WorldWideScience

Sample records for semiconductor layer structure

  1. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  2. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  3. Structure of highly perfect semiconductor strained-layer superlattices

    International Nuclear Information System (INIS)

    Vandenberg, J.M.

    1989-01-01

    High-resolution x-ray diffraction (HRXRD) measurements of strained-layer superlattices (SLS's) have been carried out using a four-crystal monochromator. A wide asymmetric range of sharp higher-order x-ray satellite peaks is observed indicating well-defined periodic structures. Using a kinematical diffraction step model very good agreement between measured and simulated x-ray satellite patterns could be achieved. These results show that this x- ray method is a powerful tool to evaluate the crystal quality of SLS's

  4. Investigation of porosity and fractal properties of the sintered metal and semiconductor layers in the MDS capacitor structure

    Directory of Open Access Journals (Sweden)

    Skatkov Leonid

    2012-01-01

    Full Text Available MDS capacitor (metal - dielectric - semiconductor is a structure in which metal plate is represented by compact bulk-porous pellets of niobium sintered powder, and semiconductor plate - by pyrolytic layer of MnO2. In the present paper we report the results of investigation of microporosity of sintered Nb and pyrolytic MnO2 and also the fractal properties of semiconductor layer.

  5. Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures

    Directory of Open Access Journals (Sweden)

    Satoshi Iwamoto

    2016-05-01

    Full Text Available Three-dimensional photonic crystals (3D PhCs are a fascinating platform for manipulating photons and controlling their interactions with matter. One widely investigated structure is the layer-by-layer woodpile structure, which possesses a complete photonic bandgap. On the other hand, other types of 3D PhC structures also offer various possibilities for controlling light by utilizing the three dimensional nature of structures. In this article, we discuss our recent research into novel types of layer-by-layer structures, including the experimental demonstration of a 3D PhC nanocavity formed in a <110>-layered diamond structure and the realization of artificial optical activity in rotationally stacked woodpile structures.

  6. Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and their basic optical and electrical properties were examined. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were examined by normal/inverse photoemission spectroscopy and energy band calculations. The results of the examinations suggested that these materials possess unique features more than simple wide-gap semiconductors. Namely, the layered oxychalcogenides are considered to be extremely thin quantum wells composed of the oxide and chalcogenide layers or 2D chalcogenide crystals/molecules embedded in an oxide matrix. Observation of step-like absorption edges, large band gap energy and large exciton binding energy demonstrated these features originating from 2D density of states and quantum size effects in these layered materials

  7. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  8. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  9. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  10. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  11. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  12. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  13. Ab initio electronic band structure study of III-VI layered semiconductors

    Science.gov (United States)

    Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés

    2013-08-01

    We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.

  14. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  15. Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis

    Science.gov (United States)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2017-07-01

    Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.

  16. Choice of optimal conditions for layer-by-layer analysis of semiconductor structures on spark mass spectrometer

    International Nuclear Information System (INIS)

    Gerasimov, V.A.; Saprykin, A.I.; Shelpakova, I.R.; Yudelevich, I.G.

    1978-01-01

    Criteria of choosing counter-electrode-configuration, size and material have been determined. A tantalum counter-electrode with rectangular cross-section (3.5-4.5) mmx(0.05-0.08) mm 2 is proposed for layer-by-layer analysis of Si, Ge, GaAs, InSb. A scanning velocity has been chosen and spark generator operating conditions have been optimized which ensure the surface roughness of 0.5-0.8 μ after sparking. A systematic study has been made of the effect of ballast elements in the discharge circuit on the basic characteristics of the layer-by-layer analysis: ionic current intensity, counter-electrode contribution to the total ionic current, intensity of dicharged ions and surface roughness. A ballast ohmic resistance inside the ion source decreases a correction for the blank by one order of magnitude and the sparked surface roughness by 2-3 times

  17. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  18. Experimental studies on the nonlinear dynamics of ferroelectric thin films and layered ferroelectricum/semiconductor structures in oscillating systems

    International Nuclear Information System (INIS)

    Barz, Kay

    2010-01-01

    In this work experimental techniques for characterization of ferroelectric nm-thin films and ferroelectric/semiconductor structures by means of nonlinear phenomena are discussed. The thin film sample is applied in a series resonant circuit. By recording time series data and amplitude-frequency-characteristics (resonance frequency shift), the nonlinear behavior can be analyzed with respect to the theoretical aspects of these effects in the framework of nonlinear dynamics. The evolving ferroelectric hysteresis is represented by the amplitude-frequency-characteristic in a very detailed form. Interpretations are presented on how transient alterations like fatigue or retention loss, affect the amplitude-frequency-characteristics. Time series analysis allows to separate the specific influence of the nonlinear components and their corresponding time constants. The work closes with suggestions for a systematic application of the presented techniques for an extended characterization of ferroelectric thin films. (orig.)

  19. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujing; Li, Jing, E-mail: jingli@rutgers.edu

    2015-04-15

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn{sub 2}S{sub 2}(bza) (1), Zn{sub 2}S{sub 2}(mbza) (2), Zn{sub 2}S{sub 2}(fbza) (3), Zn{sub 2}S{sub 2}(pca) (4), and Zn{sub 2}S{sub 2}(thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn{sub 2}S{sub 2}(L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy.

  20. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    International Nuclear Information System (INIS)

    Wang, Sujing; Li, Jing

    2015-01-01

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn 2 S 2 (bza) (1), Zn 2 S 2 (mbza) (2), Zn 2 S 2 (fbza) (3), Zn 2 S 2 (pca) (4), and Zn 2 S 2 (thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn 2 S 2 (L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy

  1. Below-bandgap photoreflection spectroscopy of semiconductor laser structures

    International Nuclear Information System (INIS)

    Sotnikov, Aleksandr E; Chernikov, Maksim A; Ryabushkin, Oleg A; Trubenko, P; Moshegov, N; Ovchinnikov, A

    2004-01-01

    A new method of modulated light reflection - below-bandgap photoreflection, is considered. Unlike the conventional photoreflection method, the proposed method uses optical pumping by photons of energy smaller than the bandgap of any layer of a semiconductor structure under study. Such pumping allows one to obtain the modulated reflection spectrum for all layers of the structure without excitation of photoluminescence. This method is especially promising for the study of wide-gap semiconductors. The results of the study of semiconductor structures used in modern high-power multimode semiconductor lasers are presented. (laser applications and other topics in quantum electronics)

  2. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    Science.gov (United States)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  3. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2

    International Nuclear Information System (INIS)

    Xiao, Zewen; Ran, Fan-Yong; Hiramatsu, Hidenori; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2014-01-01

    BaZn 2 As 2 is expected for a good p-type semiconductor and has two crystalline phases of an orthorhombic α phase and a higher-symmetry tetragonal β phase. Here, we report that high-quality epitaxial films of the tetragonal β-BaZn 2 As 2 were grown on single-crystal MgO (001) substrates by a reactive solid-phase epitaxy technique. Out-of-plane and in-plane epitaxial relationships between the film and the substrate were BaZn 2 As 2 (00 l)//MgO (001) and BaZn 2 As 2 [200]//MgO [200], respectively. The full-widths at half maximum were 0.082° for a 008 out-of-plane rocking curve and 0.342° for a 200 in-plane rocking curve. A step-and-terrace structure was observed by atomic force microscopy. The band gap of β-BaZn 2 As 2 was evaluated to be around 0.2 eV, which is much smaller than that of a family compound LaZnOAs (1.5 eV). Density functional theory calculation using the Heyd–Scuseria–Ernzerhof hybrid functionals supports the small band gap. - Highlights: • High-quality epitaxial β-BaZn 2 As 2 films were obtained. • The band gap of β-BaZn 2 As 2 was evaluated to around 0.2 eV. • Hybrid Heyd–Scuseria–Ernzerhof calculation supports the small band gap

  4. Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide

    International Nuclear Information System (INIS)

    Wang, C.-C.; Chiou, Y.-K.; Chang, C.-H.; Tseng, J.-Y.; Wu, L.-J.; Chen, C.-Y.; Wu, T.-B.

    2007-01-01

    The nonvolatile memory characteristics of metal-oxide-semiconductor (MOS) structures containing Au nanocrystals in the Al 2 O 3 /SiO 2 matrix were studied. In this work, we have demonstrated that the use of Al 2 O 3 as control oxide prepared by atomic-layer-deposition enhances the erase speed of the MOS capacitors. A giant capacitance-voltage hysteresis loop and a very short erase time which is lower than 1 ms can be obtained. Compared with the conventional floating-gate electrically erasable programmable read-only memories, the erase speed was promoted drastically. In addition, very low leakage current and large turn-around voltage resulting from electrons or holes stored in the Au nanocrystals were found in the current-voltage relation of the MOS capacitors

  5. Laser action on rare earth doped nitride semiconductor thin layers

    International Nuclear Information System (INIS)

    Oussif, A.; Diaf, M.

    2010-01-01

    Complete text of publication follows. The structure, chemical composition, properties, and their relationships in solids lay the foundation of materials science. Recently, great interest in rare-earth (RE)-doped wide-bandgap semiconductors, which combine the electronic properties of semiconductors with the unique luminescence features of RE ions, is from the fundamental standpoint of structure-composition-properties of solids. At first, a significant amount of work has been reported on the study of infrared emissions from Er 3+- doped semiconductors because Er 3+ exhibits luminescence at 1.54 μm, a wavelength used in optical communications. Since Steckl and Birkhahn first reported visible emission associated with Er from GaN:Er films, the RE-doped semiconductors have received considerable interest for possible application in light emitting devices. Molecular-beam epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD) have been used mainly to grow GaN host films. The RE dopants were typically incorporated into the host films by in situ doping during the growth or by ion implantation after the growth. GaN doped with rare-earth elements (RE) hold significant potential for applications in optical devices, since they show sharp intense luminescence which is only minimally affected by temperature variations. Among the various RE dopants, Eu seems to be the most interesting, since it yields red luminescence 622 nm which has not been realized in commercially available light emitting devices (LEDs) that use InGaN active layers. We have earlier reported single crystalline growth of Eu-doped GaN and nearly temperature independent red luminescence at 622 nm originating from the intra-4f-4f transition of the Eu 3+ ion. The red luminescence was analyzed and determined to be generated through trap-level-mediated energy transfer from the semiconductor host.

  6. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  7. Spectra of magnetoplasma polaritons in a semiconductor layer on a metallic substrate

    International Nuclear Information System (INIS)

    Beletsekii, N.N.; Gasan, E.A.; Yakovenko, V.M.

    1988-01-01

    The dispersion properties of volume and surface magnetoplasma polaritons in a three-layer metal-semiconductor-insulator structure are studied. It is predicted that surface magnetoplasma polaritons propagating on the two boundaries of the semiconductor layer interact resonantly. It is shown that for a certain direction of propagation the dispersion curves of surface and volume magnetoplasma polaritons contain sections with negative dispersion. Nonreciprocal propagation of volume magnetoplasma polaritons has been observed. Losses in the semiconductor layer split the starting spectral lines into dispersion curves of two types, corresponding to forward and backward waves

  8. Study of nickel doping effects on structural, electrical and optical properties of sprayed ZnO semiconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    Mhamdi, A., E-mail: mmbb11112000@yahoo.fr; Ouni, B.; Amlouk, A.; Boubaker, K.; Amlouk, M.

    2014-01-05

    Highlights: • Proposing a complete original explanation to a simple and cheap technique. • Presenting an original combination of several referred characterization means. • Original analysis in terms of frequency–temperature dependence of AC conductivity. • A deep analysis within the correlated barrier hopping (CBH) model. • Outlining new conjoint correlation between Ni content and ZnO compound. -- Abstract: In the present study, zinc oxide doped nickel thin films (ZnO:Ni) at different percentage (1–3%) were deposited on glass substrates using a chemical spray technique. The effect of Ni concentration on the structural, electrical and optical properties of the ZnO:Ni thin films were investigated. The X-ray diffraction analysis shows that the films were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel c-axis. On the other hand, the optical transmittance measurement was found to be higher than 80% and the optical band gap varies between 3.19 and 3.25 eV. The activation energy values calculated from DC conductivity and angular frequency relaxation are almost identical, indicating that the conduction mechanism is thermally activated by hopping between localized states. Moreover, the analysis of the frequency and temperature dependence of AC conductivity supports the correlated barrier hopping (CBH) model. Further, the value of the maximum height W{sub m} barrier was estimated using the Elliott model, which suggests that the charge carrier jumps over a potential barrier between the defect states. Finally, all results have been discussed in terms of the nickel doping concentration.

  9. Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations.

    Science.gov (United States)

    Hart, Lewis; Dale, Sara; Hoye, Sarah; Webb, James L; Wolverson, Daniel

    2016-02-10

    The rhenium and technetium diselenides and disulfides are van der Waals layered semiconductors in some respects similar to more well-known transition metal dichalcogenides (TMD) such as molybdenum sulfide. However, their symmetry is lower, consisting only of an inversion center, so that turning a layer upside-down (that is, applying a C2 rotation about an in-plane axis) is not a symmetry operation, but reverses the sign of the angle between the two nonequivalent in-plane crystallographic axes. A given layer thus can be placed on a substrate in two symmetrically nonequivalent (but energetically similar) ways. This has consequences for the exploitation of the anisotropic properties of these materials in TMD heterostructures and is expected to lead to a new source of domain structure in large-area layer growth. We produced few-layer ReS2 and ReSe2 samples with controlled "up" or "down" orientations by micromechanical cleavage and we show how polarized Raman microscopy can be used to distinguish these two orientations, thus establishing Raman as an essential tool for the characterization of large-area layers.

  10. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  11. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  12. Growth of high purity semiconductor epitaxial layers by liquid phase ...

    Indian Academy of Sciences (India)

    Unknown

    semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such ... reference to the growth of GaAs layers. The technique of growing very high purity layers ... the inner walls of the gas lines and (e) the containers for storing, handling and cleaning of the mate-.

  13. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  14. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  15. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  16. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  17. Measurements of electrophysical characteristics of semiconductor structures with the use of microwave photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru [Chernyshevsky National Research State University (Russian Federation); Nikitov, S. A. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics (Russian Federation); Skripal, A. V.; Ponomarev, D. V.; Latysheva, E. V. [Chernyshevsky National Research State University (Russian Federation)

    2016-12-15

    A method is proposed for the measurement of the electrophysical characteristics of semiconductor structures: the electrical conductivity of the n layer, which plays the role of substrate for a semiconductor structure, and the thickness and electrical conductivity of the strongly doped epitaxial n{sup +} layer. The method is based on the use of a one-dimensional microwave photonic crystal with a violation of periodicity containing the semiconductor structure under investigation. The characteristics of epitaxial gallium-arsenide structures consisting of an epitaxial layer and the semi-insulating substrate measured by this method are presented.

  18. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  19. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    International Nuclear Information System (INIS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-01-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  20. Electrical characterization of 4H-SiC metal-oxide-semiconductor structure with Al2O3 stacking layers as dielectric

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2018-02-01

    Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.

  1. Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors

    Science.gov (United States)

    Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.

    2018-04-01

    Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

  2. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    Science.gov (United States)

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  3. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    Science.gov (United States)

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  4. Testing of modern semiconductor memory structures

    NARCIS (Netherlands)

    Gaydadjiev, G.N.

    2007-01-01

    In this thesis, we study the problem of faults in modern semiconductor memory structures and their tests. According to the 2005 ITRS, the systems on chip (SoCs) are moving from logic and memory balanced chips to more memory dominated devices in order to cope with the increasing application

  5. Piezoelectric strained layer semiconductor lasers and integrated modulators

    International Nuclear Information System (INIS)

    Fleischmann, Thomas

    2002-01-01

    The properties, benefits and limitations of strained InGaAs/GaAs quantum well lasers and modulators grown on (111)B GaAs have been studied. Particular interest in this material system arose from the predicted increase in critical layer thickness, which would facilitate semiconductor lasers emitting beyond 1 μm. However, the recent discovery of a new type of misfit dislocation indicates that the critical layer thickness in this system is closer to that of (001) orientated structures. Photoluminescence and transmission electron microscopy presented in this study support this predicted reduction of the critical layer thickness and the resulting limitations on the emission wavelength. The absence of 3D growth in this system may however be advantageous when high reproducibility and reliable lasing operation beyond 1 μm are required. The piezoelectric field originating from strained growth on substrate orientations other than (001) was studied and its influence on transition energies and absorptive behaviour were investigated. The piezoelectric constant was found to show significant temperature dependence and, as also indicated in earlier studies, its value is smaller then the linearly interpolated value. When the effects of indium segregation on the transition energies is considered, the reduction is significantly smaller. Good agreement between theory and experiment was obtained using 86% of the value linearly interpolated between the binaries at room temperature and 82% at low temperature. Broad area lasers were fabricated emitting at lasing wavelengths of up to 1.08 μm with threshold current densities as low as 80 A/cm 2 at room temperature under continuous wave operation. Increasing the indium composition and strain within the limit of strain relaxation was demonstrated to improve device performance significantly. Furthermore, ridge waveguide lasers were fabricated exhibiting monomode emission at wavelengths up to 1.07 μm with a threshold current of 19 mA at

  6. Overview of atomic layer etching in the semiconductor industry

    Energy Technology Data Exchange (ETDEWEB)

    Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A. [Lam Research Corporation, 4400 Cushing Parkway, Fremont, California 94538 (United States)

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  7. Overview of atomic layer etching in the semiconductor industry

    International Nuclear Information System (INIS)

    Kanarik, Keren J.; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A.

    2015-01-01

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices

  8. Self-aligned metallization on organic semiconductor through 3D dual-layer thermal nanoimprint

    International Nuclear Information System (INIS)

    Jung, Y; Cheng, X

    2014-01-01

    High-resolution patterning of metal structures on organic semiconductors is important to the realization of high-performance organic transistors for organic integrated circuit applications. The traditional shadow mask technique has a limited resolution, precluding sub-micron metal structures on organic semiconductors. Thus organic transistors cannot benefit from scaling into the deep sub-micron region to improve their dc and ac performances. In this work, we report an efficient multiple-level metallization on poly (3-hexylthiophene) (P3HT) with a deep sub-micron lateral gap. By using a 3D nanoimprint mold in a dual-layer thermal nanoimprint process, we achieved self-aligned two-level metallization on P3HT. The 3D dual-layer thermal nanoimprint enables the first metal patterns to have suspending side-wings that can clearly define a distance from the second metal patterns. Isotropic and anisotropic side-wing structures can be fabricated through two different schemes. The process based on isotropic side-wings achieves a lateral-gap in the order of 100 nm (scheme 1). A gap of 60 nm can be achieved from the process with anisotropic side-wings (scheme 2). Because of the capability of nanoscale metal patterning on organic semiconductors with high overlay accuracy, this self-aligned metallization technique can be utilized to fabricate high-performance organic metal semiconductor field-effect transistor. (paper)

  9. Interface Structure of MoO3 on Organic Semiconductors

    Science.gov (United States)

    White, Robin T.; Thibau, Emmanuel S.; Lu, Zheng-Hong

    2016-01-01

    We have systematically studied interface structure formed by vapor-phase deposition of typical transition metal oxide MoO3 on organic semiconductors. Eight organic hole transport materials have been used in this study. Ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy are used to measure the evolution of the physical, chemical and electronic structure of the interfaces at various stages of MoO3 deposition on these organic semiconductor surfaces. For the interface physical structure, it is found that MoO3 diffuses into the underlying organic layer, exhibiting a trend of increasing diffusion with decreasing molecular molar mass. For the interface chemical structure, new carbon and molybdenum core-level states are observed, as a result of interfacial electron transfer from organic semiconductor to MoO3. For the interface electronic structure, energy level alignment is observed in agreement with the universal energy level alignment rule of molecules on metal oxides, despite deposition order inversion. PMID:26880185

  10. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  11. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  12. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    Sakanoue, Kei [Center for Organic Photonics and Electronics Research, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Harada, Hironobu; Ando, Kento [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Yahiro, Masayuki [Institute of Systems, Information Technologies and Nanotechnologies, 2-1-22, Sawara-ku, Fukuoka 814-0001 (Japan); Fukai, Jun, E-mail: jfukai@chem-eng.kyushu-u.ac.jp [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-12-31

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  13. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    International Nuclear Information System (INIS)

    Sakanoue, Kei; Harada, Hironobu; Ando, Kento; Yahiro, Masayuki; Fukai, Jun

    2015-01-01

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  14. Structures and electronics of buried and unburied semiconductor interfaces

    International Nuclear Information System (INIS)

    Kamiya, Itaru

    2011-01-01

    The structure of interfaces plays an important role in determining the electronic properties of semiconductor nanostructures. Here, such examples are shown and discussed using semiconductor nanostructures prepared by molecular beam epitaxy and colloidal synthesis.

  15. Selective, electrochemical etching of a semiconductor

    Science.gov (United States)

    Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing

    2018-03-20

    Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.

  16. Polar semiconductor heterojunction structure energy band diagram considerations

    International Nuclear Information System (INIS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-01-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  17. Polar semiconductor heterojunction structure energy band diagram considerations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuxun; Wen, Cheng P., E-mail: cpwen@ieee.org; Wang, Maojun; Hao, Yilong [Institute of Microelectronics, Peking University, Beijing (China)

    2016-03-28

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  18. III-V group compound semiconductor light-emitting element having a doped tantalum barrier layer

    International Nuclear Information System (INIS)

    Oanna, Y.; Ozawa, N.; Yamashita, M.; Yasuda, N.

    1984-01-01

    Disclosed is a III-V Group compound semiconductor light-emitting element having a III-V Group compound semiconductor body with a p-n junction and including a p-type layer involved in forming the p-n junction; and a multi-layer electrode mounted on the p-type layer of the semiconductor body. The electrode comprises a first layer of gold alloy containing a small amount of beryllium or zinc and formed in direct contact with the p-type layer of the semiconductor body and an uppermost layer formed of gold or aluminum. A tantalum layer doped with carbon, nitrogen and/or oxygen is formed between the first layer and the uppermost layer by means of vacuum vapor deposition

  19. Self-trapped excitonic green emission from layered semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  20. Self-trapped excitonic green emission from layered semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-08-15

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  1. Physical properties of metal–insulator–semiconductor structures based on n-GaAs with InAs quantum dots deposited onto the surface of an n-GaAs layer

    Energy Technology Data Exchange (ETDEWEB)

    Tikhov, S. V.; Gorshkov, O. N.; Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Kasatkin, A. P.; Antonov, I. N.; Vihrova, O. V.; Morozov, A. I. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation)

    2016-12-15

    The properties of metal–insulator–semiconductor (MIS) structures based on n-GaAs in which silicon oxide and yttria-stabilized zirconia and hafnia are used as the insulator containing InAs quantum dots, which are embedded at the insulator/n-GaAs interface, are investigated. The structures manifest the resistive switching and synaptic behavior.

  2. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  3. Optical properties of hybrid semiconductor-metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kreilkamp, L.E.; Pohl, M.; Akimov, I.A.; Yakovlev, D.R.; Bayer, M. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Belotelov, V.I.; Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119992 Moscow (Russian Federation); Karczewski, G.; Wojtowicz, T. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland); Rudzinski, A.; Kahl, M. [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-07-01

    We study the optical properties of hybrid nanostructures comprising a semiconductor CdTe quantum well (QW) separated by a thin CdMgTe cap layer of 40 nm from a patterned gold film. The CdTe/CdMgTe QW structure with a well width of 10nm was grown by molecular beam epitaxy. The one-dimensional periodic gold films on top were made using e-beam lithography and lift-off process. The investigated structures can be considered as plasmonic crystals because the metal films attached to the semiconductor are patterned with a period in the range from 475 to 600 nm, which is comparable to the surface plasmon-polariton (SPP) wavelength. Angle dependent reflection spectra at room temperature clearly show plasmonic resonances. PL spectra taken at low temperatures of about 10 K under below- and above-barrier illumination show significant modifications compared to the unstructured QW sample. The number of emission lines and their position shift change depending on the excitation energy. The role of exciton-SPP coupling and Schottky barrier at the semiconductor-metal interface are discussed.

