WorldWideScience

Sample records for semiconductor devices quantum

  1. Physical models of semiconductor quantum devices

    CERN Document Server

    Fu, Ying

    2013-01-01

    The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.

  2. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  3. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    National Research Council Canada - National Science Library

    Cui, Long

    1997-01-01

    This research project was focused on the development of a quantum mechanical balance equation based device simulator that can model advanced, compound, submicron devices, under all transport conditions...

  4. Quantum transport in semiconductor nanostructures and nanoscale devices

    International Nuclear Information System (INIS)

    Zhen-Li, Ji.

    1991-09-01

    Only a decade ago the study and fabrication of electron devices whose smallest features were just under 1 micro represented the forefront of the field. Today that position has advanced an order of magnitude to 100 nanometers. Quantum effects are unavoidable in devices with dimensions smaller than 100 nanometers. A variety of quantum effects have been discovered over the years, such as tunneling, resonant tunneling, weak and strong localization, and the quantum Hall effect. Since 1985, experiments on nanostructures (dimension < 100 nm) have revealed a number of new effects such as the Aharanov-Bohm effect, conductance fluctuations, non-local effects and the quantized resistance of point contacts. For nanostructures at low temperature, these phenomena clearly show that electron transport is influenced by wave interference effects similar to those well-known in microwave and optical networks. New device concepts now being proposed and demonstrated are based on these wave properties. This thesis discusses our study of electron transport in nanostructures. All of the quantum phenomena that we address here are essentially one-electron phenomena, although many-body effects will sometimes play a more significant role in the electronic properties of small structures. Most of the experimental observations to date are particularly well explained, at least qualitatively, in terms of the simple one-particle picture. (au)

  5. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  6. ABACUS and AQME: Semiconductor Device and Quantum Mechanics Education on nanoHUB.org

    OpenAIRE

    Klimeck, Gerhard; Vasileska, Dragica

    2009-01-01

    The ABACUS and AQME on-line tools and their associated wiki pages form one-stop shops for educators and students of existing university courses. They are geared towards courses like "introduction to Semiconductor Devices" and "Quantum Mechanics for Engineers". The service is free to anyone and no software installation is required on the user's computer. All simulations, including advanced visualization are performed at a remote computer. The tools have been deployed on nanoHUB.org in August 2...

  7. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  8. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  9. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  10. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  11. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  12. Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Kreisbeck, Christoph

    2012-06-18

    Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a

  13. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  14. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  15. Simulation of semiconductor devices

    International Nuclear Information System (INIS)

    Oriato, D.

    2001-09-01

    In this thesis a drift diffusion model coupled with self-consistent solutions of Poisson's and Schroedinger's equations, is developed and used to investigate the operation of Gunn diodes and GaN-based LEDs. The model also includes parameters derived from Monte Carlo calculations of the simulated devices. In this way the characteristics of a Monte Carlo approach and of a quantum solver are built into a fast and flexible drift-diffusion model that can be used for testing a large number of heterostructure designs in a time-effective way. The full model and its numerical implementation are described in chapter 2. In chapter 3 the theory of Gunn diodes is presented. A basic model of the dynamics of domain formation and domain transport is described with particular regard to accumulation and dipole domains. Several modes of operation of the Gunn device are described, varying from the resonance mode to the quenched mode. Details about transferred electron devices and negative differential resistance in semiconductor materials are given. In chapter 4 results from the simulation of a simple conventional gunn device confirm the importance of the doping condition at the cathode. Accumulation or dipole domains are achieved respectively with high and low doping densities. The limits of a conventional Gunn diode are explained and solved by introducing the heterostructure Gunn diode. This new design consists of a conventional GaAs transit region coupled with an electron launcher at the cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system

  16. Introduction to Semiconductor Devices

    Science.gov (United States)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  17. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  18. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Science.gov (United States)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  19. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    International Nuclear Information System (INIS)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-01-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices

  20. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  1. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip

    2013-01-01

    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  2. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  3. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  4. Investigations of quantum effect semiconductor devices: The tunnel switch diode and the velocity modulation transistor

    Science.gov (United States)

