WorldWideScience

Sample records for semiconductor power device

  1. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  2. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  3. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  4. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  5. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  6. Introduction to Semiconductor Devices

    Science.gov (United States)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  7. Improvement of cosmic ray ruggedness of hybrid vehicles power semiconductor devices

    International Nuclear Information System (INIS)

    Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Shoji, Tomoyuki; Ishiko, Masayasu

    2010-01-01

    Power semiconductors which are used under high voltage conditions in HVs (Hybrid Vehicles) are required to have high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, an SEB (Single Event Burnout) failure mechanism induced by cosmic rays in IGBTs (Insulated Gate Bipolar Transistors) was investigated. Through an optimized device design in which thyristor action was suppressed, the device destruction tolerance was greatly improved. (author)

  8. Fiscal 1999 research report. Development of ultralow- loss power device technology (Survey on next-generation practical power semiconductor devices); 1999 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This research proposes the clear developmental policy and target for 'Development project of ultralow-loss power device technology' through the research on power electronics or advanced power semiconductor devices as key technology of conversion loss reduction for various power applications and power supply systems. Main research issues are as follows. A bidirectional current switch using P-MOS FETs is promising as an ace of power system interconnection control equipment. IEGT as MOS gate high-power device will be substituted for GTO gradually. SiC devices will play the leading part of low- loss power devices for inverters of power converters, power systems of electric vehicles, Shinkansen and maglev railways, power systems of information and communication systems, and DC power systems. Size and cost reduction of low-noise soft switching as application technology of power devices are possible by using active circuits. Development of high- efficiency low-noise compact inexpensive inverters is an important issue. Countermeasures against various losses of inverters are also described. (NEDO)

  9. Architectures for Improved Organic Semiconductor Devices

    Science.gov (United States)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  10. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  11. FY 2000 report on the development of ultra low loss power element technology. Commercialization of next generation power semiconductor device; 2000 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of contributing to the promotion of development of ultra low loss power element technology, survey was conducted on the present situation, future, etc. of various technologies/systems related to power semiconductor devices. In the industrial equipment field, it is predicted that power semiconductor devices will be increased in the field of application by enlargement of the defense field of IGBT, new MOS structure elements, etc. In the field of home appliances, possibilities are expected of switching loss reduction and electric noise reduction by making SiC high speed diode. As to the space photovoltaic power generation, SiC is expected for various semiconductors such as solar cells, FET for transmitter/amplifier of radio power electric transmission use micro waves, etc. Concerning the radio communication system plan using stratosphere platform, there are technical problems on communication equipment such as antenna and RF circuit, and the role of SiC device is expected to be large. The society where the electrification rate is 80% and fuel cell vehicles are used is a new paradigm, and it is necessary and indispensable to commercialize ultra low loss power elements using SiC. (NEDO)

  12. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  13. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  14. Temperature control of power semiconductor devices in traction applications

    Science.gov (United States)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  15. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    Science.gov (United States)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  16. Physical limitations of semiconductor devices defects, reliability and esd protection

    CERN Document Server

    Vashchenko, V A

    2008-01-01

    Provides an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics. This title focuses on power semiconductor devices and self-triggering pulsed power devices for ESD protection clamps.

  17. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    CERN Document Server

    Li, Simon

    2012-01-01

    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  18. Method of manufacturing a semiconductor sensor device and semiconductor sensor device

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a method of manufacturing a semiconductor sensor device (10) for sensing a substance comprising a plurality of mutually parallel mesa-shaped semiconductor regions (1) which are formed on a surface of a semiconductor body (11) and which are connected at a first end to a first

  19. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  20. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  1. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  2. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  3. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  4. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  5. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip

    2013-01-01

    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  6. Analysis and simulation of semiconductor devices

    CERN Document Server

    Selberherr, Siegfried

    1984-01-01

    The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the s...

  7. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  8. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  9. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  10. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  11. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  12. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  13. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  14. Recent progress in power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yasuhiko; Yatsuo, Tsutomu

    1987-02-01

    Recent progress and future trends of power semiconductor devices (especially with respect to motor speed control) were described. Conventional discrete devices such as thyristors, bipolar transistors, unipolar transistors and Bi-MOS devices were referenced to. Reference was also made to High Voltage ICs. There has been steady progress with each of these power devices in current carrying capability, voltage blocking capability and switching speed. The Bipolar-MOS integreated device and the High Voltage IC are particularly interesting because their abilities and performances are much enhanced by skillful combination with conventional discrete devices. However, no one device meets all the needs, and it will always be necessary to select the right device for a specific task. (11 figs, 35 refs)

  15. III-nitride semiconductors and their modern devices

    CERN Document Server

    2013-01-01

    This book is dedicated to GaN and its alloys AlGaInN (III-V nitrides), semiconductors with intrinsic properties well suited for visible and UV light emission and electronic devices working at high temperature, high frequency, and harsh environments. There has been a rapid growth in the industrial activity relating to GaN, with GaN now ranking at the second position (after Si) among all semiconductors. This is mainly thanks to LEDs, but also to the emergence of lasers and high power and high frequency electronics. GaN-related research activities are also diversifying, ranging from advanced optical sources and single electron devices to physical, chemical, and biological sensors, optical detectors, and energy converters. All recent developments of nitrides and of their technology are gathered here in a single volume, with chapters written by world leaders in the field. This third book of the series edited by B. Gil is complementary to the preceding two, and is expected to offer a modern vision of nitrides and...

  16. Methods of forming semiconductor devices and devices formed using such methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  17. Semiconductor device models for circuit simulation power electronics; Modeles de composants semiconducteurs pour la simulation des circuits en electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Berraies, M.O.

    1998-09-10

    In this thesis, an alternative strategy based on a regional approach to modeling and a new partition of the model library in the simulation is proposed. The main objective is to substitute for the usual concept of `one device, on model` that of an adaptable assembly of a limited number of submodels associated with well-identified regions of semiconductor structures. In other words, the library will only contain the primitive building-blocks of the power device models. This strategy guarantees the compatibility of the various semiconductor models in terms of physical concepts, validity domain, accuracy, homogeneity of parameter identification procedures, similarly of implementation in the simulator. This approach has been applied to PIN diodes and IGBTs for experimental validation. The next step consisted on the simulation of circuit involving several interacting devices. A simple IGBT/PIN diode chopper cell has been chosen. The results obtained compare well with experiment. This demonstrates the consistency of the proposed approach. (author) 43 refs.

  18. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  19. Improvements in or relating to semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, K.; Groves, I.S.; Leigh, P.A.; McIntyre, N.; O'Hara, S.; Speight, J.D.

    1980-01-01

    A method of producing semiconductor devices is described consisting of a series of physical and chemical techniques which results in the production of semiconductor devices such as IMPATT diodes of DC-RF efficiency and high reliability (lifetime). The diodes can be mass produced without significant variation of the technology. One of the techniques used is the high energy proton bombardment of the semiconductor material in depth to passivate specific zones. The energy of the protons is increased in stages at intervals of less than 0.11 MeV up to a predetermined maximum energy. (UK)

  20. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  1. A semiconductor device thermal model taking into account non-linearity and multhipathing of the cooling system

    International Nuclear Information System (INIS)

    Górecki, K; Zarȩbski, J

    2014-01-01

    The paper is devoted to modelling thermal properties of semiconductor devices at the steady state. The dc thermal model of a semiconductor device taking into account the multipath heat flow is proposed. Some results of calculations and measurements of thermal resistance of a power MOSFET operating at different cooling conditions are presented. The obtained results of calculations fit the results of measurements, which proves the correctness of the proposed model.

  2. High power semiconductor switching in the nanosecond regime

    International Nuclear Information System (INIS)

    Zucker, O.S.; Long, J.R.; Smith, V.L.; Page, D.J.; Roberts, J.S.

    1975-12-01

    Light activated multilayered silicon semiconductor devices have been used to switch at megawatt power levels with nanosecond turnon time. Current rate of rise of 700 kA/μs at 10 kA, with 1 kV across the load have been achieved. Recovery time of 1 millisec has been obtained. Applicability to fusion research needs is discussed

  3. High voltage semiconductor devices and methods of making the devices

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2018-01-23

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.

  4. neutron-Induced Failures in semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together

  5. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  6. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because...

  7. α-particle shielding of semiconductor device

    International Nuclear Information System (INIS)

    McKeown, P.J.A.; Perry, J.P.; Waddell, J.M.; Barker, K.D.

    1981-01-01

    Soft errors in semiconductor devices, e.g. random access memories, arising from the bombardment of the device by alpha particles produced by the disintegration of minute traces of uranium or thorium in the packaging materials are prevented by coating the active surface of the semiconductor chip with a thin layer, e.g. 20 to 100 microns of an organic polymeric material, this layer being of sufficient thickness to absorb the particles. Typically, the polymer is a poly-imide formed by u.v. electron-beam or thermal curing of liquid monomer applied to the chip surface. (author)

  8. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  10. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  11. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor sensor device (10) for sensing a substance comprising at least one mesa- shaped semiconductor region (11) which is formed on a surface of a semiconductor body (12) and which is connected at a first end to a first electrically conducting connection region (13)

  12. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  13. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  14. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  15. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  16. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  17. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  18. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  19. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  20. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  1. Electrothermal Simulation of Large-Area Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    C Kirsch

    2017-06-01

    Full Text Available The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes (Neyts et al., 2006. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results (Slawinski et al., 2011. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method.

  2. Wafer-level chip-scale packaging analog and power semiconductor applications

    CERN Document Server

    Qu, Shichun

    2015-01-01

    This book presents a state-of-art and in-depth overview in analog and power WLCSP design, material characterization, reliability, and modeling. Recent advances in analog and power electronic WLCSP packaging are presented based on the development of analog technology and power device integration. The book covers in detail how advances in semiconductor content, analog and power advanced WLCSP design, assembly, materials, and reliability have co-enabled significant advances in fan-in and fan-out with redistributed layer (RDL) of analog and power device capability during recent years. Along with new analog and power WLCSP development, the role of modeling is a key to assure successful package design. An overview of the analog and power WLCSP modeling and typical thermal, electrical, and stress modeling methodologies is also provided. This book also: ·         Covers the development of wafer-level power discrete packaging with regular wafer-level design concepts and directly bumping technology ·    �...

  3. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  4. Report on achievement in developing an ultra low loss power element technology. Survey on practical application of the next generation power semiconductor devices; 1998 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Trends were surveyed for development of an ultra low loss power element. Performance improvement has been progressed on power semiconductor elements by using Si as the raw material, but loss reduction has come close to the physical limit. SiC is expected of possibility to go beyond this limit. SiC is so very excellent that its band gap is two to three times greater, insulation breakdown electric field is 7.5 times higher, temperature to become a true semiconductor is three to four times higher than those of Si. The wide gap can reduce high temperature leaking current in p-n junctions, and the increased authenticity temperature can increase the upper limit for operation temperature. The insulation breakdown strength being higher by one digit can reduce the drift layer thickness, and is expected to dramatically reduce the loss. The problem is that high quality crystals have not been obtained to date. One of the promising application fields is electric vehicle. The device currently using the power element in the largest scale is used in frequency converting stations to link the 50-Hz power network in the eastern part of Japan to the 60-Hz network in the western part of Japan. Surveys were carried out on the Sakuma frequency converting station and the New Shinano substation. (NEDO)

  5. The Physics of Semiconductors An Introduction Including Devices and Nanophysics

    CERN Document Server

    Grundmann, Marius

    2006-01-01

    The Physics of Semiconductors provides material for a comprehensive upper-level-undergrauate and graduate course on the subject, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. For the interested reader some additional advanced topics are included, such as Bragg mirrors, resonators, polarized and magnetic semiconductors are included. Also supplied are explicit formulas for many results, to support better understanding. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from ...

  6. SUBWAY POWER SYSTEMS WITH MODERN SEMICONDUCTOR CONVERTERS AND ENERGY STORAGE DEVICES

    Directory of Open Access Journals (Sweden)

    O.I. Kholod

    2013-02-01

    Full Text Available Five subway power systems, a traditional power system and power systems with an active rectifier and an energy storage device, are considered. Estimation of energy loss in the analyzed subway power systems circuits is made.

  7. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  8. Semiconductor device and method of manufacturing the same

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region, a base region and a collector region (1, 2, 3) of, respectively, a first conductivity type, a second conductivity type opposite to the first conductivity type,

  9. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  10. Impacts of Ripple Current to the Loading and Lifetime of Power Semiconductor Device

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    The thermal loading of power electronics devices is determined by many factors and has being a crucial design consideration because it is closely related to the reliability and cost of the converter system. In this paper the impacts of the ripple current to the loss and thermal loading, as well...... as reliability performances of power devices are comprehensively investigated and tested. It is concluded that the amplitude of ripple current may modify the loss and thermal loading of the power devices, especially under the conditions of converter with low power output, and thus the lifetime of devices could...

  11. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    Science.gov (United States)

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  12. Si-semiconductor device failure mechanisms

    International Nuclear Information System (INIS)

    Clauss, H.

    1976-12-01

    This report presents investigations on failure mechanisms that may cause defects during production and operation of silicon semiconductor devices. The failure analysis of aluminium metallization defects covers topics such as step coverage, dissolution pits and electromigration. Furthermore, the generation of process induced lattice defects was investigated. Improved processes avoiding those defects were developed. (orig.) [de

  13. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan; Mannsfeld, Stefan C. B.; Miller, Chad E.; Salleo, Alberto; Toney, Michael F.

    2012-01-01

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale

  14. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  15. Main principles of developing exploitation models of semiconductor devices

    Science.gov (United States)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  16. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  17. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  18. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    CERN Document Server

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  19. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  20. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  1. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  2. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  3. Finite element method for simulation of the semiconductor devices

    International Nuclear Information System (INIS)

    Zikatanov, L.T.; Kaschiev, M.S.

    1991-01-01

    An iterative method for solving the system of nonlinear equations of the drift-diffusion representation for the simulation of the semiconductor devices is worked out. The Petrov-Galerkin method is taken for the discretization of these equations using the bilinear finite elements. It is shown that the numerical scheme is a monotonous one and there are no oscillations of the solutions in the region of p-n transition. The numerical calculations of the simulation of one semiconductor device are presented. 13 refs.; 3 figs

  4. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    International Nuclear Information System (INIS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-01-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  5. Diode having trenches in a semiconductor region

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  6. Radiation hardness and qualification of semiconductor electronic devices for nuclear reactors

    International Nuclear Information System (INIS)

    Friant, A.; Payat, R.

    1984-05-01

    After a brief review of radiation effects in semiconductors and radiation damage in semiconductor devices, the problems of qualification of electronic equipment to be used in nuclear reactors are compared to those relative to nuclear weapons or space experiments. The conclusion is that data obtained at very high dose rates or under pulsed irradiation in weapons and space programs should not be directly applied to nuclear plant instrumentation. The need for a specific qualification of semiconductor devices appropriate for nuclear reactors is emphasized. Some irradiation studies at IRDI/DEIN (CEN-Saclay) are related [fr

  7. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  8. Application of statistical methods (SPC) for an optimized control of the irradiation process of high-power semiconductors

    International Nuclear Information System (INIS)

    Mittendorfer, J.; Zwanziger, P.

    2000-01-01

    High-power bipolar semiconductor devices (thyristors and diodes) in a disc-type shape are key components (semiconductor switches) for high-power electronic systems. These systems are important for the economic design of energy transmission systems, i.e. high-power drive systems, static compensation and high-voltage DC transmission lines. In their factory located in Pretzfeld, Germany, the company, eupec GmbH+Co.KG (eupec), is producing disc-type devices with ceramic encapsulation in the high-end range for the world market. These elements have to fulfill special customer requirements and therefore deliver tailor-made trade-offs between their on-state voltage and dynamic switching behaviour. This task can be achieved by applying a dedicated electron irradiation on the semiconductor pellets, which tunes this trade-off. In this paper, the requirements to the irradiation company Mediscan GmbH, from the point of view of the semiconductor manufacturer, are described. The actual strategy for controlling the irradiation results to fulfill these requirements are presented, together with the choice of relevant parameters from the viewpoint of the irradiation company. The set of process parameters monitored, using statistical process control (SPC) techniques, includes beam current and energy, conveyor speed and irradiation geometry. The results are highlighted and show the successful co-operation in this business. Watching this process vice versa, an idea is presented and discussed to develop the possibilities of a highly sensitive dose detection device by using modified diodes, which could function as accurate yet cheap and easy-to-use detectors as routine dosimeters for irradiation institutes. (author)

  9. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  10. Semiconductor radiation detectors: device physics

    National Research Council Canada - National Science Library

    Lutz, Gerhard

    1999-01-01

    ..., including nuclear physics, elementary particle physics, optical and x-ray astronomy, medicine, and materials testing - and the number of applications is growing continually. Closely related, and initiated by the application of semiconductors, is the development of low-noise low-power integrated electronics for signal readout. The success of semicond...

  11. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  12. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  13. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  14. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    Science.gov (United States)

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  15. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  16. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  17. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  18. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  19. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  20. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  1. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan

    2012-10-10

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale was key to obtaining precise description of the molecular structure and microstructure of the materials of interest. This information combined with electrical characterization and modeling allowed for the establishment of general design rules to guide future rational design of materials and devices. Investigations revealed that a number and variety of defects were the largest contributors to the existence of disorder within a lattice, as organic semiconductor crystals were dominated by weak van der Waals bonding. Crystallite size, texture, and variations in structure due to spatial confinement and interfaces were also found to be relevant for transport of free charge carriers and bound excitonic species over distances that were important for device operation.

  2. Power mos devices: structures and modelling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, P.; Charitat, G.; Tranduc, H.; Morancho, F.; Moncoqut

    1997-05-01

    In this survey, the historical evolution of power MOS transistor structures is presented and currently used devices are described. General considerations on current and voltage capabilities are discussed and configurations of popular structures are given. A synthesis of different modelling approaches proposed last three years is then presented, including analytical solutions, for basic electrical parameters such as threshold voltage, on-resistance, saturation and quasi-saturation effects, temperature influence and voltage handling capability. The numerical solutions of basic semiconductor devices is then briefly reviewed along with some typical problems which can be solved this way. A compact circuit modelling method is finally explained with emphasis on dynamic behavior modelling

  3. Method of manufacturing semiconductor devices

    International Nuclear Information System (INIS)

    Sun, Y.S.E.

