this illuminating field the space dependent response of scintillators and a straw tube were studied. (orig.)

  7. Software and mathematical support of Kazakhstani star tracker

    Science.gov (United States)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  8. Application results for an augmented video tracker

    Science.gov (United States)

    Pierce, Bill

    1991-08-01

    The Relay Mirror Experiment (RME) is a research program to determine the pointing accuracy and stability levels achieved when a laser beam is reflected by the RME satellite from one ground station to another. This paper reports the results of using a video tracker augmented with a quad cell signal to improve the RME ground station tracking system performance. The video tracker controls a mirror to acquire the RME satellite, and provides a robust low bandwidth tracking loop to remove line of sight (LOS) jitter. The high-passed, high-gain quad cell signal is added to the low bandwidth, low-gain video tracker signal to increase the effective tracking loop bandwidth, and significantly improves LOS disturbance rejection. The quad cell augmented video tracking system is analyzed, and the math model for the tracker is developed. A MATLAB model is then developed from this, and performance as a function of bandwidth and disturbances is given. Improvements in performance due to the addition of the video tracker and the augmentation with the quad cell are provided. Actual satellite test results are then presented and compared with the simulated results.

  9. A radiation tolerant fiber-optic readout system for the LHCb Silicon Tracker

    CERN Document Server

    Agari, M; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Pugatch, V; Pylypchenko, Y; Bay, A; Carron, B; Fauland, P; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, M T; Van Hunen, J J; Vervink, K; Vollhardt, A; Voss, H; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Lehner, F; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Wenger, A

    2005-01-01

    A fiber-optic readout system has been designed for the LHCb Silicon Tracker to transmit the detector data to the counting room at a distance of 120 m from the detectors. In total, data from over 272000 detector channels have to be transmitted at an average trigger frequency of 1.1 MHz. In the design of the system, special attention was given to its radiation tolerance, as the transmitting section is located close to the beamline and therefore is exposed to moderate particle fluences and ionizing dose during the expected operational life of 10 years. We give a general overview of the readout link scheme and present performance data on its reliability and radiation tolerance obtained from first preseries elements of the system. Poster presented on the 10th European Symposium on Semiconductor Detectors, June 12th â€" June 16th 2005, Wildbad Kreuth, Germany.

  10. The Laser Alignment System for the CMS silicon strip tracker

    CERN Document Server

    Olzem, Jan

    2009-01-01

    The Laser Alignment System (LAS) of the CMS silicon strip Tracker has been designed for surveying the geometry of the large-scale Tracker support structures. It uses 40 laser beams ($\\lambda$ = 1075 nm) that induce signals on a subset of the Tracker silicon sensors. The positions in space of the laser spots on the sensors are reconstructed with a resolution of 30 $\\mu$m. From this, the LAS is capable of permanent in-time monitoring of the different Tracker components relative to each other with better than 30 $\\mu$m precision. Additionally, it can provide an absolute measurement of the Tracker mechanical structure with an accuracy better than 70 $\\mu$m, thereby supplying additional input to the track based alignment at detector startup. 31 out of the 40 LAS beams have been successfully operated during the CMS cosmic muon data taking campaign in autumn 2008. The alignment of the Tracker Endcap Discs and of the discs with respect to the Tracker Inner Barrel and Tracker Outer Barrel subdetectors was measured w...

  11. The Design Parameters for the MICE Tracker Solenoid

    International Nuclear Information System (INIS)

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor, Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-01-01

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report

  12. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  13. Sun tracker for clear or cloudy weather

    Science.gov (United States)

    Scott, D. R.; White, P. R.

    1979-01-01

    Sun tracker orients solar collector so that they absorb maximum possible sunlight without being fooled by bright clouds, holes in cloud cover, or other atmospheric conditions. Tracker follows sun within 0.25 deg arc and is accurate within + or - 5 deg when sun is hidden.

  14. A Methodology to Analyze Photovoltaic Tracker Uptime

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Matthew T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruth, Dan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-17

    A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall, the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.

  15. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2016-08-01

    Full Text Available prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 bit sebagai otak utama pada penelitian ini menjadikan produk ini berbiaya rendah. Pengujian yang dilakukan menunjukkan bahwa solar tracker cerdas dibandingkan dengan solar tracker biasa mempunyai perbedaan konsumsi daya baterai yang sangat signifikan yaitu terjadi penghematan sebesar 85 %. Besar penghematan konsumsi daya ini tentunya bukan sebuah angka konstan melainkan tergantung seberapa besar noise yang dikenakan pada alat solar tracker. Untuk sebuah perlakuan yang sama, maka semakin besar noise semakin besar pula perbedaan penghematan konsumsi daya pada solar tracker yang cerdas. Kata-kata kunci: solar tracker, filter digital, mikrokontroler 8 bit, konsumsi daya Abstract This research had made a prototype of smart solar tracker product based on microcontroller AVR 8 bit. The solar tracker used digital filter IIR (Infinite Impulse Response on its software. Filter programming needs 32 bit multiplication but the processor inside of the microcontroller that used in this research is 8 bit. This multiplication is only can be solved on microcontroller 8 bit by using assembly language in programming. The language is a hardware level language. The smart solar tracker using the microcontroller 8 bit as a main brain in this research made the product had a low cost. The test results show that the comparison in saving of baterai power consumption between the smart solar tracker and the normal one is 85 %. The percentage of the saving indubitably is not a constant

  16. Semiconductor detectors in the low countries

    International Nuclear Information System (INIS)

    Heijne, Erik H.M.

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double-sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime ∼10 -12 s, which decay on sub-millimeter scale. The intensive activity in silicon detector R and D culminated in 1991 in the construction of fine-grained 2D monolithic and hybrid pixel detectors that incorporate sophisticated electronic functions in each microscopic detection element, with typical dimensions of 25-100 μm. Besides being a powerful high intensity tracker for particle physics, this device can also be designed as a new X-ray imager, which allows selective counting of individual photons in each pixel at MHz frequency

  17. Test of the CMS microstrip silicon tracker readout and control system

    CERN Document Server

    Zghiche, A

    2001-01-01

    The Microstrip Silicon tracker of the CMS detector is designed to provide robust particle tracking and vertex reconstruction within a strong magnetic field in the high luminosity environment of the LHC. The Tracker readout system employs Front-End Driver cards to digitize and buffer the analogue data arriving via optical links from on detector pipeline chips. The control chain of the front-end electronic is built to operate via optical fibers in order to shield the communications from the outside noise. Components close to the final design have been assembled to be tested in the X5 beam area at CERN where a dedicated 25 ns temporal structure beam has been made available by the SPS. This paper describes the hardware and the software developed for readout and control of data acquired by the front-end electronics operating at 40 MHz, Some preliminary results of the tests performed in the 25 ns beam are also given. (8 refs).

  18. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  19. Power distribution studies for CMS forward tracker

    International Nuclear Information System (INIS)

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R and D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  20. Modelling Structural Flexure Effects in CPV Sun Trackers

    OpenAIRE

    Luque-Heredia, Ignacio; Quéméré, G.; Magalhães, P.H.; Fraile de Lerma, Alberto; Hermanns, Lutz Karl Heinz; Alarcón Álvarez, Enrique; Luque López, Antonio

    2006-01-01

    Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper...

  1. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  2. The CMS tracker control system

    Science.gov (United States)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  3. ALAT SOLAR TRACKER BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2015-07-01

    Full Text Available Penelitian yang telah dilakukan ini adalah membuat prototipe alat solar tracker. Alat ini berfungsi untuk menggerakkan modul sel surya sehingga permukaan sel surya bisa terkena sinar matahari secara maksimal. Saat ini sel surya di Indonesia banyak terpasang secara statis atau tidak dilengkapi alat solar tracker sehingga energi matahari tidak diterima secara maksimal. Hal ini menyebabkan sel surya yang terpasang di beberapa daerah di Indonesia tidak memberikan manfaat yang optimal. Alat solar tracker yang dihasilkan pada penelitian ini diharapkan sebagai solusi dari permasalahan yang ada saat ini. Mikrokontroler 8 bit ATMega8535 yang digunakan sebagai otak utama dari alat solar tracker menjadikan alat ini menjadi berbiaya murah. Serta teknik memprogram dengan bahasa assembly menjadikan alat ini tahan terhadap kegagalan sistem. Solar tracker ini sudah bisa beroperasi dengan baik dan cocok digunakan pada modul sel surya berukuran kecil.

  4. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  5. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  6. Analysis of Logistics Costs of the Ukrainian Semiconductor Industry

    Directory of Open Access Journals (Sweden)

    Popova Viktoriya D.

    2014-01-01

    Full Text Available The goal of the article is analysis of logistics costs in production of semiconductor materials using example of two Ukrainian enterprises. The article studies influence of logistics management and logistics costs upon formation of the final cost value (price of a commodity (service. It gives an assessment of logistics costs of Ukrainian semiconductor enterprises and establishes its structure by types of main expenditure items: material, transport, production and storehouse. It establishes the generalised quantitative structure of logistics costs of Ukrainian semiconductor enterprises with various forms of ownership under conditions of a situational growth of cost value of products and reduction of profitability of production, caused by common crisis tendencies in economy. Prospects of further studies in this direction are analysis of costs in production of semiconductor products and establishment of the specific feature of their grouping and classifying from the point of view of logistics and justification of the model of assessment of cost value of products, which takes into account mutually contradictory influence of direct logistics costs and logistics management upon the final result.

  7. Which cue to ‘want’? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking

    Science.gov (United States)

    DiFeliceantonio, Alexandra G.; Berridge, Kent C.

    2012-01-01

    Pavlovian cues that have been paired with reward can gain incentive salience. Drug addicts find drug cues motivationally attractive and binge eaters are attracted by food cues. But the level of incentive salience elicited by a cue re-encounter still varies across time and brain states. In an animal model, cues become attractive and ‘wanted’ in an ‘autoshaping’ paradigm, where different targets of incentive salience emerge for different individuals. Some individuals (sign-trackers) find a predictive discrete cue attractive while others find a reward contiguous and goal cue more attractive (location where reward arrives: goal-trackers). Here we assessed whether central amygdala mu opioid receptor stimulation enhances the phasic incentive salience of the goal-cue for goal-trackers during moments of predictive cue presence (expressed in both approach and consummatory behaviors to goal cue), just as it enhances the attractiveness of the predictive cue target for sign-trackers. Using detailed video analysis we measured the approaches, nibbles, sniffs, and bites directed at their preferred target for both sign-trackers and goal-trackers. We report that DAMGO microinjections in central amygdala made goal-trackers, like sign-trackers, show phasic increases in appetitive nibbles and sniffs directed at the goal-cue expressed selectively whenever the predictive cue was present. This indicates enhancement of incentive salience attributed by both goal trackers and sign-trackers, but attributed in different directions: each to their own target cue. For both phenotypes, amygdala opioid stimulation makes the individual’s prepotent cue into a stronger motivational magnet at phasic moments triggered by a CS that predicts the reward UCS. PMID:22391118

  8. PageRank tracker: from ranking to tracking.

    Science.gov (United States)

    Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie

    2014-06-01

    Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.

  9. The CMS Outer Tracker for HL-LHC

    CERN Document Server

    Dierlamm, Alexander Hermann

    2018-01-01

    The LHC is planning an upgrade program, which will bring the luminosity to about $5-7\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with a goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker is already running beyond design specifications and will not be able to cope with the HL-LHC radiation conditions. CMS will need a completely new Tracker in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Outer Tracker system is designed to provide robust tracking as well as Level-1 trigger capabilities using closely spaced modules composed of silicon macro-pixel and/or strip sensors. Research and development activities are ongoing to explore options and develop module components and designs for the HL-LHC environment. The design choices for the CMS Outer Tracker Upgrade are discussed along with some highlig...

  10. Centro-Apical Self-Organization of Organic Semiconductors in a Line-Printed Organic Semiconductor: Polymer Blend for One-Step Printing Fabrication of Organic Field-Effect Transistors.

    Science.gov (United States)

    Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah

    2015-09-11

    Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.

  11. Data acquisition software for the CMS strip tracker

    International Nuclear Information System (INIS)

    Bainbridge, R; Cripps, N; Fulcher, J; Radicci, V; Wingham, M; Baulieu, G; Bel, S; Delaere, C; Drouhin, F; Gill, K; Mirabito, L; Cole, J; Jesus, A C A; Giassi, A; Giordano, D; Gross, L; Hahn, K; Mersi, S; Nikolic, M; Tkaczyk, S

    2008-01-01

    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m 2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

  12. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  13. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, J.

    2010-07-01

    Evaluation of novel semiconductor materials potentially useful in solar cells. NREL will fabricate, test and analyze solar cells from EpiWorks' wafers produced in 2-3 separate growth campaigns. NREL will also characterize material from 2-3 separate EpiWorks material development campaigns. Finally, NREL will visit EpiWorks and help establish any necessary process, such as spectral CV measurements and III-V on Si metalization processes and help validate solar cell designs and performance.

  14. Activity trackers: a critical review.

    Science.gov (United States)

    Lee, Jeon; Finkelstein, Joseph

    2014-01-01

    The wearable consumer health devices can be mainly divided into activity trackers, sleep trackers, and stress management devices. These devices are widely advertised to provide positive effects on the user's daily behaviours and overall heath. However, objective evidence supporting these claims appears to be missing. The goal of this study was to review available evidence pertaining to performance of activity trackers. A comprehensive review of available information has been conducted for seven representative devices and the validity of marketing claims was assessed. The device assessment was based on availability of verified output metrics, theoretical frameworks, systematic evaluation, and FDA clearance. The review identified critical absence of supporting evidence of advertised functions and benefits for the majority of the devices. Six out of seven devices did not provide any information on sensor accuracy and output validity at all. Possible underestimation or overestimation of specific health indicators reported to consumers was not clearly disclosed to the public. Furthermore, significant limitations of these devices which can be categorized into user restrictions, user responsibilities and company disclaimers could not be easily found or comprehended by unsophisticated users and may represent a serious health hazard.

  15. The CMS tracker control system

    International Nuclear Information System (INIS)

    Dierlamm, A; Dirkes, G H; Fahrer, M; Frey, M; Hartmann, F; Masetti, L; Militaru, O; Shah, S Y; Stringer, R; Tsirou, A

    2008-01-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 10 4 power supply parameters, about 10 3 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 10 5 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention

  16. Expected Performance of the ATLAS Inner Tracker at the High Luminosity LHC

    CERN Document Server

    Mansour, Jason Dhia; The ATLAS collaboration

    2017-01-01

    The large data samples at the High-Luminosity LHC will enable precise measurements of the Higgs boson and other Standard Model particles, as well as searches for new phenomena such as supersymmetry and extra dimensions. To cope with the experimental challenges presented by the HL-LHC such as large radiation doses and high pileup, the current Inner Detector will be replaced with a new all-silicon Inner Tracker for the Phase II upgrade of the ATLAS detector. The current tracking performance of two candidate Inner Tracker layouts with an increased tracking acceptance (compared to the current Inner Detector) of |η|<4.0, employing either an ‘Extended’ or ‘Inclined’ Pixel barrel, is evaluated. New pattern recognition approaches facilitated by the detector designs are discussed, and ongoing work in optimising the track reconstruction for the new layouts and experimental conditions are outlined. Finally, future approaches that may improve the physics and/or technical performance of the ATLAS track reconst...

  17. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    Souza Coelho, L.F. de.

    1982-05-01

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author) [pt

  18. Reliability and validity of ten consumer activity trackers

    NARCIS (Netherlands)

    Kooiman, Thea; Dontje, Manon L.; Sprenger, Siska; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    2015-01-01

    Background: Activity trackers can potentially stimulate users to increase their physical activity behavior. The aim of this study was to examine the reliability and validity of ten consumer activity trackers for measuring step count in both laboratory and free-living conditions. Method: Healthy

  19. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  20. Aerodynamical study of a photovoltaic solar tracker

    OpenAIRE

    Gutiérrez Castillo, José Leonardo

    2016-01-01

    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  1. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    Science.gov (United States)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  2. The research and development of the automatic solar power tracker

    OpenAIRE

    Li Yan Ping; Yuan Zhong Ying

    2016-01-01

    The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  3. Advances in RGB and RGBD Generic Object Trackers

    KAUST Repository

    Bibi, Adel Aamer

    2016-01-01

    new state-of-the-art trackers. One of which is 3D based tracker in a particle filter framework where both synchronization and registration of RGB and depth streams are adjusted automatically, and three works in correlation filters that achieve state-of-the-art

  4. A simulator-based approach to evaluating optical trackers

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.

    2009-01-01

    We describe a software framework to evaluate the performance of model-based optical trackers in virtual environments. The framework can be used to evaluate and compare the performance of different trackers under various conditions, to study the effects of varying intrinsic and extrinsic camera

  5. Advances in RGB and RGBD Generic Object Trackers

    KAUST Repository

    Bibi, Adel

    2016-04-01

    Visual object tracking is a classical and very popular problem in computer vision with a plethora of applications such as vehicle navigation, human computer interface, human motion analysis, surveillance, auto-control systems and many more. Given the initial state of a target in the first frame, the goal of tracking is to predict states of the target over time where the states describe a bounding box covering the target. Despite numerous object tracking methods that have been proposed in recent years [1-4], most of these trackers suffer a degradation in performance mainly because of several challenges that include illumination changes, motion blur, complex motion, out of plane rotation, and partial or full occlusion, while occlusion is usually the most contributing factor in degrading the majority of trackers, if not all of them. This thesis is devoted to the advancement of generic object trackers tackling different challenges through different proposed methods. The work presented propose four new state-of-the-art trackers. One of which is 3D based tracker in a particle filter framework where both synchronization and registration of RGB and depth streams are adjusted automatically, and three works in correlation filters that achieve state-of-the-art performance in terms of accuracy while maintaining reasonable speeds.

  6. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection...

  7. Direct tracking error characterization on a single-axis solar tracker

    International Nuclear Information System (INIS)

    Sallaberry, Fabienne; Pujol-Nadal, Ramon; Larcher, Marco; Rittmann-Frank, Mercedes Hannelore

    2015-01-01

    Highlights: • The solar tracker of a small-size parabolic trough collector was tested. • A testing procedure for the tracking error characterization of a single-axis tracker was proposed. • A statistical analysis on the tracking error distribution was done regarding different variables. • The optical losses due to the tracking error were calculated based on a ray-tracing simulation. - Abstract: The solar trackers are devices used to orientate solar concentrating systems in order to increase the focusing of the solar radiation on a receiver. A solar concentrator with a medium or high concentration ratio needs to be orientated correctly by an accurate solar tracking mechanism to avoid losing the sunrays out from the receiver. Hence, to obtain an appropriate operation, it is important to know the accuracy of a solar tracker in regard to the required precision of the concentrator in order to maximize the collector optical efficiency. A procedure for the characterization of the accuracy of a solar tracker is presented for a single-axis solar tracker. More precisely, this study focuses on the estimation of the positioning angle error of a parabolic trough collector using a direct procedure. A testing procedure, adapted from the International standard IEC 62817 for photovoltaic trackers, was defined. The results show that the angular tracking error was within ±0.4° for this tracker. The optical losses due to the tracking were calculated using the longitudinal incidence angle modifier obtained by ray-tracing simulation. The acceptance angles for various transversal angles were analyzed, and the average optical loss, due to the tracking, was 0.317% during the whole testing campaign. The procedure presented in this work showed that the tracker precision was adequate for the requirements of the analyzed optical system.