    Daniel, Erik Stephen

    In this thesis we present the results of experimental and theoretical studies of two quantum effect devices--the Tunnel Switch Diode (TSD) and the Velocity Modulation Transistor (VMT). We show that TSD devices can be fabricated such that they behave (semi-quantitatively) as predicted by simple analytical models and more advanced drift-diffusion simulations. These devices possess characteristics, such as on-state currents which range over nearly five orders of magnitude, and on/off current ratios which are even larger, which may allow for a practical implementation of a very dense transistorless SRAM architecture and possibly other novel circuit designs. We demonstrate that many TSD properties can be explained by analogy to a thyristor. In particular, we show that the thin oxide layer in the TSD plays a critical role, and that this can be understood in terms of current injection through the oxide, analogous to transport through the "current limiting" layer in a thyristor. As this oxide layer can be subjected to extreme stress during device operation, we have studied the effect of this stress on device behavior. We demonstrate many significant stress-dependent effects, and identify structures and operation modes which minimize these effects. We propose an InAs/GaSb/AlSb VMT which may allow for larger conductance modulation and higher temperature operation than has been demonstrated in similar GaAs/AlAs structures. Fundamental differences in device operation in the two materials systems and unusual transport mechanisms in the InAs/GaSb/AlSb system are identified as a result of the band lineups in the two systems. Boltzmann transport simulations are developed and presented, allowing a qualitative description of the transport in the InAs/GaSb/AlSb structure. Band structure calculations are carried out, allowing for device design. While no working VMT devices were produced, this is believed to be due to processing and crystal growth problems. We present methods used to

  5. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  6. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  7. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  8. Conductance enhancement in quantum-point-contact semiconductor-superconductor devices

    DEFF Research Database (Denmark)

    Mortensen, Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    1999-01-01

    We present numerical calculations of the conductance of an interface between a phase-coherent two-dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Klapwijk...... [Phys. Rev. B 50, 631 (1994)] which was studied within the time-dependent Bogoliubov-de Gennes formalism. We find that the factor-of-2 enhancement of the conductance G(NS) compared to the normal state conductance GN for ideal interfaces may be suppressed for interfaces with a quantum point contact...

  9. Superconducting detectors for semiconductor quantum photonics

    International Nuclear Information System (INIS)

    Reithmaier, Guenther M.

    2015-01-01

    In this thesis we present the first successful on-chip detection of quantum light, thereby demonstrating the monolithic integration of superconducting single photon detectors with individually addressable semiconductor quantum dots in a prototypical quantum photonic circuit. Therefore, we optimized both the deposition of high quality superconducting NbN thin films on GaAs substrates and the fabrication of superconducting detectors and successfully integrated these novel devices with GaAs/AlGaAs ridge waveguides loaded with self-assembled InGaAs quantum dots.

  10. Semiconductors and semimetals intersubband transitions in quantum wells physics and device applications

    CERN Document Server

    Weber, Eicke R; Liu, H C

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Pro

  11. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  12. Transport Imaging for the Study of Quantum Scattering Phenomena in Next Generation Semiconductor Devices

    National Research Council Canada - National Science Library

    Bradley, Frank M

    2005-01-01

    ...) and highly efficient solar cells. A novel technique has been developed utilizing direct imaging of electron/hole recombination via an optical microscope and a high sensitivity charge coupled device coupled to a scanning electron...

  13. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg

    2004-01-01

    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  14. Quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Tillmann Christoph

    2009-11-15

    The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer

  15. Unconventional Quantum Computing Devices

    OpenAIRE

    Lloyd, Seth

    2000-01-01

    This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.

  16. Quantum features of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lozada-Cassou, M.; Dong Shihai; Yu Jiang

    2004-01-01

    The exact solutions of the two-dimensional Schrodinger equation with the position-dependent mass for the square well potential in the semiconductor quantum dots system are obtained. The eigenvalues, which are closely related to the position-dependent masses μ1 and μ2, the potential well depth V0 and the radius of the quantum dots r0, can be calculated from two boundary conditions. We generalize this quantum system to three-dimensional case. The special cases for the angular momentum quantum number l=0, 1, 2 are studied in some detail. We find that the energy levels are proportional to the parameters μ2, V0 and r0 for l=0. The relations between them for l=1, 2 become very complicated. The scattering states of this quantum system are mentioned briefly

  17. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  18. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  19. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  20. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  1. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  2. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    Science.gov (United States)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  3. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  4. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...