    1980-01-01

    A method of improving the electrical characteristics of semiconductor devices such as SCR's, rectifiers and triacs during their manufacture is described. The system consists of electron irradiation at an energy in excess of 250 KeV and most preferably between 1.5 and 12 MeV, producing an irradiation dose of between 5.10 12 and 5.10 15 electrons per sq. cm., and at a temperature in excess of 100 0 C preferably between 150 and 375 0 C. (U.K.)

  4. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  5. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  6. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  7. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  8. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  9. NATO Advanced Study Institute on Physics of Submicron Semiconductor Devices

    CERN Document Server

    Ferry, David; Jacoboni, C

    1988-01-01

    The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES...................

  10. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  11. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  12. Neutron and gamma irradiation effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN bipolar junction transistors (BJTs), and metal-oxide-semiconductor field effect transistors (MOSFETs)

  13. Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors

    International Nuclear Information System (INIS)

    Asai, Tetsuya; Adamatzky, Andrew; Amemiya, Yoshihito

    2004-01-01

    Reaction-diffusion (RD) chemical systems are known to realize sensible computation when both data and results of the computation are encoded in concentration profiles of chemical species; the computation is implemented via spreading and interaction of either diffusive or phase waves. Thin-layer chemical systems are thought of therefore as massively-parallel locally-connected computing devices, where micro-volume of the medium is analogous to an elementary processor. Practical applications of the RD chemical systems are reduced however due to very low speed of traveling waves which makes real-time computation senseless. To overcome the speed-limitations while preserving unique features of RD computers we propose a semiconductor RD computing device where minority carriers diffuse as chemical species and reaction elements are represented by p-n-p-n diodes. We offer blue-prints of the RD semiconductor devices, and study in computer simulation propagation phenomena of the density wave of minority carriers. We then demonstrate what computational problems can be solved in RD semiconductor devices and evaluate space-time complexity of computation in the devices

  14. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  16. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices

    International Nuclear Information System (INIS)

    Park, Joon Seok; Maeng, Wan-Joo; Kim, Hyun-Suk; Park, Jin-Seong

    2012-01-01

    The present article is a review of the recent progress and major trends in the field of thin-film transistor (TFT) research involving the use of amorphous oxide semiconductors (AOS). First, an overview is provided on how electrical performance may be enhanced by the adoption of specific device structures and process schemes, the combination of various oxide semiconductor materials, and the appropriate selection of gate dielectrics and electrode metals in contact with the semiconductor. As metal oxide TFT devices are excellent candidates for switching or driving transistors in next generation active matrix liquid crystal displays (AMLCD) or active matrix organic light emitting diode (AMOLED) displays, the major parameters of interest in the electrical characteristics involve the field effect mobility (μ FE ), threshold voltage (V th ), and subthreshold swing (SS). A study of the stability of amorphous oxide TFT devices is presented next. Switching or driving transistors in AMLCD or AMOLED displays inevitably involves voltage bias or constant current stress upon prolonged operation, and in this regard many research groups have examined and proposed device degradation mechanisms under various stress conditions. The most recent studies involve stress experiments in the presence of visible light irradiating the semiconductor, and different degradation mechanisms have been proposed with respect to photon radiation. The last part of this review consists of a description of methods other than conventional vacuum deposition techniques regarding the formation of oxide semiconductor films, along with some potential application fields including flexible displays and information storage.

  17. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  18. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    Science.gov (United States)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  19. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  20. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    Science.gov (United States)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  1. A new approximation of Fermi-Dirac integrals of order 1/2 for degenerate semiconductor devices

    Science.gov (United States)

    AlQurashi, Ahmed; Selvakumar, C. R.

    2018-06-01

    There had been tremendous growth in the field of Integrated circuits (ICs) in the past fifty years. Scaling laws mandated both lateral and vertical dimensions to be reduced and a steady increase in doping densities. Most of the modern semiconductor devices have invariably heavily doped regions where Fermi-Dirac Integrals are required. Several attempts have been devoted to developing analytical approximations for Fermi-Dirac Integrals since numerical computations of Fermi-Dirac Integrals are difficult to use in semiconductor devices, although there are several highly accurate tabulated functions available. Most of these analytical expressions are not sufficiently suitable to be employed in semiconductor device applications due to their poor accuracy, the requirement of complicated calculations, and difficulties in differentiating and integrating. A new approximation has been developed for the Fermi-Dirac integrals of the order 1/2 by using Prony's method and discussed in this paper. The approximation is accurate enough (Mean Absolute Error (MAE) = 0.38%) and easy enough to be used in semiconductor device equations. The new approximation of Fermi-Dirac Integrals is applied to a more generalized Einstein Relation which is an important relation in semiconductor devices.

  2. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  3. Metal/Semiconductor and Transparent Conductor/Semiconductor Heterojunctions in High Efficient Photoelectric Devices: Progress and Features

    Directory of Open Access Journals (Sweden)

    M. Melvin David Kumar

    2014-01-01

    Full Text Available Metal/semiconductor and transparent conductive oxide (TCO/semiconductor heterojunctions have emerged as an effective modality in the fabrication of photoelectric devices. This review is following a recent shift toward the engineering of TCO layers and structured Si substrates, incorporating metal nanoparticles for the development of next-generation photoelectric devices. Beneficial progress which helps to increase the efficiency and reduce the cost, has been sequenced based on efficient technologies involved in making novel substrates, TCO layers, and electrodes. The electrical and optical properties of indium tin oxide (ITO and aluminum doped zinc oxide (AZO thin films can be enhanced by structuring the surface of TCO layers. The TCO layers embedded with Ag nanoparticles are used to enhance the plasmonic light trapping effect in order to increase the energy harvesting nature of photoelectric devices. Si nanopillar structures which are fabricated by photolithography-free technique are used to increase light-active surface region. The importance of the structure and area of front electrodes and the effect of temperature at the junction are the value added discussions in this review.

  4. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  5. Power source device for thermonuclear device

    International Nuclear Information System (INIS)

    Ozaki, Akira.

    1992-01-01

    The present invention provides a small sized and economical power source device for a thermonuclear device. That is, the device comprises a conversion device having a rated power determined by a power required during a plasma current excitation period and a conversion device having a rated power determined by a power required during a plasma current maintaining period, connected in series to each other. Then, for the former conversion device, power is supplied from an electric power generator and, for the latter, power is supplied from a power system. With such a constitution, during the plasma electric current maintaining period for substantially continuous operation, it is possible to conduct bypassing paired operation for the former conversion device while the electric power generator is put under no load. Further, since a short period rated power may be suffice for the former conversion device and the electric power generator having the great rated power required for the plasma electric current excitation period, they can be reduced in the size and made economical. On the other hand, since the power required for the plasma current maintaining period is relatively small, the capacity of the continuous rated conversion device may be small, and the power can be received from the power system. (I.S.)

  6. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  7. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  8. Irradiation damages of semiconductor devices and their improvement

    Energy Technology Data Exchange (ETDEWEB)

    Uwatoko, Yoshiya [Saitama Univ., Urawa (Japan); Ohyama, Hidenori; Hayama, Kiyoteru; Hakata, Tetsuya; Kudou, Tomohiro

    1998-01-01

    In this study, effect of radiation on semiconductor devices was evaluated at both sides of electrical and crystalline properties for two years from 1995 fiscal years. And, damage of Si(sub 1-x)Ge(sub x) device was considered at viewpoints of Ge content and sprung-out atomic number and non ionization energy loss of constituting atom formed by radiation on its radiation source dependency of damage. This paper was a report on proton beam damage of the Si(sub 1-x)Ge(sub x) device, neutron damage of InGaAs photodiode, and effect of Ga content and kinds of beam on their damages. (G.K.)

  9. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  10. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  11. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  12. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  13. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  14. Fiscal 1999 achievement report. Development of ultralow-loss power device technology; 1999 nendo choteisonshitsu denryoku soshi gijutsu kaihtsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The aim is to establish basic technologies for upgrading wide-gap semiconductor devices, fabricated mainly of SiC, in terms of their low-loss, high-speed, and high-power features. In the research and development of ultralow-loss power device technology, progress of the effort is reviewed, problems in the process of research and development are extracted, and technological trends are surveyed. In the development of basic technologies, an SiC crystal growing device is experimentally built and the process of crystal growth is assessed and analyzed, and tasks to discharge for higher quality and larger diameter are extracted. Basic technologies are developed relative to the epitaxial growth, interface control, and conductivity control of SiC etc. In the development of technologies for developing SiC into devices, technological development is carried out for the junction-type FET (field effect transistor), which involves termination structure optimization, high-voltage capability enhancement, and gate-off gain improvement. As for MOSFET (metal oxide semiconductor FET), MOS channel formation technology is developed and device-constructing technology is also developed. As for MESFET (metal-semiconductor FET), micro-processing is established for a success in experimentally building a 0.5{mu}m-long gate. (NEDO)

  15. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. Industrial application of atom probe tomography to semiconductor devices

    NARCIS (Netherlands)

    Giddings, A.D.; Koelling, S.; Shimizu, Y.; Estivill, R.; Inoue, K.; Vandervorst, W.; Yeoh, W.K.

    2018-01-01

    Advanced semiconductor devices offer a metrology challenge due to their small feature size, diverse composition and intricate structure. Atom probe tomography (APT) is an emerging technique that provides 3D compositional analysis at the atomic-scale; as such, it seems uniquely suited to meet these

  17. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES

    Directory of Open Access Journals (Sweden)

    P. A. Magomedova

    2017-01-01

    Full Text Available Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value. 

  18. Temperature-dependent built-in potential in organic semiconductor devices

    NARCIS (Netherlands)

    Kemerink, M.; Kramer, J.M.; Gommans, H.H.P.; Janssen, R.A.J.

    2006-01-01

    The temperature dependence of the built-in voltage of organic semiconductor devices is studied. The results are interpreted using a simple analytical model for the band bending at the electrodes. It is based on the notion that, even at zero current, diffusion may cause a significant charge density

  19. The research progress of microdose effect in semiconductor devices

    International Nuclear Information System (INIS)

    Yan Yihua; Fan Ruyu; Guo Xiaoqiang; Lin Dongsheng; Guo Hongxia; Zhang Fengqi; Chen Wei

    2012-01-01

    The localized dose deposited around the track of a heavy ion can be high enough to induce a permanent failure in the semiconductor devices, such as the stuck bit error or functional failure. In this paper, progresses in studies on microdose effect are reviewed. Two basic failure mechanisms, i.e. the localized total dose effect and the strong coulomb repulsive force effect, are discussed. Typical failure modes in several types of devices, and the main impact factors, are discussed, too. (authors)

  20. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  1. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  2. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  3. Low-confinement high-power semiconductor lasers

    NARCIS (Netherlands)

    Buda, M.

    1999-01-01

    This thesis presents the results of studies related to optimisation of high power semiconductor laser diodes using the low confinement concept. This implies a different approach in designing the transversal layer structure before growth and in processing the wafer after growth, for providing the

  4. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-05-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-840] Certain Semiconductor Integrated Circuit... States after importation of certain semiconductor integrated circuit devices and products containing same... No. 6,847,904 (``the '904 patent''). The complaint further alleges that an industry in the United...

  5. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-840] Certain Semiconductor Integrated... certain semiconductor integrated circuit devices and products containing same by reason of infringement of...,783; and 6,847,904. The complaint further alleges the existence of a domestic industry. The Commission...

  6. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  7. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  8. Simulation of semiconductor devices

    International Nuclear Information System (INIS)

    Oriato, D.

    2001-09-01

    In this thesis a drift diffusion model coupled with self-consistent solutions of Poisson's and Schroedinger's equations, is developed and used to investigate the operation of Gunn diodes and GaN-based LEDs. The model also includes parameters derived from Monte Carlo calculations of the simulated devices. In this way the characteristics of a Monte Carlo approach and of a quantum solver are built into a fast and flexible drift-diffusion model that can be used for testing a large number of heterostructure designs in a time-effective way. The full model and its numerical implementation are described in chapter 2. In chapter 3 the theory of Gunn diodes is presented. A basic model of the dynamics of domain formation and domain transport is described with particular regard to accumulation and dipole domains. Several modes of operation of the Gunn device are described, varying from the resonance mode to the quenched mode. Details about transferred electron devices and negative differential resistance in semiconductor materials are given. In chapter 4 results from the simulation of a simple conventional gunn device confirm the importance of the doping condition at the cathode. Accumulation or dipole domains are achieved respectively with high and low doping densities. The limits of a conventional Gunn diode are explained and solved by introducing the heterostructure Gunn diode. This new design consists of a conventional GaAs transit region coupled with an electron launcher at the cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system

  9. Radiation effects in technologies of semiconductor materials and devises

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Bogatyrev, Yu.V.; Lastovskij, S.B.; Marchenko, I.G.; Zhdanovich, N.E.

    2003-01-01

    In the paper were considered the physical basics and practical results of using of penetrating radiations in technologies of nuclear transmutation of semiconductor materials (Si, GaAs) as well as in production of semiconductor devices including high-power silicon diodes, thyristors and transistors. It is shown the high efficiency of radiation technology for increasing of electronic device speed, exclusion of technological operations such as gold or platinum diffusions, increase of quality, decrease of prime cost and increase of good-to-bad device ratio yield

  10. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  12. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Moslehi, M.M.; Davis, C.

    1989-01-01

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/Ge x Si 1 - x /Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  13. The Integration of Bacteriorhodopsin Proteins with Semiconductor Heterostructure Devices

    Science.gov (United States)

    Xu, Jian

    2008-03-01

    Bioelectronics has emerged as one of the most rapidly developing fields among the active frontiers of interdisciplinary research. A major thrust in this field is aimed at the coupling of the technologically-unmatched performance of biological systems, such as neural and sensing functions, with the well developed technology of microelectronics and optoelectronics. To this end we have studied the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. Successful integration will potentially lead to ultrasensitive sensors with polarization selectivity and built-in preprocessing capabilities that will be useful for high speed tracking, motion and edge detection, biological detection, and artificial vision systems. In this presentation we will summarize our progresses in this area, which include fundamental studies on the transient dynamics of photo-induced charge shift in BR and the coupling mechanism at protein-semiconductor interface for effective immobilizing and selectively integrating light sensitive proteins with microelectronic devices and circuits, and the device engineering of BR-transistor-integrated optical sensors as well as their applications in phototransceiver circuits. Work done in collaboration with Pallab Bhattacharya, Jonghyun Shin, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; Robert R. Birge, Department of Chemistry, University of Connecticut, Storrs, CT 06269; and György V'ar'o, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Science, H-6701 Szeged, Hungary.

  14. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  15. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  16. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  17. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: Swain@iae.re.kr [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  18. Electromagnetic radiation screening of semiconductor devices for long life applications

    Science.gov (United States)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  19. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  20. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    OpenAIRE

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...

  1. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    Moustakas, T.D.; Pankove, J.I.; Hamakawa, Y.

    1992-01-01

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  2. Comparison of Preamplifiers for Low-power Consumption Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun; Kim, Han Soo; Lee, Kyu Hong; Choi, Hyo Jeong; Na, Teresa W.; Ha, Jang Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chai, Jong Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-10-15

    The commonly used electronic devices in radiation detector system are the preamplifier, the amplifier, ADC, and etc. to extract the signal from the detector and to process the signal. These components are composed of semiconductor devices like BJT, MOSFET, OPAMP, and etc. Performance and power consumption of these components are various according to the composition of semiconductor devices. In this study, preamplifiers, which are composed of high efficiency semiconductor devices, are compared to design low-power consumption and high performance preamplifier. To confirm the purpose, preamplifiers are designed for low-power consumption and high gain by some OPAMP (Operational Amplifier). The comparison was performed by experimental result and design simulation

  3. High-power semiconductor RSD-based switch

    Energy Technology Data Exchange (ETDEWEB)

    Bezuglov, V G; Galakhov, I V; Grusin, I A [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation); and others

    1997-12-31

    The operating principle and test results of a high-power semiconductor RSD-based switch with the following operating parameters is described: operating voltage 25 kV, peak operating current 200 kA, maximum transferred charge 70 C. The switch is intended for use by high-power capacitor banks of state-of-the-art research facilities. The switch was evaluated for applicability in commercial pulsed systems. The possibility of increasing the peak operating current to 500 kA is demonstrated. (author). 4 figs., 2 refs.

  4. Semiconductor failure threshold estimation problem in electromagnetic assessment

    International Nuclear Information System (INIS)

    Enlow, E.W.; Wunsch, D.C.

    1984-01-01

    Present semiconductor failure models to predict the one-microsecond square-wave power failure level for use with system electromagnetic (EM) assessments and hardening design are incomplete. This is because for a majority of device types there is insufficient data readily available in a composite data source to quantify the model parameters and the inaccuracy of the models cause complications in definition of adequate hardness margins and quantification of EM performance. This paper presents new semiconductor failure models which use a generic approach that are an integration and simplification of many present models. This generic approach uses two categorical models: one for diodes and transistors, and one for integrated circuits. The models were constructed from a large database of semiconductor failure data. The approach used for constructing diode and transistor failure level models is based on device rated power and are simple to use and universally applicable. The model predicts the value of the 1 μ second failure power to be used in the power failure models P = Kt /SUP -1/2/ or P = K 1 t -1 + K 2 t /SUP -1/2/ + K 3

  5. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  6. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  7. Proceedings of defect engineering in semiconductor growth, processing and device technology

    International Nuclear Information System (INIS)

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control

  8. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  9. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  10. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  11. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  12. A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)

    2012-11-01

    This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.

  13. Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics

    International Nuclear Information System (INIS)

    Govindaraju, N.; Singh, R.N.

    2011-01-01

    Highlights: → Studied effect of nanocrystalline diamond (NCD) deposition on device metallization. → Deposited NCD on to top of High Electron Mobility Transistors (HEMTs) and Si devices. → Temperatures below 290 deg. C for Si devices and 320 deg. C for HEMTs prevent metal damage. → Development of novel NCD-based thermal management for power electronics feasible. - Abstract: High current densities in wide-bandgap semiconductor electronics operating at high power levels results in significant self-heating of devices, which necessitates the development thermal management technologies to effectively dissipate the generated heat. This paper lays the foundation for the development of such technology by ascertaining process conditions for depositing nanocrystalline diamond (NCD) on AlGaN/GaN High Electron Mobility Transistors (HEMTs) with no visible damage to device metallization. NCD deposition is carried out on Si and GaN HEMTs with Au/Ni metallization. Raman spectroscopy, optical and scanning electron microscopy are used to evaluate the quality of the deposited NCD films. Si device metallization is used as a test bed for developing process conditions for NCD deposition on AlGaN/GaN HEMTs. Results indicate that no visible damage occurs to the device metallization for deposition conditions below 290 deg. C for Si devices and below 320 deg. C for the AlGaN/GaN HEMTs. Possible mechanisms for metallization damage above the deposition temperature are enumerated. Electrical testing of the AlGaN/GaN HEMTs indicates that it is indeed possible to deposit NCD on GaN-based devices with no significant degradation in device performance.