  8. The silicon vertex tracker for star and future applications of silicon drift detectors

    International Nuclear Information System (INIS)

    Bellwied, Rene

    2001-01-01

    The Silicon Vertex Tracker (SVT) for the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory has recently been completed and installed. First data were taken in July 2001. The SVT is based on a novel semi-conductor technology called Silicon Drift Detectors. 216 large area (6 by 6 cm) Silicon wafers were employed to build a three barrel device capable of vertexing and tracking in a high occupancy environment. Its intrinsic radiation hardness, its operation at room temperature and its excellent position resolution (better than 20 micron) in two dimensions with a one dimensional detector readout, make this technology very robust and inexpensive and thus a viable alternative to CCD, Silicon pixel and Silicon strip detectors in a variety of applications from fundamental research in high-energy and nuclear physics to astrophysics to medical imaging. I will describe the development that led to the STAR-SVT, its performance and possible applications for the near future

  9. The research and development of the automatic solar power tracker

    Directory of Open Access Journals (Sweden)

    Li Yan Ping

    2016-01-01

    Full Text Available The article describes a kind of automatic tracker using solar power. It depends on two important parts which are servo system and adjusting mechanism system to keep the tracker operating normally. The article focuses on describing the characteristics and functions of two systems and the operating details of the automatic solar power tracker.

  10. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    International Nuclear Information System (INIS)

    Bick, Daniel

    2011-04-01

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced 11 C background. Finally, first results are presented. (orig.)

  11. The CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Bartalini, P.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Raffaelli, F.; Raso, G.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Wang, Y.; Watts, S.; Wittmer, B.

    1999-01-01

    The Silicon Strip Tracker (SST) is the intermediate part of the CMS Central Tracker System. SST is based on microstrip silicon devices and in combination with pixel detectors and the Microstrip Gas Chambers aims at performing pattern recognition, track reconstruction and momentum measurements for all tracks with p T ≥2 GeV/c originating from high luminosity interactions at √s=14 TeV at LHC. We aim at exploiting the advantages and the physics potential of the precise tracking performance provided by the microstrip silicon detectors on a large scale apparatus and in a much more difficult environment than ever. In this paper we describe the actual SST layout and the readout system. (author)

  12. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  13. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  14. Quality control considerations for the development of the front end hybrid circuits for the CMS Outer Tracker upgrade

    CERN Document Server

    Gadek, Tomasz; Bonnaud, Julien Yves Robert; De Clercq, Jarne Theo; Honma, Alan; Koliatos, Alexandros; Kovacs, Mark Istvan; Luetic, Jelena

    2017-01-01

    The upgrade of the CMS Outer Tracker for the HL-LHC requires the design of new double-sensor modules. They contain two high-density front end hybrid circuits, equipped with flip-chip ASICs, passives and mechanical structures. First prototype hybrids in a close-to-final form have been ordered from three manufacturers. To qualify these hybrids a test setup was built, which emulates future tracker temperature and humidity conditions, provides temporary interconnection, and implements testing features. The system was automated to minimize the testing time in view of the production phase. Failure modes, deliberately implemented in the produced hybrids, provided feedback on the system’s effectiveness.

  15. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  16. Some aspects of ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Klose, H.

    1982-01-01

    The advantages and disadvantages of ion implantation in the application of semiconductor technology are reviewed in short. This article describes some aspects of the state of the art and current developments of nonconventional annealing procedures, ion beam gettering of deep impurities, special applications of ion implantation using low or high energy ions and GaAs-electronics, respectively. Radiation defects in Si and the nonexponential emission and capture processes in GaAsP are discussed. Final future trends of ion beam methods in semiconductor production technology are summarized. (author)

  17. Variable resolution Associative Memory optimization and simulation for the ATLAS FastTracker project

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Giannetti, P; Jiang, Z; Pandini, C; Luongo, C; Shochet, M; Tompkins, L; Volpi, G

    2013-01-01

    ATLAS is planning to use a hardware processor, the Fast Tracker (FTK), to perform tracking at the level­1 event rate (100 KHz). The most recent prototype of the Associative Memory (AM) chip developed for the ATLAS Fast Tracker includes ternary logic that can store the “don’t care” (DC) value. This feature allows enormous flexibility tuning the precision of the match for each pattern and each detector layer. We have studied different methods of building the pattern bank exploiting don't care bits. We show how merging similar precision patterns into coarser ones achieves the goal of having few enough patterns to fit in the hardware, while maintaining good efficiency and the required rejection against random combinations of hits. We finally present a detailed preliminary study that shows how with just up to 2 DC ­bits in each layer in the pixel sensor and 1 DC­bit in the strips it is possible to build a bank that will allo

  18. The CMS Tracker Data Quality Monitoring Expert GUI

    CERN Document Server

    Palmonari, Francesco

    2009-01-01

    The CMS Tracker data quality monitoring (DQM) is a demanding task due the detector's high granularity. It consists of about 15148 strip and 1440 pixel detector modules. About 350,000 histograms are defined and filled accessing information from different stages of data reconstruction to check the data quality. It is impossible to manage such a large number of histograms by shift personnel and experts. A tracker specific Graphical User Interface (GUI) is developed to simplify the navigation and to spot detector problems efficiently. The GUI is web-based and implemented with Ajax technology. We will describe the framework and the specific features of the expert GUI developed for the CMS Tracker DQM system.

  19. Control Algorithms for Large-scale Single-axis Photovoltaic Trackers

    Directory of Open Access Journals (Sweden)

    Dorian Schneider

    2012-01-01

    Full Text Available The electrical yield of large-scale photovoltaic power plants can be greatly improved by employing solar trackers. While fixed-tilt superstructures are stationary and immobile, trackers move the PV-module plane in order to optimize its alignment to the sun. This paper introduces control algorithms for single-axis trackers (SAT, including a discussion for optimal alignment and backtracking. The results are used to simulate and compare the electrical yield of fixed-tilt and SAT systems. The proposed algorithms have been field tested, and are in operation in solar parks worldwide.

  20. The heart of ATLAS Commissioning and performance of the ATLAS silicon tracker

    CERN Document Server

    Magrath, Caroline Alexandra

    2009-01-01

    The Large Hadron Collider (LHC) has been built under the french-swiss border near Geneva, Switzerland. Two opposing beams of protons will collide with a centre of mass energy of 14 TeV, an energy seven million times that of the first accelerator. The LHC takes particle physics research to a new frontier. On September 10th 2008, the first single pilot beam of $2 x 10^9$ protons was circulated successfully through the entire LHC, with an injection energy of 0.45 TeV. The first collisions are expected in Summer 2009. One of the experiments designed to search for new particle phenomena is the ATLAS experiment. This is a general purpose detector capable of detecting and measuring the broadest range of particle signals. At the heart of the ATLAS detector lies the SemiConductor Tracker (SCT). It is a central part of the inner detector providing precision measurements of particle trajectories over a large $\\eta$ range. The work presented in this thesis focuses on the performance and commissioning of the SCT detector....

  1. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  2. Documentation for delivery of Star Tracker to CHAMP

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the flight hardware of the Star Tracker for the German satellite CHAMP.......The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the flight hardware of the Star Tracker for the German satellite CHAMP....

  3. The ATLAS Fast Tracker

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    The use of tracking information at the trigger level in the LHC Run II period is crucial for the trigger an data acquisition (TDAQ) system. The tracking precision is in fact important to identify specific decay products of the Higgs boson or new phenomena, a well as to distinguish the contributions coming from many contemporary collisions that occur at every bunch crossing. However, the track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, full reconstruction at full Level-1 trigger accept rate (100 KHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a specific processor: the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronic, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker information. Patte...

  4. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  5. Performance studies of the CMS Strip Tracker before installation

    CERN Document Server

    Adam, Wolfgang; Dragicevic, Marko; Friedl, Markus; Fruhwirth, R; Hansel, S; Hrubec, Josef; Krammer, Manfred; Oberegger, Margit; Pernicka, Manfred; Schmid, Siegfried; Stark, Roland; Steininger, Helmut; Uhl, Dieter; Waltenberger, Wolfgang; Widl, Edmund; Van Mechelen, Pierre; Cardaci, Marco; Beaumont, Willem; de Langhe, Eric; de Wolf, Eddi A; Delmeire, Evelyne; Hashemi, Majid; Bouhali, Othmane; Charaf, Otman; Clerbaux, Barbara; Dewulf, Jean-Paul; Elgammal, Sherif; Hammad, Gregory Habib; de Lentdecker, Gilles; Marage, Pierre Edouard; Vander Velde, Catherine; Vanlaer, Pascal; Wickens, John; Adler, Volker; Devroede, Olivier; De Weirdt, Stijn; D'Hondt, Jorgen; Goorens, Robert; Heyninck, Jan; Maes, Joris; Mozer, Matthias Ulrich; Tavernier, Stefaan; Van Lancker, Luc; Van Mulders, Petra; Villella, Ilaria; Wastiels, C; Bonnet, Jean-Luc; Bruno, Giacomo; De Callatay, Bernard; Florins, Benoit; Giammanco, Andrea; Gregoire, Ghislain; Keutgen, Thomas; Kcira, Dorian; Lemaitre, Vincent; Michotte, Daniel; Militaru, Otilia; Piotrzkowski, Krzysztof; Quertermont, L; Roberfroid, Vincent; Rouby, Xavier; Teyssier, Daniel; Daubie, Evelyne; Anttila, Erkki; Czellar, Sandor; Engstrom, Pauli; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, Auli; Lampen, Tapio; Linden, Tomas; Luukka, Panja-Riina; Maenpaa, T; Michal, Sebastien; Tuominen, Eija; Tuominiemi, Jorma; Ageron, Michel; Baulieu, Guillaume; Bonnevaux, Alain; Boudoul, Gaelle; Chabanat, Eric; Chabert, Eric Christian; Chierici, Roberto; Contardo, Didier; Della Negra, Rodolphe; Dupasquier, Thierry; Gelin, Georges; Giraud, Noël; Guillot, Gérard; Estre, Nicolas; Haroutunian, Roger; Lumb, Nicholas; Perries, Stephane; Schirra, Florent; Trocme, Benjamin; Vanzetto, Sylvain; Agram, Jean-Laurent; Blaes, Reiner; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Fontaine, Jean-Charles; Berst, Jean-Daniel; Brom, Jean-Marie; Didierjean, Francois; Goerlach, Ulrich; Graehling, Philippe; Gross, Laurent; Hosselet, J; Juillot, Pierre; Lounis, Abdenour; Maazouzi, Chaker; Olivetto, Christian; Strub, Roger; Van Hove, Pierre; Anagnostou, Georgios; Brauer, Richard; Esser, Hans; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Kukulies, Christoph; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pierschel, Gerhard; Raupach, Frank; Schael, Stefan; Schwering, Georg; Sprenger, Daniel; Thomas, Maarten; Weber, Markus; Wittmer, Bruno; Wlochal, Michael; Beissel, Franz; Bock, E; Flugge, G; Gillissen, C; Hermanns, Thomas; Heydhausen, Dirk; Jahn, Dieter; Kaussen, Gordon; Linn, Alexander; Perchalla, Lars; Poettgens, Michael; Pooth, Oliver; Stahl, Achim; Zoeller, Marc Henning; Buhmann, Peter; Butz, Erik; Flucke, Gero; Hamdorf, Richard Helmut; Hauk, Johannes; Klanner, Robert; Pein, Uwe; Schleper, Peter; Steinbruck, G; Blum, P; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Frey, Martin; Furgeri, Alexander; Hartmann, Frank; Heier, Stefan; Hoffmann, Karl-Heinz; Kaminski, Jochen; Ledermann, Bernhard; Liamsuwan, Thiansin; Muller, S; Muller, Th; Schilling, Frank-Peter; Simonis, Hans-Jürgen; Steck, Pia; Zhukov, Valery; Cariola, P; De Robertis, Giuseppe; Ferorelli, Raffaele; Fiore, Luigi; Preda, M; Sala, Giuliano; Silvestris, Lucia; Tempesta, Paolo; Zito, Giuseppe; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Giordano, Domenico; Maggi, Giorgio; Manna, Norman; My, Salvatore; Selvaggi, Giovanna; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Galanti, Mario; Giudice, Nunzio; Guardone, Nunzio; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Sparti, V; Sutera, Concetta; Tricomi, Alessia; Tuve, Cristina; Brianzi, Mirko; Civinini, Carlo; Maletta, Fernando; Manolescu, Florentina; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Broccolo, B; Ciulli, Vitaliano; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Genta, Chiara; Landi, Gregorio; Lenzi, Piergiulio; Macchiolo, Anna; Magini, Nicolo; Parrini, Giuliano; Scarlini, Enrico; Cerati, Giuseppe Benedetto; Azzi, Patrizia; Bacchetta, Nicola; Candelori, Andrea; Dorigo, Tommaso; Kaminsky, A; Karaevski, S; Khomenkov, Volodymyr; Reznikov, Sergey; Tessaro, Mario; Bisello, Dario; De Mattia, Marco; Giubilato, Piero; Loreti, Maurizio; Mattiazzo, Serena; Nigro, Massimo; Paccagnella, Alessandro; Pantano, Devis; Pozzobon, Nicola; Tosi, Mia; Bilei, Gian Mario; Checcucci, Bruno; Fano, Livio; Servoli, Leonello; Ambroglini, Filippo; Babucci, Ezio; Benedetti, Daniele; Biasini, Maurizio; Caponeri, Benedetta; Covarelli, Roberto; Giorgi, Marco; Lariccia, Paolo; Mantovani, Giancarlo; Marcantonini, Marta; Postolache, Vasile; Santocchia, Attilio; Spiga, Daniele; Bagliesi, Giuseppe; Balestri, Gabriele; Berretta, Luca; Bianucci, S; Boccali, Tommaso; Bosi, Filippo; Bracci, Fabrizio; Castaldi, Rino; Ceccanti, Marco; Cecchi, Roberto; Cerri, Claudio; Cucoanes, Andi Sebastian; Dell'Orso, Roberto; Dobur, Didar; Dutta, Suchandra; Giassi, Alessandro; Giusti, Simone; Kartashov, Dmitry; Kraan, Aafke; Lomtadze, Teimuraz; Lungu, George-Adrian; Magazzu, Guido; Mammini, Paolo; Mariani, Filippo; Martinelli, Giovanni; Moggi, Andrea; Palla, Fabrizio; Palmonari, Francesco; Petragnani, Giulio; Profeti, Alessandro; Raffaelli, Fabrizio; Rizzi, Domenico; Sanguinetti, Giulio; Sarkar, Subir; Sentenac, Daniel; Serban, Alin Titus; Slav, Adrian; Soldani, A; Spagnolo, Paolo; Tenchini, Roberto; Tolaini, Sergio; Venturi, Andrea; Verdini, Piero Giorgio; Vos, Marcel; Zaccarelli, Luciano; Avanzini, Carlo; Basti, Andrea; Benucci, Leonardo; Bocci, Andrea; Cazzola, Ugo; Fiori, Francesco; Linari, Stefano; Massa, Maurizio; Messineo, Alberto; Segneri, Gabriele; Tonelli, Guido; Azzurri, Paolo; Bernardini, Jacopo; Borrello, Laura; Calzolari, Federico; Foa, Lorenzo; Gennai, Simone; Ligabue, Franco; Petrucciani, Giovanni; Rizzi, Andrea; Yang, Zong-Chang; Benotto, Franco; Demaria, Natale; Dumitrache, Floarea; Farano, R; Borgia, Maria Assunta; Castello, Roberto; Costa, Marco; Migliore, Ernesto; Romero, Alessandra; Abbaneo, Duccio; Abbas, M; Ahmed, Ijaz; Akhtar, I; Albert, Eric; Bloch, Christoph; Breuker, Horst; Butt, Shahid Aleem; Buchmuller, Oliver; Cattai, Ariella; Delaere, Christophe; Delattre, Michel; Edera, Laura Maria; Engstrom, Pauli; Eppard, Michael; Gateau, Maryline; Gill, Karl; Giolo-Nicollerat, Anne-Sylvie; Grabit, Robert; Honma, Alan; Huhtinen, Mika; Kloukinas, Kostas; Kortesmaa, Jarmo; Kottelat, Luc-Joseph; Kuronen, Auli; Leonardo, Nuno; Ljuslin, Christer; Mannelli, Marcello; Masetti, Lorenzo; Marchioro, Alessandro; Mersi, Stefano; Michal, Sebastien; Mirabito, Laurent; Muffat-Joly, Jeannine; Onnela, Antti; Paillard, Christian; Pal, Imre; Pernot, Jean-Francois; Petagna, Paolo; Petit, Patrick; Piccut, C; Pioppi, Michele; Postema, Hans; Ranieri, Riccardo; Ricci, Daniel; Rolandi, Gigi; Ronga, Frederic Jean; Sigaud, Christophe; Syed, A; Siegrist, Patrice; Tropea, Paola; Troska, Jan; Tsirou, Andromachi; Vander Donckt, Muriel; Vasey, François; Alagoz, Enver; Amsler, Claude; Chiochia, Vincenzo; Regenfus, Christian; Robmann, Peter; Rochet, Jacky; Rommerskirchen, Tanja; Schmidt, Alexander; Steiner, Stefan; Wilke, Lotte; Church, Ivan; Cole, Joanne; Coughlan, John A; Gay, Arnaud; Taghavi, S; Tomalin, Ian R; Bainbridge, Robert; Cripps, Nicholas; Fulcher, Jonathan; Hall, Geoffrey; Noy, Matthew; Pesaresi, Mark; Radicci, Valeria; Raymond, David Mark; Sharp, Peter; Stoye, Markus; Wingham, Matthew; Zorba, Osman; Goitom, Israel; Hobson, Peter R; Reid, Ivan; Teodorescu, Liliana; Hanson, Gail; Jeng, Geng-Yuan; Liu, Haidong; Pasztor, Gabriella; Satpathy, Asish; Stringer, Robert; Mangano, Boris; Affolder, K; Affolder, T; Allen, Andrea; Barge, Derek; Burke, Samuel; Callahan, D; Campagnari, Claudio; Crook, A; D'Alfonso, Mariarosaria; Dietch, J; Garberson, Jeffrey; Hale, David; Incandela, H; Incandela, Joe; Jaditz, Stephen; Kalavase, Puneeth; Kreyer, Steven Lawrence; Kyre, Susanne; Lamb, James; Mc Guinness, C; Mills, C; Nguyen, Harold; Nikolic, Milan; Lowette, Steven; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rubinstein, Noah; Sanhueza, S; Shah, Yousaf Syed; Simms, L; Staszak, D; Stoner, J; Stuart, David; Swain, Sanjay Kumar; Vlimant, Jean-Roch; White, Dean; Ulmer, Keith; Wagner, Stephen Robert; Bagby, Linda; Bhat, Pushpalatha C; Burkett, Kevin; Cihangir, Selcuk; Gutsche, Oliver; Jensen, Hans; Johnson, Mark; Luzhetskiy, Nikolay; Mason, David; Miao, Ting; Moccia, Stefano; Noeding, Carsten; Ronzhin, Anatoly; Skup, Ewa; Spalding, William J; Spiegel, Leonard; Tkaczyk, Slawek; Yumiceva, Francisco; Zatserklyaniy, Andriy; Zerev, E; Anghel, Ioana Maria; Bazterra, Victor Eduardo; Gerber, Cecilia Elena; Khalatian, S; Shabalina, Elizaveta; Baringer, Philip; Bean, Alice; Chen, Jie; Hinchey, Carl Louis; Martin, Christophe; Moulik, Tania; Robinson, Richard; Gritsan, Andrei; Lae, Chung Khim; Tran, Nhan Viet; Everaerts, Pieter; Hahn, Kristan Allan; Harris, Philip; Nahn, Steve; Rudolph, Matthew; Sung, Kevin; Betchart, Burton; Demina, Regina; Gotra, Yury; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Christofek, Leonard; Hooper, Ryan; Landsberg, Greg; Nguyen, Duong; Narain, Meenakshi; Speer, Thomas; Tsang, Ka Vang

    2009-01-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  6. The new silicon strip detectors for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2010-01-01

    The first introductory part of the thesis describes the concept of the CMS experiment. The tasks of the various detector systems and their technical implementations in CMS are explained. To facilitate the understanding of the basic principles of silicon strip sensors, the subsequent chapter discusses the fundamentals in semiconductor technology, with particular emphasis on silicon. The necessary process steps to manufacture strip sensors in a so-called planar process are described in detail. Furthermore, the effects of irradiation on silicon strip sensors are discussed. To conclude the introductory part of the thesis, the design of the silicon strip sensors of the CMS Tracker are described in detail. The choice of the substrate material and the complex geometry of the sensors are reviewed and the quality assurance procedures for the production of the sensors are presented. Furthermore the design of the detector modules are described. The main part of this thesis starts with a discussion on the demands on the tracker caused by the increase in luminosity which is proposed as an upgrade to the LHC accelerator (sLHC). This chapter motivates the work I have conducted and clarifies why the solutions proposed by myself are important contributions to the upgrade of the CMS tracker. The following chapters present the concepts that are necessary to operate the silicon strip sensors at sLHC luminosities and additional improvements to the construction and quality assurance of the sensors and the detector modules. The most important concepts and works presented in chapters 7 to 9 are: Development of a software framework to enable the flexible and quick design of test structures and sensors. Selecting a suitable sensor material which is sufficiently radiation hard. Design, implementation and production of a standard set of test structures to enable the quality assurance of such sensors and any future developments. Electrical characterisation of the test structures and analysis

  7. Last ATLAS transition radiation tracker module installed

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS transition radiation tracker consists of 96 modules and will join the pixel detector and silicon tracker at the heart of the experiment to map the trajectories of particles and identify electrons produced when proton beams collide. In the last image the team responsible for assembly are shown from left to right: Kirill Egorov (Petersburg Nuclear Physics Institute), Pauline Gagnon (Indiana University), Ben Legeyt (University of Pennsylvania), Chuck Long (Hampton University), John Callahan (Indiana University) and Alex High (University of Pennsylvania).