  5. Epitaxy of advanced nanowire quantum devices

    NARCIS (Netherlands)

    Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S.C.; Logan, J.A.; De Moor, M.W.A.; Cassidy, M.C.; Schmits, R.; Xu, D.; Wang, G.; Krogstrup, P.; Op Het Veld, R.L.M.; Zuo, K.; Vos, Y.; Shen, J.; Bouman, D.; Shojaei, B.; Pennachio, D.; Lee, J.S.; van Veldhoven, P.J.; Koelling, S.; Verheijen, M.A.; Kouwenhoven, L.P.; Palmstrøm, C.J.; Bakkers, E.P.A.M.

    2017-01-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a

  6. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  7. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  8. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    Science.gov (United States)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  9. Method of manufacturing semiconductor devices

    International Nuclear Information System (INIS)

    Sun, Y.S.E.

    1980-01-01

    A method of improving the electrical characteristics of semiconductor devices such as SCR's, rectifiers and triacs during their manufacture is described. The system consists of electron irradiation at an energy in excess of 250 KeV and most preferably between 1.5 and 12 MeV, producing an irradiation dose of between 5.10 12 and 5.10 15 electrons per sq. cm., and at a temperature in excess of 100 0 C preferably between 150 and 375 0 C. (U.K.)

  10. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  11. Semiconductor quantum optics with tailored photonic nanostructures

    International Nuclear Information System (INIS)

    Laucht, Arne

    2011-01-01

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings (ΔE ∝5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to

  12. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  13. Nonadiabatic geometrical quantum gates in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo; Rossi, Fausto

    2003-01-01

    In this paper, we study the implementation of nonadiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding (manipulation) schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase, one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be, in principle, implemented

  14. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  15. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  16. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  18. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  19. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  20. Analysis and simulation of semiconductor devices

    CERN Document Server

    Selberherr, Siegfried

    1984-01-01

    The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the s...

  1. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher

    2004-01-01

    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  2. Epitaxy of advanced nanowire quantum devices

    Science.gov (United States)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  3. Hybrid quantum-classical modeling of quantum dot devices

    Science.gov (United States)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  4. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  5. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  6. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  7. Carrier diffusion in low-dimensional semiconductors. a comparison of quantum wells, disordered quantum wells, and quantum dots

    NARCIS (Netherlands)

    Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.

    2004-01-01

    We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we

  8. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    1990-01-01

    The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in sem

  9. A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors

    OpenAIRE

    Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas

    2014-01-01

    We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...

  10. neutron-Induced Failures in semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together

  11. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  12. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  13. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  14. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  15. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  16. Improvements in or relating to semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, K.; Groves, I.S.; Leigh, P.A.; McIntyre, N.; O'Hara, S.; Speight, J.D.

    1980-01-01

    A method of producing semiconductor devices is described consisting of a series of physical and chemical techniques which results in the production of semiconductor devices such as IMPATT diodes of DC-RF efficiency and high reliability (lifetime). The diodes can be mass produced without significant variation of the technology. One of the techniques used is the high energy proton bombardment of the semiconductor material in depth to passivate specific zones. The energy of the protons is increased in stages at intervals of less than 0.11 MeV up to a predetermined maximum energy. (UK)

  17. Method of manufacturing a semiconductor sensor device and semiconductor sensor device

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a method of manufacturing a semiconductor sensor device (10) for sensing a substance comprising a plurality of mutually parallel mesa-shaped semiconductor regions (1) which are formed on a surface of a semiconductor body (11) and which are connected at a first end to a first

  18. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  19. Coprocessors for quantum devices

    Science.gov (United States)

    Kay, Alastair

    2018-03-01

    Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will require high-quality, frequent repetition of a small set of core operations, such as the preparation of entangled states. These tasks are perfectly suited to realization by a coprocessor or supplementary instruction set, as is common practice in modern CPUs. In this paper, we present two quintessentially quantum coprocessor functions: production of a Greenberger-Horne-Zeilinger state and implementation of optimal universal (asymmetric) quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a technique for deriving the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.