  4. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  5. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  6. Nanoscale contacts to organic molecules based on layered semiconductor substrates

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian

    2009-06-15

    This work reports on the integration of organic molecules as nanoelectronic device units on semiconductor substrates. Two novel preparation methods for sub-10-nm separated metal electrodes are presented using current microelectronics process technology. The first method utilises AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE) as mold to create planar metal electrodes employing a newly developed, high resolution nanotransfer printing (nTP) process. The second method uses commercially available Silicon-on-Insulator (SOI) substrates as base material for the fabrication of nanogap electrode devices. This sandwich-like material stack consists of a silicon substrate, a thin silicon oxide layer, and a capping silicon layer on top. Electronic transport measurements verified their excellent electrical properties at liquid helium temperatures. Specifically tailored nanogap devices featured an electrode insulation in the GW range even up to room temperature as well as within aqueous electrolyte solution. Finally, the well defined layer architecture facilitated the fabrication of electrodes with gap separations below-10-nm to be directly bridged by molecules. Approximately 12-nm-long conjugated molecules with extended -electron system were assembled onto the devices from solution. A large conductance gap was observed with a steep increase in current at a bias voltage of V{sub T}{approx}{+-}1.5 V. Theoretical calculations based on density functional theory and non-equilibrium Green's function formalism confirmed the measured non-linear IV-characteristics qualitatively and lead to the conclusion that the conductance gap mainly originates from the oxygen containing linker. Temperature dependent investigations of the conductance indicated a hopping charge transport mechanism through the central part of the molecule for bias voltages near but below V{sub T}. (orig.)

  7. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    Afshar, A.M.

    1996-12-01

    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  8. Depletion length and space charge layer capacitance in doped semiconductor nanoshpere

    International Nuclear Information System (INIS)

    Nersesyan, S R; Petrosyan, S G

    2012-01-01

    The depletion length in a semiconductor nanosphere depends not only on the material parameters but on the nanosphere radius as well. For this reason, the depletion length does not present a universal characteristic length for all spherical interfaces. The difference from the standard flat model caused by the surface curvature is significant for a structure with the depletion length comparable to the radius of a nanosphere. We show that the depletion layer capacitance in a nanosphere becomes quite sensitive to the light intensity when, as a result of increasing optical generation rate, the surface potential barrier height is decreased and becomes very small. (paper)

  9. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    Science.gov (United States)

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  10. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  11. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  12. Layered Ultrathin Coherent Structures (LUCS)

    International Nuclear Information System (INIS)

    Schuller, I.K.; Falco, C.M.

    1979-01-01

    A new class of superconducting materials, Layered Ultrathin Coherent Structures (LUCS) are described. These materials are produced by sequentially depositing ultrathin layers of materials using high rate magnetron sputtering or thermal evaporation. Strong evidence is presented that layers as thin as 10 A can be prepared in this fashion. Resistivity data indicates that the mean free path is layer thickness limited. A strong disagreement is found between the experimentally measured transition temperatures T/sub c/ and the T/sub c/'s calculated using the Cooper limit approximation. This is interpreted as a change in the band structure or the phonon structure of the material due to layering or to surfaces

  13. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  14. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4

    Science.gov (United States)

    Zhuang, Houlong L.; Zhou, Jia

    2016-11-01

    Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.

  15. Vertical dielectric screening of few-layer van der Waals semiconductors.

    Science.gov (United States)

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  16. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  17. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  18. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  20. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    Science.gov (United States)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  1. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Sara [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Vespini, Veronica, E-mail: v.vespini@isasi.cnr.it [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Olivieri, Federico [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); University of Naples Federico II, Department of Chemical Materials and Production Engineering, Piazzale Tecchio 80, Naples 80125 (Italy); Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy)

    2017-03-31

    Highlights: • A quantum dots self-patterning on micrometrical polymeric array is proposed. • The effect of a quantum dots mix on the array is evaluated. • A PDMS membrane is exploited to transfer the pattern on it. - Abstract: Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  2. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  3. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  4. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  5. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  6. Electronic structure of semiconductor quantum films

    International Nuclear Information System (INIS)

    Zhang, S.B.; Yeh, C.; Zunger, A.

    1993-01-01

    The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material

  7. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    Science.gov (United States)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  8. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  9. Printable semiconductor structures and related methods of making and assembling

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  10. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael

    2016-01-01

    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  11. Electron Liquids in Semiconductor Quantum Structures

    International Nuclear Information System (INIS)

    Pinczuk, Aron

    2009-01-01

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  12. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  13. Non-Stoichiometric Layers of III/IV Semiconductors

    National Research Council Canada - National Science Library

    Weber, Eicke

    1998-01-01

    .... As rich GaAs offers unique device applications in layer isolation and optoelectronics because of its insulating capabilities after a thermal annealing and ultrafast time response in the THz range...

  14. An effective pair potential for liquid semiconductor, Se: Structure and ...

    Indian Academy of Sciences (India)

    This model potential is then used to describe through low-order perturbation theory, the structure and related dynamical properties like self-diffusion coefficient and shear viscosity of this complex liquid over a wide range of temperatures. Keywords. Liquid semiconductor; pair potential; structure and dynamical properties.

  15. An effective pair potential for liquid semiconductor, Se: Structure and ...

    Indian Academy of Sciences (India)

    The effective pair potential of liquid semiconductor Se is extracted from its experimental structure factor data using an accurate liquid state theory and this shows important basic features. A model potential incorporating the basic features of the structure factor extracted potential is suggested. This model potential is then used ...

  16. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    Science.gov (United States)

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  17. Interband magneto-optical transitions in a layer of semiconductor nano-rings

    NARCIS (Netherlands)

    Voskoboynikov, O.; Wijers, Christianus M.J.; Liu, J.L.; Lee, C.P.

    2005-01-01

    We have developed a quantitative theory of the collective electromagnetic response of layers of semiconductor nano-rings. The response can be controlled by means of an applied magnetic field through the optical Aharonov-Bohm effect and is ultimately required for the design of composite materials. We

  18. Electrophoretic formation of semiconductor layers with adjustable band gap

    Science.gov (United States)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  19. Ballistic studies on layered structures

    International Nuclear Information System (INIS)

    Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T.

    2009-01-01

    This paper presents the ballistic behavior and penetration mechanism of metal-metal and metal-fabric layered structures against 7.62 armour piercing projectiles at a velocity of 840 ± 15 m/s at 30 o angle of impact and compares the ballistic results with that of homogeneous metallic steel armour. This study also describes the effect of keeping a gap between the target layers. Experimental results showed that among the investigated materials, the best ballistic performance was attained with metal-fabric layered structures. The improvements in ballistic performance were analyzed in terms of mode of failure and fracture mechanisms of the samples by using optical and electron microscope, X-ray radiography and hardness measurement equipments.

  20. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    International Nuclear Information System (INIS)

    Stephan, Christiane

    2011-01-01

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB III C VI 2 (B III = In, Ga and C VI = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB III C VI 2 compound semiconductors. The study is done on reference powder samples with well determined chemical composition and using advanced diffraction techniques

  1. Electrical characterisation of semiconductor structures using AFM techniques

    International Nuclear Information System (INIS)

    Kovac jr, J.; Kovac, J.; Hotovy, J.; Novotny, I.; Skriniarova, J.; Dutkova, E.; Balaz, P.

    2011-01-01

    The microscopic dimensions appear to be a fundamental limitation to many common measurement techniques. The use of Current-Atomic Force Microscopy (I-AFM) bids a possibility to acquire topography image along with the current flow mappings which can be lapped over in resulting image as presented in this paper. A current distribution on the ZnO surface of p-Si/n- ZnO diode structure with CdS or ZnS nanocrystalline quantum dot clusters at the interface has been measured. The resulting images show a conductivity mapping different from topography what induces a conductive channels at the edges of the ZnO grains. We have successfully used I-AFM method where conductive AFM tip is scanning over the surface of the sample to create a topography image along with a current flow mapping of p-Si substrate covered with CdS or ZnS nanocrystalline clusters overlapped by 100 nm thick n-ZnO layer. The measured current mappings of both samples revealed a formation of conductive channels between the clusters of quantum dots when the sample is forward biased. We are able to create 3D topography images of combined with the forward biased current mapping textures which gives complex information about local conductivity and using this method it should be possible to find hidden current leaks in the samples for example defects in most semiconductor materials. A drift current generated in p-n junction was recorded when the sample was reverse biased while the sample has been exposed to light. Possible UV light source should cause a higher reverse current due to high bandgap of ZnS clusters which is a motivation to further research. The devices fabricated from these structures have the potential applications for solar cells or broadband photodetectors. (authors)

  2. Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices

    Science.gov (United States)

    Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe

    2018-01-01

    This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.

  3. Optical properties of the semiconductor quantum structure

    International Nuclear Information System (INIS)

    Haratizadeh, H.; Holtz, P.O.; Monemar, B.; Karlsoon, K.F.; Moskalenko, E.S.; Amano, H.; Akasaki, I.; Schoenfeld, W.V.; Garcia, J.M.; Petroff, P.M.

    2004-01-01

    Optical properties of the quantum structures have been discussed with emphasize of the AlGaN/GaN multiple quantum wells and InAs/GaAs quantum dot structures. We report on a detailed study of low temperature photoluminescence in Al 0 .07Ga 0 .93 N/GaN multiple quantum wells. The structures were nominally undoped multiple quantum well grown on sapphire substrate. The structure from discrete well width variations is here resolved in photoluminescence spectra. The results demonstrate that the theoretically estimated fields in this work are consistent with the experimental spectra

  4. Optoelectronic Devices Based on Novel Semiconductor Structures

    Science.gov (United States)

    2006-06-14

    J. C. Pearson, C. Kadow, A. W. Jackson, and A. C. Gossard, Appl. Phys. Lett. 74, 2872 (1999). 11. F. Zernike , Jr., and P. R. Berman, Phys. Rev. Lett...G. Sun, and R. A. Soref, Appl. Phys. Lett. 78, 401 (2001). 8. F. Jr. Zernike and P. R. Berman, Phys. Rev. Lett. 15, 999 (1965). 9. K. Kawase, T...in successive InAs layers, resulting in a substantially wide miniband [1]. Such a large width manifests the quasi- 3D properties of the SL’s. On the

  5. Physics of low-dimensional semiconductor structures

    CERN Document Server

    March, Norman; Tosi, Mario

    1993-01-01

    Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering

  6. Current-voltage characteristics of the semiconductor nanowires under the metal-semiconductor-metal structure

    Science.gov (United States)

    Wen, Jing; Zhang, Xitian; Gao, Hong; Wang, Mingjiao

    2013-12-01

    We present a method to calculate the I-V characteristics of semiconductor nanowires under the metal-semiconductor-metal (MSM) structure. The carrier concentration as an important parameter is introduced into the expression of the current. The subband structure of the nanowire has been considered for associating it with the position of the Fermi level and circumventing the uncertainties of the contact areas in the contacts. The tunneling and thermionic emission currents in the two Schottky barriers at the two metal-semiconductor contacts are discussed. We find that the two barriers have different influences on the I-V characteristics of the MSM structure, one of which under the forward bias plays the role of threshold voltage if its barrier height is large and the applied voltage is small, and the other under the reverse bias controls the shapes of I-V curves. Our calculations show that the shapes of the I-V curves for the MSM structure are mainly determined by the barrier heights of the contacts and the carrier concentration. The nearly identical I-V characteristics can be obtained by using different values of the barrier heights and carrier concentration, which means that the contact type conversion can be ascribed not only to the changes of the barrier heights but also that of the carrier concentration. We also discuss the mechanisms of the ohmic-Schottky conversions and clarify the ambiguity in the literature. The possibility about the variation of the carrier concentration under the applied fields has been confirmed by experimental results.

  7. Measurements with an ultrafast scanning tunnelling microscope on photoexcited semiconductor layers

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    Summary form only given. We demonstrate the use of a ultrafast scanning tunnelling microscopes (USTM) for detecting laser-induced field transients on semiconductor layers. In principle, the instrument can detect transient field changes thus far observed as far-field THz radiation in the near......-field regime and resolve small signal sources. For photoexcited low temperature (LT) GaAs we can explain the signal by a diffusion current driven by the laser-induced carrier density gradient...

  8. Positron Studies of Oxide-Semiconductor Structures

    OpenAIRE

    Uedono , A.; Wei , L.; Kawano , T.; Tanigawa , S.; Suzuki , R.; Ohgaki , H.; Mikado , T.

    1995-01-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2/Si structures fabricated by various oxidation techniques. From the measurements, it was found that the formation probability of positronium (Ps) atoms in SiO2 films strongly depends on the growth condition...

  9. Inductance, electrically adjusted by semiconductor structure

    Directory of Open Access Journals (Sweden)

    Semenov А. А.

    2012-08-01

    Full Text Available A theoretical model of a passive flat inductor with electronic control is offered. Design charts of tank inductance and Q factor dependence on the forward bias voltage of n—i—p—i—n-structure, used as a specific core, the characteristics of which are regulated under the influence of an applied electric field, are presented. The comparison of design values with experimental features has shown their good correspondence with each other.

  10. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers

    International Nuclear Information System (INIS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.; Oak, S. M.; Kumar, Shailendra

    2014-01-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates

  11. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seminovski, Y.; Palacios, P.; Wahnón, P.

    2013-01-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS 2 polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS 2 geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS 2 ) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS 2 polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment

  12. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  13. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures

    CERN Document Server

    Saveliev, V

    2000-01-01

    The development of a high quantum efficiency, fast photodetector, with internal gain amplification for the wavelength range 450-600 nm is one of the critical issues for experimental physics - registration of low-intensity light photons flux. The new structure of Silicon Avalanche Detectors with high internal amplification (10 sup 5 -10 sup 6) has been designed, manufactured and tested for registration of visible light photons and charge particles. The main features of Metal-Resistor-Semiconductor (MRS) structures are the high charge multiplication in nonuniform electric field near the 'needle' pn-junction and negative feedback for stabilization of avalanche process due to resistive layer.

  14. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Christiane

    2011-03-15

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB{sup III}C{sup VI}{sub 2} (B{sup III} = In, Ga and C{sup VI} = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB{sup III}C{sup VI}{sub 2} compound semiconductors. The study is done on reference powder samples with well determined chemical composition and

  15. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  16. Diffusive, Structural, Optical, and Electrical Properties of Defects in Semiconductors

    CERN Multimedia

    Wagner, F E

    2002-01-01

    Electronic properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photoluminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect, that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness", the present approach is to use radioactive isotopes as a tracer. Moreover, the recoil energies involved in $\\beta$ and $\\gamma$-decays can be used to create intrinsic isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. The understanding and the co...

  17. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    Science.gov (United States)

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  18. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martin, Jaime; Dyson, Matthew; Reid, Obadiah G.; Li, Ruipeng; Nogales, Aurora; Smilgies, Detlef-M.; Silva, Carlos; Rumbles, Garry; Amassian, Aram; Stingelin, Natalie

    2017-01-01

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  19. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    Science.gov (United States)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  20. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martín, Jaime

    2017-12-11

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  1. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    Science.gov (United States)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in

  2. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

    Science.gov (United States)

    Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong

    2018-01-01

    The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

  3. Deformation effects in electronic spectra of the layered semiconductors TlGaS sub 2 , TlGaSe sub 2 and TlInS sub 2

    CERN Document Server

    Allakhverdiev, K R; Suleymanov, R A; Gasanov, N Z

    2003-01-01

    The deformation effects in electronic spectra of the ternary layered semiconductors TlGaS sub 2 , TlGaSe sub 2 and TlInS sub 2 are considered. It is shown that the influence of hydrostatic pressure, thermal expansion and variation of composition in solid solutions on the band gap of the crystals investigated can be described in the framework of one common model of deformation potentials. This model appears to be close to that of layered semiconductors of the A sub 3 B sub 6 group, attesting to the fact that the main principles of formation of band structure in these two groups of layered crystals are the same.

  4. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  5. Semiconductor industry: a survey of structure, conduct, and performance

    International Nuclear Information System (INIS)

    Webbink, D.W.

    1977-01-01

    The study describes the structure, conduct, and performance of the semiconductor industry. The industry is characterized by a high rate of innovation and technological change, rapidly falling costs and prices, and rapidly rising sales in boom periods as well as large declines in sales in recession periods. These desirable performance characteristics take place in an industry that has moderately high domestic levels of concentration. However, there are many features that cause this industry to have behavior and performance that is markedly different from such highly concentrated industries as automobiles and steel. These features were investigated and are reported

  6. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G., E-mail: ekerdt@utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  7. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    International Nuclear Information System (INIS)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-01-01

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al 2 O 3 and HfO 2 . However, there has been much effort to deposit ternary oxides, such as perovskites (ABO 3 ), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable

  8. Structural investigation of semi-conductor nanostructures by x-ray diffraction

    International Nuclear Information System (INIS)

    Stangl, J.

    2003-01-01

    Full text: Semiconductor nanostructures present a topic of increasing interest due to their potential for new device concepts, as well as from a scientific point of view. In structures with dimensions smaller than the DeBroglie wavelength of electrons or holes, quantum confinement effects determine the electronic and optical properties. For the understanding of such structures, their structural investigation, i.e., the determination of size, shape, chemical composition and strain state is mandatory. X-ray diffraction is a powerful technique for this purpose. In particular, the strain fields within nanostructures as well as in the surrounding matrix can be determined with high precision. Using synchrotron radiation sources, also the distribution of chemical composition within objects with typically several nm height and 10 to 100 nm width can be established. With x-ray diffraction, the non-destructive investigation of uncapped and buried structures is possible. The latter is important, as for applications buried structures are needed, and during capping the structural properties may change considerably. Here, we will focus on so-called self-assembled nanostructures, which form during the deposition of different semiconductors on top of each other. In contrast to structures etched after growth of planar layers, self organized islands or wires are virtually defect-free and hence promising for applications. Different scattering techniques sensitive to shape and/or composition and strain will be discussed. (author)

  9. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    Science.gov (United States)

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  10. Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    KAUST Repository

    Sun, Jian

    2013-06-27

    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices

  11. Insight on a novel layered semiconductors: CuTlS and CuTlSe

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Donostia International Physics Center (DIPC), 20080 San Sebastian (Spain); Zúñiga, Fco. Javier [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Koroteev, Yury M. [Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, 634055 Tomsk (Russian Federation); Tomsk State University, Tomsk, 634050 (Russian Federation); Breczewski, Tomasz [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Nizamaddin B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Amiraslanov, Imamaddin R. [Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Politano, Antonio [Department of Physics, University of Calabria, 87036 Rende (CS) (Italy); Madariaga, Gotzon [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Mahammad B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); and others

    2016-10-15

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and are narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.

  12. Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping.

    Science.gov (United States)

    Park, Jong Hyuk; Nagpal, Prashant; McPeak, Kevin M; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J

    2013-10-09

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics.

  13. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  14. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  15. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Chen Bi-Juan; Deng Zheng; Wang Xian-Cheng; Feng Shao-Min; Yuan Zhen; Zhang Si-Jia; Liu Qing-Qing; Jin Chang-Qing

    2016-01-01

    The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized. Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor. (special topic)

  16. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  17. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  18. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-09-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  19. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    Science.gov (United States)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-01-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434

  20. Attenuation of an optical wave propagating in a waveguide, formed by layers of a semiconductor heterostructure, owing to scattering on inhomogeneities

    International Nuclear Information System (INIS)

    Bogatov, Alexandr P; Burmistrov, I S

    1999-01-01

    The scattering of an optical wave, propagating in a waveguide made up of layers of a semiconductor heterostructure, is analysed. The attenuation coefficient of the wave is found both for quasi-homogeneous single-crystal layers of a semiconductor solid solution and for layers containing quantum dots. (active media)

  1. A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers

    KAUST Repository

    Pu, Jiang

    2017-04-18

    The light-emitting device is the primary device for current light sources. In principle, conventional light-emitting devices need heterostructures and/or intentional carrier doping to form a p-n junction. This junction formation is, however, very difficult to achieve for most emerging semiconductors, and the fabrication of light-emitting devices is invariably a significant challenge. This study proposes a versatile and simple approach to realize light-emitting devices. This proposed device requires only a semiconducting film with two electrodes that are covered with an electrolyte. This unique structure achieves light emission at a voltage slightly larger than the bandgap energy of materials. This study applies this concept to emerging direct bandgap semiconductors, such as transition metal dichalcogenide monolayers and zinc oxide single crystals. These devices generate obvious light emission and provide sufficient evidence of the formation of a dynamic p-i-n junction or tunneling junction, presenting a versatile technique to develop optoelectronic devices.

  2. Tunneling conductance in semiconductor-superconductor hybrid structures

    Science.gov (United States)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  3. Layered Graph Drawing for Visualizing Evaluation Structures.

    Science.gov (United States)

    Onoue, Yosuke; Kukimoto, Nobuyuki; Sakamoto, Naohisa; Misue, Kazuo; Koyamada, Koji

    2017-01-01

    An evaluation structure is a hierarchical structure of human cognition extracted from interviews based on the evaluation grid method. An evaluation structure can be defined as a directed acyclic graph (DAG). The authors propose a layer-assignment method that is part of the Sugiyama framework, a popular method for drawing DAGs, to satisfy the requirements for drawing evaluation structures. Their evaluations demonstrate that the layered graph drawing produced by the proposed layer-assignment method is preferred by users and aids in the understanding of evaluation structures.

  4. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Development of microwave amplifier based on gallium nitride semiconductor structures

    International Nuclear Information System (INIS)

    Pavlov, D.Yi.; Prokopenko, O.V.; Tsvyirko, Yu.A.; Pavlov, Yi.L.

    2014-01-01

    Microwave properties of microwave amplifier based on gallium nitride (GN) semiconductor structures has been calculated numerically. We proposed the method of numerical calculation of device. This method is accurately sets the value of its characteristics depending on the elements that are used in design of amplifier. It is shown that the device based on GN HEMT-transistors could have amplification factor about 50 dB, while its sizes are 27x18x5.5 mm 3 . Also was provided the absolute stability an amplifier in the whole operating frequency range. It is quite important when using this type of amplifiers in different conditions of exploitation and various fields of use the radioelectronic equipment

  6. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  7. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...

  8. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  9. Spherical distribution structure of the semiconductor laser diode stack for pumping

    International Nuclear Information System (INIS)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  10. Interface properties of Fe/MgO/Cu-phthalocyanine metal-insulator-organic semiconductor structures

    International Nuclear Information System (INIS)

    Lee, Nyunjong; Bae, Yujeong; Kim, Taehee; Ito, Eisuke; Hara, Masahiko

    2014-01-01

    Hybrid interface structures consisting of organic copper-phthalocyanine (CuPc) and ferromagnetic metal Fe(001) with and without a MgO(001) cover were investigated by using surface sensitive techniques of X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. A systematic study of the energy level alignment at the interfaces was carried out. For the hybrid interfaces considered here, our results indicate that the insertion of an artificially-grown ultra-thin oxide layer MgO(001) can prevent Femi level pinning and induce a rather large interface dipole, thereby resulting in remarkable CuPc Fermi level shifts when the thickness of the CuPc film is less than 3 nm. This study provides a better understanding of spin filtering in MgO-based organic spin devices and a new way to alter the interface electronic structure of metal/organic semiconductor hybrid systems.

  11. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Pinczuk, Aron [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Wind, Shalom J. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics

    2018-01-13

    Award Period: September 1st, 2013 through February 15th, 2017 Submitted to the USDOE Office of Basic Energy Sciences By Aron Pinczuk and Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 January 2017 Award # DE-SC0010695 ABSTRACT Research in this project seeks to design, create and study a class of tunable artificial quantum structures in order to extend the range and scope of new and exciting physical phenomena and to explore the potential for new applications. Advanced nanofabrication was used to create an external potential landscape that acts as a lattice of confinement sites for electrons (and/or holes) in a two-dimensional electron gas in a high perfection semiconductor in such a manner that quantum interactions between different sites dictate the significant physics. Our current focus is on ‘artificial graphene’ (AG) in which a set of quantum dots (or sites) are patterned in a honeycomb lattice. The combination of leading edge nanofabrication with ultra-pure semiconductor materials in this project extends the frontier for small period, low-disorder AG systems, enabling the exploration of graphene physics in a semiconductor platform. TECHNICAL DESCRIPTION Contemporary condensed matter science has entered an era of discovery of new low-dimensional materials, such as graphene and other atomically thin materials, that exhibit exciting new physical phenomena that were previously inaccessible. Concurrent with the discovery and development of these new materials are impressive advancements in nanofabrication, which offer an ever-expanding toolbox for creating a myriad of high quality patterns at nanoscale dimensions. This project started about four years ago. Among its major achievements are the realizations of very small period artificial lattices with honeycomb topology in GaAs quantum wells. In our most recent work the periods of the ‘artificial graphene’ (AG) lattices extend down to 40 nm. These

  12. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, Mohamed N.; Wang, Q. X.; Alshareef, Husam N.