  8. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  9. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  10. Radiation hard silicon sensors for the CMS tracker upgrade

    CERN Document Server

    Pohlsen, Thomas

    2013-01-01

    At an instantaneous luminosity of $5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of $3\\,000$ fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation dose of the tracking systems will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements for detectors for the HL-LHC. Focussing on the upgrade of the outer tracker region, pad sensors as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for the positions of detector layers in the future tracker. Different proton energies were used for irr...

  11. Software alignment of the LHCb Outer Tracker chambers

    Energy Technology Data Exchange (ETDEWEB)

    Deissenroth, Marc

    2010-04-21

    This work presents an alignment algorithm that was developed to precisely determine the positions of the LHCb Outer Tracker detector elements. The algorithm is based on the reconstruction of tracks and exploits that misalignments of the detector change the residual between a measured hit and the reconstructed track. It considers different levels of granularities of the Outer Tracker geometry and fully accounts for correlations of all elements which are imposed by particle trajectories. In extensive tests, simulated shifts and rotations for different levels of the detector granularity have been used as input to the track reconstruction and alignment procedure. With about 260 000 tracks the misalignments are recovered with a statistical precision of O(10 - 100 {mu}m) for the translational degrees of freedom and of O(10{sup -2} - 10{sup -1} mrad) for rotations. A study has been performed to determine the impact of Outer Tracker misalignments on the performance of the track reconstruction algorithms. It shows that the achieved statistical precision does not decrease the track reconstruction performance in a significant way. During the commissioning of the LHCb detector, cosmic ray muon events have been collected. The events have been analysed and used for the first alignment of the 216 Outer Tracker modules. The module positions have been determined within {proportional_to} 90 {mu}m. The developed track based alignment algorithm has demonstrated its reliability and is one of the core algorithms which are used for the precise determination of the positions of the LHCb Outer Tracker elements. (orig.)

  12. Software alignment of the LHCb Outer Tracker chambers

    International Nuclear Information System (INIS)

    Deissenroth, Marc

    2010-01-01

    This work presents an alignment algorithm that was developed to precisely determine the positions of the LHCb Outer Tracker detector elements. The algorithm is based on the reconstruction of tracks and exploits that misalignments of the detector change the residual between a measured hit and the reconstructed track. It considers different levels of granularities of the Outer Tracker geometry and fully accounts for correlations of all elements which are imposed by particle trajectories. In extensive tests, simulated shifts and rotations for different levels of the detector granularity have been used as input to the track reconstruction and alignment procedure. With about 260 000 tracks the misalignments are recovered with a statistical precision of O(10 - 100 μm) for the translational degrees of freedom and of O(10 -2 - 10 -1 mrad) for rotations. A study has been performed to determine the impact of Outer Tracker misalignments on the performance of the track reconstruction algorithms. It shows that the achieved statistical precision does not decrease the track reconstruction performance in a significant way. During the commissioning of the LHCb detector, cosmic ray muon events have been collected. The events have been analysed and used for the first alignment of the 216 Outer Tracker modules. The module positions have been determined within ∝ 90 μm. The developed track based alignment algorithm has demonstrated its reliability and is one of the core algorithms which are used for the precise determination of the positions of the LHCb Outer Tracker elements. (orig.)

  13. LHCb: LHCb Upstream Tracker

    CERN Multimedia

    Manning Jr, P; Stone, S

    2014-01-01

    The LHCb upgrade requires replacing the silicon strip tracker between the vertex locator and the magnet. A new design has been developed and tested based on the "stave" concept planned for the ATLAS upgrade. We will describe the new detector being constructed and show its improved performance in charged particle tracking and triggering.

  14. Wearable Gaze Trackers: Mapping Visual Attention in 3D

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Stets, Jonathan Dyssel; Suurmets, Seidi

    2017-01-01

    gaze trackers allows respondents to move freely in any real world 3D environment, removing the previous restrictions. In this paper we propose a novel approach for processing visual attention of respondents using mobile wearable gaze trackers in a 3D environment. The pipeline consists of 3 steps...

  15. Alignment of the CMS Silicon Strip Tracker during stand-alone Commissioning

    CERN Document Server

    Adam, W.; Dragicevic, M.; Friedl, M.; Fruhwirth, R.; Hansel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E.A.; Delmeire, E.; Hashemi, M.; Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J.-P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, Matthias Ulrich; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Bonnet, J.-L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.; daubie, E.; Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P.-R.; Maenaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.; Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.; Agram, J.-L.; Blaes, R.; Drouhin, F.; Ernenwein, J.-P.; Fontaine, J.-C.; Berst, J.-D.; Brom, J.-M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.; Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M.H.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbruck, G.; Blum, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K.-H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Muller, S.; Muller, Th.; Schilling, F.-P.; Simonis, H.-J.; Steck, P.; Zhukov, V.; Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M.A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.; Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.; Bilei, G.M.; Checcucci, B.; Fano, L.; Servoli, L.; Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.; Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A.S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G.A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A.T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P.G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.; Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.; Borgia, M.A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L.M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A.-S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L.J.; Kuronen, A.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Michal, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J.F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.; Alagoz, E.; Amsler, Claude; Chiochia, V.; Regenfus, Christian; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.; Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.; Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D.M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.; Goitom, I.; Hobson, P.R.; Reid, I.; Teodorescu, L.; Hanson, G.; Jeng, G.-Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.; Mangano, B.; Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, Jeffrey Ford; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinnessr, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J.-R.; White, D.; Ulmer, K.A.; Wagner, S.R.; Bagby, L.; Bhat, P.C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W.J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.; Anghel, I.; Bazterra, V.E.; Gerber, C.E.; Khalatian, S.; Shabalina, E.; Baringer, Philip S.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.; Gritsan, A.V.; Lae, C.K.; Tran, N.V.; Everaerts, P.; Hahn, K.A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.; Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.; Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K.V.

    2009-01-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  16. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer; Zhang, Tianzhu; Ghanem, Bernard

    2016-01-01

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  17. 3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

    KAUST Repository

    Bibi, Adel Aamer

    2016-12-13

    In this paper, we present a part-based sparse tracker in a particle filter framework where both the motion and appearance model are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm, which is intrinsically fused in the motion model. Also, since 3D trackers are sensitive to synchronization and registration noise in the RGB and depth streams, we propose automated methods to solve these two issues. Extensive experiments are conducted on a popular RGBD tracking benchmark, which demonstrate that our tracker can achieve superior results, outperforming many other recent and state-of-the-art RGBD trackers.

  18. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  19. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  20. Alignment of Ion Accelerator for Surface Analysis using Theodolite and Laser Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Sung; Seo, Dong Hyuk; Kim, Dae Il; Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The method of ion accelerator alignment is used two ways which are a theodolite and laser tracker. For the alignment and maintenance of the proton linear accelerator, the laser tracker is typically used at KOMAC. While the device for alignment by using laser tracker is not installed in all ion accelerator components, it was used in parallel in two methods. In this paper, alignment methods are introduced and the result and comparison of each alignment method are presented. The ion accelerator for surface analysis has aligned using theodolite and laser tracker. The two ways for alignment have advantage as well as weakness. But alignment using laser tracker is stronger than using theodolite. Because it is based on alignment and position data and it is more detailed. Also since the beam distribution is smaller than accelerator component that is direction of beam progress, main component (ex. Magnet, Chamber, Pelletron tank, etc.) alignment using laser tracker is enough to align the ion accelerator.

  1. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    OpenAIRE

    I Wayan Sutaya; Ketut Udy Ariawan

    2016-01-01

    prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response) pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 ...

  2. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  3. CMS tracker towards the HL-LHC

    CERN Document Server

    Alunni Solestizi, Luisa

    2015-01-01

    In sight of the incoming new LHC era (High Luminosity - LHC), characterized by a jump forward in the precision boundary and in the event rate, all the CMS sub-detector are developing and studying innovative strategies of trigger, pattern recognition, event timing and so on. A crucial aspect will be the online event selection: a totally new paradigm is needed, given the huge amount of events. In this picture the most granular and innermost sub-detector, the tracker, will play a decisive role. The phase-2 tracker will be involved in the L1 Trigger and, taking advantage of both the Associative Memories and the FPGA, it can ensure a trigger decision in proper time and with satisfactory performances.

  4. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  5. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  6. Development of a new Silicon Tracker at CMS for Super-LHC

    CERN Document Server

    Pesaresi, Mark

    2010-01-01

    Tracking is an essential requirement for any high energy particle physics experiment. The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) employs an all silicon tracker, the largest of its kind, for the precise measurement of track momentum and vertex position. With approximately 10 million detector channels in the strip tracker alone, the analogue non-sparsified readout system has been designed to handle the large data volumes generated at the 100 kHz Level 1 (L1) trigger rate. Fluctuations in the event rate are controlled using buffers whose occupancies are constantly monitored to prevent overflows, otherwise causing loss of synchronisation and data. The status of the tracker is reported by the APV emulator (APVe), which has now been successfully commissioned within the silicon strip tracker readout system. The APVe plays a crucial role in the synchronisation of the tracker by deterministic calculation of the front end buffer occupancy and by monitoring the status of the Front End Dr...

  7. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu; Bibi, Adel Aamer; Ghanem, Bernard

    2016-01-01

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  8. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu

    2016-12-13

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  9. Star tracker operation in a high density proton field

    Science.gov (United States)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  10. Upgrading the ATLAS barrel tracker for the super-LHC

    International Nuclear Information System (INIS)

    Bates, Richard L.

    2009-01-01

    It has been proposed to increase the luminosity of the large hadron collider (LHC) at CERN by an order of magnitude, with the upgraded machine dubbed super-LHC. The ATLAS experiment will require a new tracker for this high-luminosity operation due to radiation damage and event density. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all-silicon tracker is being designed. The new strip detector will use significantly shorter strips than the current silicon tracker in order to minimize the occupancy. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation-hard silicon detectors is required. An R and D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges facing the sensors and the cooling and mechanical support will be discussed. A possible tracker layout will be described.

  11. Variable resolution Associative Memory optimization and simulation for the ATLAS FastTracker project

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Giannetti, P; Jiang, Z; Pandini, C; Luongo, C; Shochet, M; Tompkins, L; Volpi, G

    2014-01-01

    ATLAS is planning to use a hardware processor, the Fast Tracker (FTK), to perform tracking at the level­1 event rate (100 KHz). The most recent prototype of the Associative Memory (AM) chip developed for the ATLAS Fast Tracker includes ternary logic that can store the “don’t care” (DC) value. This feature allows enormous flexibility tuning the precision of the match for each pattern and each detector layer. We have studied different methods of building the pattern bank exploiting don't care bits. We show how merging similar precision patterns into coarser ones achieves the goal of having few enough patterns to fit in the hardware, while maintaining good efficiency and the required rejection against random combinations of hits. We finally present a detailed preliminary study that shows how with just up to 2 DC ­bits in each layer in the pixel sensor and 1 DC­bit in the strips it is possible to build a bank that will allow the system to be fully functional at the luminosities and pileup conditions expe...

  12. The upgrade of the vertex detector to form the central part of the silicon tracker in DELPHI

    International Nuclear Information System (INIS)

    Brenner, R.

    1997-01-01

    The DELPHI vertex detector has undergone a final upgrade to meet the physics requirements at LEP200. The old vertex detector has been made longer by 24 cm and is now the barrel part of the silicon tracker with a very forward part at both ends. The configuration and first results on the stability and performance of the barrel part is reported. (orig.)

  13. Documentation for delivery of Star Tracker to ADEOS II

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Betto, Maurizio; Denver, Troelz

    1999-01-01

    The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II.......The documentation EIDP (End Item Data Package) describes all the tests which have been performed on the Flight Hardware of the Star Tracker for the Japanese satellite ADEOS II....

  14. Tracker: Image-Processing and Object-Tracking System Developed

    Science.gov (United States)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in

  15. LHCb Upgrade: Scintillating Fibre Tracker

    International Nuclear Information System (INIS)

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  16. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  17. Optical system error analysis and calibration method of high-accuracy star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  18. Application Of Expert System Techniques To A Visual Tracker

    Science.gov (United States)

    Myler, Harley R.; Thompson, Wiley E.; Flachs, Gerald M.

    1985-04-01

    A structure for visual tracking system is presented which relies on information developed from previous tracking scenarios stored in a knowledge base to enhance tracking performance. The system is comprised of a centroid tracker front end which supplies segmented image features to a data reduction algorithm which holds the reduced data in a temporary data base relation. This relation is then classified vio two separate modes, learn and track. Under learn mode, an external teacher-irector operator provides identification and weighting cues for membership in a long-term storage relation within a knowledge base. Track mode operates autonomously from the learn mode where the system determines feature validity by applying fuzzy set membership criteria to previously stored track information in the database. Results determined from the classification generate tracker directives which either enhance or permit current tracking to continue or cause the tracker to search for alternate targets based upon analysis of a global target tracking list. The classification algorithm is based on correlative analysis of the tracker's segmented output presentation after low pass filtering derives lower order harmonics of the feature. The fuzzy set membership criteria is based on size, rotation, Irame location, and past history of the feature. The first three factors are lin-ear operations on the spectra, while the last is generated as a context relation in the knowledge base. The context relation interlinks data between features to facilitate tracker operation during feature occlusion or presence of countermeasures.

  19. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001-2015

    Science.gov (United States)

    van der Laan-Luijkx, Ingrid T.; van der Velde, Ivar R.; van der Veen, Emma; Tsuruta, Aki; Stanislawska, Karolina; Babenhauserheide, Arne; Zhang, Hui Fang; Liu, Yu; He, Wei; Chen, Huilin; Masarie, Kenneth A.; Krol, Maarten C.; Peters, Wouter

    2017-07-01

    Data assimilation systems are used increasingly to constrain the budgets of reactive and long-lived gases measured in the atmosphere. Each trace gas has its own lifetime, dominant sources and sinks, and observational network (from flask sampling and in situ measurements to space-based remote sensing) and therefore comes with its own optimal configuration of the data assimilation. The CarbonTracker Europe data assimilation system for CO2 estimates global carbon sources and sinks, and updates are released annually and used in carbon cycle studies. CarbonTracker Europe simulations are performed using the new modular implementation of the data assimilation system: the CarbonTracker Data Assimilation Shell (CTDAS). Here, we present and document this redesign of the data assimilation code that forms the heart of CarbonTracker, specifically meant to enable easy extension and modification of the data assimilation system. This paper also presents the setup of the latest version of CarbonTracker Europe (CTE2016), including the use of the gridded state vector, and shows the resulting carbon flux estimates. We present the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show that with equal fossil fuel emissions, 2015 has a higher atmospheric CO2 growth rate compared to 2014, due to reduced net land carbon uptake in later year. The European carbon sink is especially present in the forests, and the average net uptake over 2001-2015 was 0. 17 ± 0. 11 PgC yr-1 with reductions to zero during drought years. Finally, we also demonstrate the versatility of CTDAS by presenting an overview of the wide range of applications for which it has been used so far.

  20. Users’ experiences of wearable activity trackers: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carol Maher

    2017-11-01

    Full Text Available Abstract Background Wearable activity trackers offer considerable promise for helping users to adopt healthier lifestyles. This study aimed to explore users’ experience of activity trackers, including usage patterns, sharing of data to social media, perceived behaviour change (physical activity, diet and sleep, and technical issues/barriers to use. Methods A cross-sectional online survey was developed and administered to Australian adults who were current or former activity tracker users. Results were analysed descriptively, with differences between current and former users and wearable brands explored using independent samples t-tests, Mann-Whitney, and chi square tests. Results Participants included 200 current and 37 former activity tracker users (total N = 237 with a mean age of 33.1 years (SD 12.4, range 18–74 years. Fitbit (67.5% and Garmin devices (16.5% were most commonly reported. Participants typically used their trackers for sustained periods (5–7 months and most intended to continue usage. Participants reported they had improved their physical activity (51–81% more commonly than they had their diet (14–40% or sleep (11–24%, and slightly more participants reported to value the real time feedback (89% compared to the long-term monitoring (78%. Most users (70% reported they had experienced functionality issues with their devices, most commonly related to battery life and technical difficulties. Conclusions Results suggest users find activity trackers appealing and useful tools for increasing perceived physical activity levels over a sustained period.

  1. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R. [Dept. of Physics and Astronomy, Univ. of Glasgow, G12 8QQ (United Kingdom); Battistin, M. [CERN, 1211 Geneva 23 (Switzerland); Berry, S.; Bitadze, A. [Dept. of Physics and Astronomy, Univ. of Glasgow, G12 8QQ (United Kingdom); Bonneau, P. [CERN, 1211 Geneva 23 (Switzerland); Bousson, N. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Boyd, G. [Dept. of Physics and Astronomy, Univ. of Oklahoma, Norman, OK 73019 (United States); Botelho-Direito, J.; DiGirolamo, B. [CERN, 1211 Geneva 23 (Switzerland); Doubek, M. [Czech Technical Univ., Technicka 4, 166 07 Prague 6 (Czech Republic); Egorov, K. [Physics Dept., Indiana Univ., Bloomington, IN 47405 (United States); Godlewski, J. [CERN, 1211 Geneva 23 (Switzerland); Hallewell, G. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Inst. PNPI, 188300 St. Petersburg (Russian Federation); Mathieu, M.; McMahon, S. [Rutherford Appelton Laboratory - Science and Technology Facilities Council, Chilton, Didcot OX11 OQX (United Kingdom); Nagai, K. [Graduate School of Pure and Applied Sciences, Univ. of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Perez-Rodriguez, E. [CERN, 1211 Geneva 23 (Switzerland); Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09 (France); Vacek, V.; Vitek, M. [Czech Technical Univ., Technicka 4, 166 07 Prague 6 (Czech Republic)

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)

  2. Performance of the LHCb Outer Tracker

    CERN Document Server

    Arink, R; Bachmann, S.; Bagaturia, Y.; Band, H.; Bauer, Th.; Berkien, A.; Farber, Ch.; Bien, A.; Blouw, J.; Ceelie, L.; Coco, V.; Deckenhoff, M.; Deng, Z.; Dettori, F.; van Eijk, D.; Ekelhof, R.; Gersabeck, E.; Grillo, L.; Hulsbergen, W.D.; Karbach, T.M.; Koopman, R.; Kozlinskiy, A.; Langenbruch, Ch.; Lavrentyev, V.; Linn, Ch.; Merk, M.; Merkel, J.; Meissner, M.; Michalowski, J.; Morawski, P.; Nawrot, A.; Nedos, M.; Pellegrino, A.; Polok, G.; van Petten, O.; Rovekamp, J.; Schimmel, F.; Schuylenburg, H.; Schwemmer, R.; Seyfert, P.; Serra, N.; Sluijk, T.; Spaan, B.; Spelt, J.; Storaci, B.; Szczekowski, M.; Swientek, S.; Tolk, S.; Tuning, N.; Uwer, U.; Wiedner, D.; Witek, M.; Zeng, M.; Zwart, A.