  14. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  15. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  16. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Javier Burgués

    2018-01-01

    Full Text Available Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA sensors were exposed to low concentrations of carbon monoxide (0–9 ppm with environmental conditions, such as ambient humidity (15–75% relative humidity and temperature (21–27 °C, varying within the indicated ranges. Partial Least Squares (PLS models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm. Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm. The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate

  17. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg

    2004-01-01

    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  18. Power semiconductors for the decentralized energy supply; Leistungshalbleiter fuer die dezentrale Energieeinspeisung

    Energy Technology Data Exchange (ETDEWEB)

    Eckel, Hans-Guenter; Wigger, Daniel [Rostock Univ. (Germany). Inst. fuer Elektrische Energietechnik

    2012-07-01

    The grid connection of PV and wind energy is done by inverters, whose power density, losses and costs are mainly determined by power semiconductors. In this paper, the main topologies for line side inverters and the demands on the power semiconductors are discussed. Topics are missing voltage classes for three level inverters for 690 V lines, reverse conducting IGBT for modular multi level converters and the potential of SiC diodes for inverters with Si-IGBT with voltages of 1.7 kV and more. (orig.)

  19. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  20. Electromagnetic Design of High Frequency PFC Boost Converters using Gallium Nitride Devices

    NARCIS (Netherlands)

    Wang, W.

    2017-01-01

    Throughout the history of power electronics, main driving force of developments is attribute to innovations in power semiconductor technology. With continuous technical improvements in the past 30 years, Si devices, being the most widely used power semiconductor technology, are approaching physical

  1. Development of the external cooling device of increase the productivity of neutron-transmutation-doped silicon semiconductor (NTD-Si) (Joint research)

    International Nuclear Information System (INIS)

    Hirose, Akira; Wada, Shigeru; Sasajima, Fumio; Kusunoki, Tsuyoshi; Kameyama, Iwao; Aizawa, Ryouji; Kikuchi, Naoyuki

    2007-01-01

    Neutron-Transmutation-Doped Silicon Semiconductor (hereinafter referred as 'NTD-Si') is the best semiconductor for the power device. The needs of NTD-Si increase recently in proportion to the popularization of hybrid-cars. A fission research reactor, which is a steady state neutron source, is being expected as the best device to meet the needs. So far, we have reconsidered the existing approach which is employed for NTD-Si production works at the research reactors JRR-3, JRR-4 and JMTR of JAEA so as to meet the needs. As one of the effective measures, we found out that the productivity can be increased by incorporating a new device to cool down radioactivity of irradiated silicon ingots at the place outside the main stream from the loading of silicon ingots to the withdrawal of irradiated ingots to the existing JRR-3 Uniformity Irradiation System. Consequently, we developed and installed the device (hereinafter referred as 'external cooling device'). After an ingot was irradiated once, it is turned over manually and irradiated again in order to irradiate the ingot uniformly. With the conventional system, it was necessary to wait the radioactivity of ingot decrease less than the permissible level with holding the ingot in the irradiation equipment. It was effective to shorten the waiting period by using an external cooling device for production increase of NTD-Si. It is expected that the productivity of NTD-Si will be increased by using the external cooling device. This report mentions the design of the external cooling device and verification between its design specifications and the performance of the device completed. (author)

  2. EXPERIMENTAL VERIFICATION OF COMPUTER MODEL OF COOLING SYSTEM FOR POWERFUL SEMI- CONDUCTOR DEVICE

    Directory of Open Access Journals (Sweden)

    I. A. Khorunzhii

    2007-01-01

    Full Text Available A cooling system for powerful semi-conductor device (power -1 kW consisting of a pin-type radiator and a body is considered in the paper. Cooling is carried out by forced convection of a coolant. Calculated values of temperatures on the radiator surface and experimentally measured values of temperatures in the same surface points have been compared in the paper. It has been shown that the difference between calculated and experimentally measured temperatures does not exceed 0,1-0,2 °C and it is comparable with experimental error value. The given results confirm correctness of a computer model.

  3. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  4. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... estimation, more detailed information for the reliability performance of wind power converter can be obtained....

  5. Development of the power control system for semiconductor lasers

    International Nuclear Information System (INIS)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs

  6. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  7. CONVERTER SOLAR RADIATION INTO ELECTRICITY TO SUPPLY THE AUTOMOTIVE SEMICONDUCTOR THERMOELECTRIC AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2015-01-01

    Full Text Available The article considers the possibility to increase the efficiency of converters of solar radiation into electricity by combining constructive photoelectric effect, See-beck thermoeffect and semiconductor solar cells, which will create integrated device to provide power semiconductor thermoelectric automobile air conditioner. 

  8. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  9. Third harmonic generation of high power far infrared radiation in semiconductors

    International Nuclear Information System (INIS)

    Urban, M.

    1996-04-01

    In this work we investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 μm and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 μm laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. (author) figs

  10. RESURF power semiconductor devices - Performance and operating limits

    NARCIS (Netherlands)

    Ferrara, A.

    2016-01-01

    Power transmission is the transfer of energy from a generating source to a load which uses the energy to perform useful work. Since the end of the 19th century, electrical power transmission has replaced mechanical power transmission in all long distance applications. The alternating current (AC)

  11. RESURF power semiconductor devices: performance and operating limits

    NARCIS (Netherlands)

    Ferrara, A.

    2016-01-01

    Power transmission is the transfer of energy from a generating source to a load which uses the energy to perform useful work. Since the end of the 19th century, electrical power transmission has replaced mechanical power transmission in all long distance applications. The alternating current (AC)

  12. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  13. Design of the Trap Filter for the High Power Converters with Parallel Interleaved VSCs

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2014-01-01

    The power handling capability of the state-of-the-art semiconductor devices is limited. Therefore, the Voltage Source Converters (VSCs) are often connected in parallel to realize high power converter. The switching frequency semiconductor devices, used in the high power VSCs, is also limited...

  14. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  15. Organic-inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics

    International Nuclear Information System (INIS)

    Forrest, S R

    2003-01-01

    The demonstration, over 20 years ago, of an organic-inorganic heterojunction (OI HJ) device along with investigations of the growth and physical properties of the archetypal crystalline molecular organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride are discussed. Possible applications of OI HJ devices are introduced and the dramatic change in conductive properties of these materials when exposed to high-energy ion beams is described. The past and future prospects for hybrid organic-on-inorganic semiconductor structures for use in electronic and photonic applications are also presented

  16. Enhancement of superconducting critical current by injection of quasiparticles in superconductor semiconductor devices

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C. B.

    2000-01-01

    We report new measurements on 3-terminal superconductor semiconductor injection devices, demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used as detectors. Applying a small voltage to the injector, reduced the maximum...

  17. A cascaded online uninterruptible power supply using reduced semiconductor

    DEFF Research Database (Denmark)

    Zhang, Lei; Loh, Poh Chiang; Gao, Feng

    2011-01-01

    A cascaded online uninterruptible power supply (UPS) is proposed here that uses 25% lesser semiconductor, as compared to its traditional H-bridge cascaded precedence. Unlike other component-saving configurations where compromises are unavoidable, almost no performance degradations and constraints...

  18. Device reliability challenges for modern semiconductor circuit design – a review

    Directory of Open Access Journals (Sweden)

    C. Schlünder

    2009-05-01

    Full Text Available Product development based on highly integrated semiconductor circuits faces various challenges. To ensure the function of circuits the electrical parameters of every device must be in a specific window. This window is restricted by competing mechanisms like process variations and device degradation (Fig. 1. Degradation mechanisms like Negative Bias Temperature Instability (NBTI or Hot Carrier Injection (HCI lead to parameter drifts during operation adding on top of the process variations.

    The safety margin between real lifetime of MOSFETs and product lifetime requirements decreases at advanced technologies. The assignment of tasks to ensure the product lifetime has to be changed for the future. Up to now technology development has the main responsibility to adjust the technology processes to achieve the required lifetime. In future, reliability can no longer be the task of technology development only. Device degradation becomes a collective challenge for semiconductor technologist, reliability experts and circuit designers. Reliability issues have to be considered in design as well to achieve reliable and competitive products. For this work, designers require support by smart software tools with built-in reliability know how. Design for reliability will be one of the key requirements for modern product designs.

    An overview will be given of the physical device damage mechanisms, the operation conditions within circuits leading to stress and the impact of the corresponding device parameter degradation on the function of the circuit. Based on this understanding various approaches for Design for Reliability (DfR will be described. The function of aging simulators will be explained and the flow of circuit-simulation will be described. Furthermore, the difference between full custom and semi custom design and therefore, the different required approaches will be discussed.

  19. Power generating device

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Toshihiro

    1989-05-02

    The existing power generating device consisting of static components only lacks effective measures to utilize solar energy and maintain power generation, hence it is inevitable to make the device much larger and more complicated in order to utilize it as the primary power source for artificial satellites. In view of the above, in order to offer a power generating device useful for the primary power source for satellites which is simple and can keep power generation by solar energy, this invention proposes a power generating device composed of the following elements: (1) a rectangular parallelopiped No. II superconductor plate; (2) a measure to apply a magnetic field to one face of the above superconductor plate; (3) a measure to provide a temperature difference within the range between the starting temperature and the critical temperature of superconductivity to a pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure; (4) a measure to provide an electrode on each of the other pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure and form a closed circuit by connecting the each electrode above to each of a pair of electrodes of the load respectively; and (5) a switching measure which is installed in the closed circuit prepared by the above measure and shuts off the closed circuit when the direction of the electric current running the above closed circuit is reversed. 6 figs.

  20. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  1. An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Reza M. [Department; Xiao, Zhiyong [Department; Ahmadi-Majlan, Kamyar [Department; Grimley, Everett D. [Department; Bowden, Mark [Environmental; amp, Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ong, Phuong-Vu [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chambers, Scott A. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Lebeau, James M. [Department; Hong, Xia [Department; Sushko, Peter V. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ngai, Joseph H. [Department

    2017-09-13

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that the ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.

  2. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  3. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  4. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    International Nuclear Information System (INIS)

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-01-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity

  5. Development of individual semiconductor nanowire for bioelectrochemical device at low overpotential conditions

    Energy Technology Data Exchange (ETDEWEB)

    Crespilho, Frank N.; Lanfredi, Alexandre J.C. [Universidade Federal do ABC (UFABC), Santo Andre 09210-170 (Brazil); Leite, Edson R.; Chiquito, Adenilson J. [Universidade Federal do Sao Carlos (UFSCar), Sao Carlos, SP (Brazil)

    2009-09-15

    In this work we report the bioelectrochemical study using an individual indium tin oxide (ITO) nanowire (ITO-NW) electrode modified with glucose oxidase enzyme (GOx), in which the enzymatic activity and the biocatalytic activity was evaluated. The main objective is to show that at low overpotential condition, semiconductor NW can be used as an electron donor during biocatalytic process. We demonstrate the possibility of immobilizing an ITO-NW electrode on gold contacts deposited on top of a microchip (oxidized Si wafer). A protective polymer layer containing an aperture over the sample area was photolithographically deposited over the microchip to isolate the metallic contacts. For H{sub 2}O{sub 2} reduction during the biocatalysis at ITO-NWs surface, with {eta} << 50 mV, normal linear behavior is not observed and an exponential current is evident, similar to n-p semiconductor junction behavior. These results can open new tools for studying redox enzymes at the single-molecule level, and the device described here is very promising as a candidate for further exploration in bioelectrochemical devices, such as biofuel cells and biosensors. (author)

  6. Semiconductor devices for entangled photon pair generation: a review

    Science.gov (United States)

    Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara

    2017-07-01

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

  7. Injection induced enhancement of supercurrent in a mesoscopic three terminal superconductor semiconductor device

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Jensen, S

    2001-01-01

    The studied devices consist of three superconducting (Al) electrodes connected to the same piece of degenerate Semiconductor (n++ GaAs) in a planar geometry. When a current is injected from one of the superconducting electrodes at an injection bias V = Delta (T)/e, the critical supercurrent betwe...

  8. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  9. Validation of a Portable Low-Power Deep Brain Stimulation Device Through Anxiolytic Effects in a Laboratory Rat Model.

    Science.gov (United States)

    Kouzani, Abbas Z; Kale, Rajas P; Zarate-Garza, Pablo Patricio; Berk, Michael; Walder, Ken; Tye, Susannah J

    2017-09-01

    Deep brain stimulation (DBS) devices deliver electrical pulses to neural tissue through an electrode. To study the mechanisms and therapeutic benefits of deep brain stimulation, murine preclinical research is necessary. However, conducting naturalistic long-term, uninterrupted animal behavioral experiments can be difficult with bench-top systems. The reduction of size, weight, power consumption, and cost of DBS devices can assist the progress of this research in animal studies. A low power, low weight, miniature DBS device is presented in this paper. This device consists of electronic hardware and software components including a low-power microcontroller, an adjustable current source, an n-channel metal-oxide-semiconductor field-effect transistor, a coin-cell battery, electrode wires and a software program to operate the device. Evaluation of the performance of the device in terms of battery lifetime and device functionality through bench and in vivo tests was conducted. The bench test revealed that this device can deliver continuous stimulation current pulses of strength [Formula: see text], width [Formula: see text], and frequency 130 Hz for over 22 days. The in vivo tests demonstrated that chronic stimulation of the nucleus accumbens (NAc) with this device significantly increased psychomotor activity, together with a dramatic reduction in anxiety-like behavior in the elevated zero-maze test.

  10. H+-type and OH- -type biological protonic semiconductors and complementary devices.

    Science.gov (United States)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Roudsari, Anita Fadavi; Rousdari, Anita Fadavi; Helms, Brett A; Zhong, Chao; Anantram, M P; Rolandi, Marco

    2013-10-03

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  11. A novel multiple super junction power device structure with low specific on-resistance

    International Nuclear Information System (INIS)

    Zhu Hui; Li Haiou; Li Qi; Huang Yuanhao; Xu Xiaoning; Zhao Hailiang

    2014-01-01

    A novel multiple super junction (MSJ) LDMOS power device is proposed to decrease R on due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface SJ; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D-depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom SJ, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm. (semiconductor devices)

  12. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  13. Micro-Raman spectroscopy as a tool for the characterization of silicon carbide in power semiconductor material processing

    Science.gov (United States)

    De Biasio, M.; Kraft, M.; Schultz, M.; Goller, B.; Sternig, D.; Esteve, R.; Roesner, M.

    2017-05-01

    Silicon carbide (SiC) is a wide band-gap semi-conductor material that is used increasingly for high voltage power devices, since it has a higher breakdown field strength and better thermal conductivity than silicon. However, in particular its hardness makes wafer processing difficult and many standard semi-conductor processes have to be specially adapted. We measure the effects of (i) mechanical processing (i.e. grinding of the backside) and (ii) chemical and thermal processing (i.e. doping and annealing), using confocal microscopy to measure the surface roughness of ground wafers and micro-Raman spectroscopy to measure the stresses induced in the wafers by grinding. 4H-SiC wafers with different dopings were studied before and after annealing, using depth-resolved micro-Raman spectroscopy to observe how doping and annealing affect: i.) the damage and stresses induced on the crystalline structure of the samples and ii.) the concentration of free electrical carriers. Our results show that mechanical, chemical and thermal processing techniques have effects on this semiconductor material that can be observed and characterized using confocal microscopy and high resolution micro Raman spectroscopy.

  14. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.

    Science.gov (United States)

    Wang, Huaping; Yu, Gui

    2016-07-01

    Graphene is the most broadly discussed and studied two-dimensional material because of its preeminent physical, mechanical, optical, and thermal properties. Until now, metal-catalyzed chemical vapor deposition (CVD) has been widely employed for the scalable production of high-quality graphene. However, in order to incorporate the graphene into electronic devices, a transfer process from metal substrates to targeted substrates is inevitable. This process usually results in contamination, wrinkling, and breakage of graphene samples - undesirable in graphene-based technology and not compatible with industrial production. Therefore, direct graphene growth on desired semiconductor and dielectric substrates is considered as an effective alternative. Over the past years, there have been intensive investigations to realize direct graphene growth using CVD methods without the catalytic role of metals. Owing to the low catalytic activity of non-metal substrates for carbon precursor decomposition and graphene growth, several strategies have been designed to facilitate and engineer graphene fabrication on semiconductors and insulators. Here, those developed strategies for direct CVD graphene growth on semiconductors and dielectrics for transfer-free fabrication of electronic devices are reviewed. By employing these methods, various graphene-related structures can be directly prepared on desired substrates and exhibit excellent performance, providing versatile routes for varied graphene-based materials fabrication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. H+-type and OH−-type biological protonic semiconductors and complementary devices

    Science.gov (United States)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-01-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083

  16. Analysis and Comparison of Si and SiC Power Devices on a Grid-Tie Fuel Cell Energy Storage System

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Anthon, Alexander; Zhang, Zhe

    2014-01-01

    In renewable energy applications power conversion efficiency is major concern. This is especially true for grid-tie energy storage systems based on bidirectional dc-dc and dc-ac converters where power flows through these system components. Latest developments in power semiconductors technology......-tie energy storage systems. Results highlight dc-dc conversion efficiencies up to 98.2% with an isolated topology and dc-ac conversion efficiencies up to 97.7%. Overall system efficiency improvements above 1% are achieved compared to traditional Si devices. Results on efficiency improvement are analyzed...

  17. CCST [Center for Compound Semiconductor Technology] research briefs

    International Nuclear Information System (INIS)

    Zipperian, T.E.; Voelker, E.R.

    1989-12-01

    This paper discusses the following topics: theoretical predictions of valence and conduction band offsets in III-V semiconductors; reflectance modulation of a semiconductor superlattice optical mirror; magnetoquantum oscillations of the phonon-drag thermoelectric power in quantum wells; correlation between photoluminescence line shape and device performance of p-channel strained-layer materials; control of threading dislocations in heteroepitaxial structures; improved growth of CdTe on GaAs by patterning; role of structure threading dislocations in relaxation of highly strained single-quantum-well structures; InAlAs growth optimization using reflection mass spectrometry; nonvolatile charge storage in III-V heterostructures; optically triggered thyristor switches; InAsSb strained-layer superlattice infrared detectors with high detectivities; resonant periodic gain surface-emitting semiconductor lasers; performance advantages of strained-quantum-well lasers in AlGaAs/InGaAs; optical integrated circuit for phased-array radar antenna control; and deposition and novel device fabrication from Tl 2 Ca 2 Ba 2 Cu 3 O y thin films

  18. Power control device of an atomic power plant

    International Nuclear Information System (INIS)

    Ootsuka, Shiro; Ito, Takero.