    2014-01-01

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling

  13. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Directory of Open Access Journals (Sweden)

    K. Piskorski

    2018-05-01

    Full Text Available We report on the advantages of using Graphene-Insulator-Semiconductor (GIS instead of Metal-Insulator-Semiconductor (MIS structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I. Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  14. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Science.gov (United States)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  15. The growth and electronic structure of azobenzene-based functional molecules on layered crystals

    International Nuclear Information System (INIS)

    Iwicki, J; Ludwig, E; Buck, J; Kalläne, M; Kipp, L; Rossnagel, K; Köhler, F; Herges, R

    2012-01-01

    In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe 2 and on the layered semiconductor HfS 2 at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

  16. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  17. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Struk Przemysław

    2014-08-01

    Full Text Available The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes. The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

  18. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  19. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  20. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  1. Temperature dependence of the electronic structure of semiconductors and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Poncé, S., E-mail: samuel.pon@gmail.com; Gillet, Y.; Laflamme Janssen, J.; Gonze, X. [European Theoretical Spectroscopy Facility and Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-neuve (Belgium); Marini, A. [Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29.3, CP 10, 00016 Monterotondo Stazione (Italy); Verstraete, M. [European Theoretical Spectroscopy Facility and Physique des matériaux et nanostructures, Université de Liège, Allée du 6 Août 17, B-4000 Liège (Belgium)

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  2. Electronic structure and the properties of phosphorene and few-layer black phosphorus

    International Nuclear Information System (INIS)

    Fukuoka, Shuhei; Taen, Toshihiro; Osada, Toshihito

    2015-01-01

    A single atomic layer of black phosphorus, phosphorene, was experimentally realized in 2014. It has a puckered honeycomb lattice structure and a semiconducting electronic structure. In the first part of this paper, we use a simple LCAO model, and qualitatively discuss the electronic structure of phosphorene systems under electric and magnetic fields, especially noting their midgap edge states. The next part is devoted to the review of the progress in research on phosphorene over the past one year since its realization in 2014. Phosphorene has been a typical material to study the semiconductor physics in atomic layers. (author)

  3. Structure and stability of semiconductor tip apexes for atomic force microscopy

    International Nuclear Information System (INIS)

    Pou, P; Perez, R; Ghasemi, S A; Goedecker, S; Jelinek, P; Lenosky, T

    2009-01-01

    The short range force between the tip and the surface atoms, that is responsible for atomic-scale contrast in atomic force microscopy (AFM), is mainly controlled by the tip apex. Thus, the ability to image, manipulate and chemically identify single atoms in semiconductor surfaces is ultimately determined by the apex structure and its composition. Here we present a detailed and systematic study of the most common structures that can be expected at the apex of the Si tips used in experiments. We tackle the determination of the structure and stability of Si tips with three different approaches: (i) first principles simulations of small tip apexes; (ii) simulated annealing of a Si cluster; and (iii) a minima hopping study of large Si tips. We have probed the tip apexes by making atomic contacts between the tips and then compared force-distance curves with the experimental short range forces obtained with dynamic force spectroscopy. The main conclusion is that although there are multiple stable solutions for the atomically sharp tip apexes, they can be grouped into a few types with characteristic atomic structures and properties. We also show that the structure of the last atomic layers in a tip apex can be both crystalline and amorphous. We corroborate that the atomically sharp tips are thermodynamically stable and that the tip-surface interaction helps to produce the atomic protrusion needed to get atomic resolution.

  4. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.

    2001-01-01

    The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on In......(8 x 2) reconstructions of III-V semiconductor surfaces contain the same essential building blocks....

  5. Theoretical studies of structural and electronic properties of overlayers on semiconductor surfaces

    International Nuclear Information System (INIS)

    Cakmak, M.

    1999-06-01

    In this thesis we report the results of ab initio density functional calculations of equilibrium atomic geometry, electronic states and chemical bonding for the adsorption of elemental S and H 2 S on chosen semiconductor surfaces. The results are in good agreement with the available experimental results and indicate the need for further experimental work. In Chapter 2 of this thesis, I describe the formalism of the ab initio pseudopotential theory and the computational procedures which are used in this thesis. In the following chapter, a few experimental techniques are discussed, which we subsequently use their results to compare with our theoretical calculated results. In Chapter 4 the passivation of S on InP(110) is investigated. Two sets of geometries are used; non-reacted geometries and reacted geometries. For non-reacted full-monolayer coverage, the epitaxially continued layer structure is found to be the most energetically favourable and it exhibits a good semiconducting nature. For an ordered reacted model with the adsorbate S atoms exchanged with their neighbouring P atoms, the average vertical distance between the top two layers is in agreement with x-ray standing wave analysis, but is characterized by a small band gap. In Chapter 5 adsorption of the H 2 S molecule on the InP(110), GaAs(110) and GaP(110) surfaces is investigated within a dissociative adsorption model. In general the adsorption of H 2 S on the three semiconductors shows similar behaviour. In Chapter 6 the adsorption of elemental S on Si(001) is investigated using three adsorption models; hemisulfide-(2 x 1) structure, monosulfide-(1 x 1) structure, and disulfide-(1 x 1) structure. An analysis of the surface free energy suggests that the monosulfide structure is more stable than the hemisulfide and disulfide structures. This result is also used to investigate the adsorption of elemental S on the Ge(001) surface. In Chapter 7, the adsorption of the H 2 S molecule on the Si(001) and Ge(001

  6. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  7. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  8. Structure of gels layers with cells

    Science.gov (United States)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  9. Effect of van der Waals interaction on the properties of SnS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seminovski, Y. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Palacios, P., E-mail: pablo.palacios@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. FyQATA, EIAE, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid (Spain); Wahnón, P. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2013-05-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS{sub 2} polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS{sub 2} geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS{sub 2}) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS{sub 2} polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment.

  10. Optimisation of 1.3 μm strained-layer semiconductor lasers

    International Nuclear Information System (INIS)

    Pacey, C.

    1999-03-01

    The objectives of the research undertaken have been to investigate the properties of semiconductor lasers operating at around 1.3 μm. The aim of the investigation is to suggest modifications which give rise to improved operating characteristics especially in the high temperature (approaching 85 deg. C) range. The investigation can be divided into 2 sections: a theoretical approach and an experimental section. The theoretical study examined the performance of compressively strained InGaAsP/InP multiple quantum-well lasers emitting at 1.3 μm. in order to investigate the important factors and trends in the threshold current density and differential gain with strain, well width and well number. Structures with a fixed compressive strain of 1% but variable well width, and also with a fixed well width but variable strain from 0% to 1.4% have been considered. It has been found that there is little benefit to having compressive strains greater than 1%. For structures with a fixed 1% compressive strain and unstrained barriers, an optimum structure for lowest threshold current density and a high differential gain has been found to consist of six 35 A quantum-wells. In addition, compensated strain (CS) structures with compressive wells and tensile barriers have been examined. It is shown that the conduction band offset can be significantly increased and the valence band offset reduced in such structures, to give band-offset ratios comparable with aluminium based 1.3 μm devices. The gain calculations performed suggest that there is little degradation in the threshold carrier density or differential gain due to these alterations in the band offsets; and hence a better laser performance is expected due to a reduction in thermal leakage currents due to the improved electron confinement. The experimental study concentrates on looking at certain key design parameters to investigate their effect on the laser performance. These design parameters range from the number of quantum

  11. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  12. Positron studies of metal-oxide-semiconductor structures

    Science.gov (United States)

    Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-03-01

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  13. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  14. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ludovic, E-mail: rapp@lp3.univ-mrs.fr [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Cibert, Christophe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nenon, Sebastien [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Alloncle, Anne Patricia [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nagel, Matthias [Empa, Swiss Federal Laboratories for Materials Testing and Reasearch, Laboratory for Functional Polymers, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Lippert, Thomas [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Videlot-Ackermann, Christine; Fages, Frederic [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Delaporte, Philippe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France)

    2011-04-01

    Laser-induced forward transfer (LIFT) has been used to deposit pixels of an organic semiconductor, distyryl-quaterthiophenes (DS4T). The dynamics of the process have been investigated by shadowgraphic imaging for the nanosecond (ns) and picosecond (ps) regime on a time-scale from the laser iradiation to 1.5 {mu}s. The morphology of the deposit has been studied for different conditions. Intermediate sacrificial layer of gold or triazene polymer has been used to trap the incident radiation. Its role is to protect the layer to be transferred from direct irradiation and to provide a mechanical impulse strong enough to eject the material.

  15. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  16. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge

    Directory of Open Access Journals (Sweden)

    K. R. Simov

    2018-01-01

    Full Text Available Mn doping of group-IV semiconductors (Si/Ge is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn–Mn bonding.

  17. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    Science.gov (United States)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  18. Colloidal nanocrystals in epitactical semiconductor structures; Kolloidale Nanokristalle in epitaktischen Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Arens, C.

    2007-10-15

    in this thesis for the first time a new method for the fabrication of semiconductor quantum-dot structures was successfully applied. thereby colloidal CdSe nanocrystals have been imbedded by means of molecular-beam epitaxy into an epitactical ZnSe crystal matrix. The properties of the epitactically overgrown nanocrystals are elaborated in this thesis. The distribution of the nanocrystals on ZnSe surfaces dependes on the stressed state of the ZnSe layer. Nanocrystals on stressed ZnSe grow in agglomerates on its surface. Individual nanocrystals however can only be deposited on relaxed ZnSe. In-situ studies by means of reflection of high-energetically diffracted electrons show in both cases that under stoichiometrical conditions the ZnSe covering layer grows two-dimensionally. It is epitactic what is proved by means of highly resolving X-ray diffraction and transmission electron microscopy. The nanocrystals are after the overgrowth with ZnSe optically activ.

  19. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications

    Directory of Open Access Journals (Sweden)

    Kurochkina M

    2018-04-01

    Full Text Available Margarita Kurochkina,1 Elena Konshina,1 Aleksandr Oseev,2 Soeren Hirsch3 1Centre of Information Optical Technologies, ITMO University, Saint Petersburg, Russia; 2Institute of Micro and Sensor Systems, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; 3Department of Engineering, University of Applied Sciences Brandenburg, Brandenburg an der Havel, Germany Background: The luminescence amplification of semiconductor quantum dots (QD in the presence of self-assembled gold nanoparticles (Au NPs is one of way for creating biosensors with highly efficient transduction. Aims: The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. Methods: In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. Results: The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton–plasmon enhancement of the QDs’ photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA

  20. Layers of metal nanoparticles on semiconductors deposited by electrophoresis from solutions with reverse micelles

    Czech Academy of Sciences Publication Activity Database

    Žďánský, Karel; Kacerovský, Pavel; Zavadil, Jiří; Lorinčík, Jan; Fojtík, A.

    2007-01-01

    Roč. 2, č. 9 (2007), s. 450-454 ISSN 1931-7573. [Semiconducting & Insulating Materials Conference - SIMC /14./. Fayetteville, 15.05.2007-20.05.2007] R&D Projects: GA AV ČR KAN400670651 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor junctions * nanostructured materials * semiconductor devices Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.158, year: 2007

  1. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  2. Fused Methoxynaphthyl Phenanthrimidazole Semiconductors as Functional Layer in High Efficient OLEDs.

    Science.gov (United States)

    Jayabharathi, Jayaraman; Ramanathan, Periyasamy; Karunakaran, Chockalingam; Thanikachalam, Venugopal

    2016-01-01

    Efficient hole transport materials based on novel fused methoxynaphthyl phenanthrimidazole core structure were synthesised and characterized. Their device performances in phosphorescent organic light emitting diodes were investigated. The high thermal stability in combination with the reversible oxidation process made promising candidates as hole-transporting materials for organic light-emitting devices. Highly efficient Alq3-based organic light emitting devices have been developed using phenanthrimidazoles as functional layers between NPB [4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl] and Alq3 [tris(8-hydroxyquinoline)aluminium] layers. Using the device of ITO/NPB/4/Alq3/LiF/Al, a maximum luminous efficiency of 5.99 cd A(-1) was obtained with a maximum brightness of 40,623 cd m(-2) and a power efficiency of 5.25 lm W(-1).

  3. Quantitative depth profiling of near surface semiconductor structures using ultra low energy SIMS analysis

    International Nuclear Information System (INIS)

    Elliner, D.I.

    1999-09-01

    The continual reduction in size of semiconductor structures and depths of junctions is putting a greater strain on characterization techniques. Accurate device and process modelling requires quantified electrical and dopant profiles from the topmost few nanometres. Secondary ion mass spectrometry (SIMS) is an analytical technique commonly used in the semiconductor industry to measure concentration depth profiles. To allow the quantification of the features that are closer to the surface, lower energy ions are employed, which also improves the available depth resolution. The development of the floating ion gun (FLIG) has made it possible to use sub keV beam energies on a routine basis, allowing quantified dopant profiles to be obtained within the first few nanometres of the surface. This thesis demonstrates that, when profiling with oxygen ion beams, greatest certainty in the retained dose is achieved at normal incidence, and when analysing boron accurate profile shapes are only obtained when the primary beam energy is less than half that of the implant. It was shown that it is now possible to profile, though with slower erosion rates and a limited dynamic range, with 100 eV oxygen (0 2 + ) ion beams. Profile features that had developed during rapid thermal annealing, that could only be observed when ultra low energy ion beams were used, were investigated using various analytical techniques. Explanations of the apparently inactive dopant were proposed, and included suggestions for cluster molecules. The oxide thickness of fully formed altered layers has also been investigated. The results indicate that a fundamental change in the mechanism of oxide formation occurs, and interfaces that are sharper than those grown by thermal oxidation can be produced using sub-keV ion beams. (author)

  4. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    Science.gov (United States)

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  5. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    Science.gov (United States)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  6. Electronic properties of InAs-based metal-insulator-semiconductor structures

    CERN Document Server

    Kuryshev, G L; Valisheva, N A

    2001-01-01

    The peculiarities of electronic processes in InAs-based MIS structures operating in the charge injection device mode and using as photodetectors in spectral range 2.5-3.05 mu m are investigated. A two-layer system consisting of anodic oxide and low-temperature silicon dioxide is used as an insulator. It is shown that fluoride-containing components that is introduced into the electrolyte decreases the value of the built-in charge and the surface state static density down to minimal measurable values <= 2 x 10 sup 1 sup 0 cm sup - sup 2 eV sup - sup 2. Physical and chemical characteristics of the surface states at the InAs-dielectric interface are discussed on the basis of data on phase composition of anodic oxides obtained by means of X-ray photoelectronic spectroscopy. Anomalous field generation was also observed under the semiconductor non-equilibrium depletion. The processes of tunnel generation and the noise behavior of MIS structures under non-equilibrium depletion are investigated

  7. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    Science.gov (United States)

    Leung, T. C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-01-01

    Studies of SiO2-Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO2-Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown.

  8. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    International Nuclear Information System (INIS)

    Leung, T.C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G.

    1993-01-01

    Studies of SiO 2 -Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO 2 -Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown

  9. Coherent Exciton Dynamics in GaAs-Based Semiconductor Structures

    Science.gov (United States)

    Colocci, M.; Bogani, F.; Ceccherini, S.; Gurioli, M.

    We show that a very powerful tool in the investigation of the coherent exciton dynamics in semiconductors is provided by the study of the emitted light after resonant excitation from pairs of phase-locked femtosecond pulses. Under these conditions, not only the full dynamics of the coherent transients (dephasing times, quantum beat periods, etc.) can be obtained from linear experiments, but it can also be obtained a straightforward discrimination between the coherent or incoherent character of the emission by means of spectral filtering.

  10. Structure and method for controlling band offset and alignment at a crystalline oxide-on-semiconductor interface

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    2003-11-25

    A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.

  11. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  12. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  13. Theory of the ellipsometry of a layer of semiconductor nanoparticles covering the substrate

    International Nuclear Information System (INIS)

    Borshchagyivs'kij, Je.G.; Lozovs'kij, V.Z.; Lozovs'kij, V.Z.; Myishakova, T.O.

    2010-01-01

    A theoretical model of ellipsometry of a submonolayer of semiconductor nanoparticles on a surface is built in the frame of the local field method. We calculated the effective susceptibility of the system which had been modeled as a substrate with ellipsoidal particles. These calculations allow us to determine the reflection coefficients and the ellipsometric parameters versus the wavelength and the angle of incidence. It is shown that semiconductor particles on a substrate give a measurable contribution to ellipsometric parameters. We obtain that ellipsometric parameters depend on the concentration and the shape of particles.

  14. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  15. Moessbauer-spectroscopic study of structure and magnetism of the exchange-coupled layer systems Fe/FeSn{sub 2}, and Fe/FeSi/Si and the ion-implanted diluted magnetic semiconductor SiC(Fe); Moessbauerspektroskopische Untersuchung von Struktur und Magnetismus der austauschgekoppelten Schichtsysteme Fe/FeSn{sub 2} und Fe/FeSi/Si und des ionenimplantierten verduennten magnetischen Halbleiters SiC(Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Frank

    2009-07-07

    In line with this work the structural and magnetic properties of the exchange coupled layered systems Fe/FeSn{sub 2} and Fe/FeSi/Si and of the Fe ion implanted diluted magnetic semiconductor (DMS) SiC(Fe) were investigated. The main measuring method was the isotope selective {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS), mostly in connection with the {sup 57}Fe tracer layer technique, in a temperature range from 4.2 K to 340 K. Further measurement techniques were X-ray diffraction (XRD), electron diffraction (LEED, RHEED), SQUID magnetometry and FMR (Ferromagnetic Resonance). In the first part of this work the properties of thin AF FeSn{sub 2}(001) films and of the exchange-bias system Fe/FeSn{sub 2}(001) on InSb(001) were investigated. With the application of {sup 57}Fe-tracer layers and CEMS both the Fe-spin structure and the temperature dependence of the magnetic hyperfine field (B{sub hf}) of FeSn{sub 2} could be examined. The evaporation of Fe films on the FeSn{sub 2} films produced in the latter ones a high perpendicular spin component at the Fe/FeSn{sub 2} interface. In some distance from the interface the Fe spins rotate back into the sample plane. Furthermore {sup 57}Fe-CEMS provided a correlation between the absolute value of the exchange field vertical stroke He vertical stroke and the amount of magnetic defects within the FeSn{sub 2}. Temperature dependent CEMS-measurements yielded informations about the spin dynamics within the AF. The transition temperatures T{sub B}{sup *}, which were interpreted as superparamagnetic blocking temperatures, obtain higher values compared to the temperatures T{sub B} of the exchange-bias effect, obtained with magnetometry measurements. The second part of this work deals with the indirect exchange coupling within Fe/FeSi/Si/FeSi/Fe multilayers and FeSi diffusion barriers. The goal was to achieve Fe free Si interlayers. The CEMS results show that starting from a thickness of t{sub FeSi}=10-12 A of the

  16. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    Science.gov (United States)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  17. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    International Nuclear Information System (INIS)

    Sibatov, R. T.; Morozova, E. V.

    2015-01-01

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors

  18. Effects of the inversion layer thickness and 10B distribution in it on the characteristics of ion-doped semiconductor neutron counters

    International Nuclear Information System (INIS)

    Diasamidze, Eh.M.; Solov'ev, Yu.A.; Shmakov, A.N.

    1984-01-01

    The technique for calculating the dependence of energy spectrum of the 10 B(n, α) 7 Li reaction products in the thickness of the inversion layer in a semiconductor counter fabricated using the diffusion method is proposed. The inversion layer is formed as a result of the 10 B ion implantation into n-type silicon. The cases of uniform and Gaussian distributions of 10 B impurity are considered. Corrections for neutron fluence calculation by α-peak, taking into account α-particle absorption in the inversion layer are obtained. It is concluded that the suggested calculational technique can be used for semiconductor counters fabricated by the diffusion method

  19. Quantum theory of opto-electric processes in multi-layered periodic semiconductors

    International Nuclear Information System (INIS)

    Kaniyazov, Sh.K.; Muratov, A.C.

    2002-01-01

    Physical model of contact of layered structures was constructed, supposing that it is built on the basis of two molecules with different polarisation and charge states. Taking into account an electronic gas in the contact region, Thomas-Fermi's equation was solved. An instant potential energy of one electron was obtained in the induction gradient force field arisen in the electron gas. Having substituted this potential energy with the potential of harmonic oscillator, formula was derived for calculating the main vibration frequency of oscillator vibration, as well as its energetic levels were obtained. It was shown that at the certain frequencies of monochromatic light signal the photo electromotive force changes it's sign. Such switching at the definite polarisation values is possible in two different frequencies. Note, the photo-switchers, that have two or three steady states, are of great interest in optoelectronic communications. (author)

  20. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    International Nuclear Information System (INIS)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien; Deleporte, Emmanuelle; Audebert, Pierre; Galmiche, Laurent

    2009-01-01

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH 2 ) n NH 3 ) 2 PbX 4 . These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH 2 ) n NH 3 + ) to study the relationship between their structures and the optical properties of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH 2 ) n NH 3 ) 2 PbX 4 . A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  1. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  2. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  3. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    International Nuclear Information System (INIS)

    Reshak, A.H.; Khan, Saleem Ayaz; Kamarudin, H.; Bila, Jiri

    2014-01-01

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor

  4. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-01-05

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor.

  5. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions

    Science.gov (United States)

    Huang, Ya-Shih; Westenhoff, Sebastian; Avilov, Igor; Sreearunothai, Paiboon; Hodgkiss, Justin M.; Deleener, Caroline; Friend, Richard H.; Beljonne, David

    2008-06-01

    Heterojunctions between organic semiconductors are central to the operation of light-emitting and photovoltaic diodes, providing respectively for electron-hole capture and separation. However, relatively little is known about the character of electronic excitations stable at the heterojunction. We have developed molecular models to study such interfacial excited electronic excitations that form at the heterojunction between model polymer donor and polymer acceptor systems: poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with F8BT. We find that for stable ground-state geometries the excited state has a strong charge-transfer character. Furthermore, when partly covalent, modelled radiative lifetimes (~10-7s) and off-chain axis polarization (30∘) match observed `exciplex' emission. Additionally for the PFB:F8BT blend, geometries with fully ionic character are also found, thus accounting for the low electroluminescence efficiency of this system.

  6. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  7. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  8. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  9. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    Science.gov (United States)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  10. Preparation and dielectric investigation of organic metal insulator semiconductor (MIS) structures with a ferroelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University (United Kingdom)

    2010-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in the semiconductor is confined to the interface region between the insulator and the semiconductor, the focus of the present study was on the investigation of this region in metal-insulator-semiconductor (MIS) capacitors using dielectric spectroscopy. Capacitance-Voltage (C-V) measurements at different frequencies as well as capacitance-frequency (C-f) measurements after applying different poling voltages were carried out. The C-V measurements yielded information about the frequency dependence of the depletion layer width as well as the number of charges stored at the semiconductor/ insulator interface. The results are compared to numerical calculations based on a model introduced by S. L. Miller (JAP, 72(12), 1992). The C-f measurements revealed three main relaxation processes. An equivalent circuit has been developed to model the frequency response of the MIS capacitor. With this model the origin of the three relaxations may be deduced.

  11. Nanoscale semiconductor Pb{sub 1-x}Sn{sub x}Se (x = 0.2) thin films synthesized by electrochemical atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shaoxiong; Zhang Xin; Shi Xuezhao; Wei Jinping; Lu Daban; Zhang Yuzhen; Kou Huanhuan [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-04-15

    In this paper the fabrication and characterization of IV-VI semiconductor Pb{sub 1-x}Sn{sub x}Se (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn ...), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb{sub 1-x}Sn{sub x}Se is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.

  12. Investigation of efficient termination structure for improved breakdown properties of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Krizaj, D.; Resnik, D.; Vrtacnik, D.; Amon, S.

    1998-01-01

    Efficiency of a new junction termination structure for improvement of breakdown properties of semiconductor radiation detectors is investigated. The structure consists of a diffused resistor winding around the active junction in a spiral fashion. The current flow through the spiral enables controlled potential distribution along the spiral turns and thus controlled depletion spreading from the main junction, efficiently preventing premature avalanche breakdown. Both multiple guard-ring structures and spiral junction termination structures have shown good breakdown properties typically three to five times higher than breakdown voltages of diodes without junction termination. The breakdown voltages of spiral junction termination structures are only weakly influenced by changes in substrate doping concentration caused by neutron irradiation. They can thus be considered for termination of future semiconductor radiation detectors

  13. Structural study of the AlP, GaAs and AlAs semiconductors with wurtzite structure

    International Nuclear Information System (INIS)

    Bautista H, A.; Perez A, L.; Pal, U.; Rivas S, J.F.