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5x6 m2 with 12 double layers of straw tubes. The detector with its services are described together with the commissioning and calibration procedures. Based on data of the first LHC running period from 2010 to 2012, the performance of the readout electronics and the single hit resolution and efficiency are presented. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 um. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  3. The Alpha Magnetic Spectrometer Silicon Tracker

    CERN Document Server

    Burger, W J

    1999-01-01

    The Alpha Magnetic Spectrometer (AMS) is designed as a independent module for installation on the International Space Station Alpha (ISSA) in the year 2002 for an operational period of three years. The principal scientific objectives are the searches for antimatter and dark matter in cosmic rays. The AMS uses 5.5 m sup 2 of silicon microstrip sensors to reconstruct charged particle trajectories in the field of a permanent magnet. The detector design and construction covered a 3 yr period which terminated with a test flight on the NASA space shuttle Discovery during June 2-12, 1988. In this contribution, we describe the shuttle version of the AMS silicon tracker, including preliminary results of the tracker performance during the flight. (author)

  4. The CDF online silicon vertex tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.

    2001-01-01

    The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  5. The CDF online Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.

    2002-01-01

    The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  6. A framework for performance evaluation of model-based optical trackers

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.

    2008-01-01

    We describe a software framework to evaluate the performance of model-based optical trackers in virtual environments. The framework can be used to evaluate and compare the performance of different trackers under various conditions, to study the effects of varying intrinsic and extrinsic camera

  7. The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Document Server

    Adeva, G; Esperante Pereira, D; Gallas, A; Pazos Alvarez, A; Perez Trigo, E; Rodriguez Perez, P; Saborido, J; Amhis, Y; Bay, A; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Marki, R; Muresan, R; Nakada, T; Needham, M; Knecht, M; Schneider, O; Tran, M; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; De Cian, M; Elsasser, C; Salzmann, C; Saornil Gamarra, S; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Aquines Gutierrez, O; Bauer, C; Britsch, M; Maciuc, F; Schmelling, M; Voss, H; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2014-01-01

    The Experiment Control System (ECS) of the LHCb Silicon Tracker sub-detectors is built on the integrated LHCb ECS framework. Although all LHCb sub-detectors use the same framework and follow the same guidelines, the Silicon Tracker control system uses some interesting additional features in terms of operation and monitoring. The main details are described in this document. Since its design, the Silicon Tracker control system has been continuously evolving in a quite disorganized way. Some major maintenance activities are required to be able to keep improving. A description of those activities can also be found here.

  8. Forecasting method in multilateration accuracy based on laser tracker measurement

    International Nuclear Information System (INIS)

    Aguado, Sergio; Santolaria, Jorge; Samper, David; José Aguilar, Juan

    2017-01-01

    Multilateration based on a laser tracker (LT) requires the measurement of a set of points from three or more positions. Although the LTs’ angular information is not used, multilateration produces a volume of measurement uncertainty. This paper presents two new coefficients from which to determine whether the measurement of a set of points, before performing the necessary measurements, will improve or worsen the accuracy of the multilateration results, avoiding unnecessary measurement, and reducing the time and economic cost required. The first specific coefficient measurement coefficient (MC LT ) is unique for each laser tracker. It determines the relationship between the radial and angular laser tracker measurement noise. Similarly, the second coefficient is related with specific conditions of measurement β . It is related with the spatial angle between the laser tracker positions α and its effect on error reduction. Both parameters MC LT and β are linked in error reduction limits. Beside these, a new methodology to determine the multilateration reduction limit according to the multilateration technique of an ideal laser tracker distribution and a random one are presented. It provides general rules and advice from synthetic tests that are validated through a real test carried out in a coordinate measurement machine. (paper)

  9. Determinants for sustained use of an activity tracker : observational study

    NARCIS (Netherlands)

    Hermsen, Sander; Moons, Jonas; Kerkhof, Peter; Wiekens, Carina; De Groot, Martijn

    2017-01-01

    BACKGROUND: A lack of physical activity is considered to cause 6% of deaths globally. Feedback from wearables such as activity trackers has the potential to encourage daily physical activity. To date, little research is available on the natural development of adherence to activity trackers or on

  10. Control system design of the CERN/CMS tracker thermal screen

    CERN Document Server

    Carrone, E

    2003-01-01

    The Tracker is one of the CMS (Compact Muon Solenoid experiment) subdetectors to be installed at the LHC (Large Hadron Collider) accelerator, scheduled to start data taking in 2007 at CERN (European Organization for Nuclear Research). The tracker will be operated at a temperature of -10 degree C in order to reduce the radiation damage on the silicon detectors; hence, an insulated environment has to be provided by means of a screen that introduces a thermal separation between the Tracker and the neighboring detection systems. The control system design includes a formal description of the process by means of a thermodynamic model; then, the electrical equivalence is derived. The transfer function is inferred by the ratio of the voltage on the outer skin and the voltage input, i.e. the ratio of the temperature outside the tracker and the heat generated (which is the controlled variable). A PID (Proportional Integral Derivative) controller has been designed using MatLab. The results achieved so far prove that thi...

  11. The CMS Tracker Upgrade for HL-LHC\\\\ Sensor R$\\&$D

    CERN Document Server

    Naseri, Mohsen

    2014-01-01

    At an instantaneous luminosity of 5~$\\times10^{34}~cm^{-2}~s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000~fb$^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. Focusing on the upgrade of the outer tracker region, the CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfils all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future track...

  12. Determination of the transport levels in thin films of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan

    2009-07-27

    The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. (orig.)

  13. Development and Testing of the AMEGO Silicon Tracker System

    Science.gov (United States)

    Griffin, Sean; Amego Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe-class mission in consideration for the 2020 decadal review designed to operate at energies from ˜ 200 keV to > 10 GeV. Operating a detector in this energy regime is challenging due to the crossover in the interaction cross-section for Compton scattering and pair production. AMEGO is made of four major subsystems: a plastic anticoincidence detector for rejecting cosmic-ray events, a silicon tracker for measuring the energies of Compton scattered electrons and pair-production products, a CZT calorimeter for measuring the energy and location of Compton scattered photons, and a CsI calorimeter for measuring the energy of the pair-production products at high energies. The tracker comprises layers of dual-sided silicon strip detectors which provide energy and localization information for Compton scattering and pair-production events. A prototype tracker system is under development at GSFC; in this contribution we provide details on the verification, packaging, and testing of the prototype tracker, as well as present plans for the development of the front-end electronics, beam tests, and a balloon flight.

  14. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  15. The AMS silicon tracker readout, performance results with minimum ionizing particles

    CERN Document Server

    Alpat, B; Battiston, R; Bourquin, Maurice; Burger, W J; Extermann, Pierre; Chang, Y H; Hou, S R; Pauluzzi, M; Produit, N; Qiu, S; Rapin, D; Ribordy, R; Toker, O; Wu, S X

    2000-01-01

    First results for the AMS silicon tracker readout performance are presented. Small 20.0*20.0*0.300 mm/sup 3/ silicon microstrip detectors were installed in a 50 GeV electron beam at CERN. The detector readout consisted of prototypes of the tracker data reduction card equipped with a 12-bit ADC and the tracker frontend hybrid with VA_hdr readout chips. The system performance is assessed in terms of signal-to-noise, position resolution, and efficiency. (13 refs).

  16. Using an eye tracker for accurate eye movement artifact correction

    NARCIS (Netherlands)

    Kierkels, J.J.M.; Riani, J.; Bergmans, J.W.M.; Boxtel, van G.J.M.

    2007-01-01

    We present a new method to correct eye movement artifacts in electroencephalogram (EEG) data. By using an eye tracker, whose data cannot be corrupted by any electrophysiological signals, an accurate method for correction is developed. The eye-tracker data is used in a Kalman filter to estimate which

  17. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  18. Monitoring radiation damage in the LHCb Silicon Tracker

    CERN Multimedia

    Graverini, Elena

    2018-01-01

    The purpose of LHCb is to search for indirect evidence of new physics in decays of heavy hadrons. The LHCb detector is a single-arm forward spectrometer with precise silicon-strip detectors in the regions with highest particle occupancies. The non-uniform exposure of the LHCb sensors makes it an ideal laboratory to study radiation damage effects in silicon detectors. The LHCb Silicon Tracker is composed of an upstream tracker, the TT, and of the inner part of the downstream tracker (IT). Dedicated scans are regularly taken, which allow a precise measurement of the charge collection efficiency (CCE) and the calibration of the operational voltages. The measured evolution of the effective depletion voltage $V_{depl}$ is shown, and compared with the Hamburg model prediction. The magnitudes of the sensor leakage current are also analysed and compared to their expected evolution according to phenomenological models. Our results prove that both the TT and the IT will withstand normal operation until the end of the L...

  19. CarbonTracker CT2007B release

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CarbonTracker is an open product of the NOAA Earth System Research Laboratory using data from the Global Monitoring Division greenhouse gas observational network and...

  20. A Hardware Fast Tracker for the ATLAS Trigger: The Fast TracKer (FTK) Project.

    CERN Document Server

    Asbah, Nedaa; The ATLAS collaboration

    2015-01-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 10^{34} cm^{-2} s{-1}. After a successful period of data taking from 2010 to early 2013, the LHC is restarting in 2015 with much higher instantaneous luminosity and this will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide, at every level-1 accept (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast extensive access to tracking information, with resolution comparable to the offline reconstruction, the Fast Tracker will for example help the High Level Trigger...

  1. Studies of the Silicon Tracker resolution using data

    CERN Document Server

    van Tilburg, J

    2010-01-01

    Several parameters that influence the hit resolution of the Silicon Tracker have been determined from data. These include charge sharing, cross talk and Lorentz deflection. A charge sharing width of ~4 $\\mu$m has been measured. No charge loss has been observed in the interstrip region. The cross talk to the neighbouring strips is found to vary between 4 − 14%, depending on the total capacitance (sensors plus cable), on whether it is the left or right neighbour and on the Beetle channel number (odd or even). The Lorentz deflection was also investigated and was observed to be small. Finally, the new parameters have been inserted in the LHCb Monte Carlo simulation to update the $\\eta$-correction functions required for the reconstruction of tracks. Compared to the previous tuning the hit resolution in the simulation has increased from ~35 $\\mu$m to ~50 $\\mu$m.

  2. The Associative Memory Serial Link Processor for the Fast TracKer (FTK) at ATLAS

    International Nuclear Information System (INIS)

    Andreani, A; Citterio, M; Liberali, V; Annovi, A; Beretta, M; Beccherle, R; Crescioli, F; Biesuz, N; Billereau, W; Combe, J M; Cipriani, R; Citraro, S; Donati, S; Giannetti, P; Luciano, P; Colombo, A; Dimas, D; Gentsos, C; Kordas, K; Lanza, A

    2014-01-01

    The Fast TracKer (FTK) is an extremely powerful and very compact processing unit, essential for efficient Level 2 trigger selection in future high-energy physics experiments at the LHC. FTK employs Associative Memories (AM) to perform pattern recognition; input and output data are transmitted over serial links at 2 Gbit/s to reduce routing congestion at the board level. Prototypes of the AM chip and of the AM board have been manufactured and tested, in preparation of the imminent design of the final version

  3. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  4. Multi-gigabit low-power radiation-tolerant data links and improved data motion in trackers

    International Nuclear Information System (INIS)

    Miller, M; Brewer, F; Wang, D; Magazzu, G

    2014-01-01

    We present a set of links based on data-transmission IP in 130nm designed for rapid integration into ASIC designs. These links are designed for use in very high radiation environments as occur in high energy physics experiments. The designs are additionally low power and small area, easing integration with other electronic systems. These links are well suited to use in tracking detectors. Trackers, due to their close proximity to the collision, are subject to very high levels of radiation, and hence require such radiation hardened electronics. The portfolio of radiation hardened data transmission blocks consists of a 1Gbps serializer/deserializer with a very low power consumption ∼ 1mW for each. A differential transmitter and differential receiver rated at 3GHz, both designed to be much faster than needed, as insurance against radiation damage. Finally, the impact of a prototype low-latency, low-power ( < 60mW total link power) 5Gbps link is considered. Case analysis of the impacts of using lower powered, higher speed blocks in hypothetical trackers is studied, showing power improvements relative to alternative technologies

  5. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  6. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis.

    Science.gov (United States)

    Mercer, Kathryn; Li, Melissa; Giangregorio, Lora; Burns, Catherine; Grindrod, Kelly

    2016-04-27

    Wearable activity trackers are promising as interventions that offer guidance and support for increasing physical activity and health-focused tracking. Most adults do not meet their recommended daily activity guidelines, and wearable fitness trackers are increasingly cited as having great potential to improve the physical activity levels of adults. The objective of this study was to use the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy to examine if the design of wearable activity trackers incorporates behavior change techniques (BCTs). A secondary objective was to critically analyze whether the BCTs present relate to known drivers of behavior change, such as self-efficacy, with the intention of extending applicability to older adults in addition to the overall population. Wearing each device for a period of 1 week, two independent raters used CALO-RE taxonomy to code the BCTs of the seven wearable activity trackers available in Canada as of March 2014. These included Fitbit Flex, Misfit Shine, Withings Pulse, Jawbone UP24, Spark Activity Tracker by SparkPeople, Nike+ FuelBand SE, and Polar Loop. We calculated interrater reliability using Cohen's kappa. The average number of BCTs identified was 16.3/40. Withings Pulse had the highest number of BCTs and Misfit Shine had the lowest. Most techniques centered around self-monitoring and self-regulation, all of which have been associated with improved physical activity in older adults. Techniques related to planning and providing instructions were scarce. Overall, wearable activity trackers contain several BCTs that have been shown to increase physical activity in older adults. Although more research and development must be done to fully understand the potential of wearables as health interventions, the current wearable trackers offer significant potential with regard to BCTs relevant to uptake by all populations, including older adults.

  7. A Sliding Mode Control for a Sensorless Tracker: Application on a Photovoltaic System

    OpenAIRE

    Rhif, Ahmed

    2012-01-01

    The photovoltaic sun tracker allows us to increase the energy production. The sun tracker considered in this study has two degrees of freedom (2-DOF) and especially specified by the lack of sensors. In this way, the tracker will have as a set point the sun position at every second during the day for a period of five years. After sunset, the tracker goes back to the initial position (which of sunrise). The sliding mode control (SMC) will be applied to ensure at best the tracking mechanism and,...

  8. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  9. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  10. Transient inactivation of the paraventricular nucleus of the thalamus enhances cue-induced reinstatement in goal-trackers, but not sign-trackers.

    Science.gov (United States)

    Kuhn, Brittany N; Klumpner, Marin S; Covelo, Ignacio R; Campus, Paolo; Flagel, Shelly B

    2018-04-01

    The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.

  11. Semiconductor physics

    CERN Document Server

    Böer, Karl W

    2018-01-01

    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  12. Silicon sensors for trackers at high-luminosity environment

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Timo, E-mail: timo.peltola@helsinki.fi

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. - Highlights: • An overview of the recent results from the RD50 collaboration. • Accuracy of TCAD simulations increased by including both bulk and surface damage. • Sensors with n-electrode readout and MCz material offer higher radiation hardness. • 3D detectors are a promising choice for the extremely high fluence environments. • Detectors with an enhanced charge carrier generation under systematic investigation.

  13. The CMS silicon strip tracker and its electronic readout

    International Nuclear Information System (INIS)

    Friedl, M.

    2001-05-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4 T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. The charge collection in silicon detectors was modeled, which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolution method of fast pulse shaping, electronic noise constraints and radiation effects. Moreover, extensive measurements on prototype components of the CMS Tracker and different versions of the APV chip in particular were performed. There was a significant contribution to the construction of several detector modules, characterized them in particle beam tests and quantified radiation induced effects on the APV chip and on silicon detectors. In addition, a prototype of the analog optical link and the analog performance of the back-end digitization unit were evaluated. The results are very encouraging, demonstrating the feasibility of the CMS Silicon Strip Tracker system and motivating progress towards the construction phase. (author)

  14. TRACKER

    CERN Multimedia

    M. Dinardo and G. Benelli

    2013-01-01

    Pixel Tracker At the beginning of May, the Pixel detector was successfully extracted from inside CMS. The operation lasted one and a half days each for the forward and barrel Pixel detectors. Everything went smoothly: new people were trained during the exercise and care was taken to minimise radiation exposure – see Image 3.  Lessons learned were noted in an updated written extraction procedure.  Care was also taken to prepare for reinsertion around the new beam pipe next year, with new alignment targets placed on the barrel Pixel detector. All pieces were lifted to the surface and are now safely stored at low temperatures in the dedicated Pixel laboratory at Point 5 (see Image 4 and previous Bulletin). Image 3 (a) and (b): Extracted FPIX and BPIX detector The subsequent maintenance of the forward Pixel detector started on 27 May.  Since then one of four half cylinders has been repaired and, even more importantly, most of the failures have been fully understood. ...

  15. ATLAS Transition Radiation Tracker - large piece

    CERN Multimedia

    2006-01-01

    The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.

  16. ATLAS Transition Radiation Tracker - small piece

    CERN Multimedia

    2006-01-01

    The ATLAS transition radiation tracker is made of 300'000 straw tubes, up to 144cm long. Filled with a gas mixture and threaded with a wire, each straw is a complete mini-detector in its own right. An electric field is applied between the wire and the outside wall of the straw. As particles pass through, they collide with atoms in the gas, knocking out electrons. The avalanche of electrons is detected as an electrical signal on the wire in the centre. The tracker plays two important roles. Firstly, it makes more position measurements, giving more dots for the computers to join up to recreate the particle tracks. Also, together with the ATLAS calorimeters, it distinguishes between different types of particles depending on whether they emit radiation as they make the transition from the surrounding foil into the straws.

  17. Proposal for the LHCb outer tracker front-end electronics

    CERN Document Server

    Deppe, H; Feuerstack-Raible, M; Srowig, A; Stange, U; Hommels, B; Sluijk, T

    2001-01-01

    A market survey on available TDCs for reading out the LHCb Outer Tracker has left over only one TDC, which is not optimal for this purpose. Hence, a new readout architecture which is based on a TDC to be developed anew has been defined. This system fits optimal the requirements of the LHCb Outer Tracker and also should be much cheaper. The system and its main issues are described in this paper.