    1980-01-01

    Purpose: To improve the power controllability of an atomic power plant by improving the controllability, response and stability of the recirculation flow rate. Constitution: The power control device comprises a power detector of the reactor, which detects and operates the reactor power from the thermal power, neutron flux or the process quantity controlling the same, and a deviation detector which seeks deviation between the power signal of the power detector and the power set value of the reactor or power station. By use of the power control device constituted in this manner, the core flow rate is regulated by the power signal of the deviation detector thereby to control the power. (Aizawa, K.)

  19. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  20. Supplymentary type semiconductor device and manufacturing method. Soho gata handotai sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masaaki

    1990-01-08

    As a supplementary type semiconductor device has a complicated structure, it is extremely difficult to construct it in a three dimensional structure. This invention aims to reduce its occupying area by forming p-channel and n-channel transistors in a solid structure; moreover in an easy method of production. In other words, an opening is made in the element-forming region of a semiconductor substrate, forming a gate-insulation film on each of the p-type and n-type semiconductors which are exposed on the two facing surfaces; on it formed a gate electrode; p-type semiconductor surface is used as a channel domain; a drain region of n-channel transistor on one surface and a source region on another surface; the n-type semiconductor surface corresponding to the gate electrode is used as a channel region; a source region of the n-channel transistor is formed on the same surface and the drain region on the substrate surface. Occupied area is thus made less and the production gets easier. 20 figs.

  1. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  2. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  3. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  4. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  5. Reactor power control device

    International Nuclear Information System (INIS)

    Ishii, Yoshihiko; Arita, Setsuo; Miyamoto, Yoshiyuki; Fukazawa, Yukihisa; Ishii, Kazuhiko

    1998-01-01

    The present invention provides a reactor power control device capable of enhancing an operation efficiency while keeping high reliability and safety in a BWR type nuclear power plant. Namely, the device of the present invention comprises (1) a means for inputting a set value of a generator power and a set value of a reactor power, (2) a means for controlling the reactor power to either smaller one of the reactor power corresponding to the set value of the generator power and the set value of the reactor power. With such procedures, even if the nuclear power plant is set so as to operate it to make the reactor power 100%, when the generator power reaches the upper limit, the reactor power is controlled with a preference given to the upper limit value of the generator power. Accordingly, safety and reliability are not deteriorated. The operation efficiency of the plant can be improved. (I.S.)

  6. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  7. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires.

    Science.gov (United States)

    Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin

    2014-02-21

    The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas.

  8. Progress in ion implantation equipment for semiconductor manufacturing

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Naito, Masao

    1987-01-01

    In the semiconductor device manufacturing industry, ion implantation systems are used to dope semiconductor substrates with impurities that act as donor or acceptor. In an ion implantation system, required impurity ions are generated from an ion source, subjected to mass analysis, accelerated, converged and implanted in semiconductor wafers. High-tension arc tends to cause troubles in these systems, but improvement in design increased the average operation rate of medium-power systems from bout 70 percent to 90 percent during the past 10 years. Freeman type ion sources have replaced most RF ion sources and cold cathode PIG sources, which had been widely used until the early 1970s. Many of the recent ion sources are equipped with a P and As vaporizer to increase the beam intensity. By an increased beam intensity or decreased handling time in combination with an automatic handling system, the throughput has reached 330 wafers per hour for 10 second implantation. The yield has increased due to the development of improved scanning methods, vacuum devices such as cryopump, and processes and apparatus that serve for preventing particles from being contained in micro-devices. Various other improvements have been made to permit efficient production. (Nogami, K.)

  9. Microstructure of III-N semiconductors related to their applications in optoelectronics

    Science.gov (United States)

    Leszczynski, M.; Czernetzki, R.; Sarzynski, M.; Krysko, M.; Targowski, G.; Prystawko, P.; Bockowski, M.; Grzegory, I.; Suski, T.; Domagala, J.; Porowski, S.

    2005-03-01

    There has been more than a decade since Shuji Nakamura from Japanese company Nichia constructed the first blue LED based on structure of (AlGaIn)N semiconductor and eight years since he made the first blue laser diode (LD). This work gives a survey on the current technological status with green/blue/violet/UV optoelectronics based on III-N semiconductors in relation with their microstructure. The following devices are presented: i) Low-power green and blue LEDs, ii) High-power LEDs targeting solid-state white lighting, iii) Low-power violet LDs for high definition DVD market, iv) High-power violet LDs, v) UV LEDs. The discussion will be focused on three main technological problems related to the microstructure of (AlGaIn)N layers in emitters based on III-N semiconductors: i) high density of dislocations in epitaxial layers of GaN on foreign substrates (sapphire, SiC, GaAs), ii), presence of strains, iii) atom segregation in ternary and quaternary compounds.

  10. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    Power semiconductor technology has dominated the evolution of switched mode power supplies (SMPS). Advances in silicon (Si) technology, as the introduction of metal oxide field effect transistor (MOSFET), isolated gate bipolar transistors (IGBT), superjunction vertical structures and Schottky...... diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...... of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility...

  11. Method to ensure the reliability of power semiconductors depending on the application; Verfahren zur anwendungsspezifischen Sicherstellung der Zuverlaessigkeit von Leistungshalbleiter-Bauelementen

    Energy Technology Data Exchange (ETDEWEB)

    Grieger, Folkhart; Lindemann, Andreas [Magdeburg Univ. (Germany). Inst. fuer Elektrische Energiesysteme

    2011-07-01

    Load dependent conduction and switching losses during operation heat up power semiconductor devices. They this way age; lifetime can be limited e.g. by bond wire lift-off or solder fatigue. Components thus need to be dimensioned in a way that they can be expected to reach sufficient reliability during system lifetime. Electromobility or new applications in electric transmission and distribution are demanding in this respect because of high reliability requirements and long operation times. (orig.)

  12. Zero-Power Radio Device.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].

  13. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  14. heat flow in a finite isolated pulsed avalanche semiconductor diode

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... high-power high-efficiency avalanche semiconductor devices. The ... computed, and useful practical design curves for a specified operation .... iv. For spherical shells of radius, ρ(x,y,z) = √x2+y2+z2. > R, the heat source.

  15. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  16. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  17. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  18. Large-signal modeling method for power FETs and diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping, E-mail: sunlu_1019@126.co [School of Electromechanical Engineering, Xidian University, Xi' an 710071 (China)

    2009-06-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  19. Large-signal modeling method for power FETs and diodes

    International Nuclear Information System (INIS)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping

    2009-01-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  20. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  1. Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation.

    Science.gov (United States)

    Jang, Jun Tae; Park, Jozeph; Ahn, Byung Du; Kim, Dong Myong; Choi, Sung-Jin; Kim, Hyun-Suk; Kim, Dae Hwan

    2015-07-22

    Persistent photoconduction (PPC) is a phenomenon that limits the application of oxide semiconductor thin-film transistors (TFTs) in optical sensor-embedded displays. In the present work, a study on zinc oxynitride (ZnON) semiconductor TFTs based on the combination of experimental results and device simulation is presented. Devices incorporating ZnON semiconductors exhibit negligible PPC effects compared with amorphous In-Ga-Zn-O (a-IGZO) TFTs, and the difference between the two types of materials are examined by monochromatic photonic C-V spectroscopy (MPCVS). The latter method allows the estimation of the density of subgap states in the semiconductor, which may account for the different behavior of ZnON and IGZO materials with respect to illumination and the associated PPC. In the case of a-IGZO TFTs, the oxygen flow rate during the sputter deposition of a-IGZO is found to influence the amount of PPC. Small oxygen flow rates result in pronounced PPC, and large densities of valence band tail (VBT) states are observed in the corresponding devices. This implies a dependence of PPC on the amount of oxygen vacancies (VO). On the other hand, ZnON has a smaller bandgap than a-IGZO and contains a smaller density of VBT states over the entire range of its bandgap energy. Here, the concept of activation energy window (AEW) is introduced to explain the occurrence of PPC effects by photoinduced electron doping, which is likely to be associated with the formation of peroxides in the semiconductor. The analytical methodology presented in this report accounts well for the reduction of PPC in ZnON TFTs, and provides a quantitative tool for the systematic development of phototransistors for optical sensor-embedded interactive displays.

  2. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  3. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    Science.gov (United States)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner

  4. Monitoring device for the reactor power distribution

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi; Tsuiki, Makoto

    1982-01-01

    Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)

  5. Iterative solution of the semiconductor device equations

    Energy Technology Data Exchange (ETDEWEB)

    Bova, S.W.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  6. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...

  7. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  8. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  9. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  10. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov (United States)

    Packaging Reliability Power Electronics Packaging Reliability A photo of a piece of power electronics laboratory equipment. NREL power electronics packaging reliability research investigates the electronics packaging around a semiconductor switching device determines the electrical, thermal, and

  11. David Adler Lectureship Award Talk: III-V Semiconductor Nanowires on Silicon for Future Devices

    Science.gov (United States)

    Riel, Heike

    Bottom-up grown nanowires are very attractive materials for direct integration of III-V semiconductors on silicon thus opening up new possibilities for the design and fabrication of nanoscale devices for electronic, optoelectronic as well as quantum information applications. Template-Assisted Selective Epitaxy (TASE) allows the well-defined and monolithic integration of complex III-V nanostructures and devices on silicon. Achieving atomically abrupt heterointerfaces, high crystal quality and control of dimension down to 1D nanowires enabled the demonstration of FETs and tunnel devices based on In(Ga)As and GaSb. Furthermore, the strong influence of strain on nanowires as well as results on quantum transport studies of InAs nanowires with well-defined geometry will be presented.

  12. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  13. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  14. Power distribution forecasting device for reactors

    International Nuclear Information System (INIS)

    Tsukii, Makoto

    1981-01-01

    Purpose: To save expensive calculations on the forecasting of reactor power distribution. Constitution: Core status (CSD) such as entire coolant flow rate, pressures in the reactor, temperatures at the outlet and inlet and positions for control rods are inputted into a power distribution calculation device to calculate the power distribution based on physical models intermittently. Further, present power distribution is calculated based on in-core neutron flux measured values and CSD in a process control computer. Further, the ratio of the calculation results of the latter to those of the former is calculated, stored and inputted into a correction device to correct the forecast power distribution obtained by the power distribution calculation device. This enables to forecast the power distribution with excellent responsivity in the reactor site. (Furukawa, Y.)

  15. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  16. Silicon, germanium, and III-V-based tunneling devices for low-power applications

    Science.gov (United States)

    Smith, Joshua T.

    While the scaling of transistor dimensions has kept pace with Moore's Law, the voltages applied to these devices have not scaled in tandem, giving rise to ever-increasing power/heating challenges in state-of-the-art integrated circuits. A primary reason for this scaling mismatch is due to the thermal limit---the 60 mV minimum required at room temperature to change the current through the device by one order of magnitude. This voltage scaling limitation is inherent in devices that rely on the mechanism of thermal emission of charge carriers over a gate-controlled barrier to transition between the ON- and OFF-states, such as in the case of conventional CMOS-based technologies. To overcome this voltage scaling barrier, several steep-slope device concepts have been pursued that have experimentally demonstrated sub-60-mV/decade operation since 2004, including the tunneling-field effect transistor (TFET), impact ionization metal-oxide-semiconductor (IMOS), suspended-gate FET (SG-FET), and ferroelectric FET (Fe-FET). These reports have excited strong efforts within the semiconductor research community toward the realization of a low-power device that will support continued scaling efforts, while alleviating the heating issues prevalent in modern computer chips. Literature is replete with claims of sub-60-mV/decade operation, but often with neglect to other voltage scaling factors that offset this result. Ideally, a low-power device should be able to attain sub-60-mV/decade inverse subthreshold slopes (S) employing low supply and gate voltages with a foreseeable path toward integration. This dissertation describes the experimental development and realization of CMOS-compatible processes to enhance tunneling efficiency in Si and Si/Ge nanowire (NW) TFETs for improved average S (S avg) and ON-currents (ION), and a novel, III-V-based tunneling device alternative is also proposed. After reviewing reported efforts on the TFET, IMOS, and SG-FET, the TFET is highlighted as the

  17. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  18. A low-power bidirectional telemetry device with a near-field charging feature for a cardiac microstimulator.

    Science.gov (United States)

    Shuenn-Yuh Lee; Chih-Jen Cheng; Ming-Chun Liang

    2011-08-01

    In this paper, wireless telemetry using the near-field coupling technique with round-wire coils for an implanted cardiac microstimulator is presented. The proposed system possesses an external powering amplifier and an internal bidirectional microstimulator. The energy of the microstimulator is provided by a rectifier that can efficiently charge a rechargeable device. A fully integrated regulator and a charge pump circuit are included to generate a stable, low-voltage, and high-potential supply voltage, respectively. A miniature digital processor includes a phase-shift-keying (PSK) demodulator to decode the transmission data and a self-protective system controller to operate the entire system. To acquire the cardiac signal, a low-voltage and low-power monitoring analog front end (MAFE) performs immediate threshold detection and data conversion. In addition, the pacing circuit, which consists of a pulse generator (PG) and its digital-to-analog (D/A) controller, is responsible for stimulating heart tissue. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) with 0.35-μm complementary metal-oxide semiconductor technology to perform the monitoring and pacing functions with inductively powered communication. Using a model with lead and heart tissue on measurement, a -5-V pulse at a stimulating frequency of 60 beats per minute (bpm) is delivered while only consuming 31.5 μW of power.

  19. Power electronics handbook components, circuits and applications

    CERN Document Server

    Mazda, F F

    1993-01-01

    Power Electronics Handbook: Components, Circuits, and Applications is a collection of materials about power components, circuit design, and applications. Presented in a practical form, theoretical information is given as formulae. The book is divided into three parts. Part 1 deals with the usual components found in power electronics such as semiconductor devices and power semiconductor control components, their electronic compatibility, and protection. Part 2 tackles parts and principles related to circuits such as switches; link frequency chargers; converters; and AC line control, and Part 3

  20. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  1. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  2. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  3. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    International Nuclear Information System (INIS)

    Luo, Zhaochu; Zhang, Xiaozhong

    2015-01-01

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally

  4. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  5. Ambipolar organic heterojunction transistors with various p-type semiconductors

    International Nuclear Information System (INIS)

    Shi Jianwu; Wang Haibo; Song De; Tian Hongkun; Geng Yanhou; Yan Donghang

    2008-01-01

    Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices. The much difference of their device performance was attributed to the roughness of the first semiconductor films, which was original from their distinct growth habits. The flat and continuous films for the first semiconductors layer can lead to a smooth heterojunction interface, and obtained a high device performance for ambipolar organic heterojunction transistors

  6. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications - SiC, GaN, Ga2O3, and Diamond.

    Science.gov (United States)

    Wellmann, Peter J

    2017-11-17

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.

  7. Hacking and penetration testing with low power devices

    CERN Document Server

    Polstra, Philip

    2014-01-01

    Hacking and Penetration Testing with Low Power Devices shows you how to perform penetration tests using small, low-powered devices that are easily hidden and may be battery-powered. It shows how to use an army of devices, costing less than you might spend on a laptop, from distances of a mile or more. Hacking and Penetration Testing with Low Power Devices shows how to use devices running a version of The Deck, a full-featured penetration testing and forensics Linux distribution, and can run for days or weeks on batteries due to their low power consumption. Author Philip Polstra shows how to

  8. A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements

    International Nuclear Information System (INIS)

    Bisoyi, Sibani; Tiwari, Shree Prakash; Rödel, Reinhold; Zschieschang, Ute; Klauk, Hagen; Kang, Myeong Jin; Takimiya, Kazuo

    2016-01-01

    A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C 10 -DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm 2 V −1 s −1 . The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 10 12 cm −2 , despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior. (paper)

  9. Evaluation of custom-designed lateral power transistors in a silicon-on-insulator process in a synchronous buck converter

    DEFF Research Database (Denmark)

    Okumus, Sinan; Fan, Lin; Nour, Yasser

    2018-01-01

    Most of todays power converters are based on power semiconductors, which are built in vertical power semiconductor processes. These devices result in limited packaging possibilities, which lead to physically long galvanic connections and therefore high external electromagnetic fields. These fields...

  10. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  11. Study of surface modifications for improved selected metal (II-VI) semiconductor based devices

    Science.gov (United States)

    Blomfield, Christopher James

    Metal-semiconductor contacts are of fundamental importance to the operation of all semiconductor devices. There are many competing theories of Schottky barrier formation but as yet no quantitative predictive model exists to adequately explain metal-semiconductor interfaces. The II-VI compound semiconductors CdTe, CdS and ZnSe have recently come to the fore with the advent of high efficiency photovoltaic cells and short wavelength light emitters. Major problems still exist however in forming metal contacts to these materials with the desired properties. This work presents results which make a significant contribution to the theory of metal/II-VI interface behaviour in terms of Schottky barriers to n-type CdTe, CdS and ZnSe.Predominantly aqueous based wet chemical etchants were applied to the surfaces of CdTe, CdS and ZnSe which were subsequently characterised by X-ray photoelectron spectroscopy. The ionic nature of these II-VI compounds meant that they behaved as insoluble salts of strong bases and weak acids. Acid etchants induced a stoichiometric excess of semiconductor anion at the surface which appeared to be predominantly in the elemental or hydrogenated state. Alkaline etchants conversely induced a stoichiometric excess of semiconductor cation at the surface which appeared to be in an oxidised state.Metal contacts were vacuum-evaporated onto these etched surfaces and characterised by current-voltage and capacitance-voltage techniques. The surface preparation was found to have a clear influence upon the electrical properties of Schottky barriers formed to etched surfaces. Reducing the native surface oxide produced near ideal Schottky diodes. An extended study of Au, Ag and Sb contacts to [mathematical formula] substrates again revealed the formation of several discrete Schottky barriers largely independent of the metal used; for [mathematical formula]. Deep levels measured within this study and those reported in the literature led to the conclusion that Fermi

  12. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2018-03-14

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  13. MRI-powered biomedical devices.