    2003-01-01

    In this work we present ab initio calculations of optimization geometries, lattice constant and electronic structure for semiconductors wurtzite type, like AIN, CdS, Zn S, Zn Se, Ga N and GaAs. For this, we used the CASTEP program of CERUIS with LDA and GGA approximations, in the framework of Functional Density Theory. The used pseudopotentials are available in that program and were generated using the optimization scheme of Troullier-Martins. With the lattice constant just optimized, we calculate then the X-ray spectra for studied semiconductors.We analyzed the effect of used pseudopotentials on function of the results obtained. Finally, we predicted the geometry and X-ray pattern for AIP, AlAs and GaAs with wurtzite structure, giving evidence about the semiconductor character of these materials. (Author)

  14. Optical studies of wide bandgap semiconductor epilayers and quantum well structures

    International Nuclear Information System (INIS)

    May, L.

    1998-09-01

    This thesis contains research on the optical properties of wide bandgap semiconductors, which are potentially useful for blue and UV emitters. The research covers materials from both the II-VI and III-V groups. In Chapter 1, a general introduction to the topic of blue and UV emitters is presented. The properties required of materials used for these applications are outlined, and the technological significance of these devices is discussed, in order to place this work into context. In Chapter 2, the main experimental techniques used in this work are outlined. These are photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and white light reflectivity. Chapter 3 begins with a discussion of the properties of ZnS. Then, following a brief outline of the sample growth technique, the optical studies of a series of ZnS single epitaxial layers are presented. The samples were characterised by photoluminescence spectroscopy, and the effect of strain on their properties studied in some detail. The results of tellurium and nitrogen doping studies are also presented. The chapter concludes with a study of ZnCdS epilayers. Chapter 4 begins with the growth and PL characterisation of a series of ZnS/ZnCdS multiple quantum well structures. Optically pumped stimulated emission experiments were then carried out on selected MQW samples. The results of these experiments are presented in the latter part of Chapter 4, followed by a discussion of the lasing mechanisms in II-VI quantum well structures. In Chapter 5, the growth and characterisation of a series of GaN epilayers are described. After an introduction outlining some of the key properties of GaN, the MOCVD growth procedure is described. Studies of the samples by PL, PLE and reflectivity are then presented. Finally, a study of p-type GaN epilayers is presented, and excimer laser annealing is investigated as a possible means of activating the dopant

  15. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  16. Electronic properties of the layer III-VI semiconductors. A comparative study

    International Nuclear Information System (INIS)

    Depeursinge, Y.

    1981-01-01

    The electronic properties of the family of layer compounds InSe, GaSe and GaS by the empirical pseudopotential method have been studied. Both atomic positions, which are not accurately known from experiment, and atomic pseudopotentials are adjusted to fit the main optical and photoemission data with the further constraint that the same Se potential should be valid for InSe and GaSe, and the same Ga potential for GaS and GaSe. The charge densities have also been calculated and show that the ionicity of InSe is greater than that of GaS and GaSe, in good agreement with the Phillips electronegativity scale which predicts that InSe is 1.2 and 1.3 times more ionic than GaS and GaSe, respectively. The calculated band structures and charge densities allow a detailed discussion of the integrated and angle-resolved photoemission data as well as of the optical properties of these compounds. (author)

  17. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors

    International Nuclear Information System (INIS)

    Blumers, Mathias

    2012-01-01

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S 2 .σ/k, where S is the Seebeck-coefficient, σ is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb 1-x Sr x Te and Bi 2 (Se x Te 1-x ) 3 , respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, σ and κ parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,σ,κ) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  18. POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING THERMOELECTRIC EVENTS IN LIGHT-EMITTING BIPOLAR SEMICONDUCTOR STRUCTURES

    Directory of Open Access Journals (Sweden)

    P. A. Magomedova

    2017-01-01

    Full Text Available Objective. The development of light-emitting bipolar semiconductor structures having a low level of parasitic heat release.Methods. A method for converting thermoelectric heat in bipolar semiconductor structures into optical radiation to divert the excess energy into the environment was developed. At the same time, the cooling effect on thermoelectric junctions remains. Instead of an inertial process of conductive or convective heat transfer, practically instantaneous heat removal from electronic components to the environment takes place.Results. As a result, light-emitting bipolar semiconductor structures will allow more powerful devices with greater speed and degree of integration to be created. It is possible to produce transparent LED matrices with a two-way arrangement of transparent solar cells and mirror metal electrodes along the perimeter. When current is applied, the LED matrix on one of the transitions will absorb thermal energy; on other electrodes, it will emit radiation that is completely recovered into electricity by means of transparent solar cells following repeated reflection between the mirror electrodes. The low efficiency of solar cells will be completely compensated for with the multiple passages of photons through these batteries.Conclusion. Light-emitting bipolar semiconductor structures will not only improve the reliability of electronic components in a wide range of performance characteristics, but also improve energy efficiency through the use of optical radiation recovery. Semiconductor thermoelectric devices using optical phenomena in conjunction with the Peltier effect allow a wide range of energy-efficient components of radio electronic equipment to be realised, both for discrete electronics and for microsystem techniques. Systems for obtaining ultra-low temperatures in order to achieve superconductivity are of particular value. 

  19. On properties of multilayer semiconductor nZnSe-nGaAs structures

    CERN Document Server

    Duysenbaev, M; Auezov, S A

    2002-01-01

    Electrical and optoelectronic properties of multilayer semiconductor nZnSe-nGaAs structures have been investigated. The volt-current characteristics showed that the relation I approx V holds at the voltages lower than 0.8 v, then the current decreases with increasing the applied voltage. The spectral sensitive range (0.47-1.7 mu m) and parameters of the structures have been determined. Negative differential conductivity mechanism is discussed. (author)

  20. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    Science.gov (United States)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  1. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    International Nuclear Information System (INIS)

    Kevin Jerome Sutherland

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ((mu)TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods

  2. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  3. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  5. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    Science.gov (United States)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  6. Influence of strain on band structure of semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Raičević Nevena

    2009-01-01

    Full Text Available The influence of the mechanical strain on the electronic structure of the asymmetric (In,GaAs/GaAs quantum well is considered. Both the direct influence of strain on the orbital part of the electronic structure and an indirect influence through the strain dependent Rashba and Dresselhaus Hamiltonians are taken into account. The analyzed quantum well is taken to have a triangular shape, and is oriented along the direction. For this direction, there exists both the intrinsic and strain-induced spin-orbit interaction. For all analyzed types of spin-orbit interaction, subband splittings depend linearly on the in-plane wave vector. On the other hand, the electronic structure for the Rashba type of the strain-induced spin-orbit interaction shows isotropic dependence in the k-space, while the electronic structure due to the Dresselhaus type shows anisotropy. Furthermore, the Rashba strain-induced spin-orbit interaction increases subband splitting, while the effect of the Dresselhaus Hamiltonian on the electronic structure is opposite to the intrinsic spin-orbit interaction for certain polar angles.

  7. Ab-initio theoretical predictions of structural properties of semiconductors

    International Nuclear Information System (INIS)

    Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.

    1983-01-01

    Calculations of the total energies of Si, GaP and C together with related structural properties are presented. The results show good agreement with experimental values (differences of less than 6%). They also agree with other recent theoretical results. Calculations for Si and GaP have already been reported and are given here as a reference. (L.C.) [pt

  8. Ab-initio theoretical predictions of structure properties of semiconductors

    International Nuclear Information System (INIS)

    Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.

    1983-01-01

    In this paper, calculations of the total energies and related structural properties of Si, GaP and C are presented showing good agreement with experimental values. The total energy is calculated within the local-density functional formalism using first principles non-local pseudopotentials. (A.C.A.S.) [pt

  9. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  10. Electronic structure calculations on nitride semiconductors and their alloys

    International Nuclear Information System (INIS)

    Dugdale, D.

    2000-09-01

    Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotential method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations. The empirical pseudopotential method is also used in this work. Pseudopotentials for each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k.p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular. valence band offsets for nitride heterojunctions are calculated, and a strong forward- backward asymmetry in the band offset is found, in good agreement with other results in the literature. (author)

  11. A dosemeter with a metal-insulator-semiconductor structure

    International Nuclear Information System (INIS)

    Digoy, J.-L.

    1973-01-01

    Description is given of a semiconducting device for measuring irradiation doses, this device being a Mosfet structure, field effect and insulated-gate device of revolution, with a cylindrical effective surface and ring-shaped source and drain. This can be applied to the measurement of doses up to 10 4 rads, for radiations of a few keV, in the field of in-vivo biology, in a flowing fluid [fr

  12. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    Science.gov (United States)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  13. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Leung, T.C.; Lynn, K.G.; Nielsen, B.; Forcier, M.P.; Weinberg, Z.A.; Rubloff, G.W.

    1992-01-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions

  14. Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures

    Science.gov (United States)

    Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.

    1992-01-01

    An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.

  15. Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications

    NARCIS (Netherlands)

    Hoogeland, D.; Jinesh, K.B.; Roozeboom, F.; Besling, W.F.A.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2009-01-01

    By employing plasma-assisted atomic layer deposition, thin films of Al2O3 and TiN are subsequently deposited in a single reactor at a single substrate temperature with the objective of fabricating high-quality TiN/Al2O3 / p-Si metal-oxide-semiconductor capacitors. Transmission electron microscopy

  16. Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC

    International Nuclear Information System (INIS)

    Pérez-Tomás, A; Fontserè, A; Placidi, M; Jennings, M R; Gammon, P M

    2013-01-01

    Here we present a method to model the metal–semiconductor (M–S) band structure to an implanted ohmic contact to a wide band gap semiconductor (WBG) such as GaN and SiC. The performance and understanding of the M–S contact to a WBG semiconductor is of great importance as it influences the overall performance of a semiconductor device. In this work we explore in a numerical fashion the ohmic contact properties to a WBG semiconductor taking into account the partial ionization of impurities and analysing its dependence on the temperature, the barrier height, the impurity level band energy and carrier concentration. The effect of the M–S Schottky barrier lowering and the Schottky barrier inhomogeneities are discussed. The model is applied to a fabricated ohmic contact to GaN where the M–S band structure can be completely determined. (paper)

  17. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  18. Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer

    International Nuclear Information System (INIS)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-01-01

    We demonstrate cuprous oxide (Cu 2 O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu 2 O layer. The devices are the most efficient of any Cu 2 O based MIS-Schottky solar cells reported to date

  19. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    Energy Technology Data Exchange (ETDEWEB)

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex, E-mail: azettl@berkeley.edu [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Regan, William Raymond [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  20. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  1. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures

    Science.gov (United States)

    Skopelitis, Petros; Cherotchenko, Evgenia D.; Kavokin, Alexey V.; Posazhennikova, Anna

    2018-03-01

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  2. Photoacoustic investigation of the effective diffusivity of two-layer semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Medina, J; Gurevich, Yu. G; Logvinov G, N; Rodriguez, P; Gonzalez de la Cruz, G. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-08-01

    In this work, the problem of the effective thermal diffusivity of two-layer systems is investigated using the photoacoustic spectroscopy. The experimental results are examined in terms of the effective thermal parameters of the composite system determined from an homogeneous material which produces the same physical response under an external perturbation in the detector device. It is shown, that the effective thermal conductivity is not symmetric under exchange of the two layers of the composite; i.e., the effective thermal parameters depend upon which layer is illuminated in the photoacoustic experiments. Particular emphasis is given to the characterization of the interface thermal conductivity between the layer-system. [Spanish] En el presente trabajo se utiliza la espectroscopia fotoacustica para medir la difusividad termica de un sistema de dos capas. Los resultados experimentales son analizados en terminos de los parametros termicos efectivos determinados a partir de un material homogeneo, el cual produce la misma respuesta fisica bajo una perturbacion externa. Se puso particular enfasis en la caracterizacion de los efectos de interfase en el flujo de calor en el sistema de dos capas. Los resultados experimentales se comparan con el modelo teorico propuesto en este trabajo.

  3. Wet thermal annealing effect on TaN/HfO2/Ge metal—oxide—semiconductor capacitors with and without a GeO2 passivation layer

    International Nuclear Information System (INIS)

    Liu Guan-Zhou; Li Cheng; Lu Chang-Bao; Tang Rui-Fan; Tang Meng-Rao; Wu Zheng; Yang Xu; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2012-01-01

    Wet thermal annealing effects on the properties of TaN/HfO 2 /Ge metal—oxide—semiconductor (MOS) structures with and without a GeO 2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance—voltage (C—V) and current—voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 °C can lead to Ge incorporation in HfO 2 and the partial crystallization of HfO 2 , which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO 2 /Ge MOS capacitors. However, wet thermal annealing at 400 °C can decrease the GeO x interlayer thickness at the HfO 2 /Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeO x in the wet ambient. The pre-growth of a thin GeO 2 passivation layer can effectively suppress the interface states and improve the C—V characteristics for the as-prepared HfO 2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent

  4. Investigation of InN layers grown by MOCVD using analytical and high resolution TEM: The structure, band gap, role of the buffer layers

    International Nuclear Information System (INIS)

    Ruterana, P.; Abouzaid, M.; Gloux, F.; Maciej, W.; Doualan, J.L.; Drago, M.; Schmidtling, T.; Pohl, U.W.; Richter, W.

    2006-01-01

    In this work we investigate the microstructure of InN layers grown by MOCVD on different buffer layers using TEM (InN, GaN). The large mismatch between the various lattices (InN, sapphire or GaN) leads to particular interface structures. Our local analysis allows to show that at atomic scale, the material has the InN lattice parameters and that no metallic In precipitates are present, meaning that the PL emission below 0.8 eV is a genuine property of the InN semiconductor. It is also shown that the N polar layers, which exhibit a 2D growth, have poorer PL emission than In polar layers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Graphene-on-semiconductor substrates for analog electronics

    Science.gov (United States)

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  6. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  7. Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions

    NARCIS (Netherlands)

    Koumans, R.G.M.P.; Roijen, van R.

    1996-01-01

    We present a theory for passive mode-locking in semiconductor laser structures using a semiconductor laser amplifier and absorber. The mode-locking system is described in terms of the different elements in the semiconductor laser structure. We derive mode-locking conditions and show how other

  8. Nature of radiative recombination processes in layered semiconductor PbCdI{sub 2} nanostructural scintillation material

    Energy Technology Data Exchange (ETDEWEB)

    Bukivskii, A.P. [Institute of Physics of the National Academy of Sciences of Ukraine, 03028 Kyiv (Ukraine); Gnatenko, Yu.P., E-mail: yuriygnatenko@ukr.net [Institute of Physics of the National Academy of Sciences of Ukraine, 03028 Kyiv (Ukraine); Piryatinskii, Yu.P. [Institute of Physics of the National Academy of Sciences of Ukraine, 03028 Kyiv (Ukraine); Gamernyk, R.V. [Lviv National University, 8 Kyryl o and Mefodiy Str., 29005 Lviv (Ukraine)

    2017-05-15

    We report on the efficient photoluminescence (PL) and radioluminescence (RL) of the PbI{sub 2} nanoclusters (NCLs), which are naturally formed in the nanostructured Pb{sub 1-X}Cd{sub x}I{sub 2} alloys (X=0.70). Here, we carried out the studies of the nature of radiative recombination processes in the NCLs of various sizes by measuring PL temperature evolution. Our results indicate that at low temperatures the PL is mainly caused by exciton emission and recombination of donor-acceptor pairs, generated in volume of large NCLs. The broad bands, which are associated with the deep intrinsic surface states, including self-trapped excitons (STEs), are dominant in the PL spectra at higher temperature (>100 K). Our work shows that the nature of emission, associated with RL bands is analogous to that for PL bands. It was shown that the investigated nanostructured material is strongly radiation-resistant. Thus, the Pb{sub 1-X}Cd{sub X}I{sub 2} alloys can be considered as new effective layered semiconductor nanostructured materials which can be suitable for the elaboration of perspective semiconductor scintillators. These nanomaterials have promising prospects for applications in new generations of devices for biomedical diagnostics and industrial imaging applications. - Highlights: •The intense PL and RL of nanostructural PbCdI{sub 2} alloys were observed. •The nature of recombination processes of the nanoscintillators was established. •The low temperature PL is caused by exciton and donor-acceptor pairs recombination. •The broad PL bands are due to the deep intrinsic states formed on the NCLs surface. •The PL associated with STEs for NCLs of different sizes was analyzed in detail. •It was shown that the nature of PL and RL spectra is same.

  9. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4

    Science.gov (United States)

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.

    2013-02-01

    Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.

  10. Structural properties of III-V zinc-blende semiconductors under pressure

    International Nuclear Information System (INIS)

    Froyen, S.; Cohen, M.L.

    1983-01-01

    The pseudopotential method within the local-density approximation is used to investigate the static and structural properties of some III-V compound semiconductors. Comparisons of calculated total energies as a function of volume and structure yield information about solid-solid phase transformations. At high pressures the results indicate that several metallic structures are lower in energy than the zinc-blende structure. From our results the compounds (AlP, AlAs, GaP, and GaAs) can be divided into two classes. In the Ga compounds, we find a pressure-induced phase transformation to either rocksalt, β-Sn, or NiAs, whereas in the Al compounds rocksalt and NiAs are stabilized with respect to β-Sn. All structures except zinc blende are metallic. We discuss the electronic structure of each phase and show how it relates to structural stability

  11. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.

    Science.gov (United States)

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F

    2015-01-01

    In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.

  12. Structural, morphological and magnetic analysis of Cd–Co–S dilute magnetic semiconductor nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Negi, N.S. [Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005 (India); Katyal, S.C. [Department of Physics, Jaypee Institute of Information Technology, Sec-128, Noida, Uttar Pradesh 201301 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Sharma, Vineet [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2014-10-01

    Cd{sub 1−x}Co{sub x}S dilute magnetic semiconductor nanofilms (0≤x≤0.08 at%) deposited by chemical bath deposition have been investigated using grazing angle x-ray diffraction, atomic force microscopy and vibrating sample magnetometer. The introduction of Co{sup 2+} ions in CdS structure induces structural disorders and hence, results in degradation of crystallinity. The crystallite size, interplanar spacing and lattice parameter ratio decrease with increasing Co{sup 2+} concentration in CdS. The diamagnetic state of CdS disappears with increase in Co concentration and films with x>0.02 exhibit ferromagnetism. This may be explained in terms of the spin–orbit interactions and Co{sup 2+} ion induced the lattice defects and phase separation. - Highlights: • Cd{sub 1−x}Co{sub x}S dilute magnetic semiconductor nanofilms (0≤x≤0.08 at%) deposited by CBD. • The diamagnetic state of CdS vanishes for x=0.02. • For x>0.02, dilute magnetic semiconductor nanofilms shows a ferromagnetic state.

  13. Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sanjun; Lanty, Gaetan; Lauret, Jean-Sebastien [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Deleporte, Emmanuelle, E-mail: Emmanuelle.Deleporte@lpqm.ens-cachan.fr [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France); Audebert, Pierre; Galmiche, Laurent [Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires de l' Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan (France)

    2009-06-15

    We report on the synthesis of some novel organic-inorganic hybrid 2D perovskite semiconductors (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. These semiconductors are self-assembled intercalation nanolayers and have a multi-quantum-well energy level structure. We systematically vary the characteristic of organic groups (R-(CH{sub 2}){sub n}NH{sub 3}{sup +}) to study the relationship between their structures and the optical properties of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. From optical absorption and photoluminescence spectroscopy experiments performed on series of samples, we find some trends of choosing the organic groups to improve the optical performance of (R-(CH{sub 2}){sub n}NH{sub 3}){sub 2}PbX{sub 4}. A new organic group, which allows synthesis of nanolayer perovskite semiconductors with quite high photoluminescence efficiency and better long-term stability, has been found.

  14. Influence of foundation layering on soil-structure system motion

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.

    1985-01-01

    This paper is concerned with effects on structural motion due to layering of the foundation. Impedance functions for foundations which consist of a layer resting on a viscoelastic half-space are used on a simple 3-dof SSI system and transfer functions are generated. It is shown that the layering of the foundation effects the motion of the SSI system. These effects are more pronounced for shallow layers with large difference in shear wave velocity from the underlying half-space. (orig.)

  15. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    International Nuclear Information System (INIS)

    Tuz, Vladimir R.

    2016-01-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  16. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state

    Energy Technology Data Exchange (ETDEWEB)

    Tuz, Vladimir R., E-mail: tvr@rian.kharkov.ua

    2016-12-01

    In the context of polaritons in a ferrite-semiconductor structure which is influenced by an external static magnetic field, the gyrotropic-nihility can be identified from the dispersion equation related to bulk polaritons as a particular extreme state, at which the longitudinal component of the corresponding constitutive tensor and bulk constant simultaneously acquire zero. Near the frequency of the gyrotropic-nihility state, the conditions of branches merging of bulk polaritons, as well as an anomalous dispersion of bulk and surface polaritons are found and discussed. - Highlights: • Gyrotropic-nihility state is identified from the dispersion equation related to bulk polaritons in a magnetic-semiconductor superlattice. • The conditions of branches merging of bulk polaritons are found. • An anomalous dispersion of bulk and surface polaritons is found and discussed.

  17. Magnetic and structural characterization of the semiconductor FeIn2Se4

    International Nuclear Information System (INIS)

    Torres, T.; Sagredo, V.; Chalbaud, L.M. de; Attolini, G.; Bolzoni, F.

    2006-01-01

    Plate-like single crystals of magnetic semiconductor FeIn 2 Se 4 were grown with a chemical vapour transport technique. The X-ray powder diffraction analyses suggest that the compound crystallize in the hexagonal structure with space group P3m1. We have performed dc magnetization measurements at different magnetic fields on the diluted magnetic semiconductor FeIn 2 Se 4 . Low field magnetizations measurements shows irreversibility in the DC magnetization, as evidenced by field cooled and zero field cooled measurements below 17 K, suggesting a spin-glass like behaviour. The high-temperature susceptibility data follow a typical Curie-Weiss law with θ=-183±2 K which suggest the presence of predominant antiferromagnetic interactions with high degree of frustration. The randomness and frustration necessary for spin-glass behaviour are explained in a manner compatible with the cation and charge ordering present in the material

  18. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  19. Doubly slanted layer structures in holographic gelatin emulsions: solar concentrators

    International Nuclear Information System (INIS)

    Hung, Jenny; Tam, Wing Yim; Chan, Po Shan; Sun, Caiming; Ho, Choi Wing

    2010-01-01

    We have fabricated doubly slanted layer structures in holographic gelatin emulsions using a double-exposure two-beam interference from two light sources with different wavelengths. The doubly slanted layers, with different spacings and overlapping with each other, are fabricated such that they are slanted in opposite directions making a 30° angle with the holographic plate. The doubly slanted layer structures exhibit photonic stop bands corresponding to the two layered structures. More importantly, diffracted light beams from the slanted layers travel in different directions and emerge, through internal reflections, at the opposite edges of the gelatin plate. The doubly slanted layer structures could be used as solar concentrators such that sunlight is separated into different components and steered directly to photovoltaics with the corresponding wavelength sensitivities to enhance energy conversion efficiency

  20. Study of the parameters of nanoscale layers in nanoheterostructures based on II–VI semiconductor compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, M. B., E-mail: estonianchameleon@gmail.com; Kirilenko, D. A.; Ivanova, E. V.; Popova, T. B.; Sitnikova, A. A.; Sedova, I. V.; Zamoryanskaya, M. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    Wide-gap ZnSe-based nanoheterostructures grown by molecular-beam epitaxy are studied by local cathodoluminescence and X-ray microanalysis. It is shown that the used methods allow nondestructive determination of the depth, elemental composition, and geometrical parameters of the nanoscale ZnCdSe layer. The accuracy of the results is verified by transmission electron microscopy. The research techniques are based on the possibility of varying the primary electron-beam energy, which results in changes in the regions of characteristic X-ray and cathodoluminescence generation.