  18. Muon trackers for imaging a nuclear reactor

    Science.gov (United States)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  19. LHCb Silicon Tracker DAQ and DCS Online Systems

    CERN Multimedia

    Buechler, A; Rodriguez, P

    2009-01-01

    The LHCb experiment at the Large Hadron Collider (LHC) at CERN in Geneva Switzerland is specialized on precision measurements of b quark decays. The Silicon Tracker (ST) contributes a crucial part in tracking the particle trajectories and consists of two silicon micro-strip detectors, the Tracker Turicensis upstream of the LHCb magnet and the Inner Tracker downstream. The radiation and the magnetic field represent new challenges for the implementation of a Detector Control System (DCS) and the data acquisition (DAQ). The DAQ has to deal with more than 270K analog readout channels, 2K readout chips and real time DAQ at a rate of 1.1 MHz with data processing at TELL1 level. The TELL1 real time algorithms for clustering thresholds and other computations run on dedicated FPGAs that implement 13K configurable parameters per board, in total 1.17 K parameters for the ST. After data processing the total throughput amounts to about 6.4 Gbytes from an input data rate of around ~337 Gbytes per second. A finite state ma...

  20. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  1. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  2. 3D Monitoring of LHCb Inner Tracker

    CERN Multimedia

    Sainvitu, Pascal

    2015-01-01

    The positions of the Inner Tracker (IT) detectors of the LHCb experiment installed in the LHC at CERN are impacted by the LHCb dipole magnet powering. In the past the movements of the stations have been measured using standard survey methods during magnet tests in shutdown periods. But the survey targets are visible only in very narrow spaces and the access to the IT is very difficult, even impossible in the central region when the detector is closed. Finally the precision of the standard survey measurement is affected by the poor configuration. In 2013 and 2014, during the first long shutdown of the LHC (LS1), the CERN Survey team (EN/MEF-SU) in collaboration with the LHCb Technical Coordination and the EPFL (Ecole Polytechnique Fédérale de LAUSANNE, CH), developed a permanent monitoring system which has been tested and installed in order to allow the 3D position measurement of the IT stations, even during the run periods, with a precision of 100 microns at 1 sigma level. The 3D Monitoring system of the LH...

  3. Large-scale module production for the CMS silicon strip tracker

    CERN Document Server

    Cattai, A

    2005-01-01

    The Silicon Strip Tracker (SST) for the CMS experiment at LHC consists of 210 m**2 of silicon strip detectors grouped into four distinct sub-systems. We present a brief description of the CMS Tracker, the industrialised detector module production methods and the current status of the SST with reference to some problems encountered at the factories and in the construction centres.

  4. Quality assurance for CMS Tracker LV and HV Power Supplies

    CERN Document Server

    Costa, Marco; Sertoli, M; Trapani, P; Periale, L; Isabella, L; Landi, C; Lucchesi, A

    2007-01-01

    This work describes the quality assurance measurements that have been carried out on about 2000 Power Supply Units produced in CAEN technology for the CMS Silicon Tracker Detector. The automate procedure and the characteristics of the dedicated Test Fixture developed for this activity are described in details. Magnetic field tolerance and radiation hardness of Tracker power supply units is also discussed at length.

  5. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  6. A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets

    Institute of Scientific and Technical Information of China (English)

    Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin

    2008-01-01

    A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.

  7. Majorana zero modes in superconductor-semiconductor heterostructures

    Science.gov (United States)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  8. Studies for the Commissioning of the CERN CMS Silicon Strip Tracker

    CERN Document Server

    Bloch, Christoph; Abbaneo, Duccio; Fabjan, Christian Wolfgang

    2008-01-01

    In 2008 the Large Hadron Collider (LHC) at CERN will start producing proton-proton collisions of unprecedented energy. One of its main experiments is the Compact Muon Solenoid (CMS), a general purpose detector, optimized for the search of the Higgs boson and super symmetric particles. The discovery potential of the CMS detector relies on a high precision tracking system, made of a pixel detector and the largest silicon strip Tracker ever built. In order to operate successfully a device as complex as the CMS silicon strip Tracker, and to fully exploit its potential, the properties of the hardware need to be characterized as precisely as possible, and the reconstruction software needs to be commissioned with physics signals. A number of issues were identified and studied to commission the detector, some of which concern the entire Tracker, while some are specific to the Tracker Outer Barrel (TOB): - the time evolution of the signals in the readout electronics need to be precisely measured and correctly simulate...

  9. Design of a cost-effective laser spot tracker

    Science.gov (United States)

    Artan, Göktuǧ Gencehan; Sari, Hüseyin

    2017-05-01

    One of the most important aspects of guided systems is detection. The most convenient detection in the sense of precision can be achieved with a laser spot tracker. This study deals with a military grade, high performance and cost-effective laser spot tracker for a guided system. The aim is to develop a high field of view system that will detect a laser spot from a distance of 3 kilometers in which the target is designated from 3 kilometers with a laser. The study basically consists of the system design, modeling, producing and the conducting performance tests of the whole system.

  10. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  11. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    1990-01-01

    The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in sem

  12. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    Science.gov (United States)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  13. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  14. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    Science.gov (United States)

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  15. Automated SmartPrep tracker positioning in liver MRI scans

    International Nuclear Information System (INIS)

    Goto, Takao; Kabasawa, Hiroyuki

    2013-01-01

    This paper presents a new method for automated SmartPrep tracker positioning in liver MRI scans. SmartPrep is used to monitor the contrast bolus signal in order to detect the arrival time of the bolus. Accurately placing the tracker in the aorta while viewing three planar scout images is a difficult task for the operator and is an important problem from the workflow standpoint. The development of an automated SmartPrep tracker would therefore help to improve workflow in liver MRI scans. In our proposed method, the aorta is detected using AdaBoost (which is a machine learning technique) by searching around the cerebral spinal fluid (CSF) in the spinal cord. Analysis of scout scan images showed that our detection method functioned properly for a variety of axial MR images without intensity correction. A total of 234 images reconstructed from the datasets of 64 volunteers were analyzed, and the results showed that the detection error for the aorta was approximately 3 mm. (author)

  16. Upgrades of the CMS Outer Tracker for HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067159

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5×1034cm$^{−2}$s$^{−1}$ around 2028, to possibly reach an integrated luminosity of 3000 fb$^{−1}$ in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D; activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D; activities.

  17. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  18. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  19. The ATLAS fast tracker processor design

    CERN Document Server

    Volpi, Guido; Albicocco, Pietro; Alison, John; Ancu, Lucian Stefan; Anderson, James; Andari, Nansi; Andreani, Alessandro; Andreazza, Attilio; Annovi, Alberto; Antonelli, Mario; Asbah, Needa; Atkinson, Markus; Baines, J; Barberio, Elisabetta; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Blair, R E; Bogdan, Mircea; Boveia, Antonio; Britzger, Daniel; Bryant, Partick; Burghgrave, Blake; Calderini, Giovanni; Camplani, Alessandra; Cavaliere, Viviana; Cavasinni, Vincenzo; Chakraborty, Dhiman; Chang, Philip; Cheng, Yangyang; Citraro, Saverio; Citterio, Mauro; Crescioli, Francesco; Dawe, Noel; Dell'Orso, Mauro; Donati, Simone; Dondero, Paolo; Drake, G; Gadomski, Szymon; Gatta, Mauro; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Howarth, James William; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kaji, Toshiaki; Kasten, Michael; Kawaguchi, Yoshimasa; Kim, Young Kee; Kimura, Naoki; Klimkovich, Tatsiana; Kolb, Mathis; Kordas, K; Krizka, Karol; Kubota, T; Lanza, Agostino; Li, Ho Ling; Liberali, Valentino; Lisovyi, Mykhailo; Liu, Lulu; Love, Jeremy; Luciano, Pierluigi; Luongo, Carmela; Magalotti, Daniel; Maznas, Ioannis; Meroni, Chiara; Mitani, Takashi; Nasimi, Hikmat; Negri, Andrea; Neroutsos, Panos; Neubauer, Mark; Nikolaidis, Spiridon; Okumura, Y; Pandini, Carlo; Petridou, Chariclia; Piendibene, Marco; Proudfoot, James; Rados, Petar Kevin; Roda, Chiara; Rossi, Enrico; Sakurai, Yuki; Sampsonidis, Dimitrios; Saxon, James; Schmitt, Stefan; Schoening, Andre; Shochet, Mel; Shoijaii, Jafar; Soltveit, Hans Kristian; Sotiropoulou, Calliope-Louisa; Stabile, Alberto; Swiatlowski, Maximilian J; Tang, Fukun; Taylor, Pierre Thor Elliot; Testa, Marianna; Tompkins, Lauren; Vercesi, V; Wang, Rui; Watari, Ryutaro; Zhang, Jianhong; Zeng, Jian Cong; Zou, Rui; Bertolucci, Federico

    2015-01-01

    The extended use of tracking information at the trigger level in the LHC is crucial for the trigger and data acquisition (TDAQ) system to fulfill its task. Precise and fast tracking is important to identify specific decay products of the Higgs boson or new phenomena, as well as to distinguish the contributions coming from the many collisions that occur at every bunch crossing. However, track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, complete reconstruction at full Level-1 trigger accept rate (100 kHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a dedicated processor, the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronics, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged-particle tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker info...

  20. CellTracker (not only) for dummies.

    Science.gov (United States)

    Piccinini, Filippo; Kiss, Alexa; Horvath, Peter

    2016-03-15

    Time-lapse experiments play a key role in studying the dynamic behavior of cells. Single-cell tracking is one of the fundamental tools for such analyses. The vast majority of the recently introduced cell tracking methods are limited to fluorescently labeled cells. An equally important limitation is that most software cannot be effectively used by biologists without reasonable expertise in image processing. Here we present CellTracker, a user-friendly open-source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. CellTracker is written in MATLAB (The MathWorks, Inc., USA). It works with Windows, Macintosh and UNIX-based systems. Source code and graphical user interface (GUI) are freely available at: http://celltracker.website/ horvath.peter@brc.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. TRACKER

    CERN Multimedia

    D. Duggan and L. Demaria

    2012-01-01

    Pixels Tracker With the 2012 proton-proton run almost complete, the pixel detector continues to operate well in an environment with large pile-up and high L1 rate. During this period, the pixel detector has shown excellent stability, with the number of current active channels from each the BPIX and FPIX the same as from the first month of 2012 running, resulting in 96.3% of the detector active. This total includes the recovery of six FPIX channels, temporarily disabled due to an unexpected dependence on the magnetic field. From a dedicated study that identified a small crack in an optical cable connector, a repair was made which restored 120 ROCs in the FPIX. During 2012 there has been a close collaboration of the online operations with the offline studies, resulting in the first dedicated HV bias scans used for the pixel Lorentz Angle measurement. These scans help to better understand this important parameter that changes with temperature, irradiation, and bias voltage. This is in addition to all other s...

  2. TRACKER

    CERN Multimedia

    R. Yohay and E. Butz

    2013-01-01

      Pixel Tracker Preparation of the newly built Pixel clean room in the radioprotection (RP) zone of SX5 has been proceeding at a steady clip since the beginning of 2013. The clean room is designed to provide a cold, dry, dust-free laboratory environment for storage and repairs of the CMS Pixel detector during LS1 and future LHC shutdown periods. To that end, it is required to have robust temperature and humidity control, standalone DAQ and DCS systems, and space for specialised silicon testing and repair equipment. Good progress has been made in delivering each of these items. The ongoing project of commissioning the clean room HVAC system has been a success so far. The clean room will be kept at 10–20 Pa above atmospheric pressure to ensure that contaminants flow out of the room. There are two operating temperatures for the room: 21°C will be used when the Pixel detector components are under cold storage at subzero temperatures in well-sealed “cold boxes,” ...

  3. TRACKER

    CERN Multimedia

    E. Butz

    2011-01-01

    The strip tracker took data very efficiently during 2010 with system availabilities of above 97% in the pp running and close to 100% during the heavy-ion running. The number of active channels in the readout is largely stable around 98%. The maintenance and development during the extended technical stop have been focussed on improving the operating conditions of the main silicon strip cooling plants SS1 and SS2, which have been items of concern (see last Bulletin). In order to stabilise and smooth the operation of SS1 and SS2, larger bypass valves and variable frequency drivers (VFDs) have been introduced. Possible noise induced by operation of the VFDs on other parts of CMS has been evaluated and no increased noise has been reported so far. The leak rate of every single line on SS2 was measured with the precise test-rig. Besides the known leaky lines, ten other SS2 lines were measured to leak between 120 g/day and 1200 g/day under the given test conditions, establishin...

  4. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  5. System-on-a-Chip Based Nano Star Tracker and Its Real-Time Image Processing Approach

    OpenAIRE

    Wei, Minsong; Bao, Jingyu; Xing, Fei; Liu, Zengyi; Sun, Ting; You, Zheng

    2016-01-01

    The star tracker is one of the most accurate components for satellite attitude determination. With the development of the nano star tracker, it is compatible for application on small satellites. However, the drawback in dynamic property of nano star tracker has limited its extensive applications. The principal objective of this study is to introduce a system-on-a-chip (SOC) based nano star tracker with enhanced dynamic property. A morphology based image processing approach was realized based ...

  6. A novel algorithm for single-axis maximum power generation sun trackers

    International Nuclear Information System (INIS)

    Lee, Kung-Yen; Chung, Chi-Yao; Huang, Bin-Juine; Kuo, Ting-Jung; Yang, Huang-Wei; Cheng, Hung-Yen; Hsu, Po-Chien; Li, Kang

    2017-01-01

    Highlights: • A novel algorithm for a single-axis sun tracker is developed to increase the efficiency. • Photovoltaic module is rotated to find the optimal angle for generating the maximum power. • Electric energy increases up to 8.3%, compared with that of the tracker with three fixed angles. • The rotation range is optimized to reduce energy consumption from the rotation operations. - Abstract: The purpose of this study is to develop a novel algorithm for a single-axis maximum power generation sun tracker in order to identify the optimal stopping angle for generating the maximum amount of daily electric energy. First, the photovoltaic modules of the single-axis maximum power generation sun tracker are automatically rotated from 50° east to 50° west. During the rotation, the instantaneous power generated at different angles is recorded and compared, meaning that the optimal angle for generating the maximum power can be determined. Once the rotation (detection) is completed, the photovoltaic modules are then rotated to the resulting angle for generating the maximum power. The photovoltaic module is rotated once per hour in an attempt to detect the maximum irradiation and overcome the impact of environmental effects such as shading from cloud cover, other photovoltaic modules and surrounding buildings. Furthermore, the detection range is halved so as to reduce the energy consumption from the rotation operations and to improve the reliability of the sun tracker. The results indicate that electric energy production is increased by 3.4% in spring and autumn, 5.4% in summer, and 8.3% in winter, compared with that of the same sun tracker with three fixed angles of 50° east in the morning, 0° at noon and 50° west in the afternoon.

  7. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  8. Solid spectroscopy: semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da

    1983-01-01

    Photoemission as technique of study of the semiconductor electronic structure is shortly discussed. Homogeneous and heterogeneous semiconductors, where volume and surface electronic structure, core levels and O and H chemisorption in GaAs, Schottky barrier are treated, respectively. Amorphous semiconductors are also discussed. (L.C.) [pt

  9. Peptides for functionalization of InP semiconductors.

    Science.gov (United States)

    Estephan, Elias; Saab, Marie-belle; Larroque, Christian; Martin, Marta; Olsson, Fredrik; Lourdudoss, Sebastian; Gergely, Csilla

    2009-09-15

    The challenge is to achieve high specificity in molecular sensing by proper functionalization of micro/nano-structured semiconductors by peptides that reveal specific recognition for these structures. Here we report on surface modification of the InP semiconductors by adhesion peptides produced by the phage display technique. An M13 bacteriophage library has been used to screen 10(10) different peptides against the InP(001) and the InP(111) surfaces to finally isolate specific peptides for each orientation of the InP. MALDI-TOF/TOF mass spectrometry has been employed to study real affinity of the peptide towards the InP surfaces. The peptides serve for controlled placement of biotin onto InP to bind then streptavidin. Our Atomic Force Microscopy study revealed a total surface coverage of molecules when the InP surface was functionalized by its specific biotinylated peptide (YAIKGPSHFRPS). Finally, fluorescence microscopy has been employed to demonstrate the preferential attachment of the peptide onto a micro-patterned InP surface. Use of substrate specific peptides could present an alternative solution for the problems encountered in the actually existing sensing methods and molecular self-assembly due to the unwanted unspecific interactions.

  10. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  11. Commissioning and first data with the ATLAS silicon microstrip tracker

    International Nuclear Information System (INIS)

    Rohne, Ole Myren

    2010-01-01

    The ATLAS experiment at the CERN large hadron collider (LHC) has started taking data this autumn with the inauguration of the LHC. The semiconductor tracker (SCT) is the key precision tracking device in ATLAS, made up from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has recently been installed inside the ATLAS experimental hall. Quick tests were performed last year to verify the connectivity of the electrical and optical services. Problems observed with the heaters for the evaporative cooling system have been resolved. This has enabled extended operation of the full detector under realistic conditions. Calibration data has been taken and analysed to determine the noise performance of the system. In addition, extensive commissioning with cosmic ray events has been performed. The cosmic muon data has been used to align the detector, to check the timing of the front-end electronics as well as to measure the hit efficiency of modules. The current status of the SCT will be reviewed, including results from the latest data-taking periods in autumn 2008, and from the detector alignment. We will report on the commissioning of the detector, including overviews on services, connectivity and observed problems. Particular emphasis will also be placed on the SCT data taken in the latest running period with the entire ATLAS detector participating. The SCT commissioning and running experience will then be used to extract valuable lessons for future silicon strip detector projects.

  12. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as

  13. 3D Silicon Tracker for AFP - From Qualification to Operation

    CERN Document Server

    F\\"orster, Fabian Alexander; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) experiment is a detector located ~210 m away from the ATLAS interaction point on both sides. Its aim is to tag and measure forward protons produced in diffractive events. The detector consists of a 3D silicon pixel tracker, to measure the proton trajectory, as well as a time-of-flight system to suppress pileup-related backgrounds. Each tracker and the ToF system are placed inside a Roman Pot, allowing operation in the vicinity of the LHC beam, up to 2-3 mm. AFP was installed in 2 stages during the LHC technical shutdowns of 2015-2016 and 2016-2017. This presentation will give an overview of the silicon sensor qualification as well as the production, assembly and quality assurance of the tracker modules. The installation, commissioning and operation of the full detector will also be discussed.

  14. Detector production for the R3B Si-tracker

    Energy Technology Data Exchange (ETDEWEB)

    Borri, M., E-mail: marcello.borri@liverpool.ac.uk [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lemmon, R. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Thornhill, J.; Bate, R.; Chartier, M. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Clague, N. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Herzberg, R.-D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom); Labiche, M. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 CE (United Kingdom); Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D. [University of Liverpool, Department of Physics, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-11-11

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  15. The influence of crystalline lens accommodation on post-saccadic oscillations in pupil-based eye trackers.

    Science.gov (United States)

    Nyström, Marcus; Andersson, Richard; Magnusson, Måns; Pansell, Tony; Hooge, Ignace

    2015-02-01

    It is well known that the crystalline lens (henceforth lens) can oscillate (or 'wobble') relative to the eyeball at the end of saccades. Recent research has proposed that such wobbling of the lens is a source of post-saccadic oscillations (PSOs) seen in data recorded by eye trackers that estimate gaze direction from the location of the pupil. Since the size of the lens wobbles increases with accommodative effort, one would predict a similar increase of PSO-amplitude in data recorded with a pupil based eye tracker. In four experiments, we investigated the role of lens accommodation on PSOs in a video-based eye tracker. In Experiment 1, we replicated previous results showing that PSO-amplitudes increase at near viewing distances (large vergence angles), when the lens is highly accommodated. In Experiment 2a, we manipulated the accommodative state of the lens pharmacologically using eye drops at a fixed viewing distance and found, in contrast to Experiment 1, no significant difference in PSO-amplitude related to the accommodative state of the lens. Finally, in Experiment 2b, the effect of vergence angle was investigated by comparing PSO-amplitudes at near and far while maintaining a fixed lens accommodation. Despite the pharmacologically fixed degree of accommodation, PSO-amplitudes were systematically larger in the near condition. In summary, PSOs cannot exhaustively be explained by lens wobbles. Possible confounds related to pupil size and eye-camera angle are investigated in Experiments 3 and 4, and alternative mechanisms behind PSOs are probed in the discussion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  17. Reliability and validity of ten consumer activity trackers depend on walking speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    Purpose: To examine the test–retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  18. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  19. An accuracy measurement method for star trackers based on direct astronomic observation.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  20. Spin-filter and spin-gapless semiconductors: The case of Heusler compounds

    International Nuclear Information System (INIS)

    Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E.