    Science.gov (United States)

    Hovet, Sierra; Ren, Hongliang; Xu, Sheng; Wood, Bradford; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-16

    Magnetic resonance imaging (MRI) is beneficial for imaging-guided procedures because it provides higher resolution images and better soft tissue contrast than computed tomography (CT), ultrasound, and X-ray. MRI can be used to streamline diagnostics and treatment because it does not require patients to be repositioned between scans of different areas of the body. It is even possible to use MRI to visualize, power, and control medical devices inside the human body to access remote locations and perform minimally invasive procedures. Therefore, MR conditional medical devices have the potential to improve a wide variety of medical procedures; this potential is explored in terms of practical considerations pertaining to clinical applications and the MRI environment. Recent advancements in this field are introduced with a review of clinically relevant research in the areas of interventional tools, endovascular microbots, and closed-loop controlled MRI robots. Challenges related to technology and clinical feasibility are discussed, including MRI based propulsion and control, navigation of medical devices through the human body, clinical adoptability, and regulatory issues. The development of MRI-powered medical devices is an emerging field, but the potential clinical impact of these devices is promising.

  14. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  15. The importance of Fe interface states for ferromagnet-semiconductor based spintronic devices

    Science.gov (United States)

    Chantis, Athanasios

    2009-03-01

    I present our recent theoretical studies of the bias-controlled spin injection, detection sensitivity and tunneling anisotropic magnetoresistance in ferromagnetic-semiconductor tunnel junctions. Using first-principles electron transport methods we have shown that Fe 3d minority-spin surface (interface) states are responsible for at least two important effects for spin electronics. First, they can produce a sizable Tunneling Anisotropic Magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, Tunneling Magnetoresistance junctions with a single ferromagnetic electrode that can function at room temperatures. Second, in Fe/GaAs(001) magnetic tunnel junctions they produce a strong dependence of the tunneling current spin-polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is found. This explains the observed sign reversal of spin-polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistcance through vertical Fe/GaAs/Fe trilayers. We also present a theoretical description of electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from that of the tunneling current spin-polarization. We show that in realistic ferromagnet/semiconductor junctions this bias dependence can originate from two distinct physical mechanisms: 1) the bias dependence of tunneling current spin-polarization, which is of microscopic origin and depends on the specific properties of the interface, and 2) the macroscopic electron spin transport properties in the semiconductor. Our numerical results show that the magnitude of the voltage signal

  16. A power measuring device

    International Nuclear Information System (INIS)

    As, R. van.

    1985-01-01

    As a part of the klystron test facility of the Dutch NIKHEF-K accelerator, a sensitive power measuring device has been built. The high-frequency power of a klystron is stored in a water-cooled dummy load. Using a microcomputer, the increase of the water temperature and the water flow rate are transformed to a digital indication of the klystron power. (Auth.)

  17. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    Science.gov (United States)

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  18. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  19. ABACUS and AQME: Semiconductor Device and Quantum Mechanics Education on nanoHUB.org

    OpenAIRE

    Klimeck, Gerhard; Vasileska, Dragica

    2009-01-01

    The ABACUS and AQME on-line tools and their associated wiki pages form one-stop shops for educators and students of existing university courses. They are geared towards courses like "introduction to Semiconductor Devices" and "Quantum Mechanics for Engineers". The service is free to anyone and no software installation is required on the user's computer. All simulations, including advanced visualization are performed at a remote computer. The tools have been deployed on nanoHUB.org in August 2...

  20. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  1. Micro and nanophotonics for semiconductor infrared detectors towards an ultimate uncooled device

    CERN Document Server

    Jakšic, Zoran

    2014-01-01

    The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of

  2. An alternative treatment of heat flow for charge transport in semiconductor devices

    International Nuclear Information System (INIS)

    Grupen, Matt

    2009-01-01

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  3. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India)

    2012-06-05

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  4. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  5. Performance analysis of Arithmetic Mean method in determining peak junction temperature of semiconductor device

    Directory of Open Access Journals (Sweden)

    Mohana Sundaram Muthuvalu

    2015-12-01

    Full Text Available High reliability users of microelectronic devices have been derating junction temperature and other critical stress parameters to improve device reliability and extend operating life. The reliability of a semiconductor is determined by junction temperature. This paper gives a useful analysis on mathematical approach which can be implemented to predict temperature of a silicon die. The problem could be modeled as heat conduction equation. In this study, numerical approach based on implicit scheme and Arithmetic Mean (AM iterative method will be applied to solve the governing heat conduction equation. Numerical results are also included in order to assert the effectiveness of the proposed technique.

  6. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  7. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  8. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  9. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  10. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.

    2013-02-13

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device\\'s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. 2013 by the authors.

  11. A microprocessor based on a two-dimensional semiconductor

    Science.gov (United States)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  12. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Science.gov (United States)

    2012-03-29

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Semiconductor Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).

  13. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  14. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  15. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals...... with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  18. Power calculation of grading device in desintegrator

    Science.gov (United States)

    Bogdanov, V. S.; Semikopenko, I. A.; Vavilov, D. V.

    2018-03-01

    This article describes the analytical method of measuring the secondary power consumption, necessitated by the installation of a grading device in the peripheral part of the grinding chamber in the desintegrator. There is a calculation model for defining the power input of the disintegrator increased by the extra power demand, required to rotate the grading device and to grind the material in the area between the external row of hammers and the grading device. The work has determined the inertia moments of a cylindrical section of the grading device with armour plates. The processing capacity of the grading device is adjusted to the conveying capacity of the auger feeder. The grading device enables one to increase the concentration of particles in the peripheral part of the grinding chamber and the amount of interaction between particles and armour plates as well as the number of colliding particles. The perforated sections provide the output of the ground material with the proper size granules, which together with the effects of armour plates, improves the efficiency of grinding. The power demand to rotate the grading device does not exceed the admissible value.

  19. Power Consumption of a MOSFET

    Directory of Open Access Journals (Sweden)

    Frederick Selkey

    2010-01-01

    Full Text Available A MOSFET is defined as metal oxide semiconductor field effect transistor. These electrical components are combined or integrated to form control and logic functions for laptop and desktop computers, power controls in printing devices, motor controls and are used in many other electrical circuits. All electrical devices consume electrical power based on current and voltage. For this paper we calculated the power consumption of a Toshiba 2SK3563 MOSFET during its triode mode by finding the area under the current-voltage characteristic curve.

  20. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Science.gov (United States)

    Sun, Jian; Kosel, Jürgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. PMID:28809321

  1. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  2. An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices

    International Nuclear Information System (INIS)

    Bendib, T.; Djeffal, F.; Meguellati, M.

    2014-01-01

    An analytical investigation has been proposed to study the subthreshold behavior of junctionless gates all around (JLGAA) MOSFET for nanoscale CMOS analog applications. Based on 2-D analytical analysis, a new subthreshold swing model for short-channel JLGAA MOSFETs is developed. The analysis has been used to calculate the subthreshold swing and to compare the performance of the investigated design and conventional GAA MOSFET, where the comparison of device architectures shows that the JLGAA MOSFET exhibits a superior performance with respect to the conventional inversion-mode GAA MOSFET in terms of the fabrication process and electrical behavior in the subthreshold domain. The analytical models have been validated by 2-D numerical simulations. The proposed analytical models are used to formulate the objectives functions. The overall objective function is formulated by means of a weighted sum approach to search the optimal electrical and dimensional device parameters in order to obtain the better scaling capability and the electrical performance of the device for ultra-low power applications. (semiconductor devices)

  3. Power electronics basics operating principles, design, formulas, and applications

    CERN Document Server

    Rozanov, Yuriy; Chaplygin, Evgeny; Voronin, Pavel

    2015-01-01

    Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive components of semiconductor power switchesCovers the control of power electronic devices, from mathematical modeling to the analysis of the electrical processesAddresses pulse-width modulation, power quality control, and multilevel, modular, and multicell

  4. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  5. Simulation of space protons influence on silicon semiconductor devices using gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Zhukov, Y.N.; Zinchenko, V.F.; Ulimov, V.N.

    1999-01-01

    In this study the authors focus on the problems of simulating the space proton energy spectra under laboratory gamma-neutron radiation tests of semiconductor devices (SD). A correct simulation of radiation effects implies to take into account and evaluate substantial differences in the processes of formation of primary defects in SD in space environment and under laboratory testing. These differences concern: 1) displacement defects, 2) ionization defects and 3) intensity of radiation. The study shows that: - the energy dependence of nonionizing energy loss (NIEL) is quite universal to predict the degradation of SD parameters associated to displacement defects, and - MOS devices that are sensitive to ionization defects indicated the same variation of parameters under conditions of equality of ionization density generated by protons and gamma radiations. (A.C.)

  6. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovsky, A M [Hewlett-Packard Laboratories, 1501 Page Mill Road, MS 1123, Palo Alto, CA 94304 (United States)

    2008-02-15

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  7. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bratkovsky, A M

    2008-01-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field

  8. Spintronic effects in metallic, semiconductor, metal oxide and metal semiconductor heterostructures

    Science.gov (United States)

    Bratkovsky, A. M.

    2008-02-01

    Spintronics is a rapidly growing field focusing on phenomena and related devices essentially dependent on spin transport. Some of them are already an established part of microelectronics. We review recent theoretical and experimental advances in achieving large spin injection efficiency (polarization of current) and accumulated spin polarization. These include tunnel and giant magnetoresistance, spin-torque and spin-orbit effects on electron transport in various heterostructures. We give a microscopic description of spin tunneling through oxide and modified Schottky barriers between a ferromagnet (FM) and a semiconductor (S). It is shown that in such FM-S junctions electrons with a certain spin projection can be efficiently injected into (or extracted from) S, while electrons with the opposite spin can accumulate in S near the interface. The criterion for efficient injection is opposite to a known Rashba criterion, since the barrier should be rather transparent. In degenerate semiconductors, extraction of spin can proceed at low temperatures. We mention a few novel spin-valve ultrafast devices with small dissipated power: a magnetic sensor, a spin transistor, an amplifier, a frequency multiplier, a square-law detector and a source of polarized radiation. We also discuss effects related to spin-orbital interactions, such as the spin Hall effect (SHE) and a recently predicted positive magnetoresistance accompanying SHE. Some esoteric devices such as 'spinFET', interacting spin logic and spin-based quantum computing are discussed and problems with their realization are highlighted. We demonstrate that the so-called 'ferroelectric tunnel junctions' are unlikely to provide additional functionality because in all realistic situations the ferroelectric barrier would be split into domains by the depolarizing field.

  9. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  10. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  11. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    Science.gov (United States)

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  12. Power Approaches for Implantable Medical Devices

    Directory of Open Access Journals (Sweden)

    Achraf Ben Amar

    2015-11-01

    Full Text Available Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health. In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources.

  13. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  14. Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications – SiC, GaN, Ga2O3, and Diamond

    Science.gov (United States)

    2017-01-01

    Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530

  15. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  16. Semiconductor devices as track detectors in high energy colliding beam experiments

    International Nuclear Information System (INIS)

    Ludlam, T.

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems

  17. Semiconductor devices as track detectors in high energy colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  18. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  19. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, G.; Zhou, D.; Yang, J.

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been ...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated.......In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...

  20. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  1. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  2. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  3. Calculation of neutron-induced single-event upset cross sections for semiconductor memory devices

    International Nuclear Information System (INIS)

    Ikeuchi, Taketo; Watanabe, Yukinobu; Nakashima, Hideki; Sun, Weili

    2001-01-01

    Neutron-induced single-event upset (SEU) cross sections for semiconductor memory devices are calculated by the Burst Generation Rate (BGR) method using LA150 data and QMD calculation in the neutron energy range between 20 MeV and 10 GeV. The calculated results are compared with the measured SEU cross sections for energies up to 160 MeV, and the validity of the calculation method and the nuclear data used is verified. The kind of reaction products and the neutron energy range that have the most effect on SEU are discussed. (author)

  4. Anisotropy-based crystalline oxide-on-semiconductor material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  5. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  6. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  7. Proceedings of the 3rd international workshop on radiation effects on semiconductor devices for space application

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is the collection of the paper presented at the title workshop. The main purpose of the workshop is to bring the chance for exchange of information between scientists and engineers who work in the field of research and development of semiconductor devices used in strong radiation environment in space. The 27 of the presented papers are indexed individually. (J.P.N.)

  8. 77 FR 35745 - Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in...

    Science.gov (United States)

    2012-06-14

    ..., battery powered device with a semiconductor sensor. (2) Alcohol Countermeasure Systems Corp., submitted...-0062] Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in... Screening Devices to Measure Alcohol in Bodily Fluids dated, March 31, 2008 (73 FR 16956). DATES: Effective...

  9. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  10. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  11. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    Science.gov (United States)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  12. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Directory of Open Access Journals (Sweden)

    Jürgen Kosel

    2013-02-01

    Full Text Available The Extraordinary Magnetoresistance (EMR effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.

  13. Power spectrum analysis for defect screening in integrated circuit devices

    Science.gov (United States)

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  14. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  15. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  16. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  17. Reliability assessment platform for the power semiconductor devices - Study case on 3-phase grid-connected inverter application

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    provide valuable reliability information based on given mission profiles and system specification is first developed and its main concept is presented. In order to facilitate the test and access to the loading and lifetime information of the power devices, a novel mission profile based stress emulator...... experimental setup is proposed and designed. The link between the stress emulator setup and the reliability tool software is highlighted. Finally, the reliability assessment platform is demonstrated on a 3-phase grid-connected inverter application study case....

  18. Wide Bandgap Semiconductor Opportunities in Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marlino, Laura D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Kristina O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-01-01

    The report objective is to explore the Wide Bandgap (WBG) Power Electronics (PE) market, applications, and potential energy savings in order to identify key areas where further resources and investments of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE) would have the most impact on U.S. competiveness. After considering the current market, several potential near-term application areas were identified as having significant market and energy savings potential with respect to clean energy applications: (1) data centers (uninterruptible power supplies and server power supplies); (2) renewable energy generation (photovoltaic-solar and wind); (3) motor drives (industrial, commercial and residential); (4) rail traction; and, (5) hybrid and electric vehicles (traction and charging). After the initial explorative analyses, it became clear that, SiC, not GaN, would be the principal WBG power device material for the chosen markets in the near future. Therefore, while GaN is discussed when appropriate, this report focuses on SiC devices, other WBG applications (e.g., solid-state transformers, combined heat and power, medical, and wireless power), the GaN market, and GaN specific applications (e.g., LiDAR, 5G) will be explored at a later date. In addition to the market, supply and value chain analyses addressed in Section 1 of this report, a SWOT (Strength, Weakness, Opportunity, Threat) analysis and potential energy savings analysis was conducted for each application area to identify the major potential WBG application area(s) with a U.S. competitiveness opportunity in the future.

  19. Wireless Power for Mobile Devices

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2011-01-01

    Wireless power transfer allows a convenient, easy to use battery charging of mobile phones and other mobile devices. No hassle with cables and plugs, just place the device on a pad and that’s it. Such asystem even has the potential to become a standard charging solution. Where are the limits for

  20. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  1. A High-Efficiency Compact SiC-based Power Converter System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wide-bandgap SiC semiconductors have been recently investigated for use in power devices, because of their potential capabilities of operating at high power...

  2. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  3. High-power subnanosecond operation of a bistable optically controlled semiconductor switch (BOSS)

    International Nuclear Information System (INIS)

    Stoudt, D.C.; Richardson, M.A.; Demske, D.L.; Roush, R.A.; Eure, K.W.

    1994-01-01

    Recent high-power, subnanosecond-switching results of the Bistable Optically controlled Semiconductor Switch (BOSS) are presented. The process of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser. Switch closure is primarily achieved by elevating electrons from a deep copper center which has been diffused into the material. The opening phase is a two-step process which relies initially on the absorption of the 2-μm laser causing electrons to be elevated from the valance band back into the copper center, and finally on the recombination of electrons in the conduction band with boles in the valance band. The second step requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RC's are generated in the bulk GaAs material by fast-neutron irradiation (∼ 1 MeV) at a fluence of about 3 x 10 15 cm -2 . High-power switching results which demonstrate that the BOSS switch can be opened in the subnanosecond regime are presented for the first time. Neutron-irradiated BOSS devices have been opened against a rising electric field of about 20 kV/cm (10 kV) in a time less than one nanosecond. Kilovolt electrical pulses have been generated with a FWHM of roughly 250 picoseconds

  4. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    Science.gov (United States)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  5. Reactor power distribution pattern judging device

    International Nuclear Information System (INIS)

    Ikehara, Tadashi.

    1992-01-01

    The judging device of the present invention comprises a power distribution readout system for intaking a power value from a fuel segment, a neural network having an experience learning function for receiving a power distribution value as an input variant, mapping it into a desirable property and self-organizing the map, and a learning date base storing a plurality of learnt samples. The read power distribution is classified depending on the similarity thereof with any one of representative learnt power distribution, and the corresponding state of the reactor core is outputted as a result of the judgement. When an error is found in the classified judging operation, erroneous cases are additionally learnt by using the experience and learning function, thereby improving the accuracy of the reactor core characteristic estimation operation. Since the device is mainly based on the neural network having a self-learning function and a pattern classification and judging function, a judging device having a human's intuitive pattern recognition performance and a pattern experience and learning performance is obtainable, thereby enabling to judge the state of the reactor core accurately. (N.H.)

  6. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  7. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    OpenAIRE

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  8. Wireless power pad with local power activation for portable devices

    NARCIS (Netherlands)

    Waffenschmidt, E.; Zheglov, V.

    2007-01-01

    Wireless power transfer by magnetic induction offers a simple to use way to recharge mobile devices like e.g. mobile phone, music players or medical sensors. As shown by a previous report and an existing Power Pad demonstrator, wireless inductive power transfer is possible with a good power

  9. Development of semiconductor electronics

    International Nuclear Information System (INIS)

    Bardeen, John.

    1977-01-01

    In 1931, Wilson applied Block's theory about the energy bands for the motion of electrons in a crystal lattice to semiconductors and showed that conduction can take place in two different ways, by electrons and by holes. Not long afterwards Frenkel showed that these carriers can flow by diffusion in a concentration gradient as well as under the influence of an electric field and wrote down equations for the current flow. The third major contribution, in the late 1930's was the explanation of rectification at a metalsemiconductor contact by Mott and more completely by Schottky. In late 1947 the first transistor of the point contact type was invented by Brattin, Shockley and Bardeen. Then after single crystals of Ge were grown, the junction transistor was developed by the same group. The first silicon transistors appeared in 1954. Then an important step was discovery of the planar transistor by Hoenri in 1960 which led to development of integrated circuits by 1962. Many transistors are produced by batch processing on a slice of silicon. Then in 1965 Mos (Metal-Oxide Semiconductor) transistor and in 1968 LSI (Large Scale Intergration circuits) were developed. Aside from electronic circuits, there are many other applications of semiconductors, including junction power rectifiers, junction luminescence (including lasers), solar batteries, radiation detectors, microwave oscillators and charged-coupled devices for computer memories and devices. One of the latest developments is a microprocessor with thousands of transistors and associated circuitry on a single small chip of silicon. It can be programmed to provide a variety of circuit functions, thus it is not necessary to go through the great expense of LSI's for each desired function, but to use standard microprocessors and program to do the job

  10. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  11. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  12. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    Science.gov (United States)

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  13. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  14. Reactor power control device

    International Nuclear Information System (INIS)

    Doi, Kazuyori.