  1. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    International Nuclear Information System (INIS)

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min; Lau, Woon-Ming; Peng, Ping

    2014-01-01

    The family of bulk metal phosphorus trichalcogenides (APX 3 , A = M II , M 0.5 I M 0.5 III ; X = S, Se; M I , M II , and M III represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX 3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe 3 , CdPSe 3 , Ag 0.5 Sc 0.5 PSe 3 , and Ag 0.5 In 0.5 PX 3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag 0.5 Sc 0.5 PSe 3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting

  2. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  3. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  4. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    Science.gov (United States)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  5. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  6. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  7. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  8. Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer

    International Nuclear Information System (INIS)

    Liu, Jiansheng; Wang, Lijun; Lu, Yanyan; He, Shitang

    2013-01-01

    A theoretical method is developed for analyzing Love waves in a structure with a viscoelastic guiding layer bounded on a piezoelectric substrate. The dispersion equation previously derived for piezoelectric Love waves propagating in the layered structure with an elastic layer is adopted for analyzing a structure with a viscoelastic layer. A Maxwell–Weichert model is introduced to describe the shear stiffness of a polymeric material. Newton’s method is employed for the numerical calculation. The dispersion equation for piezoelectric–elastic Love waves is proved suitable for solving a structure with a viscoelastic layer on a piezoelectric substrate. The theoretical results indicate that the propagation velocity of the Love wave is mainly decided by the shear stiffness of the guiding layer, whereas the propagation loss is approximately proportional to its viscosity. A detailed experimental study was conducted on a Love wave delay line fabricated on an ST-90° X quartz substrate and overlaid with various thicknesses of SU-8 guiding layers. A tail-raising caused by the viscosity of the guiding layer existed in both the calculated and the measured propagation velocities. The calculated insertion loss of the Love wave delay lines was in good agreement with the measured results. The method and the results presented in this paper are beneficial to the design of Love wave sensors with a viscoelastic guiding layer. (paper)

  9. Advanced understanding on electronic structure of molecular semiconductors and their interfaces

    Science.gov (United States)

    Akaike, Kouki

    2018-03-01

    Understanding the electronic structure of organic semiconductors and their interfaces is critical to optimizing functionalities for electronics applications, by rational chemical design and appropriate combination of device constituents. The unique electronic structure of a molecular solid is characterized as (i) anisotropic electrostatic fields that originate from molecular quadrupoles, (ii) interfacial energy-level lineup governed by simple electrostatics, and (iii) weak intermolecular interactions that make not only structural order but also energy distributions of the frontier orbitals sensitive to atmosphere and interface growth. This article shows an overview on these features with reference to the improved understanding of the orientation-dependent electronic structure, comprehensive mechanisms of molecular doping, and energy-level alignment. Furthermore, the engineering of ionization energy by the control of the electrostatic fields and work function of practical electrodes by contact-induced doping is briefly described for the purpose of highlighting how the electronic structure impacts the performance of organic devices.

  10. The fundamental absorption edge in MnIn{sub 2}Se{sub 4} layer semi-magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Torrres, T.E. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza 50009, Zaragoza (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza 50009, Zaragoza, Spain. (Spain); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Jiménez-Sandoval, Sergio J.; Mares-Jacinto, E. [CINVESTAV Querétaro, Libramiento Norponiente N° 2000, Frac. Real de Juriquilla, Querétaro, Qro. 76230 (Mexico)

    2015-11-15

    From the study of the optical absorption coefficient and photoluminescence spectra of the layer semi-magnetic semiconductor MnIn{sub 2}Se{sub 4} the nature of its fundamental absorption edge is established. It is found that the lowest-energy-gap of this compound is allowed-indirect between parabolic bands that vary from about 1.55–1.43 eV in the temperature range from 10 K to room temperature. In addition, two allowed direct band-to-band transitions beginning at 1.72 and 1.85 eV at 295 K, and at 1.82 and 1.96 eV at 10 K which are related to optical absorption processes between the uppermost Γ{sub 4}(z) and the middle Γ{sub 5}(x) valence bands and the conduction band respectively, are observed in the high energy range. It is also found that the crystal field splitting parameter (Δ{sub cf}) of MnIn{sub 2}Se{sub 4} is of about 0.15 eV nearly independent of the temperature. At energies around 2.2 eV a photoluminescence band related to internal transitions between d-excited levels of Mn{sup +2} ion to its {sup 6}A{sub 1} ground state is also observed in spectra.

  11. Electrical isolation of dislocations in Ge layers on Si(001 substrates through CMOS-compatible suspended structures

    Directory of Open Access Journals (Sweden)

    Vishal Ajit Shah, Maksym Myronov, Chalermwat Wongwanitwatana, Lewis Bawden, Martin J Prest, James S Richardson-Bullock, Stephen Rhead, Evan H C Parker, Terrance E Whall and David R Leadley

    2012-01-01

    Full Text Available Suspended crystalline Ge semiconductor structures are created on a Si(001 substrate by a combination of epitaxial growth and simple patterning from the front surface using anisotropic underetching. Geometric definition of the surface Ge layer gives access to a range of crystalline planes that have different etch resistance. The structures are aligned to avoid etch-resistive planes in making the suspended regions and to take advantage of these planes to retain the underlying Si to support the structures. The technique is demonstrated by forming suspended microwires, spiderwebs and van der Pauw cross structures. We finally report on the low-temperature electrical isolation of the undoped Ge layers. This novel isolation method increases the Ge resistivity to 280 Ω cm at 10 K, over two orders of magnitude above that of a bulk Ge on Si(001 layer, by removing material containing the underlying misfit dislocation network that otherwise provides the main source of electrical conduction.

  12. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  13. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    Science.gov (United States)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  14. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    Science.gov (United States)

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  15. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  16. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface

    DEFF Research Database (Denmark)

    Sørensen, Signe Grønborg; Füchtbauer, Henrik Gøbel; Tuxen, Anders Kyrme

    2014-01-01

    When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification...... with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling...

  17. Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction.

    Science.gov (United States)

    Winget, Paul; Schirra, Laura K; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Ndione, Paul F; Sigdel, Ajaya K; Ginley, David S; Berry, Joseph J; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Brédas, Jean-Luc; Monti, Oliver L A

    2014-07-16

    The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Alpha- and gamma-detection by the avalanche detectors with metal-resistor-semiconductor structure

    International Nuclear Information System (INIS)

    Vetokhin, S.S.; Evtushenko, V.P.; Zalesskij, V.B.; Malyshev, S.A.; Chudakov, V.A.; Shunevich, S.A.

    1992-01-01

    Possibility to use silicon avalanche photodetectors with metal-resistor-semiconductor structure with 0.12 cm 2 photosensitive area as detectors of α-particles, as well as, photodetector of γ-quanta scintillation detector is shown. When detection of α-particles the energy resolution reaches 10%. R energy resolution for avalanche photodetector-CsI(Tl) scintillator system cooled up to - 60 deg C at 59 keV ( 241 Am) and 662 keV ( 137 Cs) energy of γ-quanta constitutes 60% and 80%, respectively. R minimal value in the conducted experiments is determined by the degree of irregularity of avalanche amplification along the photodetector area

  19. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  20. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  1. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  2. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  3. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  4. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  5. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...... and thermo-mechanical analysis. Results from the analytical model are found to agree well with finite element simulations as well as measurements from sintering experiment....

  6. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    Science.gov (United States)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  7. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Economou, E. N.

    2014-01-01

    In this work, we numerically investigate for the first time the elastodynamic behavior of a three dimensional layer-by-layer rod structure, which is easy to fabricate and has already proved to be very efficient as a photonic crystal. The Finite Difference Time Domain method was used for the numerical calculations. For the rods, several materials were examined and the effects of all the geometric parameters of the structure were also numerically investigated. Additionally, two modifications of the structure were included in our calculations. The results obtained here (for certain geometric parameters), exhibiting a high ratio of longitudinal over transverse sound velocity and therefore a close approach to ideal pentamode behavior over a frequency range, clearly show that the layer-by-layer rod structure, besides being an efficient photonic crystal, is a very serious contender as an elastodynamic metamaterial.

  8. Solid spectroscopy: semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da

    1983-01-01

    Photoemission as technique of study of the semiconductor electronic structure is shortly discussed. Homogeneous and heterogeneous semiconductors, where volume and surface electronic structure, core levels and O and H chemisorption in GaAs, Schottky barrier are treated, respectively. Amorphous semiconductors are also discussed. (L.C.) [pt

  9. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    International Nuclear Information System (INIS)

    McPheeters, Claiborne O; Yu, Edward T; Hu, Dongzhi; Schaadt, Daniel M

    2012-01-01

    Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance

  10. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    Science.gov (United States)

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  11. Gyrotropic-nihility state in a composite ferrite-semiconductor structure

    International Nuclear Information System (INIS)

    Tuz, Vladimir R

    2015-01-01

    Characteristics of the gyrotropic-nihility state are studied in a finely-stratified ferrite-semiconductor structure, which is under an action of an external static magnetic field. Investigations are carried out with the assistance of the effective medium theory, according to which the studied structure is approximated as a uniform gyroelectromagnetic medium. The theory of the gyrotropic-nihility state is developed in terms of the eigenwaves propagation in such gyroelectromagnetic medium. The frequency and angular dependencies of the transmittance, reflectance and absorption coefficient are presented. It turns out that in the frequency band around the frequency of gyrotropic-nihility state the studied structure appears to be matched to free space with both the refractive index and the wave impedance which results in its high transmittance almost in the entire range of angles of the electromagnetic wave incidence. (paper)

  12. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  13. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  14. Evaluation of electrical, structural, thermal and optical properties of Co_3O_4 semiconductor

    International Nuclear Information System (INIS)

    Dias, Jeferson A.; Maestrelli, Sylma C.; Morelli, Marcio R.

    2016-01-01

    Among the new semiconductors, the tricobalt tetraoxide is a material of increasing interest; nevertheless, there is a limited number of studies about its properties. Thus, this work has investigated the structural, thermal, optical and electronic properties of Co_3O_4 and its correlation with structure and microstructure. For that, the commercial material was characterized by X-ray diffraction, thermal analysis, diffuse reflectance, FTIR and impedance spectroscopy. The results have shown that the assessed Co_3O_4 has non-stoichiometric spinel structure, presenting a band gap energy capable to completely absorb the visible spectra (1.75 eV). Furthermore, it can be visualized in infrared spectra the bands related to Co-O bonds. The activation energy of electric conduction was 0.35 eV related to the hopping mechanism. Therefore, the results confirm the potentiality of use of Co_3O_4 in optoelectronic devices due to its promising properties for technological utilization. (author)

  15. Raman scattering in semiconductor structures based on monophthalocyanine and triphthalocyanine molecules incorporating erbium ions

    International Nuclear Information System (INIS)

    Belogorokhov, I. A.; Tikhonov, E. V.; Breusova, M. O.; Pushkarev, V. E.; Zoteev, A. V.; Tomilova, L. G.; Khokhlov, D. R.

    2007-01-01

    Semiconductor structures of the type of butyl-substituted erbium monophthalocyanine and triphthalocyanine are studied by Raman spectroscopy. It is shown that, when the sandwich-like structure of the molecule incorporating two complexing atoms between the ligands is considered instead of the planar molecular structure with one ligand and one metal atom, a series of lines appears in the Raman spectrum. In this series, the wave numbers of the lines represent an arithmetic progression with the arithmetical ratio ∼80 cm -1 . It is suggested that this feature is due to the larger number of organic molecules per metal atom in the triphthalocyanine complex, and the four Raman peaks at the frequencies 122, 208, 280, and 362 cm -1 are the manifestation of slight out-of-plane vibrations of the phthalocyanine ligands

  16. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    International Nuclear Information System (INIS)

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng; Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu

    2014-01-01

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic

  17. Anomalous output characteristic shift for the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Siyang; Zhang, Chunwei; Sun, Weifeng, E-mail: swffrog@seu.edu.cn [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China); Su, Wei; Wang, Shaorong; Ma, Shulang; Huang, Yu [CSMC Technologies Corporation, Wuxi 214061 (China)

    2014-04-14

    Anomalous output characteristic shift of the n-type lateral diffused metal-oxide-semiconductor transistor with floating P-top layer is investigated. It shows that the linear drain current has obvious decrease when the output characteristic of fresh device is measured for two consecutive times. The charge pumping experiments demonstrate that the decrease is not from hot-carrier degradation. The reduction of cross section area for the current flowing, which results from the squeezing of the depletion region surrounding the P-top layer, is responsible for the shift. Consequently, the current capability of this special device should be evaluated by the second measured output characteristic.

  18. Inter-subband optical absorption in an inversion layer on a semiconductor surface in tilted magnetic fields. Progress report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    O'Connell, R.F.

    1981-01-01

    Cyclotron-resonance experiments on inversion layer electrons in Si (001) metal-oxide-semiconductor field-effect transistors (MOSFET's) have produced many surprising and unexplained results. This has motivated the investigation of the use of other magneto-optical phenomena in MOS systems. Emphasis has been on the Faraday rotation effect. The conditions necessary for achieving a null Faraday rotation, as well as a null ellipticity have been examined. The calculation of theta for the Appel-Overhauser model for the surface space-charge layer in Si has also been studied

  19. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  20. NO and SCN -intercalated layered double hydroxides: structure and ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... Keywords. Nitrite ion; thiocyanate ion; layered double hydroxide; structure refinement. 1. Introduction .... applications of LDHs is sorption/uptake of toxic anions ... by ion chromatography using a Metrohm Model 861 Advanced.

  1. Bond particle model for semiconductor melts and its application to liquid structure germanium

    International Nuclear Information System (INIS)

    Ferrante, A.; Tosi, M.P.

    1988-08-01

    A simple type of liquid state model is proposed to describe on a primitive level the melt of an elemental group IV semiconductor as a mixture of atoms and bond particles. The latter, on increase of a coupling strength parameter becomes increasingly localized between pairs of atoms up to local tetrahedral coordination of atoms by bond particles. Angular interatomic correlations are built into the model as bond particle localization grows, even though the bare interactions between the components of the liquid are formally described solely in terms of central pair potentials. The model is solved for liquid structure by standard integral equation techniques of liquid state theory and by Monte Carlo simulation, for values of the parameters which are appropriate to liquid germanium down to strongly supercooled states. The calculated liquid structure is compared with the results of diffraction experiments on liquid germanium near freezing and discussed in relation to diffraction data on amorphous germanium. The model suggests simple melting criteria for elemental and polar semiconductors, which are empirically verified. (author). 25 refs, 9 figs, 3 tabs

  2. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  3. Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vijaya Prakash, G; Pradeesh, K [Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi (India); Ratnani, R; Saraswat, K [Department of Pure and Applied Chemistry, MDS University, Ajmer (India); Light, M E [School of Chemistry, University of Southampton, Southampton (United Kingdom); Baumberg, J J, E-mail: prakash@physics.iitd.ac.i [Nanophotonic Centre, Cavendish Laboratory, University Cambridge, Cambridge CB3 OHE (United Kingdom)

    2009-09-21

    The structural and optical spectra of two related lead iodide (PbI) based self-assembled hybrid organic-inorganic semiconductors are compared. During the synthesis, depending on the bridging of organic moiety intercalated between the PbI two-dimensional planes, different crystal structures are produced. These entirely different networks show different structural and optical features, including excitonic bandgaps. In particular, the modified organic environment of the excitons is sensitive to the local disorder both in single crystal and thin film forms. Such information is vital for incorporating these semiconductors into photonic device architectures.

  4. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  5. The coating layer structure of commercial chrome plates

    International Nuclear Information System (INIS)

    Chen, Sheng

    2015-01-01

    Highlights: • AES and XPS depth profiling analysis were used in the experiment. • The detailed coating layer structure of the commercial chrome plate was obtained. • Peak fitting method was used to investigate the chemical states of Cr in the coating. - Abstract: The surface and cross-sectional morphologies of the commercial chrome plate coating layer with the thickness of dozens of nanometers have been observed. To investigate the detailed structure of the coating layer, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) combined with the low energy Ar + sputtering technique have been employed. Through careful analysis of experimental data, it can be obtained that the coating layer of commercial chrome plates is composed of four layers from top to bottom with different compositions

  6. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  7. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  8. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  9. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    Science.gov (United States)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  10. Direct measurement of the long-range p -d exchange coupling in a ferromagnet-semiconductor Co/CdMgTe/CdTe quantum well hybrid structure

    Science.gov (United States)

    Akimov, I. A.; Salewski, M.; Kalitukha, I. V.; Poltavtsev, S. V.; Debus, J.; Kudlacik, D.; Sapega, V. F.; Kopteva, N. E.; Kirstein, E.; Zhukov, E. A.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Korenev, V. L.; Kusrayev, Yu. G.; Bayer, M.

    2017-11-01

    The exchange interaction between magnetic ions and charge carriers in semiconductors is considered to be a prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range p -d exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10-nm-thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10 nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift ΔS on the external magnetic field B . We show that in a strong magnetic field, ΔS is a linear function of B with an offset of Δp d=50 -100 μ eV at zero field from the FM induced effective exchange field. On the other hand, the s -d exchange interaction between conduction band electrons and FM, as well as the p -d contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.

  11. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  12. Characterization of TBP containing polysiloxane membrane/insulator/semiconductor structures for hexavalent chromium detection

    Energy Technology Data Exchange (ETDEWEB)

    Zazoua, A. [Universite de Jijel, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Kherrat, R.; Samar, M.H. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Errachid, A. [Laboratori de Nanobioenginyeria-IBEC, CIBER, Parc Cientific de Barcelona (PCB)-Departament d' Electronica. Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona (Spain); Jaffrezic-Renault, N. [LSA - UMR 5180 CNRS - Universite Claude Bernard Lyon 1, 69622 Villeurbanne cedex (France)], E-mail: nicole.jaffrezic@univ-lyon1.fr; Bessueille, F.; Leonard, D. [LSA - UMR 5180 CNRS - Universite Claude Bernard Lyon 1, 69622 Villeurbanne cedex (France)

    2008-07-01

    A hexavalent chromium-sensitive EMIS sensor (electrolyte membrane insulator semiconductor sensor) is prepared by deposition of a tributylphosphate (TBP) ionophore-containing siloprene membrane on a Si/SiO{sub 2}/Si{sub 3}N{sub 4} structure. The developed EMIS sensor was studied by means of impedance spectroscopy, capacitance-voltage, X-ray photoelectron spectrometry and FT-IR spectroscopy. From the flat-band shift of the EMIS structure, the nersntian response to the anionic species Cr{sub 2}O{sub 7}{sup -} was demonstrated. The linear range of detection is 10{sup -4} M to 10{sup -1} M and the detection limit is 10{sup -5} M. Sulfate and chloride anions are shown not to be interfering whereas carbonate ions present a pK{sup pot} equal to 0.19.

  13. Mode structure of delay-coupled semiconductor lasers: influence of the pump current

    International Nuclear Information System (INIS)

    Erzgraeber, Hartmut; Krauskopf, Bernd; Lenstra, Daan

    2005-01-01

    We consider two identical, mutually delay-coupled semiconductor lasers and show that their compound laser modes (CLMs)-the basic continuous wave solutions-depend rather sensitively on the pump current of the lasers. Specifically, we show with figures and accompanying animations how the underlying CLM structure and the associated locking region, where both lasers operate stably with the same frequency, change as a function of the pump current. Our results provide a natural transition between rather different CLM structures that have been reported in the literature. Moreover, we demonstrate how the locking region as well as the different types of instabilities at its boundary depend on the pump current. This is of fundamental interest for the dynamics of coupled lasers and their possible application

  14. Hydrogen-induced structural transition in single layer ReS2

    Science.gov (United States)

    Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-09-01

    By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.

  15. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.; Lin, Yenhung; Zhao, Kui; Li, Ruipeng; Thomas, Stuart R.; Semple, James; Androulidaki, Maria; Sygellou, Lamprini; McLachlan, Martyn A.; Stratakis, Emmanuel; Amassian, Aram; Anthopoulos, Thomas D.

    2015-01-01

    reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization

  16. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  17. Gaussian beams in inhomogeneous anisotropic layered structures

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2010-01-01

    Roč. 180, č. 2 (2010), s. 798-812 ISSN 0956-540X R&D Projects: GA ČR GA205/08/0332 Grant - others:GA ČR(CZ) GA205/07/0032 Institutional research plan: CEZ:AV0Z30120515 Keywords : body waves * seismic anisotropy * theoretical seismology * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.411, year: 2010

  18. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  19. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  20. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4

    International Nuclear Information System (INIS)

    Takagi, Akihiro; Nomura, Kenji; Ohta, Hiromichi; Yanagi, Hiroshi; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2005-01-01

    Carrier transport properties in amorphous oxide semiconductor InGaZnO 4 (a-IGZO) thin films were investigated in detail using temperature dependence of Hall measurements. It was found that Hall mobility increased distinctly as carrier concentration increased. Unlikely conventional amorphous semiconductors such as a-Si/H, definite normal Hall voltage signals were observed on the films with carrier concentrations (N e )>10 16 cm -3 , and Hall mobilities as large as 15 cm 2 (Vs) -1 were attained in the films with N e >10 20 cm -3 . When N e was less than 10 19 cm -3 , the temperature dependence of Hall mobility showed thermally-activated behavior in spite that carrier concentration was independent of temperature. While, it changed to almost degenerate conduction at N e >10 18 cm -3 . These behaviors are similar to those observed in single-crystalline IGZO, and are explained by percolation conduction through distributed potential barriers which are formed in the vicinity of the conduction band bottom due to the randomness of the amorphous structure. The effective mass of a-IGZO was estimated to be ∼0.34 m e (m e is the mass of free electron) from optical data, which is almost the same as that of crystalline IGZO (∼0.32 m e )

  1. Stability of polarization in organic ferroelectric metal-insulator-semiconductor (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, Rene; Fruebing, Peter; Gerhard, Reimund [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam (Germany); Taylor, Martin [School of Electronic Engineering, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT (United Kingdom)

    2011-07-01

    Ferroelectric field effect transistors (FeFETs) offer the prospect of an organic-based memory device. Since the charge transport in such devices is confined to the interface between the insulator and the semiconductor, the focus of the present study was on the investigation of this region. Capacitance-voltage (C-V) measurements of all-organic MIS devices with poly(vinylidenefluoride- trifluoroethylene) (P(VDF-TrFE)) as gate insulator and poly(3-hexylthiophene)(P3HT) as semiconductor were carried out. When the structure was driven into depletion, a positive flat-band voltage shift was observed arising from the change in polarization state of the ferroelectric insulator. When driven into accumulation, the polarization was reversed. It is shown that both polarization states are stable. However, negative charge trapped at the interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. Measurements on P(VDF-TrFE)/P3HT based FeFETs yield further evidence for fixed charges at the interface. Output characteristics suggest the injection of negative charges into the interface region when a depletion voltage is applied between source and gate contact.

  2. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    Science.gov (United States)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  3. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  4. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magneto-transport in CdTe/CdMnTe dilute magnetic semiconductor single barrier structures

    International Nuclear Information System (INIS)

    Lyons, V.R.

    1999-03-01

    This thesis presents work done on electrical transport through dilute magnetic semiconductor (DMS) single barriers in both zero and non-zero magnetic fields. The fields are applied either perpendicular or parallel to the DMS layers. The main samples under investigation consist of 100 A and 200 A CdTe/Cd 0.8 Mn 0.2 Te/CdTe single barrier heterostructures. In addition electrical characterisation of the non magnetic layers is performed. Current through the barrier is measured as a function of voltage, magnetic field and temperature. A theoretical model is derived in order to calculate the current as a function of barrier height, barrier width, emitting layer carrier concentration, applied bias and temperature. These variables are then treated as fitting parameters and comparisons are made between the calculated and the experimental currents. The barriers are shown to produce non-Ohmic transport. The roles of quantum mechanical tunnelling and thermal activation across the barrier are investigated and shown to be highly mixed. An unexpectedly high degree of tunnelling is found to occur at high temperatures, within the region previously assumed to be dominated by thermal activation. Moreover the barrier height is found to be lower and the width greater than expected. These observations suggest that a high level of Mn diffusion occurs, possibly due to In dopant related effects. This suggestion is validated by the high emitting layer carrier concentration suggested by the fitting. At low temperatures and voltages the thicker barrier sample is shown to contain a parasitic leak path which short-circuits the barrier. This leak may exist in both samples but only becomes dominant where the barriers are sufficiently opaque to the incident carriers. Changes in a magnetic field are expected to be due to sp-d exchange induced giant Zeeman splitting in the barrier and either normal spin splitting or sp-d exchange effects in the emitter regions. The application of a magnetic field is

  6. Hydrodynamics of layer structured targets impinged by intense ion beams

    International Nuclear Information System (INIS)

    Davila, J.; Barrero, A.

    1989-01-01

    To minimize the energy loss in the corona outflow, a layer structured spherical hollow shell has been proposed to be used as target in inertial confinement fusion. For ion beam drivers, the major part of the beam energy is absorbed in the middle layer, which is called either absorber or pusher. The outer layer, called tamper, slows down the outward expansion of the absorbed low density region. The materials of the tamper and pusher are usually in the inner layer. The knowledge of the hydrodynamics of the interaction of an intense beam with a structured target is then an essential point in order to achieve break-even conditions in ion-beam fusion. (author) 2 refs., 2 figs

  7. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  8. Love waves in a structure with an inhomogeneous layer

    International Nuclear Information System (INIS)

    Ghazaryan, K.B.; Piliposyan, D.G.