    2016-01-01

    We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatile applications, e.g. as spin-filter materials in magnetic tunnel junctions. Finally, a special case are the spin-gapless semiconductors, where the energy gap at the Fermi level for the one spin-direction is almost vanishing, offering novel functionalities in spintronic/magnetoelectronic devices.

  1. The assembly of the silicon tracker for the GLAST beam test engineering model

    International Nuclear Information System (INIS)

    Allport, P.; Atwood, E.; Atwood, W.; Beck, G.; Bhatnager, B.; Bloom, E.; Broeder, J.; Chen, V.; Clark, J.; Cotton, N.; Couto e Silva, E. do; Feerick, B.; Giebels, G.; Godfrey, G.; Handa, T.; Hernando, J.A.; Hirayama, M.; Johnson, R.P.; Kamae, T.; Kashiguine, S.; Kroeger, W.; Milbury, C.; Miller, W.; Millican, O.; Nikolaou, M.; Nordby, M.; Ohsugi, T.; Paliaga, G.; Ponslet, E.; Rowe, W.; Sadrozinski, H.F.-W.; Spencer, E.; Stromberg, S.; Swensen, E.; Takayuki, M.; Tournear, D.; Webster, A.; Winkler, G.; Yamamoto, K.; Yamamura, K.; Yoshida, S.

    2001-01-01

    The silicon tracker for the engineering model of the GLAST Large Area Telescope (LAT) to date represents the largest surface of silicon microstrip detectors assembled in a tracker (2.7 m 2 ). It demonstrates the feasibility of employing this technology for satellite based experiments, in which large effective areas and high reliability are required. This note gives an overview of the assembly of this silicon tracker and discusses in detail studies performed to track quality assurance: leakage current, mechanical alignment and production yields

  2. Intelligent error correction method applied on an active pixel sensor based star tracker

    Science.gov (United States)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  3. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  4. Method of manufacturing a semiconductor sensor device and semiconductor sensor device

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a method of manufacturing a semiconductor sensor device (10) for sensing a substance comprising a plurality of mutually parallel mesa-shaped semiconductor regions (1) which are formed on a surface of a semiconductor body (11) and which are connected at a first end to a first

  5. Sensor R&D for the CMS Tracker Upgrade for the HL-LHC

    CERN Document Server

    Behnamian, Hadi

    2014-01-01

    At an instantaneous luminosity of $5\\times 10^{34} cm^{-2} s^{-1}$, the high-luminosity phase of the Large Hadron Collider (HL-LHC) is expected to deliver a total of 3000 $fb^{-1}$ of collisions, hereby increasing the discovery potential of the LHC experiments significantly. However, the radiation environment of the tracking system will be severe, requiring new radiation hard sensors for the CMS tracker. The CMS tracker collaboration has almost completed a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements of a new tracking detector at HL-LHC. Focusing on the upgrade of the outer tracker region, pad diodes as well as fully functional strip sensors have been implemented on silicon wafers with different material properties and thicknesses. The samples were irradiated with a mixture of neutrons and protons corresponding to fluences as expected for various positions in the future tracker. The measurements performed on the structures inc...

  6. Commissioning and proof of functionality of the OPERA precision tracker, especially of the time measuring system; Inbetriebnahme und Funktionsnachweis des OPERA Precision Trackers insbesondere des Zeitmesssystems

    Energy Technology Data Exchange (ETDEWEB)

    Janutta, Benjamin

    2008-10-15

    The commissioning and the proof of functionality of the Precision Tracker of the OPERA experiment is subject of this thesis. The timing system of the precision tracker is of major concern here. At first the time.resolution of the timing electronics was characterized additionally general running parameters were studied. Afterwards the installation and commissioning were carried out. The precision tracker is supposed to determine the momentum of throughgoing myons with an accuracy of {delta}p/p<0.25 as well as the sign of their charge. The commissioning is finished by now and it was shown, that the data acquisition system runs very reliable and only 1.5% show an slightly higher number of hits. The nominal spatial track resolution of {sigma}<600 {mu}m was also reached. (orig.)

  7. Module production of the one-arm AFP 3D pixel tracker

    CERN Document Server

    Grinstein, S.; Chmeissani, M.; Dorholt, O.; Förster, F.; Lange, J.; Lopez Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Rijssenbeek, M.; Rohne, O.; Stugu, B.

    2016-01-01

    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.

  8. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  9. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya

    Directory of Open Access Journals (Sweden)

    IM. O. Widyantara

    2015-06-01

    Full Text Available Real time tracking system technology has been made possible by integrating three technologies, namely global positioning system (GPS, database technologies such as geographic information system (GIS and mobile telecommunications technologies such as general packet radio service (GPRS. This paper has proposed a vehicle tracking mechanism based on GPS tracker to build a real-time traffic information system. A GPS server is built to process data of position and speed of the vehicle for further processed into vehicle traffic information. The Server and GPS tracker is designed to communicate using GPRS services in real time. Furthermore, the server processes the data from the GPS tracker into traffic information such as traffic jam, dense, medium and smoothly. Test results showed that the GPS server is able to visualize the real position of the vehicle and is able to decide the category of traffic information in real time.

  10. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  11. The NA62 GigaTracker

    CERN Document Server

    Perrin-Terrin, Mathieu

    2015-01-01

    The GigaTracker is an hybrid silicon pixel detector built for the NA62 experiment aiming at measuring the branching fraction of the ultra-rare kaon decay K + ! p + n ̄ n at the CERN SPS. The detector has to track particles in a beam with a flux reaching 1.3 MHz/mm 2 and provide single-hit timing with 200ps RMS resolution for a total material budget of less than 1.5 X 0 . The tracker comprises three 60.8mm 27mm stations installed in vacuum ( 10$^{-6}$ mbar) and cooled with liquid C 6 F 14 circulating through micro-channels etched inside few hundred of microns thick silicon plates. Each station is composed of a 200 m m thick silicon sensor readout by 2 x 5 cus- tom 100 m m thick ASIC, called TDCPix. Each chip contains 40 x 45 asynchronous pixels, each 300 m m x 300 m m and is instrumented with 100ps bin time-to-digital converters. In order to cope with the high rate, the TDCPix is equipped with four 3.2Gb/s serialisers sending out the data. We will describe the detector and the results from the 2014 NA62 ru...

  12. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  13. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  14. CMS Tracker Upgrades: R\\&D Plans, Present Status and Perspectives

    CERN Document Server

    AUTHOR|(CDS)2091649

    2015-01-01

    The present CMS pixel detector designed for a luminosity of $10^{34}\\,\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ will have to be replaced at the end of 2016. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layers and three forward/backward disks to provide a hit coverage up to absolute pseudorapidities of $\\mid\\eta\\mid<2.5$. In a second stage, in order to maintain its physics reach during the high luminosity phase of the LHC (HL-LHC), when the machine is expected to deliver an instantaneous luminosity of $5\\times 10^{34}\\,\\mathrm{cm}^{-2} \\mathrm{s}^{-1}$ for a total of $3000\\,\\mathrm{fb}^{-1}$, CMS will build a new tracker, comprising a completely new pixel detector and outer tracker. The ongoing R\\&D activities on both pixel and strip sensors are presented. The present status of the Inner and Outer Tracker projects are illustrated, and the possible perspectives are discussed.

  15. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  16. Charge determination of nuclei with the AMS-02 silicon tracker

    OpenAIRE

    Alpat, B.; G. Ambrosi; Azzarello, P.; Battiston, R.; Bene, P.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Blasko, S.; Bourquin, M.; Cortina Gil, Eduardo

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron ...

  17. Latency and distortion of electromagnetic trackers for augmented reality systems

    CERN Document Server

    Himberg, Henry

    2014-01-01

    Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration

  18. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  19. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  20. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  1. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  2. An Optical tracker for the maritime environment

    CSIR Research Space (South Africa)

    Bachoo, AK

    2011-04-01

    Full Text Available that is robust to platform vibration, target appearance changes and short-term occlusions. The optical tracker is developed using a particle filter and an appearance model that is updated online. The system achieves real-time tracking through the use of non...

  3. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  4. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  5. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  6. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  7. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  8. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  9. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    Science.gov (United States)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  10. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  11. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  12. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi, A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow, B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-01-01

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era

  13. Method of doping a semiconductor

    International Nuclear Information System (INIS)

    Yang, C.Y.; Rapp, R.A.

    1983-01-01

    A method is disclosed for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient

  14. Design of the Mechanical Components of a Dual Axis Solar Tracker

    OpenAIRE

    Romero Llanas, Amador

    2013-01-01

    This work is about the design of a solar tracker with the objective of following the sun throughout the day. In order to achieve that objective, the solar tracker has two degrees of freedom. The different mechanical components necessary to build the structure has been designed, calculated and verified. Apart from that, the whole structure has been drawn using the 3D mechanical CAD program SolidWorks. The plans have been drawn too.

  15. Retroreflector field tracker. [noncontact optical position sensor for space application

    Science.gov (United States)

    Wargocki, F. E.; Ray, A. J.; Hall, G. E.

    1984-01-01

    An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.

  16. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00025195; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whole trackin...

  17. The iMPACT project tracker and calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Mattiazzo, S., E-mail: serena.mattiazzo@pd.infn.it [Dipartimento di Ingegneria dell' Informazione, Università di Padova, Padova (Italy); Bisello, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Giubilato, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); CERN, Geneve (Switzerland); Pantano, D.; Pozzobon, N. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Snoeys, W. [CERN, Geneve (Switzerland)

    2017-02-11

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. While traditional X-ray Computed Tomography (xCT) fails in providing 3D images with the precision required for hadrons treatment guidance, Proton Computer Tomography (pCT) scanners, currently in their R&D phase, can. A pCT scanner consists of a tracker system, to track protons, and of a calorimeter, to measure their residual energy. In this paper we will present the iMPACT project, which foresees a novel proton tracking detector with higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. The tracker will be matched to a fast, highly segmented proton range calorimeter.

  18. Data quality monitoring of the CMS tracker

    CERN Document Server

    Potamianos, Karolos

    2009-01-01

    The Physics and Data Quality Monitoring (DQM) framework aims at providing a homogeneous monitoring environment across various applications related to data taking at the CMS experiment. It has been designed to be used during online data taking as well as during offline reconstruction. The goal of the online system is to monitor detector performance and identify problems very efficiently during data collection so that proper actions can be taken. On the other hand the reconstruction or calibration problems can be detected during offline processing using the same tool. The monitoring is performed with histograms, which are filled with information from raw and reconstructed data. All histograms can then be displayed both in the central CMS DQM graphical user interface (GUI), as well as in Tracker specific expert GUIs and socalled Tracker Maps. Applications are in place to further process the information from these basic histograms by summarizing them in overview plots, by evaluating them with automated statistica...

  19. The ATLAS Fast TracKer Processing Units

    CERN Document Server

    Krizka, Karol; The ATLAS collaboration

    2016-01-01

    The Fast Tracker is a hardware upgrade to the ATLAS trigger and data-acquisition system, with the goal of providing global track reconstruction by the start of the High Level Trigger starts. The Fast Tracker can process incoming data from the whole inner detector at full first level trigger rate, up to 100 kHz, using custom electronic boards. At the core of the system is a Processing Unit installed in a VMEbus crate, formed by two sets of boards: the Associative Memory Board and a powerful rear transition module called the Auxiliary card, while the second set is the Second Stage board. The associative memories perform the pattern matching looking for correlations within the incoming data, compatible with track candidates at coarse resolution. The pattern matching task is performed using custom application specific integrated circuits, called associative memory chips. The auxiliary card prepares the input and reject bad track candidates obtained from from the Associative Memory Board using the full precision a...

  20. Damage induced in semiconductors by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Levalois, M.; Marie, P.

    1999-01-01

    The behaviour of semiconductors under swift heavy ion irradiation is different from that of metals or insulators: no spectacular effect induced by the inelastic energy loss has been reported in these materials. We present here a review of irradiation effects in the usual semiconductors (silicon, germanium and gallium arsenide). The damage is investigated by means of electrical measurements. The usual mechanisms of point defect creation can account for the experimental results. Besides, some results obtained on the wide gap semiconductor silicon carbide are reported. Concerning the irradiation effects induced by heavy ions in particle detectors, based on silicon substrate, we show that the deterioration of the detector performances can be explained from the knowledge of the substrate properties which are strongly perturbed after high doses of irradiation. Finally, some future ways of investigation are proposed. The silicon substrate is a good example to compare the irradiation effects with different particles such as electrons, neutrons and heavy ions. It is then necessary to use parameters which account for the local energy deposition, in order to describe the damage in the material

  1. Architectures for Improved Organic Semiconductor Devices

    Science.gov (United States)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  2. Cosmics in the LHCb Outer Tracker

    CERN Document Server

    Aaij, Roel

    2010-01-01

    The LHCb experiment at the Large Hadron Collider studies the decay of B mesons to test the description of CP violation in the Standard Model and to search for new physics. The decay $B_s \\to \\mu^+ \\mu^-$ has been identified as very promising in the search for new physics. An excellent invariant mass resolution is required to suppress backgrounds to this decay. This in turn requires a momentum resolution of dp/p = 0.4%. The Outer Tracker is part of the LHCb tracking system and has been commissioned with cosmic muons. The noise in the Outer Tracker is shown to be less than 0.05%. To use drift time information in the reconstruction of cosmic tracks, the event time must be known. Four methods to obtain the event time are studied and compared. It is shown that the event time can be obtained with a resolution better than 2.6 ns. Using drift time information, tracks are reconstructed with a resolution of 344 $\\mu$m. Knowledge of the event time enables the calibration of electronic time offsets and the r(t)– relati...

  3. Progress of pyrene-based organic semiconductor in organic field effect transistors

    Institute of Scientific and Technical Information of China (English)

    Yanbin; Gong; Xuejun; Zhan; Qianqian; Li; Zhen; Li

    2016-01-01

    Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes(OLEDs), organic field effect transistors(OFETs), and organic solar cells(OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006,illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.

  4. A new silicon tracker for proton imaging and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.T., E-mail: jtaylor@hep.ph.liv.ac.uk [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Waltham, C. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Price, T. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Allinson, N.M. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Allport, P.P. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Casse, G.L. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Kacperek, A. [Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom); Manger, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Smith, N.A.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-09-21

    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction around the world today. The Proton Radiotherapy, Verification and Dosimetry Applications (PRaVDA) consortium are developing instrumentation for particle therapy based upon technology from high-energy physics. The characteristics of a new silicon micro-strip tracker for particle therapy will be presented. The array uses specifically designed, large area sensors with technology choices that follow closely those taken for the ATLAS experiment at the HL-LHC. These detectors will be arranged into four units each with three layers in an x–u–v configuration to be suitable for fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of tracing the path of ~200 MeV protons entering and exiting a patient allowing a new mode of imaging known as proton computed tomography (pCT). This will aid the accurate delivery of treatment doses and in addition, the tracker will also be used to monitor the beam profile and total dose delivered during the high fluences used for treatment. We present here details of the design, construction and assembly of one of the four units that will make up the complete tracker along with its characterisation using radiation tests carried out using a {sup 90}Sr source in the laboratory and a 60 MeV proton beam at the Clatterbridge Cancer Centre.

  5. The CMS tracker calibration workflow: Experience with cosmic ray data

    International Nuclear Information System (INIS)

    Frosali, Simone

    2010-01-01

    During the second part of 2008 a CMS commissioning was performed with the acquisition of cosmic events in global runs. Cosmic rays detected in the muon chambers were used to trigger the readout of all CMS subdetectors in the general data acquisition system. A total of about 300M of tracks were collected by the CMS Muon Chambers with a 3.8T magnetic field produced by the CMS superconducting solenoid, 6M of which pointing to the tracker region and reconstructed by the Si-Strip Tracker (SST) detectors. Other 1M of cosmic tracks were collected with the magnetic field off. Using the cosmic data available it was possible to validate the performances of the CMS tracker calibration workflows. In this paper the adopted calibration workflow is described. In particular, the three main calibration workflows requested for the low level reconstruction of the SST, i.e. gain calibration, Lorentz angle calibration and bad components identification, are described. The results obtained using cosmic tracks for these three calibration workflows are also presented.

  6. CMS silicon tracker alignment strategy with the Millepede II algorithm

    International Nuclear Information System (INIS)

    Flucke, G; Schleper, P; Steinbrueck, G; Stoye, M

    2008-01-01

    The positions of the silicon modules of the CMS tracker will be known to O(100 μm) from survey measurements, mounting precision and the hardware alignment system. However, in order to fully exploit the capabilities of the tracker, these positions need to be known to a precision of a few μm. Only a track-based alignment procedure can reach this required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel χ 2 minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously and all correlations between their position parameters taken into account. Different simulated data, such as Z 0 decays and muons originated in air showers were used for the study. Additionally information about the mechanical structure of the tracker, and initial position uncertainties have been used as input for the alignment procedure. A proof of concept of this alignment strategy is demonstrated using simulated data

  7. A smart car for the surface shape measurement of large antenna based on laser tracker

    Science.gov (United States)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  8. Commissioning and Performance of the CMS Silicon Strip Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.

  9. Real-time sharing of gaze data between multiple eye trackers-evaluation, tools, and advice.

    Science.gov (United States)

    Nyström, Marcus; Niehorster, Diederick C; Cornelissen, Tim; Garde, Henrik

    2017-08-01

    Technological advancements in combination with significant reductions in price have made it practically feasible to run experiments with multiple eye trackers. This enables new types of experiments with simultaneous recordings of eye movement data from several participants, which is of interest for researchers in, e.g., social and educational psychology. The Lund University Humanities Laboratory recently acquired 25 remote eye trackers, which are connected over a local wireless network. As a first step toward running experiments with this setup, demanding situations with real time sharing of gaze data were investigated in terms of network performance as well as clock and screen synchronization. Results show that data can be shared with a sufficiently low packet loss (0.1 %) and latency (M = 3 ms, M A D = 2 ms) across 8 eye trackers at a rate of 60 Hz. For a similar performance using 24 computers, the send rate needs to be reduced to 20 Hz. To help researchers conduct similar measurements on their own multi-eye-tracker setup, open source software written in Python and PsychoPy are provided. Part of the software contains a minimal working example to help researchers kick-start experiments with two or more eye trackers.

  10. $W$ mass measurement and simulation of the transition radiation tracker at the ATLAS experiment

    CERN Document Server

    Klinkby, Esben Bryndt

    2008-01-01

    At the time of writing, the final preparation toward LHC startup is ongoing. All the magnets of the machine have been installed and are currently being cooled. Most sub-detectors of the four experiments situated at the LHC ring are installed in their final positions and are being integrated into their respective data acquisition systems. This thesis concerns itself with the ATLAS experiment, focusing on a sub-detector called the Transition Radiation Tracker (TRT). Some attention is given to the hardware testing of the detector modules, but the main focus lies on the simulation of the detector and the comparison of the simulation with test-beam data, as well as with data collected during the commissioning phase using cosmic muons. There is little doubt that LHC will bring insight with respect to the understanding of the universe on the fundamental level. In particular, it is anticipated that light will be shed on the origin of mass which according to our current understanding proceeds via the Higgs mechanism. ...

  11. SWaP Reduction for Lost-Cost Star Tracker

    Data.gov (United States)

    National Aeronautics and Space Administration — In the last two years, a low-cost star tracker has been developed for suborbital applications. Currently the system weighs ~9 lbm, uses ~16W and has a parts cost of...