    1981-01-01

    Purpose: To automatically control the BWR type reactor power by simple and short-time searching the load pattern nearest to the required pattern at a nuclear power plant side. Constitution: The reactor power is automatically regulated by periodical modifying of coefficients fitting to a reactor core model, according as a required load pattern. When a load requirement pattern is given, a simulator estimates the total power change and the axial power distribution change from a xenon density change output calculated by a xenon dynamic characteristic estimating device, and a load pattern capable of being realized is searched. The amount to be recirculated is controlled on the basis of the load patteren thus searched, and the operation of the BWR type reactor is automatically controlled at the side of the nuclear power plant. (Kamimura, M.)

  15. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    Science.gov (United States)

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  16. Computer-aided analysis of power-electronic systems simulation of a high-voltage power converter

    International Nuclear Information System (INIS)

    Bordry, F.; Isch, H.W.; Proudlock, P.

    1987-01-01

    In the study of semiconductor devices, simulation methods play an important role in both the design of systems and the analysis of their operation. The authors describe a new and efficient computer-aided package program for general power-electronic systems. The main difficulty when taking into account non-linear elements, such as semiconductors, lies in determining the existence and the relations of the elementary sequences defined by the conduction or nonconduction of these components. The method does not require a priori knowledge of the state sequences of the semiconductor nor of the commutation instants, but only the circuit structure, its parameters and the commands to the controlled switches. The simulation program computes automatically both transient and steady-state waveforms for any circuit configuration. The simulation of a high-voltage power converter is presented, both for its steady-state and transient overload conditions. This 100 kV power converter (4 MW) will feed two klystrons in parallel

  17. Roadmap on semiconductor-cell biointerfaces

    Science.gov (United States)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  18. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Buldu, J M; Trull, J; Torrent, M C; GarcIa-Ojalvo, J; Mirasso, Claudio R

    2002-01-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  19. Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Buldu, J M [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Trull, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Mirasso, Claudio R [Departament de FIsica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)

    2002-02-01

    The dynamics of power distribution between longitudinal modes of a multimode semiconductor laser subjected to external optical feedback is experimentally analysed in the low-frequency fluctuation regime. Power dropouts in the total light intensity are invariably accompanied by sudden activations of several longitudinal modes. These activations are seen not to be simultaneous to the dropouts, but to occur after them. The phenomenon is statistically analysed in a systematic way, and the corresponding delay is estimated. (letter to the editor)

  20. The influence of RF power on the electrical properties of sputtered amorphous In—Ga—Zn—O thin films and devices

    International Nuclear Information System (INIS)

    Shi Junfei; Dong Chengyuan; Wu Jie; Chen Yuting; Zhan Runze; Dai Wenjun

    2013-01-01

    The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91 × 10 19 to 2.15 × 10 19 cm −3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films. (semiconductor devices)

  1. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  2. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Science.gov (United States)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  3. Flexible power 90W to 120W ArF immersion light source for future semiconductor lithography

    Science.gov (United States)

    Burdt, R.; Thornes, J.; Duffey, T.; Bibby, T.; Rokitski, R.; Mason, E.; Melchior, J.; Aggarwal, T.; Haran, D.; Wang, J.; Rechtsteiner, G.; Haviland, M.; Brown, D.

    2014-03-01

    Semiconductor market demand for improved performance at lower cost continues to drive enhancements in excimer light source technologies. Increased output power, reduced variability in key light source parameters, and improved beam stability are required of the light source to support immersion lithography, multi-patterning, and 450mm wafer applications in high volume semiconductor manufacturing. To support future scanner needs, Cymer conducted a technology demonstration program to evaluate the design elements for a 120W ArFi light source. The program was based on the 90W XLR 600ix platform, and included rapid power switching between 90W and 120W modes to potentially support lot-to-lot changes in desired power. The 120W requirements also included improved beam stability in an exposure window conditionally reduced by 20%. The 120W output power is achieved by efficiency gains in system design, keeping system input power at the same level as the 90W XLR 600ix. To assess system to system variability, detailed system testing was conducted from 90W - 120W with reproducible results.

  4. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  5. Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry

    International Nuclear Information System (INIS)

    Tsukamoto, Katsuhiro; Kuroi, Takashi; Kawasaki, Yoji

    2011-01-01

    Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

  6. Comparative study of leakage power in CNTFET over MOSFET device

    International Nuclear Information System (INIS)

    Sinha Sanjeet Kumar; Chaudhury Saurabh

    2014-01-01

    A comparison of the CNTFET device with the MOSFET device in the nanometer regime is reported. The characteristics of both devices are observed as varying the oxide thickness. Thereafter, we have analyzed the effect of the chiral vector and the temperature on the threshold voltage of the CNTFET device. After simulation on the HSPICE tool, we observed that the high threshold voltage can be achieved at a low chiral vector pair. It is also observed that the effect of temperature on the threshold voltage of the CNTFET is negligibly small. After that, we have analyzed the channel length variation and their impact on the threshold voltage of the CNTFET as well as MOSFET devices. We found an anomalous effect from our simulation result that the threshold voltage increases with decreasing the channel length in CNTFET devices; this is contrary to the well known short channel effect. It is observed that at below the 10 nm channel length, the threshold voltage is increased rapidly in the case of the CNTFET device, whereas in the case of the MOSFET device, the threshold voltage decreases drastically. (semiconductor devices)

  7. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  8. Improving the reliability of Class 1E power distribution to instrumentation and control cabinets on nuclear power plants in the USA. Final report

    International Nuclear Information System (INIS)

    Brennen, M.B.

    1995-09-01

    This study was conducted to explore nontraditional electric power distribution concepts to improve the reliability of uninterruptible power to vital Instrumentation and Control (I and C) cabinets in future US nuclear power plants. The study incorporated comparative technical and economic evaluations of existing and nontraditional uninterruptible power supply (UPS) concepts. All nontraditional distribution concepts were based on available or already emerging components or semiconductor devices. Another purpose of the study was to reduce the cost and complexity of present power distribution and to lower maintenance, replacement, degradation and fault location requirements. The possible reduction of distribution losses, especially during operation under battery power, was also evaluated. The study indicates that direct current distribution at 48 or 125 Vdc levels would have more than an order of magnitude improvement over the reliability of present alternating current supplies at comparable cost. Furthermore, losses under battery power could be reduced significantly with respect to present distribution losses. An inherent advantage of DC distribution is that power transfer from the failed power bus to an operational bus occurs naturally and instantaneously via two simple and reliable semiconductor diodes. AC distribution, on the other hand, requires complex synchronization, decision making and gated semiconductor switching devices for power bus transfer all of which could be eliminated. Some of the concepts presented may also be applied to make existing vital (Class 1E) uninterruptible power supplies in US nuclear plants more reliable

  9. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  10. Transparent Oxide Semiconductors for Emerging Electronics

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-11-01

    Transparent oxide electronics have emerged as promising materials to shape the future of electronics. While several n-type oxides have been already studied and demonstrated feasibility to be used as active materials in thin film transistors, high performance p-type oxides have remained elusive. This dissertation is devoted to the study of transparent p-type oxide semiconductor tin monoxide and its use in the fabrication of field effect devices. A complete study on the deposition of tin monoxide thin films by direct current reactive magnetron sputtering is performed. Carrier density, carrier mobility and conductivity are studied over a set of deposition conditions where p-type conduction is observed. Density functional theory simulations are performed in order to elucidate the effect of native defects on carrier mobility. The findings on the electrical properties of SnO thin films are then translated to the fabrication of thin films transistors. The low processing temperature of tin monoxide thin films below 200 oC is shown advantageous for the fabrication of fully transparent and flexible thin film transistors. After careful device engineering, including post deposition annealing temperature, gate dielectric material, semiconductor thickness and source and drain electrodes material, thin film transistors with record device performance are demonstrated, achieving a field effect mobility >6.7 cm2V-1s-1. Device performance is further improved to reach a field effect mobility of 10.8 cm2V-1s-1 in SnO nanowire field effect transistors fabricated from the sputtered SnO thin films and patterned by electron beam lithography. Downscaling device dimension to nano scale is shown beneficial for SnO field effect devices not only by achieving a higher hole mobility but enhancing the overall device performance including better threshold voltage, subthreshold swing and lower number of interfacial defects. Use of p-type semiconductors in nonvolatile memory applications is then

  11. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    Science.gov (United States)

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  12. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  13. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  14. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  15. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  16. Status and progress in ion implantation technology for semiconductor device manufacturing

    International Nuclear Information System (INIS)

    Takahashi, Noriyuki

    1998-01-01

    Rapid growth in implant applications in the fabrication of semiconductors has encouraged a dramatic increase in the range of energies, beam currents and ion species used. The challenges of a wider energy range, higher beam currents, continued reduction in contamination, improved angle integrity and larger substrates have motivated the development of many innovations. Advanced processes in submicron device production uses up to twenty implantation steps. Thus the outstanding growth of this industry has led to the evolution of a thriving business of hundreds of implantation equipment systems each year with very specific requirements. The present paper reviews the principal process requirements which resulted in the evolution of the equipment technology, and describes the recent trends in the ion implanter technology all three principal categories: high current, medium current and high energy. (author)

  17. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  18. Semiconductor technology program. Progress briefs

    Science.gov (United States)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  19. Study of various n-type organic semiconductors on ultraviolet detective and electroluminescent properties of optoelectronic integrated device

    Science.gov (United States)

    Deng, Chaoxu; Shao, Bingyao; Zhao, Dan; Zhou, Dianli; Yu, Junsheng

    2017-11-01

    Organic optoelectronic integrated device (OID) with both ultraviolet (UV) detective and electroluminescent (EL) properties was fabricated by using a thermally activated delayed fluorescence (TADF) semiconductor of (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as an emitter. The effect of five kinds of n-type organic semiconductors (OSCs) on the enhancement of UV detective and EL properties of OID was systematically studied. The result shows that two orders of magnitude in UV detectivity from 109 to 1011 Jones and 3.3 folds of luminance from 2499 to 8233 cd m-2 could be achieved. The result shows that not only the difference of lowest unoccupied molecular orbital (LUMO) between active layer and OSC but also the variety of electron mobility have a significant effect on the UV detective and EL performance through adjusting electron injection/transport. Additionally, the optimized OSC thickness is beneficial to confine the leaking of holes from the active layer to cathode, leading to the decrease of dark current for high detective performance. This work provides a useful method on broadening OSC material selection and device architecture construction for the realization of high performance OID.

  20. Thienoacene-based organic semiconductors.

    Science.gov (United States)

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    Directory of Open Access Journals (Sweden)

    Yoshihiro Irokawa

    2011-01-01

    Full Text Available In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

  2. Radioisotope Power Sources for MEMS Devices,

    International Nuclear Information System (INIS)

    Blanchard, J.P.

    2001-01-01

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a 63 Ni liquid source. A source volume containing 64 microCi provided a power of ∼0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications

  3. Empirical study of the metal-nitride-oxide-semiconductor device characteristics deduced from a microscopic model of memory traps

    International Nuclear Information System (INIS)

    Ngai, K.L.; Hsia, Y.

    1982-01-01

    A graded-nitride gate dielectric metal-nitride-oxide-semiconductor (MNOS) memory transistor exhibiting superior device characteristics is presented and analyzed based on a qualitative microscopic model of the memory traps. The model is further reviewed to interpret some generic properties of the MNOS memory transistors including memory window, erase-write speed, and the retention-endurance characteristic features

  4. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    the power rating and lifetime of the NPC inverter are limited by the most stressed devices. In this paper, an asymmetric power device rating selection method for the NPC inverter is proposed in order to balance the lifetimes of the power devices. The thermal distribution of the power devices is analyzed......A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both...... based on 30 kW NPC inverter as a case study. Analytical power loss and thermal impedance models depending on the chip size are derived. Finally, using these models, the junction temperatures of the power devices depending on the chip size is discussed and a proper chip size for an even temperature...

  5. Growth and Characterization of III-V Semiconductors for Device Applications

    Science.gov (United States)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  6. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  7. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Montag, Benjamin W., E-mail: bmontag@ksu.edu; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-11

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled {sup 3}He and {sup 10}BF{sub 3} detectors. The {sup 6}Li(n,t){sup 4}He reaction yields a total Q-value of 4.78 MeV, larger than {sup 10}B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% {sup 6}Li) or enriched {sup 6}Li (usually 95% {sup 6}Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10{sup −6} Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I–V curve measurements, ranging from 10{sup 6}–10{sup 11} Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed. - Highlights: • Devices were fabricated from in-house synthesized and purified LiZnAs and LiZnP. • Devices ranged in bulk resistivity from 10{sup 6}–10{sup 11} Ω cm. • Devices showed sensitivity to 5.48 MeV alpha particles. • Devices were characterized with a 337 nm laser light. • Devices were evaluated

  8. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    Science.gov (United States)

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. This journal is © The Royal Society of Chemistry 2011

  9. Customized electric power storage device for inclusion in a microgrid

    Science.gov (United States)

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  10. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    Directory of Open Access Journals (Sweden)

    Theodor Doll

    2006-04-01

    Full Text Available Micromachined thermal heater platforms offer low electrical power consumptionand high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR gas- and liquid monitoring systems. In this paper, we report oninvestigations on silicon-on-insulator (SOI based infrared (IR emitter devices heated byemploying different kinds of metallic and semiconductor heater materials. Our resultsclearly reveal the superior high-temperature performance of semiconductor over metallicheater materials. Long-term stable emitter operation in the vicinity of 1300 K could beattained using heavily antimony-doped tin dioxide (SnO2:Sb heater elements.

  11. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  12. Semiconductor physics an introduction

    CERN Document Server

    Seeger, Karlheinz

    1999-01-01

    Semiconductor Physics - An Introduction - is suitable for the senior undergraduate or new graduate student majoring in electrical engineering or physics. It will also be useful to solid-state scientists and device engineers involved in semiconductor design and technology. The text provides a lucid account of charge transport, energy transport and optical processes, and a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, the quantum Hall effect and the calculation of the influence of a magnetic field on the carrier distribution function. This 6th edition has been revised and corrected, and new sections have been added to different chapters.

  13. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)

  14. Unsupervised Power Profiling for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik

    Today, power consumption is a main limitation for mobile phones. To minimize the power consumption of popular and traditionally power-hungry location-based services requires knowledge of how individual phone features consume power, so that those features can be utilized intelligently for optimal...... power savings while at the same time maintaining good quality of service. This paper proposes an unsupervised API-level method for power profiling mobile phones based on genetic algorithms. The method enables accurate profiling of the power consumption of devices and thereby provides the information...

  15. Unsupervised Power Profiling for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik

    2011-01-01

    Today, power consumption is a main limitation for mobile phones. To minimize the power consumption of popular and traditionally power-hungry location-based services requires knowledge of how individual phone features consume power, so that those features can be utilized intelligently for optimal...... power savings while at the same time maintaining good quality of service. This paper proposes an unsupervised API-level method for power profiling mobile phones based on genetic algorithms. The method enables accurate profiling of the power consumption of devices and thereby provides the information...

  16. Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication

    International Nuclear Information System (INIS)

    Likhachev, D.V.

    2015-01-01

    During semiconductor device fabrication, control of the layer thicknesses is an important task for in-line metrology since the correct thickness values are essential for proper device performance. At the present time, ellipsometry is widely used for routine process monitoring and process improvement as well as characterization of various materials in the modern nanoelectronic manufacturing. The wide recognition of this technique is based on its non-invasive, non-intrusive and non-destructive nature, high measurement precision, accuracy and speed, and versatility to characterize practically all types of materials used in modern semiconductor industry (dielectrics, semiconductors, metals, polymers, etc.). However, it requires the use of one of the multi-parameter non-linear optimization methods due to its indirect nature. This fact creates a big challenge for analysis of multilayered structures since the number of simultaneously determined model parameters, for instance, thin film thicknesses and model variables related to film optical properties, should be restricted due to parameter cross-correlations. In this paper, we use parametric sensitivity analysis to evaluate the importance of various model parameters and to suggest their optimal search ranges. In this work, the method is applied practically for analysis of a few structures with up to five-layered film stack. It demonstrates an evidence-based improvement in accuracy of multilayered thin-film thickness measurements which suggests that the proposed approach can be useful for industrial applications. - Highlights: • An improved method for multilayered thin-film stack characterization is proposed. • The screening-type technique based on so-called “elementary effects” was employed. • The model parameters were ranked according to relative importance for model output. • The method is tested using two examples of complex thin-film stack characterization. • The approach can be useful in many practical

  17. Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Likhachev, D.V., E-mail: dmitriy.likhachev@globalfoundries.com

    2015-08-31

    During semiconductor device fabrication, control of the layer thicknesses is an important task for in-line metrology since the correct thickness values are essential for proper device performance. At the present time, ellipsometry is widely used for routine process monitoring and process improvement as well as characterization of various materials in the modern nanoelectronic manufacturing. The wide recognition of this technique is based on its non-invasive, non-intrusive and non-destructive nature, high measurement precision, accuracy and speed, and versatility to characterize practically all types of materials used in modern semiconductor industry (dielectrics, semiconductors, metals, polymers, etc.). However, it requires the use of one of the multi-parameter non-linear optimization methods due to its indirect nature. This fact creates a big challenge for analysis of multilayered structures since the number of simultaneously determined model parameters, for instance, thin film thicknesses and model variables related to film optical properties, should be restricted due to parameter cross-correlations. In this paper, we use parametric sensitivity analysis to evaluate the importance of various model parameters and to suggest their optimal search ranges. In this work, the method is applied practically for analysis of a few structures with up to five-layered film stack. It demonstrates an evidence-based improvement in accuracy of multilayered thin-film thickness measurements which suggests that the proposed approach can be useful for industrial applications. - Highlights: • An improved method for multilayered thin-film stack characterization is proposed. • The screening-type technique based on so-called “elementary effects” was employed. • The model parameters were ranked according to relative importance for model output. • The method is tested using two examples of complex thin-film stack characterization. • The approach can be useful in many practical

  18. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2013-01-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment

  19. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power...