    2011-01-01

    The problem of the propagation of Love type waves in a structure consisting of a finite inhomogeneous layer sandwiched between two isotropic homogeneous half spaces is investigated. Two types of inhomogeneity are considered. It is shown that in one case the amplitude of vibrations in the middle layer is a sinusoidal function of distance from the plane of symmetry, but that in the other case it may be non-sinusoidal for certain values of the parameters of the problem

  9. Dilute Magnetic Semiconductor Cu2FeSnS4 Nanocrystals with a Novel Zincblende Structure

    Directory of Open Access Journals (Sweden)

    Xiaolu Liang

    2012-01-01

    Full Text Available Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the zincblende unit cell, and their occupancy possibilities are 1/2, 1/4, and 1/4, respectively. The nanocrystals were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, selected area electron diffraction (SAED, energy-dispersive spectroscopy (EDS, and UV-vis-NIR absorption spectroscopy. The nanocrystals have an average size of 7.5 nm and a band gap of 1.1 eV and show a weak ferromagnetic behavior at low temperature.

  10. Transverse Seebeck and Peltier effect in tilted metal-semiconductor multilayer structures

    International Nuclear Information System (INIS)

    Reitmaier, Christina

    2012-01-01

    Whether in aerospace, automobile industry or in home appliances, thermoelectric effects find use in many areas of technology. This work deals with the investigation of a special form of these effects, the transversal Seebeck- and Peltier effect. Via modelling under variation of the sample parameters the cooling efficiencies, the attainable temperature differences and the Figures of merit are optimised and than suitable samples are produced according to these specifications. With these tilted metal semiconductor multilayer structures consisting of lead and bismuth telluride a transversal Peltier effect is observed. Moreover, the generation of electric power is examined via the transversal Seebeck effect. In tilted Pb-Bi2Te3 multilayers the efficiency is measured with the conversion by heat in electric power and is compared to model calculations. (orig.)

  11. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  12. Structure of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B.U.O.; Bame, S.J.; Forbes, T.G.; Hones, E.W. Jr.; Russell, C.T.

    1981-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max-Planck-Institut, Institut fuer Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi-periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40 0 northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 R/sub E/. The duration of these periods is highly variable but is typically in the range of 2--5 min, corresponding to a distance along the magnetopause of the order of 3--8 R/sub E/. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is ocassionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed

  13. Magnetotransport investigations of the two-dimensional metallic state in silicon metal-oxid-semiconductor structures

    International Nuclear Information System (INIS)

    Prinz, A.

    2002-03-01

    For more than two decades it was the predominant view among the physical community that the every two-dimensional (2D) disordered electron system becomes insulating as the temperature approaches the absolute zero temperature (0 Kelvin or -273.15 o C). Two-dimensional means that the movement of the charge carriers is confined in one direction by a potential so that the carriers can move freely only perpendicular to the confinement. The most famous physical realization of a 2D system is the silicon metal-oxide-semiconductor field effect transistor (Si-MOSFET). It is one of the basic elements of most electronic devices in our daily life. The working principle is very simple. Charges are attracted to the semiconductor-oxide interface by an electric field applied between the metallic gate and the semiconductor, so that a 2D conductive channel is formed. The charge density can be adjusted by the voltage from zero up to 10 13 cm -2 . In 1994 Kravchenko and coworkers made a very important discovery. They studied high mobility Si-MOSFETs and found that for densities below a certain critical value, nc, the resistivity increases as the temperature is decreased below 2 K, whereas for densities above $n c $ the resistivity decreases unexpectedly. The transition from insulating to metallic behavior, known as metal-insulator transition (MIT), was obviously a contradiction to the commonly accepted theories which predict insulating behavior for any density. The insulating behavior is a consequence of the wave properties of electrons which leads to interference in disordered media and thus to enhanced backscattering. In the subsequent years, experimental studies were performed on a variety of 2D systems, which qualitatively showed a similar behavior. All the investigated samples had one thing in common. The interaction energy between the carriers was considerable higher than their mean kinetic energy due to their movement in the 2D plane. Since the electron-electron interaction was

  14. Prolonged reorganization of thiol-capped Au nanoparticles layered structures

    Directory of Open Access Journals (Sweden)

    Sarathi Kundu

    2013-09-01

    Full Text Available Prolonged reorganization behaviour of mono-, di-, tri- and multi-layer films of Au nanoparticles prepared by Langmuir-Blodgett method on hydrophobic Si(001 substrates have been studied by using X-ray scattering techniques. Out-of-plane study shows that although at the initial stage the reorganization occurs through the compaction of the films keeping the layered structure unchanged but finally all layered structures modify to monolayer structure. Due to this reorganization the Au density increases within the nanometer thick films. In-plane study shows that inside the reorganized films Au nanoparticles are distributed randomly and the particle size modifies as the metallic core of Au nanoparticles coalesces.

  15. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  16. Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structure-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, Stephanie L.; Zhu, Qimin; Ma, Qing; Falduto, Allison F.; Buchholz, D. Bruce; Chang, Robert P.H.; Mason, Thomas O.; Medvedeva, Julia E.; Marks, Tobin J.; Bedzyk, Michael J. (NWU); (MUST)

    2017-09-01

    This study explores the unique role of Ga in amorphous (a-) In[BOND]Ga[BOND]O oxide semiconductors through combined theory and experiment. It reveals substitutional effects that have not previously been attributed to Ga, and that are investigated by examining how Ga influences structure–property relationships in a series of pulsed laser deposited a-In[BOND]Ga[BOND]O thin films. Element-specific structural studies (X-ray absorption and anomalous scattering) show good agreement with the results of ab initio molecular dynamics simulations. This structural knowledge is used to understand the results of air-annealing and Hall effect electrical measurements. The crystallization temperature of a-IO is shown to increase by as much as 325 °C on substituting Ga for In. This increased thermal stability is understood on the basis of the large changes in local structure that Ga undergoes, as compared to In, during crystallization. Hall measurements reveal an initial sharp drop in both carrier concentration and mobility with increasing Ga incorporation, which moderates at >20 at% Ga content. This decline in both the carrier concentration and mobility with increasing Ga is attributed to dilution of the charge-carrying In[BOND]O matrix and to increased structural disorder. The latter effect saturates at high at% Ga.

  17. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  18. Crystal structure of the new diamond-like semiconductor CuMn2InSe4

    Indian Academy of Sciences (India)

    Abstract. The crystal structure of the semiconductor compound CuMn2InSe4 was analysed using X-ray powder ... properties arising from the presence of magnetic ions in the ... by SEM technique, using a Hitachi S2500 microscope equip-.

  19. Synergetic effects of II-VI sensitization upon TiO2 for photoelectrochemical water splitting; a tri-layered structured scheme

    International Nuclear Information System (INIS)

    Mumtaz, Asad; Mohamed, Norani Muti

    2014-01-01

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e − ) and hole (h + ) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study

  20. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  1. TEMPERATURE STRUCTURE OF PROTOPLANETARY DISKS UNDERGOING LAYERED ACCRETION

    International Nuclear Information System (INIS)

    Lesniak, M. V.; Desch, S. J.

    2011-01-01

    We calculate the temperature structures of protoplanetary disks (PPDs) around T Tauri stars heated by both incident starlight and viscous dissipation. We present a new algorithm for calculating the temperatures in disks in hydrostatic and radiative equilibrium, based on Rybicki's method for iteratively calculating the vertical temperature structure within an annulus. At each iteration, the method solves for the temperature at all locations simultaneously, and converges rapidly even at high (>>10 4 ) optical depth. The method retains the full frequency dependence of the radiation field. We use this algorithm to study for the first time disks evolving via the magnetorotational instability. Because PPD midplanes are weakly ionized, this instability operates preferentially in their surface layers, and disks will undergo layered accretion. We find that the midplane temperatures T mid are strongly affected by the column density Σ a of the active layers, even for fixed mass accretion rate M-dot . Models assuming uniform accretion predict midplane temperatures in the terrestrial planet forming region several x 10 2 K higher than our layered accretion models do. For M-dot -7 M sun yr -1 and the column densities Σ a -2 associated with layered accretion, disk temperatures are indistinguishable from those of a passively heated disk. We find emergent spectra are insensitive to Σ a , making it difficult to observationally identify disks undergoing layered versus uniform accretion.

  2. Multi-scale structural analysis of gas diffusion layers

    Science.gov (United States)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  3. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...

  4. Effect of temperature and magnetic field on disorder in semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-02-15

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  5. Synchrotron-based measurements of the electronic structure of the organic semiconductor copper phthalocyanine

    International Nuclear Information System (INIS)

    Downes, J.E.

    2004-01-01

    Full text: Copper phthalocyanine (CuPc) is a prototypical molecular organic semiconductor that is currently used in the construction of many organic electronic devices such as organic light emitting diodes (OLEDs). Although the material is currently being used, and despite many experimental and theoretical studies, it's detailed electronic structure is still not completely understood. This is likely due to two key factors. Firstly, the interaction of the Cu 3d and phthalocyanine ligand 2p electrons leads to the formation of a complex arrangement of localized and delocalized states near the Fermi level. Secondly, thin films of the material are subject to damage by the photon beam used to make measurements of their electronic structure. Using the synchrotron-based techniques of soft x-ray emission spectroscopy (XES) and x-ray photoemission spectroscopy (XPS), we have measured the detailed electronic structure of in-situ grown thin film samples of CuPc. Beam damage was minimized by continuous translation of the sample during data acquisition. The results obtained differ significantly from previous XES and ultraviolet photoemission measurements, but are in excellent agreement with recent density functional calculations. The reasons for these discrepancies will be explained, and their implications for future measurements on similar materials will be explored

  6. Photoconductive detector of circularly polarized radiation based on a MIS structure with a CoPt layer

    Science.gov (United States)

    Kudrin, A. V.; Dorokhin, M. V.; Zdoroveishchev, A. V.; Demina, P. B.; Vikhrova, O. V.; Kalent'eva, I. L.; Ved', M. V.

    2017-11-01

    A photoconductive detector of circularly polarized radiation based on the metal-insulator-semiconductor structure of CoPt/(Al2O3/SiO2/Al2O3)/InGaAs/GaAs is created. The efficiency of detection of circularly polarized radiation is 0.75% at room temperature. The operation of the detector is based on the manifestation of the effect of magnetic circular dichroism in the CoPt layer, that is, the dependence of the CoPt transmission coefficient on the sign of the circular polarization of light and magnetization.

  7. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    Science.gov (United States)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  8. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  9. Structural complexities in the active layers of organic electronics.

    Science.gov (United States)

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  10. Improvement in photoconductor film properties by changing dielectric layer structures

    International Nuclear Information System (INIS)

    Kim, S; Oh, K; Lee, Y; Jung, J; Cho, G; Jang, G; Cha, B; Nam, S; Park, J

    2011-01-01

    In recent times, digital X-ray detectors have been actively applied to the medical field; for example, digital radiography offers the potential of improved image quality and provides opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. In this study, two candidate materials (HgI 2 and PbI 2 ) have been employed to study the influence of the dielectric structure on the performance of fabricated X-ray photoconducting films. Parylene C with high permittivity was deposited as a dielectric layer using a parylene deposition system (PDS 2060). The structural and morphological properties of the samples were evaluated field emission scanning electron microscopy and X-ray diffraction. Further, to investigate improvements in the electrical characteristics, a dark current in the dark room and sensitivity to X-ray exposure in the energy range of general radiography diagnosis were measured across the range of the operating voltage. The electric signals varied with the dielectric layer structure of the X-ray films. The PbI 2 film with a bottom dielectric layer showed optimized electric properties. On the other hand, in the case of HgI 2 , the film with a top dielectric layer showed superior electric characteristics. Further, although the sensitivity of the film decreased, the total electrical efficiency of the film improved as a result of the decrease in dark current. When a dielectric layer is deposited on a photoconductor, the properties of the photoconductor, such as hole-electron mobility, should be considered to improve the image quality in digital medical imaging application. In this study, we have thus demonstrated that the use of dielectric layer structures improves the performance of photoconductors.

  11. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  12. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  13. Effect of dissipative processes on the dispersion and instability of drift waves in a fine-stratified semiconductor structure

    International Nuclear Information System (INIS)

    Bulgakov, A. A.; Shramkova, O. V.

    2006-01-01

    The damping of waves of the charge carrier density in a periodic semiconductor structure in an external electric field is investigated under the assumption that the period of the structure is much smaller than the electromagnetic radiation wavelength. The threshold conditions for the instability of carrier density waves propagating obliquely to the direction of the electric current are obtained. The existence of a resistive instability that can develop at drift velocities both higher and lower than the plasmon phase velocity is predicted

  14. Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy

    OpenAIRE

    Acbas, G.; Kim, M. -H.; Cukr, M.; Novak, V.; Scarpulla, M. A.; Dubon, O. D.; Jungwirth, T.; Sinova, Jairo; Cerne, J.

    2009-01-01

    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. The infrared magneto-optical effects we study arise directly from the spin-splitting of the carrier ...

  15. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  16. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  17. Structural and electrical characterisation of semiconductor materials using a nuclear microprobe

    International Nuclear Information System (INIS)

    Jamieson, D.N.

    1998-01-01

    The domain of high-resolution imaging techniques (sub-micron) traditionally belongs to low-energy ion beams (ke V ion microprobe), electrons (transmission or scanning electron microscopy), light (near field microscopy), or all variants of scanning probe microscopies. Now, nuclear techniques of analysis, with a nuclear microprobe, have entered this domain, bringing a range of unique techniques for making images. In addition to-conventional techniques like Rutherford (and non-Rutherford) backscattering spectrometry and particle induced x-ray emission for structural characterisation, new ion beam analysis techniques have been developed for electrical characterisation as well. Foremost of these new techniques is ion beam induced charge (IBIC) which has seen an explosion of applications in the last five years to the study of charge transport properties of a variety of materials including polycrystalline diamond and silicon. An additional novel technique is ionoluminescence, which may be used to image various electronic properties of the material. Presented here are some examples of these imaging techniques in a variety of semiconductor materials. In all these examples, the specimens display structural inhomogeneities on the scale of 10 micrometres, making it essential to employ a focused beam. (author)

  18. Structural and electrical characterisation of semiconductor materials using a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics, Microanalytical Centre

    1998-06-01

    The domain of high-resolution imaging techniques (sub-micron) traditionally belongs to low-energy ion beams (ke V ion microprobe), electrons (transmission or scanning electron microscopy), light (near field microscopy), or all variants of scanning probe microscopies. Now, nuclear techniques of analysis, with a nuclear microprobe, have entered this domain, bringing a range of unique techniques for making images. In addition to-conventional techniques like Rutherford (and non-Rutherford) backscattering spectrometry and particle induced x-ray emission for structural characterisation, new ion beam analysis techniques have been developed for electrical characterisation as well. Foremost of these new techniques is ion beam induced charge (IBIC) which has seen an explosion of applications in the last five years to the study of charge transport properties of a variety of materials including polycrystalline diamond and silicon. An additional novel technique is ionoluminescence, which may be used to image various electronic properties of the material. Presented here are some examples of these imaging techniques in a variety of semiconductor materials. In all these examples, the specimens display structural inhomogeneities on the scale of 10 micrometres, making it essential to employ a focused beam. (author). Extended abstract. 18 refs. 4 figs.

  19. Growth, structure and phase transitions of epitaxial nanowires of III-V semiconductors

    International Nuclear Information System (INIS)

    Glas, F; Patriarche, G; Harmand, J C

    2010-01-01

    We review and illustrate the impact of TEM on the study of nanowires of non-nitride III-V semiconductors, with particular emphasis on the understanding of the thermodynamics and kinetics of their formation assisted by nano-sized catalyst particles. Besides providing basic information about the morphology of the nanowires and their growth rate as a function of diameter, TEM offers insights into the peculiar crystalline structure that they adopt. We discuss the formation of the unusual wurtzite hexagonal crystalline phase and that of planar stacking defects in these nanowires and show that they are kinetically controlled. We also demonstrate the transformation of wurtzite into cubic sphalerite upon epitaxial burying of the nanowires. Nanowires are particularly interesting in that they allow the fabrication of precisely positioned quantum dots with well-defined geometries. In this respect, we discuss the formation of strained quantum-size inclusions in nanowires, their critical dimensions and the kinetic and thermodynamic factors governing the changes of the crystalline structure that sometimes occur around a hetero-interface.

  20. Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors

    Directory of Open Access Journals (Sweden)

    Sanjun Zhang

    2010-05-01

    Full Text Available This article reviews the synthesis, structural and optical characterizations of some novel luminescent two dimensional organic-inorganic perovskite (2DOIP semiconductors. These 2DOIP semiconductors show a self-assembled nano-layered structure, having the electronic structure of multi-quantum wells. 2DOIP thin layers and nanoparticles have been prepared through different methods. The structures of the 2DOIP semiconductors are characterized by atomic force microscopy and X-ray diffraction. The optical properties of theb DOIP semiconductors are characterized from absorption and photoluminescence spectra measured at room and low temperatures. Influences of different components, in particular the organic parts, on the structural and optical properties of the 2DOIP semiconductors are discussed.

  1. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  2. Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Stehr, D.

    2007-12-28

    This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2p{sub z} confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. These results also require reinterpretation of previous experimental data. The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 {mu}m and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements. Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. By varying the carrier

  3. Hybrid transfer-matrix FDTD method for layered periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  4. Electron-hole liquid in semiconductors and low-dimensional structures

    Science.gov (United States)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  5. Crystalline oxides on semiconductors: A structural transition of the interface phase

    Science.gov (United States)

    Walker, F. J.; Buongiorno-Nardelli, Marco; Billman, C. A.; McKee, R. A.

    2004-03-01

    The growth of crystalline oxides on silicon is facilitated by the preparation of a surface phase of alkaline earth silicide. We describe how the surface phase serves as a precursor of the final interface phase using reflection high energy electron diffraction (RHEED) and density functional theory (DFT). RHEED intensity oscillations of the growth of BaSrO show layer-by-layer build up of the oxide on the interface. The 2x1 symmetry of the surface precursor persists up to 3 ML BaSrO coverage at which point a 1x1 pattern characteristic of the rock-salt structure of BaSrO is observed. Prior to 3 ML growth of alkaline earth oxide, DFT calculations and RHEED show that the surface precursor persists as the interface phase and induces large displacements in the growing oxide layer away from the rock-salt structure and having a 2x1 symmetry. These distortions of the rock-salt structure are energetically unfavorable and become more unfavorable as the oxide thickness increases. At 3 ML, the stability of the rock-salt structure drives a structural transformation of the film and the interface phase to a structure that is distinct from the surface precursor. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.

  6. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    Science.gov (United States)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  7. Multi-functional layered structure having structural and radiation shielding attributes

    Science.gov (United States)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  8. Empirical tight-binding modeling of ordered and disordered semiconductor structures

    International Nuclear Information System (INIS)

    Mourad, Daniel

    2010-01-01

    In this thesis, we investigate the electronic and optical properties of pure as well as of substitutionally alloyed II-VI and III-V bulk semiconductors and corresponding semiconductor quantum dots by means of an empirical tight-binding (TB) model. In the case of the alloyed systems of the type A x B 1-x , where A and B are the pure compound semiconductor materials, we study the influence of the disorder by means of several extensions of the TB model with different levels of sophistication. Our methods range from rather simple mean-field approaches (virtual crystal approximation, VCA) over a dynamical mean-field approach (coherent potential approximation, CPA) up to calculations where substitutional disorder is incorporated on a finite ensemble of microscopically distinct configurations. In the first part of this thesis, we cover the necessary fundamentals in order to properly introduce the TB model of our choice, the effective bond-orbital model (EBOM). In this model, one s- and three p-orbitals per spin direction are localized on the sites of the underlying Bravais lattice. The matrix elements between these orbitals are treated as free parameters in order to reproduce the properties of one conduction and three valence bands per spin direction and can then be used in supercell calculations in order to model mixed bulk materials or pure as well as mixed quantum dots. Part II of this thesis deals with unalloyed systems. Here, we use the EBOM in combination with configuration interaction calculations for the investigation of the electronic and optical properties of truncated pyramidal GaN quantum dots embedded in AlN with an underlying zincblende structure. Furthermore, we develop a parametrization of the EBOM for materials with a wurtzite structure, which allows for a fit of one conduction and three valence bands per spin direction throughout the whole Brillouin zone of the hexagonal system. In Part III, we focus on the influence of alloying on the electronic and

  9. Optimization of SMA layers in composite structures to enhance damping

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  10. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  11. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    Science.gov (United States)

    Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2014-05-20

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  12. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    Science.gov (United States)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  13. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  14. Synthesis of Large-Area 2D Layered Materials and Their Heterostacking Structures

    Science.gov (United States)

    2017-10-13

    recognized as a new class of semiconducting two-dimensional (2D) layered materials, which open up new opportunities in semiconductor technology for...2016 Abstract: Transition metal dichalcogenides (TMDs) have been recognized as a new class of semiconducting two-dimensional (2D) layered materials...requiring a higher growth temperature (925 OC) and then perform the MoS2 growth at 755 OC in a separate furnace. The WSe2 growth has been shown, where

  15. Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

    Institute of Scientific and Technical Information of China (English)

    Tai Wang; Yong-Quan Guo; Shuai Li

    2017-01-01

    The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.

  16. Structural transformation of implanted diamond layers during high temperature annealing

    International Nuclear Information System (INIS)

    Rubanov, S.; Fairchild, B.A.; Suvorova, A.; Olivero, P.; Prawer, S.

    2015-01-01

    In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond–air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

  17. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A.

    2006-01-01

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation

  18. Infrared detectors and emitters on the basis of semiconductor quantum structures

    International Nuclear Information System (INIS)

    Kruck, P. R.

    1997-08-01

    Intersubband transitions in Si/SiGe and GaAs/AlGaAs semiconductor quantum structures have been investigated with respect to possible application as infrared detectors and emitters. Investigation of the polarization dependence of subband absorption in Si/SiGe quantum wells shows both transverse magnetic and transverse electric polarized excitations. Intersubband transitions to several excited states are identified by comparison with self-consistent Luttinger-Kohn type calculations. On the basis of these investigations a quantum well infrared photodetector operating between 3 and 8 μm with a detectivity as high as D*=2 x 10 10 cm Hz 1/2 W -1 under normal incidence illumination and at an operating temperature of T=77K is realized. The polarization dependence of the photoconductivity shows the importance of both the absorption and the vertical transport properties of the photoexcited carriers for the detection mechanism. On the basis of the GaAs/AlGaAs material system a unipolar quantum cascade light emitting diode (LED) has been realized. The LED operates at a wavelength of 6.9 μm. A detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm 2 the optical output power lies in the ten nanowatt range. (author)

  19. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  20. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Marti, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)]. E-mail: amarti@etsit.upm.es; Lopez, N. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Antolin, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Canovas, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Stanley, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Farmer, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cuadra, L. [Departamento de Teoria de la Senal y Comunicaciones- Escuela Politecnica Superior, Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33600, 28805-Alcala de Henares (Madrid) (Spain); Luque, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)

    2006-07-26

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation.

  1. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  2. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  3. Effective carrier sweepout in a silicon waveguide by a metal-semiconductor-metal structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Hu, Hao; Ou, Haiyan

    2015-01-01

    We demonstrate effective carrier depletion by metal-semiconductor-metal junctions for a silicon waveguide. Photo-generated carriers are efficiently swept out by applying bias voltages, and a shortest carrier lifetime of only 55 ps is demonstrated.......We demonstrate effective carrier depletion by metal-semiconductor-metal junctions for a silicon waveguide. Photo-generated carriers are efficiently swept out by applying bias voltages, and a shortest carrier lifetime of only 55 ps is demonstrated....

  4. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    International Nuclear Information System (INIS)

    Hahn, Herwig; Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-01-01

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10 13  cm –2 allowing to considerably shift the threshold voltage to more positive values

  5. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Layer-by-layer assembly of patchy particles as a route to nontrivial structures

    Science.gov (United States)

    Patra, Niladri; Tkachenko, Alexei V.