  12. Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements

    Science.gov (United States)

    Ulrich, Thomas

    2013-08-01

    Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.

  13. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  14. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  15. CMS tracker visualization tools

    Energy Technology Data Exchange (ETDEWEB)

    Mennea, M.S. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Osborne, I. [Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Regano, A. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy); Zito, G. [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' e INFN sezione di Bari, Via Amendola 173 - 70126 Bari (Italy)]. E-mail: giuseppe.zito@ba.infn.it

    2005-08-21

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  16. CMS tracker visualization tools

    CERN Document Server

    Zito, G; Osborne, I; Regano, A

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  17. CMS tracker visualization tools

    International Nuclear Information System (INIS)

    Mennea, M.S.; Osborne, I.; Regano, A.; Zito, G.

    2005-01-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking

  18. Detailed Performance of the Outer Tracker at LHCb

    CERN Document Server

    Tuning, N

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5x6m2 with 12 double layers of straw tubes. Based on data of the first LHC running period from 2010 to 2012, the performance in terms of the single hit resolution and efficiency are presented. Details on the ionization length and subtle effects regarding signal reflections and the subsequent time-walk correction are given. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 um, depending on the detailed implementation of the internal alignment of individual detector modules. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  19. High voltage multiplexing for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Villani, E G; Phillips, P; Matheson, J; Lynn, D; Hommels, L B A; Gregor, I; Bessner, M; Tackmann, K; Newcomer, F M; Spencer, E; Greenall, A

    2014-01-01

    The increased luminosity of the HL-LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation, stemming from the otherwise too high occupancy. Among the many technological challenges facing the ATLAS Tracker Upgrade there is more an efficient power distribution and HV biasing of the sensors. The solution adopted in the current ATLAS detector uses one HV conductor for each sensor, which makes it easy to disable malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. A number of approaches, including the use of the same HV line to bias several sensors and suitable HV switches, along with their control circuitry, are currently being investigated for this purpose. The proposed solutions along with latest test results and measurements will be described

  20. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

  1. Conductivity in transparent oxide semiconductors.

    Science.gov (United States)

    King, P D C; Veal, T D

    2011-08-24

    conductivity in TCOs. We discuss models that attempt to explain both the bulk and surface conductivity on the basis of bulk band structure features common across the TCOs, and compare these materials to other semiconductors. Finally, we briefly consider transparency in these materials, and its interplay with conductivity. Understanding this interplay, as well as the microscopic contenders for providing the conductivity of these materials, will prove essential to the future design and control of TCO semiconductors, and their implementation into novel multifunctional devices. © 2011 IOP Publishing Ltd

  2. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  3. Selective, electrochemical etching of a semiconductor

    Science.gov (United States)

    Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing

    2018-03-20

    Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.

  4. The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220523; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The inner detector of the current detector will be replaced by the Inner Tracker (ITk). It consists of an innermost pixel detector and an outer strips tracker. This contribution focuses on the strips tracker. The basic detection unit of the ...

  5. Development and evaluation of a hand tracker using depth images captured from an overhead perspective.

    Science.gov (United States)

    Czarnuch, Stephen; Mihailidis, Alex

    2015-03-27

    We present the development and evaluation of a robust hand tracker based on single overhead depth images for use in the COACH, an assistive technology for people with dementia. The new hand tracker was designed to overcome limitations experienced by the COACH in previous clinical trials. We train a random decision forest classifier using ∼5000 manually labeled, unbalanced, training images. Hand positions from the classifier are translated into task actions based on proximity to environmental objects. Tracker performance is evaluated using a large set of ∼24 000 manually labeled images captured from 41 participants in a fully-functional washroom, and compared to the system's previous colour-based hand tracker. Precision and recall were 0.994 and 0.938 for the depth tracker compared to 0.981 and 0.822 for the colour tracker with the current data, and 0.989 and 0.466 in the previous study. The improved tracking performance supports integration of the depth-based tracker into the COACH toward unsupervised, real-world trials. Implications for Rehabilitation The COACH is an intelligent assistive technology that can enable people with cognitive disabilities to stay at home longer, supporting the concept of aging-in-place. Automated prompting systems, a type of intelligent assistive technology, can help to support the independent completion of activities of daily living, increasing the independence of people with cognitive disabilities while reducing the burden of care experienced by caregivers. Robust motion tracking using depth imaging supports the development of intelligent assistive technologies like the COACH. Robust motion tracking also has application to other forms of assistive technologies including gaming, human-computer interaction and automated assessments.

  6. Eye Tracker Accuracy: Quantitative Evaluation of the Invisible Eye Center Location

    OpenAIRE

    Wyder, Stephan; Cattin, Philippe C.

    2017-01-01

    Purpose. We present a new method to evaluate the accuracy of an eye tracker based eye localization system. Measuring the accuracy of an eye tracker's primary intention, the estimated point of gaze, is usually done with volunteers and a set of fixation points used as ground truth. However, verifying the accuracy of the location estimate of a volunteer's eye center in 3D space is not easily possible. This is because the eye center is an intangible point hidden by the iris. Methods. We evaluate ...

  7. User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study.

    Science.gov (United States)

    Puri, Arjun; Kim, Ben; Nguyen, Olivier; Stolee, Paul; Tung, James; Lee, Joon

    2017-11-15

    Wearable activity trackers are newly emerging technologies with the anticipation for successfully supporting aging-in-place. Consumer-grade wearable activity trackers are increasingly ubiquitous in the market, but the attitudes toward, as well as acceptance and voluntary use of, these trackers in older population are poorly understood. The aim of this study was to assess acceptance and usage of wearable activity trackers in Canadian community-dwelling older adults, using the potentially influential factors as identified in literature and technology acceptance model. A mixed methods design was used. A total of 20 older adults aged 55 years and older were recruited from Southwestern Ontario. Participants used 2 different wearable activity trackers (Xiaomi Mi Band and Microsoft Band) separately for each segment in the crossover design study for 21 days (ie, 42 days total). A questionnaire was developed to capture acceptance and experience at the end of each segment, representing 2 different devices. Semistructured interviews were conducted with 4 participants, and a content analysis was performed. Participants ranged in age from 55 years to 84 years (mean age: 64 years). The Mi Band gained higher levels of acceptance (16/20, 80%) compared with the Microsoft Band (10/20, 50%). The equipment characteristics dimension scored significantly higher for the Mi Band (Ptechnology acceptance (Paccepting of wearable activity trackers, and they had a clear understanding of its value for their lives. Wearable activity trackers were uniquely considered more personal than other types of technologies, thereby the equipment characteristics including comfort, aesthetics, and price had a significant impact on the acceptance. Results indicated that privacy was less of concern for older adults, but it may have stemmed from a lack of understanding of the privacy risks and implications. These findings add to emerging research that investigates acceptance and factors that may influence

  8. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  9. Status of the KLOE-2 Inner Tracker

    Directory of Open Access Journals (Sweden)

    De Lucia Erika

    2018-01-01

    Full Text Available KLOE-2 at the DAΦNE Φ-factory is the main experiment of the INFN Laboratori Nazionali di Frascati (LNF and is the first high-energy experiment using the GEM technology with a cylindrical geometry, a novel idea developed at LNF. Four concentric cylindrical triple-GEM detectors compose the Inner Tracker, inserted around the interaction region and before the inner wall of the pre-existing KLOE Drift Chamber to improve the resolution on decay vertices close to the interaction point. State-of-the-art solutions have been expressly developed or tuned for this project: single-mask GEM etching, multi-layer XV patterned readout, PEEK spacer grid, GASTONE front-end board, a custom 64-channel ASIC with digital output, and the Global Interface Board for data collection, with a configurable FPGA architecture and Gigabit Ethernet. Alignment and calibration of a cylindrical GEM detector was never done before and represents one of the challenging activities of the experiment. The Inner Tracker detector construction, operation, calibration and performance obtained with cosmic-ray muons and Bhabha scattering events will be reported.

  10. Status of the KLOE-2 Inner Tracker

    Science.gov (United States)

    De Lucia, Erika

    2018-01-01

    KLOE-2 at the DAΦNE Φ-factory is the main experiment of the INFN Laboratori Nazionali di Frascati (LNF) and is the first high-energy experiment using the GEM technology with a cylindrical geometry, a novel idea developed at LNF. Four concentric cylindrical triple-GEM detectors compose the Inner Tracker, inserted around the interaction region and before the inner wall of the pre-existing KLOE Drift Chamber to improve the resolution on decay vertices close to the interaction point. State-of-the-art solutions have been expressly developed or tuned for this project: single-mask GEM etching, multi-layer XV patterned readout, PEEK spacer grid, GASTONE front-end board, a custom 64-channel ASIC with digital output, and the Global Interface Board for data collection, with a configurable FPGA architecture and Gigabit Ethernet. Alignment and calibration of a cylindrical GEM detector was never done before and represents one of the challenging activities of the experiment. The Inner Tracker detector construction, operation, calibration and performance obtained with cosmic-ray muons and Bhabha scattering events will be reported.

  11. Overview of the ATLAS Fast Tracker Project

    CERN Document Server

    Ancu, Lucian Stefan; The ATLAS collaboration

    2016-01-01

    The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge for the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency for interesting events despite the increase in multiple collisions per bunch crossing. In order to increase the use of tracks within the High Level Trigger, the ATLAS experiment planned the installation of a hardware processor dedicated to tracking: the Fast TracKer processor. The Fast Tracker is designed to perform full scan track reconstruction of every event accepted by the ATLAS first level hardware trigger. To achieve this goal the system uses a parallel architecture, with algorithms designed to exploit the computing power of custom Associative Memory chips, and modern field programmable gate arrays. The processor will provide computing power to reconstruct tracks with transverse momentum greater than 1 GeV in the whol...

  12. arXiv Mechanical stability of the CMS strip tracker measured with a laser alignment system

    CERN Document Server

    Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-04-21

    The CMS tracker consists of 206 m$^2$ of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from $-25$ to $+25^\\circ$C. The mechanical stability of tracker components during physics operation was monitored with a few $\\mu$m resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011-2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30$ \\mu$m. In addition, temperature variations were found to cause displacements of tracker structures of about 2$\\mu$m/$^\\circ$C, which largely revert to their initial positions when the temperature is restored to its original value.

  13. Which Eye Tracker is Right for Your Research Performance Evaluation of Several Cost Variant Eye Trackers

    Science.gov (United States)

    2016-09-19

    utilized to study a diverse number of topics such as the patterns of fixations and saccades while reading text (e.g., Rayner, 1998), the workload of...of their accessibility to our laboratory and because they represent a diverse set of relative price points, from low (Eye Tribe Tracker, Tobii EyeX...see Figure 1 for the layout of those systems). At both workstations, task stimuli were presented to observers on 48.26 cm Samsung SyncMaster 940Bx

  14. Interferometric Star Tracker for High Precision Pointing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to adapt the precision star tracker it is currently developing under several DoD contracts for deep space lasercom beam...

  15. Comparison of silicon strip tracker module size using large sensors from 6 inch wafers

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.

  16. CDF central detector installation. An efficient merge of digital photogrammetry and laser tracker metrology

    International Nuclear Information System (INIS)

    Greenwood, John A.; Wojcik, George J.

    2003-01-01

    Metrology for Run II at the Collider Detector at Fermilab (CDF) required a very complex geodetic survey. The Collision Hall network, surveyed with a Laser Tracker and digital level, provides a constraining network for the positioning of the Central Detector (CD). A part-based Laser Tracker network, which surrounded the 2,000-ton CD, was used as control for assembly. Subassembly surveys of the Detector's major components were measured as independent networks using Laser Tracker, V-STARS/S (Video-Simultaneous Triangulation And Resection System/Single camera) digital photogrammetry system, and BETS (Brunson Electronic Theodolite System) theodolite triangulation system. Each subassembly survey was transformed into and constrained by the part-based network. For roll-in, the CD part-based network was transformed into the Collision Hall network coordinate system. The CD was positioned in the Collision Hall using two Laser Trackers in 'stakeout mode.' This paper discusses the survey, adjustment, transformation, and precision of the various networks. (author)

  17. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  18. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  19. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  20. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  1. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    Science.gov (United States)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner

  2. Hybrid Design, Procurement and Testing for the LHCb Silicon Tracker

    CERN Document Server

    Bay, A; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, MT; Van Hunen, J J; Vervink, K; Vollhardt, A; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Smale, N J; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Lehner, F; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Voss, H; Wenger, A

    2005-01-01

    The Silicon Tracker of the LHCb experiment consists of four silicon detector stations positioned along the beam line of the experiment. The detector modules of each station are constructed from wide pitch silicon microstrip sensors. Located at the module's end, a polyimide hybrid is housing the front-end electronics. The assembly of the more than 600 hybrids has been outsourced to industry. We will report on the design and production status of the hybrids for the LHCb Silicon Tracker and describe the quality assurance tests. Particular emphasis is laid on the vendor qualifying and its impact on our hybrid design that we experienced during the prototyping phase.

  3. Charge determination of nuclei with the AMS-02 silicon tracker

    CERN Document Server

    Alpat, B; Azzarello, P; Battiston, R; Bene, P; Bertucci, B; Bizzaglia, S; Bizzarri, M; Blasko, S; Bourquin, M; Bouvier, P; Burger, W J; Capell, M; Cecchi, C; Chang, Y H; Cortina, E; Dinu, N; Esposito, G; Fiandrini, E; Haas, D; Hakobyan, H; Ionica, M; Ionica, R; Kounine, A; Koutsenko, V F; Lebedev, A; Lechanoine-Leluc, C; Lin, C H; Masciocchi, F; Menichelli, M; Natale, S; Paniccia, M; Papi, A; Pauluzzi, M; Perrin, E; Pohl, M; Rapin, D; Richeux, J P; Wallraff, W; Willenbrock, M; Zuccon, P

    2005-01-01

    The silicon tracker of the AMS-02 detector measures the trajectory in three dimensions of electrons, protons and nuclei to high precision in a dipole magnetic field and thus measures their rigidity (momentum over charge) and the sign of their charge. In addition, it measures the specific energy loss of charged particles to determine the charge magnitude. Ladders from the AMS-02 tracker have been exposed to ion beams at CERN and GSI to study their response to nuclei from helium up to the iron group. The longest ladder, 72 multiplied by 496mm2, verified in the tests contains 12 sensors. Good charge resolution is observed up to iron.

  4. P-Type Silicon Strip Sensors for the Future CMS Tracker

    CERN Document Server

    The Tracker Group of the CMS Collaboration

    2016-01-01

    The upgrade to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at CMS. Based on these results, the collaboration has chosen to use n-in-p type strip and macro-pixel sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  5. Characterization of the Ecosole HCPV tracker and single module inverter

    Science.gov (United States)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  6. Sun Tracker Operates a Year Between Calibrations

    Science.gov (United States)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  7. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  8. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    International Nuclear Information System (INIS)

    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    2017-01-01

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10 −16 , 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  9. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, H., E-mail: hajime.nishiguchi@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Evtoukhovitch, P. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Fujii, Y. [Institute of High Energy Physics (IHEP), 19B YuquanLu, Shijingshan district, Beijing 1000049 (China); Hamada, E.; Mihara, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Moiseenko, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J. [Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsamalaidze, Z.; Tsverava, N. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation); Ueno, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Volkov, A. [Joint Institute for Nuclear Research (JINR), Jolio-Curie Str.6, Dubna, Moscow 141980 (Russian Federation)

    2017-02-11

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10{sup −16}, 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  10. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  11. Interference coupling mechanisms in Silicon Strip Detectors - CMS tracker "wings" A learned lesson for SLHC

    CERN Document Server

    Arteche, F; Rivetta, C

    2009-01-01

    The identification of coupling mechanisms between noise sources and sensitive areas of the front-end electronics (FEE) in the previous CMS tracker sub-system is critical to optimize the design and integration of integrated circuits, sensors and power distribution circuitry for the proposed SLHC Silicon Strip Tracker systems. This paper presents a validated model of the noise sensitivity observed in the Silicon Strip Detector-FEE of the CMS tracker that allows quantifying both the impact of the noise coupling mechanisms and the system immunity against electromagnetic interferences. This model has been validated based on simulations using finite element models and immunity tests conducted on prototypes of the Silicon Tracker End-Caps (TEC) and Outer Barrel (TOB) systems. The results of these studies show important recommendations and criteria to be applied in the design of future detectors to increase the immunity against electromagnetic noise.

  12. Layout and prototyping of the new ATLAS Inner Tracker for the High Luminosity LHC

    CERN Document Server

    Mitra, Ankush; The ATLAS collaboration

    2017-01-01

    The current inner tracker of the ATLAS experiment is foreseen to be replaced at the High Luminosity era of the LHC to cope with the occuring increase in occupancy, bandwidth and radiation damage. It will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems aiming to provide tracking coverage up to |η|<4. For a high tracking performance are radiation hard and high-rate capable silicon sensors and readout electronics important. Moreover, services and stable, low mass mechanical structures are essential and give challenges to the system design. In this talk first the tracker layout and challenges, second possible solutions to these challenges will be discussed. The layouts under considerations and their technical realizations in terms of mechanics of local supports will be presented.

  13. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry

    Directory of Open Access Journals (Sweden)

    Salvatore Tedesco

    2017-06-01

    Full Text Available The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future.

  14. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry.

    Science.gov (United States)

    Tedesco, Salvatore; Barton, John; O'Flynn, Brendan

    2017-06-03

    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future.

  15. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry

    Science.gov (United States)

    Tedesco, Salvatore; Barton, John; O’Flynn, Brendan

    2017-01-01

    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future. PMID:28587188

  16. The mechanical Design of the LHCb Silicon Trigger Tracker

    CERN Document Server

    Gassner, J; Steiner, S

    2010-01-01

    In this note, we describe the design of the Silicon Trigger Tracker for the LHCb experiment. We emphasize on detector module and station design and characterize the layout of all relevant parts and components.

  17. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  18. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  19. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  20. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  1. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    Directory of Open Access Journals (Sweden)

    Zakaria El Kadmiri

    2015-01-01

    Full Text Available This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted information is used to control the two DC motors of the dual-axis mechanism to achieve the optimal orientation of the photovoltaic panels with the aim of increasing the power generation. Several experimental studies have been conducted and the obtained results confirm the power generation efficiency of the proposed solar tracker.

  2. The KLOE-2 Inner Tracker: Detector commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Ciambrone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Czerwinski, E. [Jagiellonian University, Institute of Physics, Cracow (Poland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Cicco, A. [Dipartimento di Matematica e Fisica dell' Università di “Roma Tre”, Roma (Italy); Di Domenici, D.; Felici, G.; Morello, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2017-02-11

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system including an Inner Tracker built with the cylindrical GEM technology, to operate together with the Drift Chamber improving the apparatus tracking performance. The Inner Tracker is composed of four cylindrical triple-GEM, each provided with an X–V strips-pads stereo readout and equipped with the GASTONE ASIC developed inside the KLOE-2 collaboration. Although GEM detectors are already used in high energy physics experiment, this device is considered a frontier detector due to its cylindrical geometry: KLOE-2 is the first experiment to use this novel solution. The results of the detector commissioning, detection efficiency evaluation, calibration studies and alignment, both with dedicated cosmic-ray muon and Bhabha scattering events, will be reported.

  3. Application of virtual distances methodology to laser tracker verification with an indexed metrology platform

    International Nuclear Information System (INIS)

    Acero, R; Pueo, M; Santolaria, J; Aguilar, J J; Brau, A

    2015-01-01

    High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures. (paper)

  4. Application of virtual distances methodology to laser tracker verification with an indexed metrology platform

    Science.gov (United States)

    Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.

    2015-11-01

    High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.