  20. Non-logic devices in logic processes

    CERN Document Server

    Ma, Yanjun

    2017-01-01

    This book shows readers how to design semiconductor devices using the most common and lowest cost logic CMOS processes.  Readers will benefit from the author’s extensive, industrial experience and the practical approach he describes for designing efficiently semiconductor devices that typically have to be implemented using specialized processes that are expensive, time-consuming, and low-yield. The author presents an integrated picture of semiconductor device physics and manufacturing techniques, as well as numerous practical examples of device designs that are tried and true.

  1. Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO2 films on silicon

    International Nuclear Information System (INIS)

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2015-01-01

    We report on ultraviolet-visible (UV-Vis) electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with the CeO 2 films annealed at low temperatures. At the same injection current, the UV-Vis EL from the MOS device with the 550 °C-annealed CeO 2 film is much stronger than that from the counterpart with the 450 °C-annealed CeO 2 film. This is due to that the 550 °C-annealed CeO 2 film contains more Ce 3+ ions and oxygen vacancies. It is tentatively proposed that the recombination of the electrons in multiple oxygen-vacancy–related energy levels with the holes in Ce 4f 1 energy band pertaining to Ce 3+ ions leads to the UV-Vis EL

  2. Prognostics Of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven And Model-Based Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor...

  3. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz

    Science.gov (United States)

    Moustakas, Theodore D.; Paiella, Roberto

    2017-10-01

    This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, ‘visible blind’ and ‘solar blind’ detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.

  4. Transmission formalism for supercurrent flow in multiprobe superconductor-semiconductor-superconductor devices

    International Nuclear Information System (INIS)

    van Wees, B.J.; Lenssen, K.H.; Harmans, C.J.P.M.

    1991-01-01

    A theoretical study is given of supercurrent flow in a one-dimensional semiconductor channel coupled to superconductors at both ends. In addition, the channel is coupled to a semiconductor reservoir by means of a junction with variable coupling strength var-epsilon. The supercurrent I(cphi) is calculated from the phase-coherent propagation of electronlike and holelike excitations emitted by the superconductor reservoirs, together with electron and hole excitations from the semiconductor reservoir. The effect of temperature and var-epsilon on I(cphi) is studied. It is shown that a voltage applied between the semiconductor reservoir and the superconductors modifies the I(cphi) relation, even in the limit var-epsilon →0

  5. 33rd International Conference on the Physics of Semiconductors

    International Nuclear Information System (INIS)

    2017-01-01

    Preface to the Proceedings of the 33rd International Conference on the Physics of Semiconductors, Beijing, 2016 Shaoyun Huang 1 , Yingjie Xing 1 , Yang Ji 2 , Dapeng Yu 3 , and Hongqi Xu 1 1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China 2 SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China From July 31 st to August 5 th , 2016, the 33rd International Conference on the Physics of Semiconductors (ICPS 2016) was held in Beijing, China, with a great success. The International Conference on the Physics of Semiconductors began in the 1950’s and is a premier biennial meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties. Reflecting the state of the art developments in semiconductor physics, ICPS 2016 served as an international forum for scholars, researchers, and specialists across the globe to discuss future research directions and technological advancements. The main topics of ICPS 2016 included: • Material growth, structural properties and characterization, phonons • Wide-bandgap semiconductors • Narrow-bandgap semiconductors • Carbon: nanotubes and graphene • 2D Materials beyond graphene • Organic semiconductors • Topological states of matter, topological Insulators and Weyl semimetals • Transport in heterostructures • Quantum Hall effects • Spintronics and spin phenomena • Electron devices and applications • Optical properties, optoelectronics, solar cells • Quantum optics, nanophotonics • Quantum information • Other topics in semiconductor physics and devices • Special topic: Majorana fermions in solid state (paper)

  6. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  7. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  8. Organic 'Plastic' Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sariciftci, N.S.

    2006-01-01

    Recent developments on conjugated polymer based photovoltaic diodes and photoactive organic field effect transistors (photOFETs) are discussed. The photophysics of such devices is based on the photoinduced charge transfer from donor type semiconducting conjugated polymers onto acceptor type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C 6 0. Potentially interesting applications include sensitization of the photoconductivity and photovoltaic phenomena as well as photoresponsive organic field effect transistors (photOFETs). Furthermore, organic polymeric/inorganic nanoparticle based 'hybrid' solar cells will be discussed. This talk gives an overview of materials' aspect, charge-transport, and device physics of organic diodes and field-effect transistors. Furthermore, due to the compatibility of carbon/hydrogen based organic semiconductors with organic biomolecules and living cells there can be a great opportunity to integrate such organic semiconductor devices (biOFETs) with the living organisms. In general the largely independent bio/lifesciences and information technology of today, can be thus bridged in an advanced cybernetic approach using organic semiconductor devices embedded in bio-lifesciences. This field of bio-organic electronic devices is proposed to be an important mission of organic semiconductor devices

  9. Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy

    Science.gov (United States)

    Ho, I.-Chen

    Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms

  10. Cryogenic semiconductor high-intensity radiation monitors

    International Nuclear Information System (INIS)

    Palmieri, V.G.; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O'; Ruggiero, G.; Sonderegger, P.

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux

  11. Power Factor Improvement Using Automatic Power Factor Compensation (APFC Device for Medical Industries in Malaysia

    Directory of Open Access Journals (Sweden)

    Zaidi Maryam Nabihah

    2018-01-01

    Full Text Available This paper present the project designed to correcting power factor for medical industries in Malaysia automatically. Which with hope to make the cost and energy usage efficient, because the energy source are depleting due to increase in population. Power factor is the ratio of real power and apparent power. This definition is mathematically represented as kW/kVA where kW is active power and kVA is apparent power (active + reactive. Reactive power is the non-working power generated by the magnetic and inductive load to generate magnetic flux. The increase in reactive power increase the apparent power so the power factor will decrease. Low pF will cause the industry to meet high demand thus making it less efficient. The main aim of this project is to increasing the current power factor of medical industries from 0.85 to 0.90. Power factor compensation contribute to reduction in current-dependent losses and increase energy efficiency while expanding the reliability of planning for future energy network. As technology develops, the gradual cost and efficiency penalty should reduce. Therefore, automatic power factor compensation device should become cost-effective and smaller device over time. That is the reason this project is using programmable device as it is a miniature architecture device.

  12. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  13. Customized electric power storage device for inclusion in a collective microgrid

    Science.gov (United States)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    2016-02-16

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specified load parameters in the at least two connected microgrids.

  14. Photoelectrochemical cell including Ga(Sb.sub.x)N.sub.1-x semiconductor electrode

    Science.gov (United States)

    Menon, Madhu; Sheetz, Michael; Sunkara, Mahendra Kumar; Pendyala, Chandrashekhar; Sunkara, Swathi; Jasinski, Jacek B.

    2017-09-05

    The composition of matter comprising Ga(Sb.sub.x)N.sub.1-x where x=0.01 to 0.06 is characterized by a band gap between 2.4 and 1.7 eV. A semiconductor device includes a semiconductor layer of that composition. A photoelectric cell includes that semiconductor device.

  15. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Weiss, Dieter

    2000-01-01

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  16. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  17. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Kono, Shigehiro.

    1990-01-01

    Among a plurality of power monitoring programs in a reactor power monitoring device, rapid response is required for a scram judging program for the power judging processing of scram signals. Therefore, the scram judging program is stored independently from other power monitoring programs, applied with a priority order, and executed in parallel with other programs, to output scram signals when the detected data exceeds a predetermined value. As a result, the capacity required for the scram judging program is reduced and the processing can be conducted in a short period of time. In addition, since high priority is applied to the scram judging program which is divided into a small capacity, it is executed at higher frequency than other programs when they are executed in parallel. That is, since the entire processings for the power monitoring program are repeated in a short cycle, the response speed of the scram signals required for high responsivity can be increased. (N.H.)

  18. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  19. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  20. Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Bingqi Sun

    2018-06-01

    Full Text Available Two-dimensional (2D semiconductors are thought to belong to the most promising candidates for future nanoelectronic applications, due to their unique advantages and capability in continuing the downscaling of complementary metal–oxide–semiconductor (CMOS devices while retaining decent mobility. Recently, optoelectronic devices based on novel synthetic 2D semiconductors have been reported, exhibiting comparable performance to the traditional solid-state devices. This review briefly describes the development of the growth of 2D crystals for applications in optoelectronics, including photodetectors, light-emitting diodes (LEDs, and solar cells. Such atomically thin materials with promising optoelectronic properties are very attractive for future advanced transparent optoelectronics as well as flexible and wearable/portable electronic devices.

  1. Towards zero-power ICT

    Science.gov (United States)

    Gammaitoni, Luca; Chiuchiú, D.; Madami, M.; Carlotti, G.

    2015-06-01

    Is it possible to operate a computing device with zero energy expenditure? This question, once considered just an academic dilemma, has recently become strategic for the future of information and communication technology. In fact, in the last forty years the semiconductor industry has been driven by its ability to scale down the size of the complementary metal-oxide semiconductor-field-effect transistor, the building block of present computing devices, and to increase computing capability density up to a point where the power dissipated in heat during computation has become a serious limitation. To overcome such a limitation, since 2004 the Nanoelectronics Research Initiative has launched a grand challenge to address the fundamental limits of the physics of switches. In Europe, the European Commission has recently funded a set of projects with the aim of minimizing the energy consumption of computing. In this article we briefly review state-of-the-art zero-power computing, with special attention paid to the aspects of energy dissipation at the micro- and nanoscales.

  2. Power control device

    International Nuclear Information System (INIS)

    Fukawa, Naohiro.

    1982-01-01

    Purpose: To alleviate the load of an operator by automatically operating the main controller, the speed controller, etc. of a recirculation control system and safely operating them without erroneous operation for long period of time, thereby improving the efficiency of a plant. Constitution: An electric type hydraulic control device controls loads of a turbine and a generator and outputs a control signal also to the main controller of a recirculation flow rate control system. At this time, the main controller is set at an automatic position, and the speed controller receives a recirculation pump speed signal from the main controller at the automatic position. The speed controller outputs a pump speed control signal to the recirculation pump system, and a reactor generates a power corresponding thereto. When the power control is automatically performed by the recirculation flow rate control, an operator sets a rate of change of the recirculation pump speed and the rate of change of the mean power range monitor at a change rate setting unit. Therefore, the control of the recirculation flow rate under the power control can be substantially entirely automated. (Yoshigara, H.)

  3. A novel electro-thermal model for wide bandgap semiconductor based devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...

  4. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  5. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  6. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Santos, Luiz A.P.

    2009-01-01

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  7. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  8. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  9. Big power from walking

    Science.gov (United States)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  10. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    Science.gov (United States)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  11. Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sickmann, Jan, E-mail: jan.sickmann@triebenberg.de [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany); Formanek, Petr; Linck, Martin [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany); Muehle, Uwe [Institut fuer Werkstoffwissenschaft, Technische Universitaet Bergakademie Freiberg, 09599 Freiberg (Germany); Lichte, Hannes [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01069 Dresden (Germany)

    2011-03-15

    Electron holography is the highest resolving tool for dopant profiling at nanometre-scale resolution. In order to measure the object areas of interest in a hologram, both a wide field of view and a sufficient lateral resolution are required. The usual path of rays for recording holograms with an electron biprism using the standard objective lens does not meet these requirements, because the field of view amounts to some 10 nm only, however, at a resolution of 0.1 nm better than needed here. Therefore, instead of the standard objective lens, the Lorentz lens is widely used for holography of semiconductors, since it provides a field of view up to 1000 nm at a sufficient lateral resolution of about 10 nm. Since the size of semiconductor structures is steadily shrinking, there is now a need for better lateral resolution at an appropriate field of view. Therefore, additional paths of rays for recording holograms are studied with special emphasis on the parameters field of view and lateral resolution. The findings allow an optimized scheme with a field of view of 200 nm and a lateral resolution of 3.3 nm filling the gap between the existing set-ups. In addition, the Lorentz lens is no longer required for investigation of non-magnetic materials, since the new paths of rays are realized with the standard objective lens and diffraction lens. An example proves the applicability of this arrangement for future semiconductor technology. -- Research highlights: {yields} Imaging modes for potential mapping in semiconductor devices by electron holography. {yields} Using objective and diffraction lens for imaging instead of Lorentz lens. {yields} Detailed investigation of four different paths of rays and its basic parameters for holographic application: field of view, lateral resolution, signal resolution. {yields} Measuring the phase profile of a field effect transistor with 3 nm lateral resolution at field of view of 200 nm.

  12. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  13. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan

    2010-01-01

    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  14. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  15. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  16. Feasibility Study for High Power RF – Energy Recovery in Particle Accelerators

    CERN Document Server

    Betz, Michael

    2010-01-01

    When dealing with particle accelerators, especially in systems with travelling wave structures and low beam loading, a substantial amount of RF power is dissipated in 50Ω termination loads. For the Super Proton Synchrotron (SPS) at Cern this is 69 % of the incident RF power or about 1 MW. Different ideas, making use of that otherwise dissipated power, are presented and their feasibility is reviewed. The most feasible one, utilizing an array of semiconductor based RF/DC modules, is used to create a design concept for energy recovery in the SPS. The modules are required to operate at high power, high efficiency and with low harmonic radiation. Besides the actual RF rectifier, they contain additional components to ensure a graceful degradation of the overall system. Different rectifier architectures and semiconductor devices are compared and the most suitable ones are chosen. Two prototype devices were built and operated with up to 400 W of pulsed RF power. Broadband measurements – capturing all harmonics up ...

  17. A Novel Kind of Transverse Micro-Stack High-Power Diode Bars

    International Nuclear Information System (INIS)

    Lei, Zhang; Bi-Feng, Cui; Jian-Jun, Li; Wei-Lling, Guo; Zhi-Qun, Wang; Guang-Di, Shen

    2008-01-01

    Novel transverse micro-stack semiconductor laser bars are put forward to improve the output optical power of semiconductor laser bars at low injection current. More importantly, the novel laser bars have a coupled large optical cavity, which can overcome the problem of catastrophic optical damage and improve light beam quality due to the coherently coupled emitting along the transverse direction. The micro-stack tunnel regeneration tri-active region laser structure was grown by metal organic chemical vapour deposition. For a weakly coupled uncoated device, the optical power exceeds 60W under 50A driving current and the slope efficiency reaches 1.55W/A. Further experiments show that the perpendicular divergence of 23° is achieved from transverse strongly coupled devices

  18. Maximizing electrical power supply using FACTS devices

    OpenAIRE

    Lehmann, Karsten; Bent, Russell; Pan, Feng

    2015-01-01

    Modern society critically depends on the services electric power provides. Power systems rely on a network of power lines and transformers to deliver power from sources of power (generators) to the consumers (loads). However, when power lines fail (for example, through lightning or natural disasters) or when the system is heavily used, the network is often unable to fulfill all of the demand for power. While systems are vulnerable to these failures, increasingly, sophisticated control devices...

  19. Monitoring device for local power peaking coefficients

    International Nuclear Information System (INIS)

    Mihashi, Ishi

    1987-01-01

    Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)

  20. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian

    2013-04-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment are required, this design is not only easier from a technological point of view, but it also has the potential to reduce damage introduced to the semiconductor during fabrication. The device shows a similar magnetoresistance ratio as a conventional one but it has a lower sensitivity. Because of the reduced resistance, and hence less noise, high magnetic field resolution is maintained. © 1980-2012 IEEE.

  1. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  2. Circuit design techniques for non-crystalline semiconductors

    CERN Document Server

    Sambandan, Sanjiv

    2012-01-01

    Despite significant progress in materials and fabrication technologies related to non-crystalline semiconductors, fundamental drawbacks continue to limit real-world application of these devices in electronic circuits. To help readers deal with problems such as low mobility and intrinsic time variant behavior, Circuit Design Techniques for Non-Crystalline Semiconductors outlines a systematic design approach, including circuit theory, enabling users to synthesize circuits without worrying about the details of device physics. This book: Offers examples of how self-assembly can be used as a powerf

  3. Controlling Molecular Doping in Organic Semiconductors.

    Science.gov (United States)

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Protective device for battery to protect against heavy discharge

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-08

    The protective device according to the invention switches the equipment being supplied from the battery at a pre-determined discharge voltage by means of a switching device controlled by monitoring equipment. A semi-conductor element is used as the switching device. The current taken from the battery flows through the semi-conductor element to the equipment and to the monitoring device. When the discharge voltage is reached the semi-conductor element blocks. The semi-conductor switch can consist of transistors. The invention is explained by means of drawings and examples.

  5. Power electronics and motor drives

    CERN Document Server

    Wilamowski, Bogdan M

    2011-01-01

    Universities throughout the world typically provide an excellent education in the various aspects of electronics, however their focus is normally on traditional low power electronics. In contrast, in the industrial environment, there is a need for high power electronics that is used to control electromechanical systems in addition to the low power electronics typically employed for analog and digital systems. To address this need, Section 1 of this volume in The Industrial Electronics Handbook, Second Edition, is focused on special high power semiconductor devices. Section 2 not only describes

  6. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  7. The pursuit of electrically-driven organic semiconductor lasers

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro

    2014-01-01

    Organic semiconductors have many favourable and plastic-like optical properties that are promising for the development of low energy consuming laser devices. Although optically-pumped organic semiconductor lasers have been demonstrated since the early days of lasers, electrically-driven organic

  8. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.

    Science.gov (United States)

    Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2012-06-15

    A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.

  9. VLSI scaling methods and low power CMOS buffer circuit

    International Nuclear Information System (INIS)

    Sharma Vijay Kumar; Pattanaik Manisha

    2013-01-01

    Device scaling is an important part of the very large scale integration (VLSI) design to boost up the success path of VLSI industry, which results in denser and faster integration of the devices. As technology node moves towards the very deep submicron region, leakage current and circuit reliability become the key issues. Both are increasing with the new technology generation and affecting the performance of the overall logic circuit. The VLSI designers must keep the balance in power dissipation and the circuit's performance with scaling of the devices. In this paper, different scaling methods are studied first. These scaling methods are used to identify the effects of those scaling methods on the power dissipation and propagation delay of the CMOS buffer circuit. For mitigating the power dissipation in scaled devices, we have proposed a reliable leakage reduction low power transmission gate (LPTG) approach and tested it on complementary metal oxide semiconductor (CMOS) buffer circuit. All simulation results are taken on HSPICE tool with Berkeley predictive technology model (BPTM) BSIM4 bulk CMOS files. The LPTG CMOS buffer reduces 95.16% power dissipation with 84.20% improvement in figure of merit at 32 nm technology node. Various process, voltage and temperature variations are analyzed for proving the robustness of the proposed approach. Leakage current uncertainty decreases from 0.91 to 0.43 in the CMOS buffer circuit that causes large circuit reliability. (semiconductor integrated circuits)

  10. α-spectrometric device equipped with semi-conductors for direct measurement of transuranium elements on large area filters

    International Nuclear Information System (INIS)

    Fessler, H.; Pawelzik, J.