    2017-08-01

    We propose a strategy for robust high-quality self-assembly of nontrivial periodic structures out of patchy particles and investigate it with Brownian dynamics simulations. Its first element is the use of specific patch-patch and shell-shell interactions between the particles, which can be implemented through differential functionalization of patched and shell regions with specific DNA strands. The other key element of our approach is the use of a layer-by-layer protocol that allows one to avoid the formation of undesired random aggregates. As an example, we design and self-assemble in silico a version of a double diamond lattice in which four particle types are arranged into bcc crystal made of four fcc sublattices. The lattice can be further converted to cubic diamond by selective removal of the particles of certain types. Our results demonstrate that by combining the directionality, selectivity of interactions, and the layer-by-layer protocol, a high-quality robust self-assembly can be achieved.

  7. Structure of the magnetopause current layer at the subsolar point

    International Nuclear Information System (INIS)

    Okuda, H.

    1991-12-01

    A one-dimensional electromagnetic particle simulation model developed for the magnetopause current layer between the shocked solar wind and the dipole magnetic field at the subsolar point has been extended to include the interplanetary magnetic field (IMF) in the solar wind. Interaction of the solar wind with the vacuum dipole field as well as the dipole field filled with a low density magnetospheric plasma are studied. It is found that the width and the structure of the magnetopause current layer differ markedly depending on the direction of the IMF. When the IMF is pointing southward, the current layer between the solar wind and the dipole field is narrow and the magnetic field has a single ramp structure caused by the reflection of the solar wind at that point. The current layer becomes several times wider and the magnetic field developes a multiple ramp structure when the IMF is northward. This broadening of the current layer is caused by the multiple reflection of the solar wind by the magnetic field. For the northward IMF, the magnetic field does not change its sign across the current layer so that the E x B drift of the solar wind electrons remains the same direction while for the southward IMF, it reverses the sign. This results in a single reflection of the solar wind for the southward IMF and multiple reflections for the northward IMF. When a low density mangetospheric plasma is present in the dipole magnetic field, a small fraction of the solar wind ions are found to penetrate into the dipole magnetic field beyond the reflection point of the solar wind electrons. The width of the ion current layer is of the order of the solar wind ion gyroradius, however, the current associated with the ions remains much smaller than the electron current so long as the density of the magnetospheric plasma is much smaller than the density of the solar wind. Comparisons of our simulation results with the magnetopause crossing near the subsolar point are provided

  8. Layered structure in core–shell silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuan, Pham [Advanced Institute for Science and Technology (AIST) and International Training Institute for Materials Science Hanoi University of Science and Technology, 01 Dai Co Viet Street,Hanoi 10000,Vietnam (Viet Nam); Anh Tuan, Chu; Thanh Thuy, Tran; Binh Nam, Vu [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Hanoi 10000 (Viet Nam); Toan Thang, Pham [Advanced Institute for Science and Technology (AIST) and International Training Institute for Materials Science Hanoi University of Science and Technology, 01 Dai Co Viet Street,Hanoi 10000,Vietnam (Viet Nam); Hong Duong, Pham, E-mail: duongphamhong@yahoo.com [Institute of Materials Science (IMS), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Hanoi 10000 (Viet Nam); Thanh Huy, Pham, E-mail: huy.phamthanh@hust.edu.vn [Advanced Institute for Science and Technology (AIST) and International Training Institute for Materials Science Hanoi University of Science and Technology, 01 Dai Co Viet Street,Hanoi 10000,Vietnam (Viet Nam)

    2014-10-15

    Silicon nanowires (NWs) with core–shell structures were prepared using the Vapor–Liquid–Solid (VLS) method. The wires have lengths of several hundreds of nanometers and diameters in the range of 30–50 nm. Generally, these wires are too large to exhibit the quantum confinement effect of excitons in Si nanocrystals. However, the photoluminescence (PL) and Raman spectra are similar to those of nanocrystalline silicon embedded in a SiO{sub 2} matrix, in which the recombination of quantum-confined excitons plays an important role. This effect occurs only when the average size of the silicon nanocrystals is smaller than 5 nm. To understand this discrepancy, TEM images of nanowires were obtained and analyzed. The results revealed that the cores of wires have a layered Si/SiO{sub 2} structure, in which the thickness of each layer is much smaller than its diameter. The temperature dependence of the PL intensity was recorded from 11 to 300 K; the result is in good agreement with a model that takes into account the energy splitting between the excitonic singlet and triplet levels. - Highlights: • The cores of the Si NWs have a layered Si/SiO{sub 2} structure. • The Si NWs were formed due to the phase separation of Si and SiO{sub 2} and the partial oxidization by residual oxygen. • Two processes, the reaction of Si and oxygen atoms and the combination between Si atoms, occur simultaneously. • The formation of the layered structures is associated with the self-limiting oxidation phenomenon in Si nanostructures.

  9. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    Science.gov (United States)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  10. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  11. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    Science.gov (United States)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy

  12. Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors: electronic structure calculations

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Kudrnovský, Josef; Máca, František; Sinova, J.; MacDonald, A. H.; Champion, R.P.; Gallagher, B. L.; Jungwirth, Tomáš

    2007-01-01

    Roč. 75, č. 4 (2007), 045202/1-045202/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/0583 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : ferromagnetic semiconductors * electronic structure calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  13. Transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure

    International Nuclear Information System (INIS)

    Wang Zhigang; Zheng Zhiren; Yu Junhua

    2007-01-01

    The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening

  14. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.

    Science.gov (United States)

    Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus

    2017-09-26

    Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.

  15. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  16. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  17. Simulation of the Optimized Structure of a Laterally Coupled Distributed Feedback (LC-DFB Semiconductor Laser Above Threshold

    Directory of Open Access Journals (Sweden)

    M. Seifouri

    2013-10-01

    Full Text Available In this paper, the laterally coupled distributed feedback semiconductor laser is studied. In the simulations performed, variations of structural parameters such as the grating amplitude a, the ridge width W, the thickness of the active region d, and other structural properties are considered. It is concluded that for certain values ​​of structural parameters, the laser maintains the highest output power, the lowest distortion Bragg frequency δL and the smallest changes in the wavelength λ. Above threshold, output power more than 40mW and SMSR values greater than 50 dB were achieved.

  18. Particle transport across a circular shear layer with coherent structures

    International Nuclear Information System (INIS)

    Nielsen, A.H.; Lynov, J.P.; Juul Rasmussen, J.

    1998-01-01

    In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable features. The inherent quantisation of circular geometries due to the periodic boundary conditions makes it possible to design experiments in which the spatial and temporal complexity of the coherent structures can be accurately controlled. Experiments on circular shear flows demonstrating the formation of coherent structures have been performed in different physical systems, including quasi-neutral plasmas, non-neutral plasmas and rotating fluids. In this paper we investigate the evolution of such coherent structures by solving the forced incompressible Navier-Stokes equations numerically using a spectral code. The model is formulated in the context of a rotating fluid but apply equally well to low frequency electrostatic oscillations in a homogeneous magnetized plasma. In order to reveal the Lagrangian properties of the flow and in particular to investigate the transport capacity in the shear layer, passive particles are traced by the velocity field. (orig.)

  19. Nanomembrane structures having mixed crystalline orientations and compositions

    Science.gov (United States)

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  20. Tuning the resistive switching memory in a metal–ferroelectric–semiconductor capacitor by field effect structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Y., E-mail: shouyu.wang@yahoo.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300074 (China); Guo, F.; Wang, X. [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300074 (China); Liu, W.F., E-mail: wfliu@tju.edu.cn [Department of Applied Physics, Faculty of Science, Tianjin University, Weijin Road, Nankai District, Tianjin 300072 (China); Gao, J., E-mail: jugao@hku.hk [Department of Physics, the University of Hong Kong, Pokfulam Road (Hong Kong)

    2015-11-30

    Highlights: • Bistable or tristable electrically conducting state is observed. • Coefficient can be tuned in situ by modulating carrier's density. • The RS effects may be of significance for multi-source controlled memory devices. - Abstract: Resistive switching (RS) effects based on a correlation between ferroelectric polarization and conductivity might become of particular interest for nonvolatile memory applications, because they are not subjected to the scaling restrictions. Here we report on RS behaviors modulated by a reversal of ferroelectric polarization in heterostructures comprising of a ferroelectric layer and a semiconducting manganite film. It is found that electrically conducting state is bistable or even tristable; and via the polarization flipping, a maximum resistive switching coefficient (R{sub max}/R{sub min}) is found to be larger than 3000 with bias of 6 V in Ag/BaTiO{sub 3}/La{sub 0.8}Ca{sub 0.2}MnO{sub 3} at room temperature. More importantly, employing field-effect structure with ferroelectric PMN-PT as substrate, we found that the resistive switching behaviors can be tuned in situ by modulating the concentration of carriers in the semiconducting manganite layer. Possible mechanisms are discussed on the basis of the interplay of bound ferroelectric charges, charged defects in ferroelectric layer and mobile carriers in manganite thin films. The giant RS effects observed here may be of significance for memory devices by combing electronic conduction with magnetic, spintronic, and optical functionalities.

  1. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    Science.gov (United States)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  2. Fabrication of metallic nanomasks by transfer of self-organized nanodot patterns from semiconductor material into thin metallic layers

    International Nuclear Information System (INIS)

    Bobek, T.; Kurz, H.

    2007-01-01

    The basic understanding of the formation of highly regular nanostructures during ion erosion of amorphous GaSb layers is revised. The essential physical parameters for the formation of the highly regular dot pattern are discussed. Numerical modelling based on the stabilized isotropic Kuramoto-Sivashinsky equation is presented and discussed. The experimental part of this contribution presents the successful pattern transfer into metallic buried thin layers as well as into Silicon underlayers. The critical conditions for this transfer technique are discussed. Application potential of using this self-organization scheme for the generation of highly regular patterns in ferromagnetic metal layers as well as in crystalline silicon is estimated

  3. Nonreciprocal propagation of light without external magnetic fields in a semiconductor waveguide isolator with a MnAs layer

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, T. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan) and Japan Science and Techonology Agency, SORST (Japan)]. E-mail: ametomo@hotaka.t.u-tokyo.ac.jp; Shimizu, H. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Techonology Agency, SORST (Japan); Hai, P.N. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Japan Science and Techonology Agency, SORST (Japan); Tanaka, M. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Japan Science and Techonology Agency, SORST (Japan); Nakano, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Techonology Agency, SORST (Japan)

    2007-03-15

    A 1.5-{mu}m, TM-mode waveguide optical isolator was developed for use in photonic integrated circuits. It consists of an InGaAlAs-based optical waveguide with a ferromagnetic MnAs layer and makes use of nonreciprocal propagation loss of light induced by the magnetized MnAs layer. With a large-remanence MnAs layer grown with the Mn-template epitaxy method, the isolator successfully showed an 8.7 dB/mm isolation ratio without external magnetic fields.

  4. Structure of the oceanic mixed layer in western Bay of Bengal during MONEX

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Somayajulu, Y.K.

    layer conditions of the overlying atmosphere. Structure of OML, as delineated with respect to the diurnal variation of temperature with depth, revealed three sub-layers: wave mixed, diurnal thermocline and transition layer. The first two sub...

  5. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-01-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases. (paper)

  6. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  7. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  8. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  9. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  10. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abouzar, Maryam H.; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Siqueira, Jose R. Jr.; Oliveira, Osvaldo N. Jr. [Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Moritz, Werner [Institute of Chemistry, Humboldt University Berlin (Germany)

    2010-04-15

    A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO{sub 2} EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 {mu}M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  12. Magnetic structure of Tb-Fe films with an artificially layered structure

    International Nuclear Information System (INIS)

    Yamauchi, K.; Habu, K.; Sato, N.

    1988-01-01

    The magnetic structure of Tb-Fe films with an artificially layered structure has been investigated by measuring the temperature dependence of the magnetization of the films. Ferrimagnetic coupling between Tb and Fe through the interface was explicitly observed up to about 9-A Tb and 10-A Fe layers. Films with thinner Tb and Fe layers than these thicknesses are composed of only ferrimagnetically coupled Tb-Fe regions. Films with thicker layers of Tb and Fe are composed of ferrimagnetically coupled Tb-Fe, ferromagnetic Fe, ferromagnetic Tb, and/or magnetically compensated Tb regions. The Tb-Fe films exhibit various temperature dependencies of the magnetization corresponding to these magnetic structures

  13. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  14. Semiconductor inversion contact - a new heterogeneous structure with two-dimensional zero-mass electron gas

    International Nuclear Information System (INIS)

    Volkov, B.A.; Pankratov, O.A.

    1986-01-01

    Semiconductor inversion junction, presenting the contact of materials in which energy levels corresponding to band edges are mutually inverted. At that, the symmetry of wave function of conductivity band in one material coincides with the symmetry of valence band of the other and vice versa. Specificity of the inversion contact is determined by the presence of electron states independent of the transition band type, which are similar to soliton ones in one-dimensional systems. In the region of the junction the states are characterized by linear massless spectrum nondegenerate in spin. Energy spectrum of the inversion junction for semiconductors of the Pb 1-x Sn y Te x type is considered

  15. Lg = 100 nm In0.7Ga0.3As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    International Nuclear Information System (INIS)

    Koh, D.; Kwon, H. M.; Kim, T.-W.; Veksler, D.; Gilmer, D.; Kirsch, P. D.; Kim, D.-H.; Hudnall, Todd W.; Bielawski, Christopher W.; Maszara, W.; Banerjee, S. K.

    2014-01-01

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In 0.53 Ga 0.47 As MOS capacitors with BeO and Al 2 O 3 and compared their electrical characteristics. As interface passivation layer, BeO/HfO 2 bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In 0.7 Ga 0.3 As QW MOSFETs with a BeO/HfO 2 dielectric, showing a sub-threshold slope of 100 mV/dec, and a transconductance (g m,max ) of 1.1 mS/μm, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7 nm technology node and/or beyond

  16. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  17. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  18. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  19. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  20. Fabrication and operation methods of a one-time programmable (OTP) nonvolatile memory (NVM) based on a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Cho, Seongjae; Lee, Junghoon; Jung, Sunghun; Park, Sehwan; Park, Byunggook

    2011-01-01

    In this paper, a novel one-time programmable (OTP) nonvolatile memory (NVM) device and its array based on a metal-insulator-semiconductor (MIS) structure is proposed. The Iindividual memory device has a vertical channel of a silicon diode. Historically, OTP memories were widely used for read-only-memories (ROMs), in which the most basic system architecture model was to store central processing unit (CPU) instructions. By grafting the nanoscale fabrication technology and novel structuring onto the concept of the OTP memory, innovative high-density NVM appliances for mobile storage media may be possible. The program operation is performed by breaking down the thin oxide layer between the pn diode structure and the wordline (WL). The programmed state can be identified by an operation that reads the leakage currents through the broken oxide. Since the proposed OTP NVM is based on neither a transistor structure nor a charge storing mechanism, it is highly reliable and functional for realizing the ultra-large scale integration. The operation physics and the fabrication processes are also explained in detail.

  1. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  2. Synthesis/literature review for determining structural layer coefficients (SLC) of bases.

    Science.gov (United States)

    2014-12-01

    FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...

  3. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  4. Grazing incidence diffraction anomalous fine structure of self-assembled semiconductor nanostructures

    International Nuclear Information System (INIS)

    Grenier, S.; Letoublon, A.; Proietti, M.G.; Renevier, H.; Gonzalez, L.; Garcia, J.M.; Priester, C.; Garcia, J.

    2003-01-01

    We have studied self-organized quantum wires of InAs, grown by molecular beam epitaxy onto a InP(0 0 1) substrate, by means of grazing incidence diffraction anomalous fine structure (DAFS). The equivalent quantum wires thickness is 2.5 monolayers. We measured the (4 4 0) and (4 2 0) GIDAFS spectra, at the As K-edge, keeping the incidence and exit angles close to the InP critical angle. The analysis of both the smooth and oscillatory contributions of the DAFS spectrum, provide valuable information about composition and strain inside the quantum wires and close to the interface. We also show preliminary results on InAs wires encapsulated by a 40 A thick InP capping layer, suggesting the DAFS capability of probing different iso-strain regions of the wires

  5. The limiting layer of fish scales: Structure and properties.

    Science.gov (United States)

    Arola, D; Murcia, S; Stossel, M; Pahuja, R; Linley, T; Devaraj, Arun; Ramulu, M; Ossa, E A; Wang, J

    2018-02-01

    Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture. In this investigation the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). The scales of these three fish have received the most attention within the materials community. Features of the LL were evaluated with respect to anatomical position to distinguish site-specific functional differences. Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three fish species. The calcium to phosphorus ratio and the mineral to collagen ratios of the LL are not equivalent among the three fish. Results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish. The natural armor of fish, turtles and other animals, has become a topic of substantial scientific interest. The majority of investigations have focused on the more highly organic layer known as the elasmodine. The present study addresses the highly mineralized external portion known as the Limiting Layer (LL). Specifically, the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). Results show that there are

  6. Optimized circuit design for flexible 8-bit RFID transponders with active layer of ink-jet printed small molecule semiconductors

    NARCIS (Netherlands)

    Kjellander, B.K.C.; Smaal, W.T.T.; Myny, K.; Genoe, J.; Dehaene, W.; Heremans, P.; Gelinck, G.H.

    2013-01-01

    We ink-jet print a blend of 6,13-bis(triisopropyl-silylethynyl)pentacene and polystyrene as the active layer for flexible circuits. The discrete ink-jet printed transistors exhibit a saturation mobility of 0.5 cm2 V -1 s-1. The relative spread in transistor characteristics can be very large. This

  7. Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors

    NARCIS (Netherlands)

    Yuan, Hongtao; Shimotani, Hidekazu; Ye, Jianting; Yoon, Sungjae; Aliah, Hasniah; Tsukazaki, Atsushi; Kawasaki, Masashi; Iwasa, Yoshihiro

    2010-01-01

    The electric-double-layer (EDL) formed at liquid/solid interfaces provides a broad and interdisciplinary attraction in terms of electrochemistry, photochemistry, catalysts, energy storage, and electronics because of the large interfacial capacitance coupling and its ability for high-density charge

  8. Undoped TiO2 particles as photoactive material for integrated metal-semiconductor structures

    International Nuclear Information System (INIS)

    Molina, Joel; Calleja, Wilfrido; Hernández, Luis; Zúñiga, Carlos; Linares, Monico; Wade, F. Javier

    2015-01-01

    Rutile-phase undoped TiO 2 nanoparticles are embedded within an organic SiO 2 matrix and the final dielectric mixture is then deposited by spinning on a thin film of aluminum (previously deposited on glass covers by e-beam evaporation). This so called “horizontal” TiO 2 -SiO 2 /Al/Glass structure is then electrically characterized under dark and light conditions (I-V-light) so that the total resistance of a simple aluminum stripe is measured and correlated before and after UV-Vis irradiation. Compared to dark conditions, excess carriers are photogenerated within the TiO 2 nanoparticles during light exposure and they are directly transferred to both ends of the aluminum stripe after applying a low potential difference (photoresistor). On the other hand, “vertical” structures using ultra-thin titanium films as a gate electrode produce a capacitor in the form of a Metal-Insulator-Metal (MIM) structure. Because of the ultra-thin titanium layer, this gate electrode is highly transparent to all UV-Vis irradiation so that when all carriers are being photogenerated, a vertical transition of these carriers between top/bottom (Ti/Al) electrodes by an applied external electric field would require a shorter distance thus increasing their lifetime before recombination as compared to the horizontal structures. These vertical structures are able to photogenerate carriers more efficiently and they are similar in function to that of a so-called photocapacitor, where all carriers could be efficiently stored within the dielectric itself right after photogeneration. Therefore, a light-driven self-charging capacitor having an efficient storage mechanism of solar energy could be obtained. (full text)

  9. Photon-exchange energy transfer of an electron–hole plasma between quasi-two-dimensional semiconductor layers

    International Nuclear Information System (INIS)

    Lyo, S.K.

    2012-01-01

    Photon-mediated energy transfer is shown to play an important role for transfer of an electron–hole plasma between two quasi-two-dimensional quantum wells separated by a wide barrier. The magnitude and the dependence of the transfer rate of an electron–hole plasma on the temperature, the well-to-well distance, and the plasma density are compared with those of the standard Förster (i.e., dipolar) rate and also with the exciton transfer rate. The plasma transfer rate through the photon-exchange mechanism decays very slowly as a function of the well-to-well distance and is larger than the dipolar rate except for short distances. The transfer rate of plasmas saturates at high densities and decays rapidly with the temperature. - Highlights: ► We study energy transfer (ET) between two two-dimensional semiconductor quantum wells. ► We compare the ET rates of an electron–hole plasma (at a high density) and Mott excitons. ► We show that the proposed photon-exchange rate is practically dominant over the Förster rate. ► We examine the dependences of the ET rate on the temperature, density, and well-to-well distance.

  10. Wintertime Boundary Layer Structure in the Grand Canyon.

    Science.gov (United States)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  11. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  12. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors.

    Science.gov (United States)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-12-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade(-1) and 3.62 × 10(11) eV(-1) cm(-2), respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  13. Ultra-low specific on-resistance high-voltage vertical double diffusion metal–oxide–semiconductor field-effect transistor with continuous electron accumulation layer

    International Nuclear Information System (INIS)

    Ma Da; Luo Xiao-Rong; Wei Jie; Tan Qiao; Zhou Kun; Wu Jun-Feng

    2016-01-01

    A new ultra-low specific on-resistance (R on,sp ) vertical double diffusion metal–oxide–semiconductor field-effect transistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the R on,sp but also makes the R on,sp almost independent of the n-pillar doping concentration (N n ). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the N n , and further reduces the R on,sp . Especially, the two PN junctions within the trench gate support a high gate–drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the R on,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV). (paper)

  14. Lattice defects in LPE InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates

    International Nuclear Information System (INIS)

    Ishida, K.; Matsumoto, Y.; Taguchi, K.

    1982-01-01

    Lattice defects generated during LPE growth of InP-InGaAsP-InGaAs structure epitaxial layers on InP substrates are studied. Two different kinds of dislocations are observed at the two interfaces of the epitaxial layers; at the InP-InGaAsP interface, misfit dislocations are generated in the InP layer by carry over of InGaAsP melt into the InP one and at the InGaAs-InP interface, V-shaped dislocations are generated in the InGaAs layer. It is shown that the critical amount of lattice mismatch to suppress generation of misfit dislocations in InP is about two times smaller than that of other III-V compound semiconductors. Conditions to suppress the generation of these dislocations are clarified. (author)

  15. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    Science.gov (United States)

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  16. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  17. Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta; Tripathi, S.K. [Panjab University, Centre of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2013-11-15

    This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al{sub 2}O{sub 3}/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N{sub ss}) and series resistance (R{sub s}) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias I-V, C-V, and G/w-V characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al{sub 2}O{sub 3} layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R{sub s}) and barrier height ({phi} {sub b}) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias I-V data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height ({phi} {sub e}) for MS and MIS diode. The N{sub ss} values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode. (orig.)

  18. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina.

    Science.gov (United States)

    Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom

    2018-02-01

    The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.

  19. Ultrasonic Waveguide Sensor with a Layer-Structured Plate

    International Nuclear Information System (INIS)

    Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum

    2010-01-01

    In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium

  20. Simulation of magnetic tunnel junction in ferromagnetic/insulator/semiconductor structure

    Science.gov (United States)

    Kostrov, Alexander I.; Stempitsky, Viktor R.; Kazimirchik, Vladimir N.

    2008-07-01

    In this work, we present a physical model and electrical macromodel for simulation of Magnetic Tunnel Junction (MTJ) effect based on Ferromagnetic/Insulator/Semiconductor (FIS) nanostructure. A modified Brinkman model has been proposed by including the voltage-dependent density of states of the ferromagnetic electrodes in order to explain the bias dependence magnitoresistance. The model takes into account injection of carriers in the semiconductor and Shottky barrier, electron tunneling through thin insulator and spin-transfer torque writing approach in memory cell. These very promising features should constitute the third generation of Magnetoresistive RAM (MRAM). Besides, the model can efficiently be used to design magnetic CMOS circuits. The behavioral macro-model has been developed by means of Verilog-AMS language and implemented on the Cadence Virtuoso platform with Spectre simulator.

  1. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    Science.gov (United States)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  2. Computer simulation model of the structure of ion implanted impurities in semiconductors

    International Nuclear Information System (INIS)

    Roman, E.; Majlis, N.

    1983-02-01

    A system of ion implanted impurities in a semiconductor is described by a Monte Carlo simulation of a non-equilibrium system of random distributed hard spheres. The radial distribution function of this system is found. The comparison is made with the fluid hard sphere case. The assumption of the absence either of annealing or diffusion of the impurities after the implantation process is also made. (author)

  3. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure

    Science.gov (United States)

    Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.

    2016-01-01

    Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.

  4. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Yanchev, I.