  5. Star tracking method based on multiexposure imaging for intensified star trackers.

    Science.gov (United States)

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  6. Depletion field focusing in semiconductors

    NARCIS (Netherlands)

    Prins, M.W.J.; Gelder, Van A.P.

    1996-01-01

    We calculate the three-dimensional depletion field profile in a semiconductor, for a planar semiconductor material with a spatially varying potential upon the surface, and for a tip-shaped semiconductor with a constant surface potential. The nonuniform electric field gives rise to focusing or

  7. Planar silicon sensors for the CMS Tracker upgrade

    CERN Document Server

    Junkes, Alexandra

    2013-01-01

    The CMS tracker collaboration has initiated a large material investigation and irradiation campaign to identify the silicon material and design that fulfills all requirements for detectors for the high-luminosity phase of the Large Hadron Collider (HL-LHC).A variety of silicon p-in-n and n-in-p test-sensors made from Float Zone, Deep-Diffused FZ and Magnetic Czochralski materials were manufactured by one single industrial producer, thus guaranteeing similar conditions for the production and design of the test-structures. Properties of different silicon materials and design choices have been systematically studied and compared.The samples have been irradiated with 1 MeV neutrons and protons corresponding to maximal fluences as expected for the positions of detector layers in the future tracker. Irradiations with protons of different energies (23 MeV and 23 GeV) have been performed to evaluate the energy dependence of the defect generation in oxygen rich material. All materials have been characterized before an...

  8. Semiconductor type n for applications in gas sensing film

    International Nuclear Information System (INIS)

    Cerón Hurtado, Nathalie Marcela; Rodríguez Páez, Jorge Enrique

    2008-01-01

    Semiconductors are materials commonly used in the conformation of the active material in gas sensors, in this paper the synthesis routes are shown for obtaining raw material Sn02-Ti02 system, n-type semiconductor material, methods of characterization the same and the formation of thick films. The synthesis was performed using the methods of precipitation Controlled Polymeric Precursor, characterization of ceramic powders are made using techniques of differential thermal analysis and thermogravimetric (DTA / TG), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM ) and Scanning Electron Microscopy (SEM); Finally they settled in thick films by screen printing method and microstructurally characterized by Optical Microscopy (M0) and Scanning Electron Microscopy (SEM), besides this electrically characterized. The ceramic powders obtained are nanoscale high chemical purity and respond favorably formed films in the presence of oxygen and carbon monoxide.

  9. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  10. Effective star tracking method based on optical flow analysis for star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  11. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  12. Improved performance of the LHCb Outer Tracker in LHC Run 2

    Science.gov (United States)

    d'Argent, P.; Dufour, L.; Grillo, L.; de Vries, J. A.; Ukleja, A.; Aaij, R.; Archilli, F.; Bachmann, S.; Berninghoff, D.; Birnkraut, A.; Blouw, J.; De Cian, M.; Ciezarek, G.; Färber, C.; Demmer, M.; Dettori, F.; Gersabeck, E.; Grabowski, J.; Hulsbergen, W. D.; Khanji, B.; Kolpin, M.; Kucharczyk, M.; Malecki, B. P.; Merk, M.; Mulder, M.; Müller, J.; Mueller, V.; Pellegrino, A.; Pikies, M.; Rachwal, B.; Schmelzer, T.; Spaan, B.; Szczekowski, M.; van Tilburg, J.; Tolk, S.; Tuning, N.; Uwer, U.; Wishahi, J.; Witek, M.

    2017-11-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5 × 6 m2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in pp, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.

  13. The CDF II eXtremely fast tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  14. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    Science.gov (United States)

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  15. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  16. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  17. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  18. Fine pitch and low material readout bus in the Silicon Pixel Vertex Tracker for the PHENIX Vertex Tracker upgrade

    International Nuclear Information System (INIS)

    Fujiwara, Kohei

    2010-01-01

    The construction of the Silicon Pixel Detector is starting in spring 2009 as project of the RHIC-PHENIX Silicon Vertex Tracker (VTX) upgrade at the Brookhaven National Laboratory. For the construction, we have developed a fine pitch and low material readout bus as the backbone parts of the VTX. In this article, we report the development and production of the readout bus.

  19. Design of the forward straw tube tracker for the PANDA experiment

    Science.gov (United States)

    Smyrski, J.; Apostolou, A.; Biernat, J.; Czyżycki, W.; Filo, G.; Fioravanti, E.; Fiutowski, T.; Gianotti, P.; Idzik, M.; Korcyl, G.; Korcyl, K.; Lisowski, E.; Lisowski, F.; Płażek, J.; Przyborowski, D.; Przygoda, W.; Ritman, J.; Salabura, P.; Savrie, M.; Strzempek, P.; Swientek, K.; Wintz, P.; Wrońska, A.

    2017-06-01

    The design of the Forward Tracker for the Forward Spectrometer of the PANDA experiment is described. The tracker consists of 6 tracking stations, each comprising 4 planar double layers of straw tube detectors, and has a total material budget of only 2% X0. The straws are made self-supporting by a 1 bar over-pressure of the working gas mixture (Ar/CO2). This allows to use lightweight and compact rectangular support frames for the double layers and to split the frames into pairs of C-shaped half-frames for an easier installation on the beam line.

  20. Prediction of Motion Induced Image Degradation Using a Markerless Motion Tracker

    DEFF Research Database (Denmark)

    Olsen, Rasmus Munch; Johannesen, Helle Hjorth; Henriksen, Otto Mølby

    In this work a markerless motion tracker, TCL2, is used to predict image quality in 3D T1 weighted MPRAGE MRI brain scans. An experienced radiologist scored the image quality for 172 scans as being usable or not usable, i.e. if a repeated scan was required. Based on five motion parameters......, a classification algorithm was trained and an accuracy for identifying not usable images of 95.9% was obtained with a sensitivity of 91.7% and specificity of 96.3%. This work shows the feasibility of the markerless motion tracker for predicting image quality with a high accuracy....

  1. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  2. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  3. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors.

    CERN Multimedia

    2006-01-01

    Clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT

  4. Design of the new ATLAS Inner Tracker for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2017-01-01

    In the high luminosity era of the Large Hadron Collider (HL-LHC), the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with this high rate, the ATLAS Inner Detector is being completely redesigned, and will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems. The components of the Inner Tracker will have to be resistant to the large radiation dose from the particles produced in HL-LHC collisions, and have low mass and sufficient sensor granularity to ensure a good tracking performance over the pseudorapidity range |η|<4. In this talk, first the challenges and second possible solutions to these challenges will be discussed, i.e. designs under consideration for the pixel and strip modules, and the mechanics of local supports in the barrel and endcaps.

  5. Integration of the end cap TEC+ of the CMS silicon strip tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Richard

    2008-04-28

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising

  6. Integration of the end cap TEC+ of the CMS silicon strip tracker

    International Nuclear Information System (INIS)

    Bremer, Richard

    2008-01-01

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising particles

  7. An Overview of Plume Tracker: Mapping Volcanic Emissions with Interactive Radiative Transfer Modeling

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Guiang, C.

    2014-12-01

    Infrared remote sensing is a vital tool for the study of volcanic plumes, and radiative transfer (RT) modeling is required to derive quantitative estimation of the sulfur dioxide (SO2), sulfate aerosol (SO4), and silicate ash (pulverized rock) content of these plumes. In the thermal infrared, we must account for the temperature, emissivity, and elevation of the surface beneath the plume, plume altitude and thickness, and local atmospheric temperature and humidity. Our knowledge of these parameters is never perfect, and interactive mapping allows us to evaluate the impact of these uncertainties on our estimates of plume composition. To enable interactive mapping, the Jet Propulsion Laboratory is collaborating with Spectral Sciences, Inc., (SSI) to develop the Plume Tracker toolkit. This project is funded by a NASA AIST Program Grant (AIST-11-0053) to SSI. Plume Tracker integrates (1) retrieval procedures for surface temperature and emissivity, SO2, NH3, or CH4 column abundance, and scaling factors for H2O vapor and O3 profiles, (2) a RT modeling engine based on MODTRAN, and (3) interactive visualization and analysis utilities under a single graphics user interface. The principal obstacle to interactive mapping is the computational overhead of the RT modeling engine. Under AIST-11-0053 we have achieved a 300-fold increase in the performance of the retrieval procedures through the use of indexed caches of model spectra, optimization of the minimization procedures, and scaling of the effects of surface temperature and emissivity on model radiance spectra. In the final year of AIST-11-0053 we will implement parallel processing to exploit multi-core CPUs and cluster computing, and optimize the RT engine to eliminate redundant calculations when iterating over a range of gas concentrations. These enhancements will result in an additional 8 - 12X increase in performance. In addition to the improvements in performance, we have improved the accuracy of the Plume Tracker

  8. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    International Nuclear Information System (INIS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-01-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R and D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

  9. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    Science.gov (United States)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  10. The Phase II ATLAS Pixel Upgrade: The Inner Tracker (ITk)

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m^2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to eta < 3.2 and two to eta < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions. Support...

  11. One-kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers.

    Science.gov (United States)

    Waring, George O

    2009-10-01

    To describe recent technological additions to the NIDEK CXIII and Quest excimer lasers. A summary article with data from previous published studies outlining the benefits of newer technology. The addition of a 1-kHz infrared eye tracker decreased the spread of laser spot placement from a mean of 228.79 microm without a tracker to 38.47 microm with the eye tracker. The addition of real-time torsion error correction produced a statistically significantly lower cylinder dispersion, mean manifest refractive cylinder, and error of angle postoperatively in eyes that underwent LASIK. The incorporation of an ultrahigh speed eye tracker and active cyclotorsion correction surpasses the minimal technology criteria required for accurate wavefront-based ablations. Copyright 2009, SLACK Incorporated.

  12. Roadside Tracker Portal-less Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheriyadat, Anil M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Mark F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goddard, Jr, James Samuel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kerekes, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-07-01

    This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.

  13. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    topics including growth and heteroepitaxy, bulk GaN substrates, theory and modelling, optical properties, laser diodes and LEDs as well as transport properties and electronics. Farrell et al review materials and growth issues for high-performance non- and semipolar light-emitting devices, and Scholz provides an overview of heteroepitaxial growth of semipolar GaN. Okada et al review growth mechanisms of non- and semipolar GaN layers on patterned sapphire substrates, and Vennéguès discusses defect reduction methods for heteroepitaxially grown non- and semipolar III-nitride films. Leung et al explain how kinetic Wulff plots can be used to design and control non-polar and semipolar GaN heteroepitaxy, and a contribution by Sawaki et al explores the impurity incorporation in (1-101) GaN grown on Si substrates. In the area of bulk crystal growth Kucharski et al review non- and semipolar GaN substrates by ammonothermal growth, and Chichibu et al discuss the challenges for epitaxial growth of InGaN on free-standing m-plane GaN substrates. Calculation of semipolar orientations for wurtzitic semiconductor heterostructures and their application to nitrides and oxides are reviewed by Bigenwald et al, and Ito et al present an ab initio approach to reconstruction, adsorption, and incorporation on GaN surfaces. Finally, the theoretical description of non-polar and semipolar nitride semiconductor quantum-well structures is presented by Ahn et al. In a discussion of the optical properties, Kisin et al discuss the effect of the quantum well population on the optical characteristics of polar, semipolar and non-polar III-nitride light emitters, and Jönen et al investigate the indium incorporation and optical properties of non- and semipolar GaInN QW structures. Wernicke et al explore the emission wavelength of polar, non-polar, and semipolar InGaN quantum wells and the incorporation of indium. In a contribution by Melo et al, the gain in polar and non-polar/semipolar gallium

  14. A combined on-line acoustic flowmeter and fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    International Nuclear Information System (INIS)

    Bates, R.; Bitadze, A.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Girolamo, B. Di; Godlewski, J.; Perez-Rodriguez, E.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Doubek, M.; Vacek, V.; Vitek, M.; Egorov, K.; Katunin, S.; Konstantinov, B.P.; McMahon, S.; Nagai, K.

    2012-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C 3 F 8 (octafluoro-propane) to a blend containing 10-30% of C 2 F 6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new ultrasonic flowmeter and binary gas analyzer for the real-time measurement of the C 3 F 8 /C 2 F 6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10 -3 for C 3 F 8 /C 2 F 6 mixtures with about 20% C 2 F 6 , and flow resolution of 2% of full scale for mass flows up to 30 gs -1 . In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of -4 to leaks of C 3 F 8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture and anaesthesia. (authors)

  15. Advanced Exoplanet Star Tracker for Orbit Self Determination, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal puts forth an innovative star tracker hardware sensor that allows for autonomous calculation of a spacecraft's orbit by employing Doppler Spectroscopy...

  16. Lorentz angle measurements as part of the sensor R\\&D for the CMS Tracker upgrade

    CERN Document Server

    Nurnberg, Andreas Matthias

    2012-01-01

    $200 m^2$ silicon strip tracker was designed to withstand the radiation of 10 years of LHC operation. The foreseen high luminosity upgrade of the LHC imposes even higher demands on the radiation tolerance and thus requires the construction of a new tracking detector. To determine the properties of different silicon materials and production processes, a campaign has been started by the CMS Tracker Collaboration to identify the most promising candidate material for the new CMS tracker. The silicon sensors of the CMS tracker are operated in a 3.8 T magnetic field. Charges created by traversing ionizing particles inside the active sensor volume are deflected by the Lorentz force. The Lorentz angle, under which the charge drifts through the sensor, is strongly dependent on the mobility, which in turn depends on the electric field and may depend on the radiation damage created by the particles produced by the LHC. Studying this is ...

  17. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.

    Science.gov (United States)

    Wang, Geng; Xing, Fei; Wei, Minsong; Sun, Ting; You, Zheng

    2017-05-20

    Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

  18. CMS Tracker Model

    CERN Multimedia

    Model of the tracking detector for the CMS experiment at the LHC. This object is a mock-up of an early design of the CMS Tracker mechanics. It is a segment of a “Wheel” to support Micro-Strip Gas Chamber (MSGC) detector modules on the outer layers and silicon-strip detector modules in the innermost layers. The particularity of that design is that modules are organised in spirals, along which power and optical cables and cooling pipes were planned to be routed. Some of such spirals are illustrated in the mock-up by the colors of the modules. With the detector development it became, however, evident that the silicon detectors would need to be operated in LHC experiments in cold temperatures, while the MSGC could stay in normal room-temperature. That split in two temperatures lead to separating those two detector types by a thermal barrier and therefore jeopardizing the idea of using common, vertical Wheels with services arranged along spirals.

  19. The ATLAS semiconductor tracker end-cap module

    Czech Academy of Sciences Publication Activity Database

    Abdesselam, A.; Adkin, P. J.; Allport, P.; Böhm, Jan; Šťastný, Jan

    2007-01-01

    Roč. 575, - (2007), s. 353-389 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * SCT * silicon * microstrip * module * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.114, year: 2007

  20. Layout Overview and Developments for the upgrade of the Inner Tracker of the ATLAS experiment for the High-Luminosity LHC

    CERN Document Server

    Phillips, Peter William; The ATLAS collaboration

    2017-01-01

    In the high luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk), aiming to provide tracking coverage up to |η|<4. The ITk consists of an inner pixel and an outer strip detector. The total surface area of silicon in the new pixel system could measure up to 13 m^2, depending on the final layout choice. The strip detector will compromise up to 190 m^2 of silicon. The design is developed by careful compromises of the conflicting requirements of a low mass, mechanically stable tracker with sufficient number of high granularity sensors for high quality tracking. The required number of hits has to be achieved with various layers of silicon sensors in r-phi. In the collaboration, a large effort is ong...

  1. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  2. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  3. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  4. Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers

    Directory of Open Access Journals (Sweden)

    M. Gisi

    2011-01-01

    Full Text Available A new system to very precisely couple radiation of a moving source into a Fourier Transform Infrared (FTIR Spectrometer is presented. The Camtracker consists of a homemade altazimuthal solar tracker, a digital camera and a homemade program to process the camera data and to control the motion of the tracker. The key idea is to evaluate the image of the radiation source on the entrance field stop of the spectrometer. We prove that the system reaches tracking accuracies of about 10 arc s for a ground-based solar absorption FTIR spectrometer, which is significantly better than current solar trackers. Moreover, due to the incorporation of a camera, the new system allows to document residual pointing errors and to point onto the solar disk center even in case of variable intensity distributions across the source due to cirrus or haze.

  5. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals...... with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  6. LHCb: Installation and operation of the LHCb Silicon Tracker detector

    CERN Multimedia

    Esperante Pereira, D

    2009-01-01

    The LHCb experiment has been designed to perform high-precision measurements of CP violation and rare decays of B hadrons. The construction and installation phases of the Silicon Tracker (ST) of the experiment were completed by early summer 2008. The LHCb Silicon Tracker sums up to a total sensitive area of about 12 m^2 using silicon micro-strip technology and withstands charged particle fluxes of up to 5 x 10^5cm^−2s^−1. We will report on the preparation of the detectors for the first LHC beams. Selected results from the commissioning in LHCb are shown, including the first beam-related events accumulated during LHC injection tests in September 2008. Lessons are drawn from the experience gathered during the installation and commissioning.

  7. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  8. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  9. Development of Adaptive Tilt Tracker that Utilizes QUAD-cell Detector to Track Extended Objects

    Science.gov (United States)

    2014-03-17

    tracked low Earth orbit (LEO) object and atmospheric seeing govern spot characteristics. Unlike static natural or laser guide stars, a LEO object’s...image spot characteristics .......................................................... 101 56. Response for non-adaptive tilt tracker with α equal to...applications toward natural and laser guide stars. The system was innovative and is a relevant forerunner to the tracker proposed in this research. The

  10. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  11. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  12. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  13. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    Science.gov (United States)

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  14. Structural study of the AlP, GaAs and AlAs semiconductors with wurtzite structure

    International Nuclear Information System (INIS)

    Bautista H, A.; Perez A, L.; Pal, U.; Rivas S, J.F.

    2003-01-01

    In this work we present ab initio calculations of optimization geometries, lattice constant and electronic structure for semiconductors wurtzite type, like AIN, CdS, Zn S, Zn Se, Ga N and GaAs. For this, we used the CASTEP program of CERUIS with LDA and GGA approximations, in the framework of Functional Density Theory. The used pseudopotentials are available in that program and were generated using the optimization scheme of Troullier-Martins. With the lattice constant just optimized, we calculate then the X-ray spectra for studied semiconductors.We analyzed the effect of used pseudopotentials on function of the results obtained. Finally, we predicted the geometry and X-ray pattern for AIP, AlAs and GaAs with wurtzite structure, giving evidence about the semiconductor character of these materials. (Author)

  15. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  16. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  17. Use of LysoTracker dyes: a flow cytometric study of autophagy.

    Science.gov (United States)

    Chikte, Shaheen; Panchal, Neelam; Warnes, Gary

    2014-02-01

    The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.

  18. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  19. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  20. The OPERA experiment Target Tracker

    CERN Document Server

    Adam, T; Borer, K.; Campagne, Jean-Eric; Con-Sen, N.; de La Taille, C.; Dick, N.; Dracos, M.; Gaudiot, G.; Goeltzenlichter, T.; Gornushkin, Y.; Grapton, J.-N.; Guyonnet, J.-L.; Hess, M.; Igersheim, R.; Janicsko Csathy, J.; Jollet, C.; Juget, F.; Kocher, H.; Krasnoperov, A.; Krumstein, Z.; Martin-Chassard, G.; Moser, U.; Nozdrin, A.; Olchevski, A.; Porokhovoi, S.; Raux, L.; Sadovski, A.; Schuler, J.; Schutz, H.-U.; Schwab, C.; Smolnikov, A.; Van Beek, G.; Vilain, P.; Walchli, T.; Wilquet, G.; Wurtz, J.

    2007-01-01

    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.