    1984-10-01

    A device was developed with an array of 8 silicon surface barrier detectors inside a vacuum chamber containing a rotating sample holder for large areas (200 mm diameter) aerosol filters. It serves for quick identification of α-emitters on these aerosol filters, and allows to measure the α-particles with a relatively constant efficiency along a filter diameter. Thus, the radiochemical treatment of single filters can be avoided. Troubles appeared in the course of development of defective semiconductors and their temperature dependence. To suppress the influence of temperature a cooling device was built. During practical testing a cross-efficiency of 13.6% was measured. It is possible to identify α-emitting nuclides with an activity of 10 -1 Bq per sample during about 2 hours of measuring time. Appropriate methodes of calculation are indicated. The data output of the device is suited for transfer to a computer. (orig./HP) [de

  11. Calculation of the internal electric field within doped semiconductors

    International Nuclear Information System (INIS)

    Phelps, G J

    2012-01-01

    A detailed model for the calculation of the internal potential and electric field profile within doped semiconductors is developed from a first-principles approach and presented in this paper. The model utilizes Poisson's equation and basic Boltzmann statistics to develop a standard nonlinear Poisson–Boltzmann equation (NPBE) for doped semiconductors. The resultant NPBE links the internal electrostatic potential within the doped semiconductor to the doping concentration profile of the semiconductor device under consideration. The NPBE is solved by the application of numerical methods, is general in formulation, supporting multiple simultaneous dopant configurations, and may be applied to any semiconductor type. Calculated results of the electric field profile for various semiconductor dopant structures derived using the model are additionally presented in this paper. The electric field results predicted by the model are shown to be in excellent agreement with those found by other methods. The model may be expanded to accommodate effects involving internal substrate electron–hole pair generation (gemination) caused by photo-ionization for application to and the modeling of solar cell device structures. (paper)

  12. Operation control device for nuclear power plants

    International Nuclear Information System (INIS)

    Suto, Osamu.

    1982-01-01

    Purpose: To render the controlling functions of a central control console more centralized by constituting the operation controls for a nuclear power plant with computer systems having substantially independent functions such as those of plant monitor controls, reactor monitor management and CRT display and decreasing interactions between each of the systems. Constitution: An input/output device for the input of process data for a nuclear power plant and indication data for a plant control console is connected to a plant supervisory and control computer system and a display computer system, the plant supervisory control computer system and a reactor and management computer system are connected with a CRT display control device, a printer and a CRT display input/output device, and the display computer system is connected with the CRT display control device and the CRT display unit on the central control console, whereby process input can be processed and displayed at high speed. (Yoshino, Y.)

  13. Smartphone-Driven Low-Power Light-Emitting Device

    Directory of Open Access Journals (Sweden)

    Hea-Ja An

    2017-01-01

    Full Text Available Low-level light (laser therapy (LLLT has been widely researched in the recent past. Existing LLLT studies were performed based on laser. Recently, studies using LED have increased. This study presents a smartphone-driven low-power light-emitting device for use in colour therapy as an alternative medicine. The device consists of a control unit and a colour probe. The device is powered by and communicates with a smartphone using USB On-The-Go (OTG technology. The control unit controls emitting time and intensity of illumination with the configuration value of a smartphone application. Intensity is controlled by pulse width modulation (PWM without feedback. A calibration is performed to resolve a drawback of no feedback. To calibrate, intensity is measured in every 10 percent PWM output. PWM value is linearly calibrated to obtain accurate intensity. The device can control the intensity of illumination, and so, it can find application in varied scenarios.

  14. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    International Nuclear Information System (INIS)

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  15. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  16. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  17. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  18. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  19. Integrated Off-Line Power Converter

    DEFF Research Database (Denmark)

    Fan, Lin

    The miniaturization trend of industrial and consumer electronics continuously drives the demand of reductions in size, weight, and cost of power supplies. The examples of such applications considered in this research are light-emitting diode (LED) drivers for intelligent lighting systems and inte......The miniaturization trend of industrial and consumer electronics continuously drives the demand of reductions in size, weight, and cost of power supplies. The examples of such applications considered in this research are light-emitting diode (LED) drivers for intelligent lighting systems......-resistances) of these devices are jointly determined by the device, layout, package, and PCB parasitic properties. The research highly contributes to the development towards Power Supply on Chip (PwrSoC) regardless of topologies and switching technologies. First, parasitic capacitances of power semiconductors are a part...

  20. Electroless silver plating of the surface of organic semiconductors.

    Science.gov (United States)

    Campione, Marcello; Parravicini, Matteo; Moret, Massimo; Papagni, Antonio; Schröter, Bernd; Fritz, Torsten

    2011-10-04

    The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor. © 2011 American Chemical Society

  1. 46 CFR 183.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  2. Effects of Lightning Injection on Power-MOSFETs

    Science.gov (United States)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  3. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  4. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  5. Enersave API: Android-based power-saving framework for mobile devices

    Directory of Open Access Journals (Sweden)

    A.M. Muharum

    2017-06-01

    Full Text Available Power consumption is a major factor to be taken into consideration when using mobile devices in the IoT field. Good Power management requires proper understanding of the way in which it is being consumed by the end-devices. This paper is a continuation of the work in Ref. [1] and proposes an energy saving API for the Android Operating System in order to help developers turn their applications into energy-aware ones. The main features heavily used for building smart applications, greatly impact battery life of Android devices and which have been taken into consideration are: Screen brightness, Colour scheme, CPU frequency, 2G/3G network, Maps, Low power localisation, Bluetooth and Wi-Fi. The assessment of the power-saving API has been performed on real Android devices and also compared to the most powerful power-saving applications – DU Battery Saver and Battery Saver 2016 – currently available on the Android market. Comparisons demonstrate that the Enersave API has a significant impact on power saving when incorporated in android applications. While DU Battery Saver and Battery Saver 2016 help saving 22.2% and 40.5% of the battery power respectively, the incorporation of the Enersave API in android applications can help save 84.6% of battery power.

  6. Oxide Ferromagnetic Semiconductors for Spin-Electronic Transprt

    International Nuclear Information System (INIS)

    Pandey, R.K.

    2008-01-01

    The objective of this research was to investigate the viability of oxide magnetic semiconductors as potential materials for spintronics. We identified some members of the solid solution series of ilmenite (FeTiO3) and hematite (Fe2O3), abbreviated as (IH) for simplicity, for our investigations based on their ferromagnetic and semiconducting properties. With this objective in focus we limited our investigations to the following members of the modified Fe-titanates: IH33 (ilmenitehematite with 33 atomic percent hematite), IH45 (ilmenite-hematite with 45 atomic percent hematite), Mn-substituted ilmenite (Mn-FeTiO3), and Mn-substituted pseudobrookite (Mn- Fe2TiO5). All of them are: (1) wide bandgap semiconductors with band gaps ranging in values between 2.5 to 3.5 eV; (2) n-type semiconductors; (3) they exhibit well defined magnetic hysteresis loops and (4) their magnetic Curie points are greater than 400K. Ceramic, film and single crystal samples were studied and based on their properties we produced varistors (also known as voltage dependent resistors) for microelectronic circuit protection from power surges, three-terminal microelectronic devices capable of generating bipolar currents, and an integrated structured device with controlled magnetic switching of spins. Eleven refereed journal papers, three refereed conference papers and three invention disclosures resulted from our investigations. We also presented invited papers in three international conferences and one national conference. Furthermore two students graduated with Ph.D. degrees, three with M.S. degrees and one with B.S. degree. Also two post-doctoral fellows were actively involved in this research. We established the radiation hardness of our devices in collaboration with a colleague in an HBCU institution, at the Cyclotron Center at Texas A and M University, and at DOE National Labs (Los Alamos and Brookhaven). It is to be appreciated that we met most of our goals and expanded vastly the scope of

  7. Adaptive electrothermal protection of power converters

    Directory of Open Access Journals (Sweden)

    Baraniuk G. A.

    2017-06-01

    Full Text Available Thermal management for power converters during normal operation and transient modes when electrical components are warmed up is an actual problem. This can be particularly important for converters with intermittent duty operation, e.g. power supplies for resistance welding. According to some research, nearly 60% of failures are temperature-induced, and for every 10°C temperature rise in operating environment the failure rate nearly doubles. In this paper, thermal motion of state equations eigenvalue is analysed. It is shown, that in semiconductor converters with an output smoothing filter it is appropriate to use thermal protection devices based on thermal normalisation of the converter filter and, while for cases when short circuits are possible it is appropriate to use a soft start system with thermal adaptation for soft start time factor. Based on these results, two systems of thermal protections operating for semiconductor power converters are introduced. Simulation of combined electromagnetic and thermal processes in buck converter operating with both thermal management systems in overlapping environments MATLAB/Simulink and PLECS showed the possibility to significantly reduce thermal shock on semiconductor components. Using the system of filter parameters normalisation decreases the temperature of the crystal from 210°C to 85°C, using the adaptive soft start system decreases the temperature from 180°C to 80°C. The simulation results are confirmed by tests on real devices.

  8. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  9. Processes for multi-layer devices utilizing layer transfer

    Science.gov (United States)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  10. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  11. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  12. 46 CFR 120.360 - Semiconductor rectifier systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  13. Retraction of “Accurate Prediction of Essential Fundamental Properties for Semiconductors Used in Solar-Energy Conversion Devices from Range-Separated Hybrid Density Functional Theory”

    KAUST Repository

    Harb, Moussab

    2016-01-01

    The author retracts this article due to similarities with a previously published article by Le Bahers, T.; Rerat, M.; Sautet, ́ P. Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT. J. Phys

  14. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  15. State-of-the-art technologies of gallium oxide power devices

    Science.gov (United States)

    Higashiwaki, Masataka; Kuramata, Akito; Murakami, Hisashi; Kumagai, Yoshinao

    2017-08-01

    Gallium oxide (Ga2 O3 ) has gained increased attention for power devices due to its superior material properties and the availability of economical device-quality native substrates. This review illustrates recent advances in Ga2 O3 device technologies, beginning with an overview of the social circumstances that motivate the development of new-generation switching devices. Following an introduction to the material properties of Ga2 O3 from the viewpoint of power electronics, growth technologies of Ga2 O3 bulk single crystals and epitaxial thin films are discussed. The fabrication and performance of state-of-the-art Ga2 O3 transistors and diodes are then described. We conclude by identifying the directions and challenges of Ga2 O3 power device development in the near future.

  16. Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy

    International Nuclear Information System (INIS)

    Fujita, Takaya; Matsumura, Koji; Itoh, Hiroshi; Fujita, Daisuke

    2014-01-01

    Scanning capacitance microscopy (SCM) is based on a contact-mode variant of atomic force microscopy, which is used for imaging two-dimensional carrier (electrons and holes) distributions in semiconductor devices. We introduced a method of quantification of the carrier concentration by experimentally deduced calibration curves, which were prepared for semiconductor materials such as silicon and silicon carbide. The analytical procedure was circulated to research organizations in a round-robin test. The effectiveness of the method was confirmed for practical analysis and for what is expected for industrial pre-standardization from the viewpoint of comparability among users. It was also applied to other electric scanning probe microscopy techniques such as scanning spreading resistance microscopy and scanning nonlinear dielectric microscopy. Their depth profiles of carrier concentration were found to be in good agreement with those characterized by SCM. These results suggest that our proposed method will be compatible with future next-generation microscopy. (paper)

  17. Optimization of Nonlinear Figure-of-Merits of Integrated Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Jørgensen, Ivan Harald Holger; Knott, Arnold

    2016-01-01

    State-of-the-art power semiconductor industry uses figure-of-merits (FOMs) for technology-to-technology and/or device-to-device comparisons. However, the existing FOMs are fundamentally nonlinear due to the nonlinearities of the parameters such as the gate charge and the output charge versus...

  18. Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Kreisbeck, Christoph

    2012-06-18

    Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a

  19. A Component-Minimized Single-Phase Active Power Decoupling Circuit with Reduced Current Stress to Semiconductor Switches

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    inductor. With such a configuration, this leg can control the current going into the two output capacitors connected in series for power decoupling, and the other leg can control the line current according to active and reactive power requirement. The proposed topology does not require additional passive...... component, e.g. inductors or film capacitors for ripple energy storage because this task can be accomplished by the dc-link capacitors, and therefore its implementation cost can be minimized. Another unique feature of the proposed topology is that the current stress of power semiconductors can be reduced...

  20. Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2017-11-01

    Full Text Available In this paper, we present an energy-efficient resource allocation and power control scheme for D2D (Device-to-Device multicasting transmission. The objective is to maximize the overall energy-efficiency of D2D multicast clusters through effective resource allocation and power control schemes, while considering the quality of service (QoS requirements of both cellular users (CUs and D2D clusters. We first build the optimization model and a heuristic resource and power allocation algorithm is then proposed to solve the energy-efficiency problem with less computational complexity. Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of throughput per energy consumption.

  1. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  2. Structure and application of galvanomagnetic devices

    CERN Document Server

    Weiss, H

    1969-01-01

    International Series of Monographs on Semiconductors, Volume 8: Structure and Application of Galvanomagnetic Devices focuses on the composition, reactions, transformations, and applications of galvanomagnetic devices. The book first ponders on basic physical concepts, design and fabrication of galvanomagnetic devices, and properties of galvanomagnetic devices. Discussions focus on changes in electrical properties on irradiation with high-energy particles, magnetoresistor field-plate, Hall generator, preparation of semiconductor films by vacuum deposition, structure of field-plate magnetoresist

  3. Gallium nitride vertical power devices on foreign substrates: a review and outlook

    Science.gov (United States)

    Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás

    2018-07-01

    Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.

  4. FY1995 research on nonlinear optical devices using super-lattice semiconductors; 1995 nendo chokoshi active hisenkei soshi wo mochiita chokosoku hikari seigyo gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose is to develop technologies on efficient generation and control of femtosecond optical pulses using a novel semiconductor optical devices. We studied a modelocked Cr:forsterite laser pumped by a diode pumped Nd:YVO4 laser. Both Kerr lens mode locking and semi-conductor saturable absorber initiated mode locking have been achieved. The minimum pulse width for pure Kerr lens mode locking is 26.4 fs, while for the semiconductor saturable absorber initiated mode locking, the pulse width is 36 fs. The latter is very resistant to the environment perturbations. We also present the measured dispersion data for the forsterite crystal and the SESAM, and discuss the dispersion compensation technique. (NEDO)

  5. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  6. SiC materials: a semiconductor family for the next century

    Science.gov (United States)

    Camassel, Jean; Contreras, Sylvie; Robert, Jean-Louis

    2000-03-01

    The current status of SiC semiconductor materials is reviewed, with emphasize on forthcoming applications. In a first part one focuses on the most important physical properties. Then, power device and micro-opto-electronic applications, using both 4H and 6H-SiC, are presented. Technological problems which have to be solved in order to realize simple planar device are considered. Emphasize is set on the French and European efforts, and on the USA and Japan's ones. In a second part, one deals with advanced high temperature industrial sensor applications. Interest for cubic 3C-SiC eposited on Silicon On Insulator (SOI) is demonstrated and results of comparative examinations of different 3CSiC/SOI materials are briefly given.

  7. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Tuttle, Blair R. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2015-06-15

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO{sub 2}/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  8. Analyzing Single-Event Gate Ruptures In Power MOSFET's

    Science.gov (United States)

    Zoutendyk, John A.

    1993-01-01

    Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.

  9. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    Science.gov (United States)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  10. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  11. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  12. Peculiarities of charge transport in a semiconductor gas discharge electronic devices

    International Nuclear Information System (INIS)

    Koch, E.; Chivi, M.; Salamov, B.G.; Salamov, B.G.

    2009-01-01

    The memory effect in planar semiconductor gas discharge system at different pressures (15-760) and interelectrode distance (60-445 μm) were experimentally studied. The study was performed on the bases of current-voltage characteristic (CVC) measurements with the time lag of several hours of afterglow periods. The influence of the active space-charge remaining from previous discharge on the breakdown voltage has been analyzed using the CVC method for different conductivity of semiconductor GaAs photocathode. On the other hand, the CVC data for subsequent dates present a correlation of memory effect and hysteresis behaviour. The explanation of such relation is based on the influence of long-lived active charges on the electronic transport mechanism of semiconductor material

  13. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  14. Study of charge-carrier relaxation in a disordered organic semiconductor by simulating impedance spectroscopy

    NARCIS (Netherlands)

    Mesta, M.; Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2014-01-01

    Impedance spectroscopy is a very sensitive probe of nonstationary charge transport governed by charge-carrier relaxation in devices of disordered organic semiconductors. We simulate impedance spectroscopy measurements of hole-only devices of a polyfluorene-based disordered organic semiconductor by

  15. Microbial Fuel Cells for Powering Navy Devices

    Science.gov (United States)

    2014-01-20

    specific MFC being analyzed. Figure 3 depicts simulated voltage vs. current plots (black curves) and corresponding power vs. current...Powering Navy Devices 7     Fig. 3 – Simulated voltage vs current and power vs current polarization plots for a two- chamber MFC in which membrane...the anode is generated by fermentation of glucose by other microorganisms in the sediment represented by clostridium in Fig. 4. The products of the

  16. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  17. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  18. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  19. Second International Conference on Neutron Transmutation Doping in Semiconductors

    CERN Document Server

    Neutron Transmutation Doping in Semiconductors

    1979-01-01

    This volume contains the invited and contributed papers presented at the Second International Conference on Neutron Transmutation Doping in Semiconductors held April 23-26, 1978 at the University of Missouri-Columbia. The first "testing of the waters" symposium on this subject was organized by John Cleland and Dick Wood of the Solid-State Division of Oak Ridge National Laboratory in April of 1976, just one year after NTD-silicon appeared on the marketplace. Since this first meeting, NTD-silicon has become established as the starting material for the power device industry and reactor irradiations are now measured in tens of tons of material per annum making NTD processing the largest radiation effects technology in the semiconductor industry. Since the first conference at Oak Ridge, new applications and irradiation techniques have developed. Interest in a second con­ ference and in publishing the proceedings has been extremely high. The second conference at the University of Missouri was attended by 114 perso...

  20. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.