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated

  5. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in mis-structures

    International Nuclear Information System (INIS)

    Yanchev, I; Slavcheva, G.

    1993-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. 7 refs. (orig.)

  6. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-01-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm–320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ∼75% UV absorption and hot electron excitation can be achieved within the mean free path of ∼20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices. (paper)

  7. Potential fluctuations due to the randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    International Nuclear Information System (INIS)

    Slavcheva, G.; Yanchev, I.

    1991-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening due to the image charge with respect to the metal electrode in MIS-structure is taken into account, introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential Γ 2 to which it leads in distinction with the so far known correlation functions leading to divergent dispersion. The important characteristic of the random potential distribution Γ 2 determining the amplitude of the potential fluctuations is calculated. (author). 7 refs, 1 fig

  8. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  9. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    CERN Document Server

    Yanchev, I

    2003-01-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  10. Potential fluctuations due to randomly distributed charges at the semiconductor-insulator interface in MIS-structures

    Energy Technology Data Exchange (ETDEWEB)

    Yanchev, I

    2003-07-01

    A new expression for the Fourier transform of the binary correlation function of the random potential near the semiconductor-insulator interface is derived. The screening from the metal electrode in MIS-structure is taken into account introducing an effective insulator thickness. An essential advantage of this correlation function is the finite dispersion of the random potential to which it leads in distinction with the so far known correlation functions leading to a divergent dispersion. The dispersion, an important characteristic of the random potential distribution, determining the amplitude of the potential fluctuations is calculated.

  11. Structure and magnetism of transition-metal implanted dilute magnetic semiconductors

    CERN Document Server

    Pereira, Lino; Temst, K; Araújo, JP; Wahl, U

    The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a critical step towards the development of semiconductor-based spintronics. Among the many types of DMS materials which have been investigated, the current research interest can be narrowed down to two main classes of materials: (1) narrow-gap III-V semiconductors, mostly GaAs and InAs, doped with Mn; (2) wide-gap oxides and nitrides doped with 3d transition metals, mostly Mn- and Co-doped ZnO and Mn-doped GaN. With a number of interesting functionalities deriving from the carrier-mediated ferromagnetism and demonstrated in various proof-of-concept devices, Mn-doped GaAs has become, among DMS materials, one of the best candidates for technological application. However, despite major developments over the last 15 years, the maximum Curie temperature (185 K) remains well below room temperature. On the other hand, wide-gap DMS materials appear to exhibit ferromagnetic behavior...

  12. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nádaždy, V., E-mail: nadazdy@savba.sk; Gmucová, K. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Schauer, F. [Faculty of Education, Trnava University in Trnava, 918 43 Trnava (Slovakia); Faculty of Applied Informatics, Tomas Bata University in Zlin, 760 05 Zlin (Czech Republic)

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  13. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    Science.gov (United States)

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  14. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  15. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  16. Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals

    Science.gov (United States)

    Andrew, Fartisincha P.; Ajibade, Peter A.

    2018-03-01

    Dithiocarbamates are versatile ligands able to stabilize wide range of metal ions in their various oxidation states with the partial double bond character of Csbnd N and Csbnd S of thioureide moiety. Variation of the substituents attached to the nitrogen atom of dithiocarbamate moiety generates various intermolecular interactions, which lead to different structural arrangement in the solid state. The presence of bulky substituents on the N atom obviates the supramolecular aggregation via secondary Msbnd S interactions whereas smaller substituents encourage such aggregation that results in their wide properties and applications. Over the past decades, the synthesis and structural studies of metal complexes of dithiocarbamates have received considerable attention as potential anticancer agents with various degree of DNA binding affinity and cytotoxicity and as single molecule precursors for the preparation of semiconductor nanocrystals. In this paper, we review the synthesis, structural studies, anticancer potency and the use of alkyl-phenyl dithiocarbamate complexes as precursors for the preparation of semiconductor nanocrystals. The properties of these compounds and activities are ascribed to be due to either the dithiocarbamate moieties, the nature or type of the substituents around the dithiocarbamate backbone and the central metal ions or combination of these factors.

  17. Experimental analysis on stress wave in inhomogeneous multi-layered structures

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Ham, Hyo Sick

    1998-01-01

    The guided wave propagation in inhomogeneous multi-layered structures is experimentally explored based on theoretical dispersion curves. It turns out that proper selection of incident angle and frequency is critical for guided wave generation in multi-layered structures. Theoretical dispersion curves greatly depend on adhesive zone thickness, layer thickness and material properties. It was possible to determine the adhesive zone thickness of an inhomogeneous multi-layered structure by monitoring experimentally the change of dispersion curves.

  18. Coherent structures in the Es layer and neutral middle atmosphere

    Science.gov (United States)

    Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina

    2015-12-01

    The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.

  19. Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Heo, Il; Lee, Sung Han; Oh, Jae Min [College of Science and Technology, Yonsei University, Wonju (Korea, Republic of); Paek, Seung Min [Kyungpook National University, Daegu (Korea, Republic of); Park, Chung Berm; Choi, Ae Jin [National Institute of Horticultural and Herbal Science of R and D Eumseong (Korea, Republic of); Choy, Jin Ho [Ewha Womans University, Seoul (Korea, Republic of)

    2012-06-15

    Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions (Ca{sup 2+}/Al{sup 3+} and Ca{sup 2+}/Fe{sup 3+} = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to {approx}11.5 and {approx}13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed (00l) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, Ca{sub 2.04}Al{sub 1}(OH){sub 6}(NO{sub 3}){center_dot}5.25H{sub 2}O and Ca{sub 2.01}Fe{sub 1}(OH){sub 6}(NO{sub 3}){center_dot}4.75H{sub 2}O were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetric differential scanning calorimetry

  20. Semiconductor physics

    CERN Document Server

    Böer, Karl W

    2018-01-01

    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  1. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects

    International Nuclear Information System (INIS)

    De Jamblinne de Meux, A; Genoe, J; Heremans, P; Pourtois, G

    2015-01-01

    We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen–metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced

  2. Effect of thermal treatment on the density of radiation-induced defects in dielectrics and on the semiconductor surface of silicon MDS structures

    International Nuclear Information System (INIS)

    Daliev, Kh.S.; Lebedev, A.A.; Ehkke, V.; 3425000DD)

    1987-01-01

    Isochronous annealing of radiation defects formed under MIS structure irradiation by γ-quanta at the presence of shift stress on a metal electrode is studied. Complex measurements of non-stationary capacitance spectroscopy and volt-farad characteristics (VFC) have shown that a built-in charge and volumetric states (VS) of the dielectric are annealed at 250 deg C, fast surface states (SS) - at 350 deg C, and the characteristic radiation defect in the Si-SiO 2 transition layer is completely annealed only at 400 deg C. Additional VS and SS occurring in the structures at positive shift on the metal electrode under radiation are annealed at 120 deg C, the kinetics of defect annealing at higher temperatures is independent from shift polarity. SS density calculated by VFC is determined in reality by recharging not only SS but some VS of the dielectric in the range of width of the order of 3.5 nm from the surface of the semiconductor

  3. Low-confinement high-power semiconductor lasers

    NARCIS (Netherlands)

    Buda, M.

    1999-01-01

    This thesis presents the results of studies related to optimisation of high power semiconductor laser diodes using the low confinement concept. This implies a different approach in designing the transversal layer structure before growth and in processing the wafer after growth, for providing the

  4. Study of III-V semiconductor band structure by synchrotron photoemission

    International Nuclear Information System (INIS)

    Williams, G.P.; Cerrina, F.; Anderson, J.; Lapeyre, G.J.; Smith, R.J.; Hermanson, J.; Knapp, J.A.

    1982-01-01

    Angle-resolved synchrotron photoemission studies of six III-V semiconductors have been carried out. For emission normal to the (110) plane of these materials, peaks in the experimental spectra were identified with the bands involved in the transitions, and the critical point energies X 3 , X 5 , and Σ 1 /sup min/, were determined. The data indicate that k perpendicular is conserved in the transitions. Comparison of the data with theoretical bands permits an evaluation of k perpendicular associated with the experimentally observed transition, and from this information the bands were plotted out

  5. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  6. Optical properties of double-layer structure phthalocyanine-tetracyanoquinodimethane

    Czech Academy of Sciences Publication Activity Database

    Bortchagovsky, E. G.; Kazantseva, Z. I.; Koshets, I. A.; Nešpůrek, Stanislav; Jastrabík, Lubomír

    2004-01-01

    Roč. 460, 1-2 (2004), s. 269-273 ISSN 0040-6090 R&D Projects: GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : organic semiconductors * ellipsometry * optical spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.647, year: 2004

  7. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  8. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    Science.gov (United States)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  9. Evolution of structure with Fe layer thickness in low dimensional Fe/Tb multilayered structures

    International Nuclear Information System (INIS)

    Harris, V.G.; Aylesworth, K.D.; Elam, W.T.; Koon, N.C.; Coehoorn, R.; Hoving, W.

    1992-01-01

    This paper reports on the atomic structure of a series of low-dimensional Fe/Tb multilayered structures which has been explored using a conversion-electron, extended x-ray absorption fine structure (EXAFS) technique. A structural transition from a close-packed amorphous structure to a body-centered crystalline structure is detected to occur over an Fe layer thickness range of 12.5 Angstrom to 15.0 Angstrom (Tb thickness is held constant at 4.5 Angstrom). Magnetic properties, specifically, magnetization, anisotropy field, and Kerr rotation angle, are measured and found to change significantly in response to this transition. Exploitation of the polarization properties of synchrotron radiation allowed for the description of the atomic structure both perpendicular and parallel to the sample plane

  10. Organic-inorganic semiconductor hybrid systems. Structure, morphology, and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    El Helou, Mira

    2012-08-22

    This dissertation addresses the preparation and characterization of hybrid semiconducting systems combining organic with inorganic materials. Characterization methods used included to determine the structure, morphology, and thermal stability comprised X-ray diffraction (XRD), atomic force microscopy (AFM), thermal desorption spectroscopy (TDS), and X-ray photoelectron spectroscopy (XPS). One organic-inorganic semiconducting system was pentacene (C{sub 22}H{sub 14}) and zinc oxide. This interface was investigated in detail for pentacene on an oxygen-terminated zinc oxide surface, i.e. ZnO(000 anti 1). An extended study on the promising p-n junction was carried out for pentacene on ZnO with different orientations which exhibit different chemical and structural characteristics: ZnO(000 anti 1), ZnO(0001), and ZnO(10 anti 10). Moreover, the organic crystal structure of pentacene was selectively tuned by carefully choosing the substrate temperature. This defined interface with a physisorbed pentacene layer on ZnO was characterized by optical absorption which depends on the temperature of the measured system, the pentacene film thickness, and the molecular orientation and packing. The high quality of the pentacene films allowed in one case to characterize the Davydov splitting by linear polarized light focused on a single crystallite. Another subject in the field of organic-inorganic hybrid materials comprised conjugated dithiols used as self-assembled monolayers (SAMs) for immobilizing semiconducting CdS nanoparticles (NPs) on Au substrates. It was demonstrated that an appropriate selection and preparation of the conjugated SAMs is crucial for building up a light-addressable potentiometric sensor with a sufficient efficiency. An optimized electron transfer was achieved with SAMs of long range ordering, high stability, and adequate conductivity. This was examined for different linkers and was best for stilbenedithiol immobilized in solution at higher temperatures. Due

  11. White-electroluminescent device with horizontally patterned blue/yellow phosphor-layer structure

    International Nuclear Information System (INIS)

    Won Park, Boo; Sik Choi, Nam; Won Park, Kwang; Mo Son, So; Kim, Jong Su; Kyun Shon, Pong

    2007-01-01

    White-electroluminescent (EL) devices with stripe-patterned and square-patterned phosphor-layer structures are fabricated through a screen printing method: electrode/BaTiO 3 insulator layer/patterned blue ZnS:Cu, Cl and yellow ZnS:Cu, Mn phosphor layer/ITO PET substrate. The luminous intensities of EL devices with stripe-patterned and square-patterned phosphor-layer structures are 33% and 23% higher than a conventional device with the phosphor-layer structure without any patterns using the phosphor blend. It can be explained in terms of the absorption of the emitted blue light of blue phosphor layer by the yellow-emitting phosphor layer. The EL device of our patterned phosphor-layer structure gives the possibility to enhance the luminance

  12. Application of Finite Layer Method in Pavement Structural Analysis

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2017-06-01

    Full Text Available The finite element (FE method has been widely used in predicting the structural responses of asphalt pavements. However, the three-dimensional (3D modeling in general-purpose FE software systems such as ABAQUS requires extensive computations and is relatively time-consuming. To address this issue, a specific computational code EasyFEM was developed based on the finite layer method (FLM for analyzing structural responses of asphalt pavements under a static load. Basically, it is a 3D FE code that requires only a one-dimensional (1D mesh by incorporating analytical methods and using Fourier series in the other two dimensions, which can significantly reduce the computational time and required resources due to the easy implementation of parallel computing technology. Moreover, a newly-developed Element Energy Projection (EEP method for super-convergent calculations was implemented in EasyFEM to improve the accuracy of solutions for strains and stresses over the whole pavement model. The accuracy of the program is verified by comparing it with results from BISAR and ABAQUS for a typical asphalt pavement structure. The results show that the predicted responses from ABAQUS and EasyFEM are in good agreement with each other. The EasyFEM with the EEP post-processing technique converges faster compared with the results derived from ordinary EasyFEM applications, which proves that the EEP technique can improve the accuracy of strains and stresses from EasyFEM. In summary, the EasyFEM has a potential to provide a flexible and robust platform for the numerical simulation of asphalt pavements and can easily be post-processed with the EEP technique to enhance its advantages.

  13. Structural design study of tritium breeding blanket with a lead layer as a neutron multiplier

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kitamura, Kazunori; Minato, Akio; Sakamoto, Hiroki; Yamamoto, Takashi

    1980-12-01

    Thermal and structural design study of a tritium breeding blanket with a lead layer for a International Tokamak Reactor (INTOR) is carried out. Tube in shell type blanket with a lead layer is found to be promising. The volume fraction of structural material in the lead layer can be small enough to keep the neutron multiplication effect of lead. Reasonable value of shell effect is attainable due to lead layer in the front part of the blanket. (author)

  14. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations

    International Nuclear Information System (INIS)

    Nomura, Kenji; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Uruga, Tomoya; Hosono, Hideo

    2007-01-01

    Ionic amorphous oxide semiconductors (IAOSs) are new materials for flexible thin film transistors that exhibit field-effect mobilities of ∼10 cm 2 V -1 s -1 [K. Nomura et al., Nature 488, 432 (2004)]. The local coordination structure in an IAOS, In-Ga-Zn-O (a-IGZO), was examined using extended x-ray absorption fine structure analysis combined with ab initio calculations. The short-range ordering and coordination structures in a-IGZO are similar to those in the corresponding crystalline phase, InGaZnO 4 , and edge-sharing structures consisting of In-O polyhedra remain in the amorphous structure. The In 3+ 5s orbitals form an extended state with a band effective mass of ∼0.2m e at the conduction band bottom

  15. Crystalline α-Sm2S3 nanowires: Structure and optical properties of an unusual intrinsically degenerate semiconductor

    International Nuclear Information System (INIS)

    Marin, Chris M.; Wang, Lu; Brewer, Joseph R.; Mei, Wai-Ning; Cheung, Chin Li

    2013-01-01

    Highlights: ► Developed a rapid synthetic method to generate thin films of α-Sm 2 S 3 nanowires. ► Calculated the electronic structure of α-Sm 2 S 3 by density functional theory. ► Predicted that α-Sm 2 S 3 is an intrinsically degenerate p-type semiconductor. ► Found that the gap in the band states of α-Sm 2 S 3 could be engineered to 1.3 eV via sulfur vacancy. -- Abstract: The lanthanide sulfides have long been a promising class of semiconductors because of their infrared-to-visible range band gaps and excellent thermoelectric properties. However, their applications have been limited due to their time consuming conventional synthetic processes and the lack of sufficient understanding of their electronic properties. To address these shortcomings, here we report a rapid, chemical vapor deposition route which results in thin films of crystalline α-phase samarium sesquisulfide (α-Sm 2 S 3 ) nanowires within a few hours, rather than the typical 4–7 days required in previous synthetic processes. In addition, density functional theory was, for the first time, utilized to calculate the electronic band structure of α-Sm 2 S 3 in order to shed insight into the interpretation of their UV–Vis absorption spectrum. We found that the theoretical direct gap in the band states of α-Sm 2 S 3 is 1.7 eV. Computation results suggest that this gap can be tuned to a solar optimal ∼1.3 eV via systematic sulfur vacancy sites engineered into the crystal structure. Most significantly, the degenerate semiconductor-like behavior long observed in lanthanide sulfide samples have been shown to be present even in the ideal α-Sm 2 S 3 structure, suggesting that the observed heavily p-type behavior is an unusual intrinsic property of the material resulting from the Fermi level being located significantly below the optically active 1.7 eV band edge

  16. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chattisgarh (India); Jha, Piyush [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chattisgarh (India)

    2015-04-15

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  17. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    Science.gov (United States)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  18. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, T C [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Svane, A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States)

    2007-04-23

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  19. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Chandra, V.K.; Jha, Piyush

    2015-01-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices

  20. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    International Nuclear Information System (INIS)

    Schulthess, T C; Temmerman, W M; Szotek, Z; Svane, A; Petit, L

    2007-01-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments

  1. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules.

    Science.gov (United States)

    Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal

    2017-09-28

    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

  2. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  3. Generation of mesoscale F layer structure and electric fields by the combined Perkins and Es layer instabilities, in simulations

    Directory of Open Access Journals (Sweden)

    R. B. Cosgrove

    2007-07-01

    account for the observations of large midlatitude electric fields. When ΣHΣPF⪞1 the Es layer becomes a major contributor to the F layer dynamics. The Es layer response involves the breaking of a wave, with associated polarization electric fields, which modulate the F layer. Larger electric fields form when the relative velocity between the Es and F layers is large, whereas larger modulations of the F layer altitude occur when the relative velocity is small. In the latter case the F layer modulation grows almost twice as fast (for ΣHΣPF=1 as when no Es layer is present. In the former case the electric fields associated with the Es layer are large enough to explain the observations (~10 mV/m , but occur over relatively short temporal and spatial scales. In the former case also there is evidence that the F layer structure may present with a southwestward trace velocity induced by Es layer motion.

  4. Preparation, structures and magnetic properties of Dy/Zr and Ho/Zr two-layers and multi-layers

    International Nuclear Information System (INIS)

    Luche, M.C.

    1993-01-01

    The first part of the report is devoted to the description of the ultra-vacuum evaporation equipment, to the sample preparation conditions and to the characterization of the two-layers and multi-layers through reflection and glancing incidence X diffraction and transmission electron microscopy. In the second part, the magnetic properties of the samples are studied and relations between properties and structures are examined. 37 fig., 35 ref

  5. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures

    International Nuclear Information System (INIS)

    Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih; Chen, Hsiang; Cheng Chu, Yu; Jie Chen, Yu; Ling Lee, Ming; Ming Chang, Kow

    2014-01-01

    Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na + , K + , urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications

  6. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  7. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.

    Science.gov (United States)

    Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre

    2010-08-01

    Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  9. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  10. Numerical study of the electronic structure, elastic and optical properties of defect quaternary semiconductor CuGaSnSe4

    Science.gov (United States)

    Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.

  11. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    Science.gov (United States)

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  12. Quantification of layered patterns with structural anisotropy: a comparison of biological and geological systems

    Directory of Open Access Journals (Sweden)

    I. Smolyar

    2016-03-01

    Full Text Available Large-scale patterns evident from satellite images of aeolian landforms on Earth and other planets; those of intermediate scale in marine and terrestrial sand ripples and sediment profiles; and small-scale patterns such as lamellae in the bones of vertebrates and annuli in fish scales are each represented by layers of different thicknesses and lengths. Layered patterns are important because they form a record of the state of internal and external factors that regulate pattern formation in these geological and biological systems. It is therefore potentially possible to recognize trends, periodicities, and events in the history of the formation of these systems among the incremental sequences. Though the structures and sizes of these 2-D patterns are typically scale-free, they are also characteristically anisotropic; that is, the number of layers and their absolute thicknesses vary significantly during formation. The aim of the present work is to quantify the structure of layered patterns and to reveal similarities and differences in the processing and interpretation of layered landforms and biological systems. To reach this goal we used N-partite graph and Boolean functions to quantify the structure of layers and plot charts for “layer thickness vs. layer number” and “layer area vs. layer number”. These charts serve as a source of information about events in the history of formation of layered systems. The concept of synchronization of layer formation across a 2-D plane is introduced to develop the procedure for plotting “layer thickness vs. layer number” and “layer area vs. layer number”, which takes into account the structural anisotropy of layered patterns and increase signal-to-noise ratio in charts. Examples include landforms on Mars and Earth and incremental layers in human and iguana bones.

  13. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  14. Tunable band structures in digital oxides with layered crystal habits

    Science.gov (United States)

    Shin, Yongjin; Rondinelli, James M.

    2017-11-01

    We use density functional calculations to show that heterovalent cation-order sequences enable control over band-gap variations up to several eV and band-gap closure in the bulk band insulator LaSrAlO4. The band-gap control originates from the internal electric fields induced by the digital chemical order, which induces picoscale band bending; the electric-field magnitude is mainly governed by the inequivalent charged monoxide layers afforded by the layered crystal habit. Charge transfer and ionic relaxations across these layers play secondary roles. This understanding is used to construct and validate a descriptor that captures the layer-charge variation and to predict changes in the electronic gap in layered oxides exhibiting antisite defects and in other chemistries.

  15. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.

    1980-01-01

    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  16. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    International Nuclear Information System (INIS)

    Evans, D.A.; Steiner, H.J.; Vearey-Roberts, A.R.; Bushell, A.; Cabailh, G.; O'Brien, S.; Wells, J.W.; McGovern, I.T.; Dhanak, V.R.; Kampen, T.U.; Zahn, D.R.T.; Batchelor, D.

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between the molecules and the inorganic semiconductor. NEXAFS studies have shown that there is a preferred orientation of the molecules within the organic semiconductor layers. The valence band offsets for the heterojunctions have been directly measured using valence level PES and were found to be very different for copper phthalocyanine on InSb and GaAs (0.7 and -0.3 eV respectively) although an interface dipole is present in both cases

  17. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  18. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  19. The structure of the S-layer of Clostridium difficile.

    Science.gov (United States)

    Bradshaw, William J; Roberts, April K; Shone, Clifford C; Acharya, K Ravi

    2018-03-01

    The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.

  20. PHOTOSENSITIVE STRUCTURES ON THE BASIS OF THIN FILMS OF SEMIMAGNETIC SEMICONDUCTORS Pb1-x Mnx Te

    International Nuclear Information System (INIS)

    Mehrabova, M.A; Nuriyev, I.R; Ismayilov, T.G; Kerimova, T.I; Mamishova, R.M

    2011-01-01

    Full text: Narrow-band semimagnetic semiconductors (SMS) Pb1-xMnxTe are unique materials for infrared (IR) optoelectronics.The investigation of Faraday effect in Pb1-xMnxTe thin films of SMS is of a special interest. So it can be used at the construction of optic isolators, amplifiers, IR detectors and other equipments.In the given work Pb1-xMnxTe thin films (SMS) have been produced, the interband Faraday effect in these semiconductors has been theoretically and experimentally studied. Opportunities of making IR detectors have been studied. Pb1-xMnxTe (x=0.005 0.06) thin films have been grown at BaF2 substrates by the method of molecular beam condensation. The optimal conditions of producing thin films with high crystallic perfection, electrophysical and optical parameters have been determined [1]. The energy spectrum and wave functions have been theoretically calculated for quantum-sized films of Pb1-xMnxTe SMS in the case when the surface of the film is perpendicular to the axis X and the spin-spin exchange interaction occurs between the electrons in the conductivity band (valence band) and the electrons of half-filled d-shells of manganese ions as well as taking into account electron spins and the band nonparabolicity. For the calculation of the spectra and wave functions double-band Kane model has been used. On the basis of the found formulae an analytical equation has been found out for interband Faraday rotation (IFR) depending on the energy of the incident photon, band gap and the film thickness. It has been shown that by the decrease in the band gap the value of the IFR angle increases too [2]. The formula of parabolic approximation has been also obtained. The dependence of IFR angle on photon energy, band gap and the film thickness has been built. It has been specified that the decrease of the film thickness leads to a strong increase of IFR angle. The contribution of nonparabolicity into IFR angle has been established, so taking into consideration the