  20. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  1. A quantum computer based on recombination processes in microelectronic devices

    International Nuclear Information System (INIS)

    Theodoropoulos, K; Ntalaperas, D; Petras, I; Konofaos, N

    2005-01-01

    In this paper a quantum computer based on the recombination processes happening in semiconductor devices is presented. A 'data element' and a 'computational element' are derived based on Schokley-Read-Hall statistics and they can later be used to manifest a simple and known quantum computing process. Such a paradigm is shown by the application of the proposed computer onto a well known physical system involving traps in semiconductor devices

  2. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  3. Semiconductor radiation detectors: device physics

    National Research Council Canada - National Science Library

    Lutz, Gerhard

    1999-01-01

    ..., including nuclear physics, elementary particle physics, optical and x-ray astronomy, medicine, and materials testing - and the number of applications is growing continually. Closely related, and initiated by the application of semiconductors, is the development of low-noise low-power integrated electronics for signal readout. The success of semicond...

  4. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the ...

  5. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  6. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  7. NATO Advanced Study Institute on Physics of Submicron Semiconductor Devices

    CERN Document Server

    Ferry, David; Jacoboni, C

    1988-01-01

    The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES...................

  8. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  9. α-particle shielding of semiconductor device

    International Nuclear Information System (INIS)

    McKeown, P.J.A.; Perry, J.P.; Waddell, J.M.; Barker, K.D.

    1981-01-01

    Soft errors in semiconductor devices, e.g. random access memories, arising from the bombardment of the device by alpha particles produced by the disintegration of minute traces of uranium or thorium in the packaging materials are prevented by coating the active surface of the semiconductor chip with a thin layer, e.g. 20 to 100 microns of an organic polymeric material, this layer being of sufficient thickness to absorb the particles. Typically, the polymer is a poly-imide formed by u.v. electron-beam or thermal curing of liquid monomer applied to the chip surface. (author)

  10. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  11. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  12. Architectures for Improved Organic Semiconductor Devices

    Science.gov (United States)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  13. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  14. Derivation and Numerical Approximation of the Quantum Drift Diffusion Model for Semiconductors

    International Nuclear Information System (INIS)

    Ohnmar Nwe

    2004-06-01

    This paper is concerned with the study of the quantum drift diffusion equation for semiconductors. Derivation of the mathematical model, which describes the electeon flow through a semiconductor device due to the application of a voltage, is considered and studied in numerical point of view by using some methods

  15. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  16. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  17. Si-semiconductor device failure mechanisms

    International Nuclear Information System (INIS)

    Clauss, H.

    1976-12-01

    This report presents investigations on failure mechanisms that may cause defects during production and operation of silicon semiconductor devices. The failure analysis of aluminium metallization defects covers topics such as step coverage, dissolution pits and electromigration. Furthermore, the generation of process induced lattice defects was investigated. Improved processes avoiding those defects were developed. (orig.) [de

  18. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  19. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    2009-01-01

    This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...

  20. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  1. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  2. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  3. Semiconductor devices for entangled photon pair generation: a review

    Science.gov (United States)

    Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara

    2017-07-01

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

  4. Theory of quantum diffusion in biased semiconductors

    CERN Document Server

    Bryksin, V V

    2003-01-01

    A general theory is developed to describe diffusion phenomena in biased semiconductors and semiconductor superlattices. It is shown that the Einstein relation is not applicable for all field strengths so that the calculation of the field-mediated diffusion coefficient represents a separate task. Two quite different diffusion contributions are identified. The first one disappears when the dipole operator commutes with the Hamiltonian. It plays an essential role in the theory of small polarons. The second contribution is obtained from a quantity that is the solution of a kinetic equation but that cannot be identified with the carrier distribution function. This is in contrast to the drift velocity, which is closely related to the distribution function. A general expression is derived for the quantum diffusion regime, which allows a clear physical interpretation within the hopping picture.

  5. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  6. Activation of molecular catalysts using semiconductor quantum dots

    Science.gov (United States)

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  7. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  8. Semiconductor sensor device, diagnostic instrument comprising such a device and method of manufacturing such a device

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor sensor device (10) for sensing a substance comprising at least one mesa- shaped semiconductor region (11) which is formed on a surface of a semiconductor body (12) and which is connected at a first end to a first electrically conducting connection region (13)

  9. Electron states in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-01-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications

  10. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  11. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  12. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  13. Thermodynamic concepts in semiconductor quantum dot technology

    International Nuclear Information System (INIS)

    Shchukin, V.

    2001-01-01

    Major trends of the modern civilization are related to the changing of the industrial society into an information and knowledge-based society. This transformation is to a large extent based on the modern information and communication technology. The nobel prize-2000 in physics is a remarkable recognition of an extremely high significance of this kind of technology. The nobel prize has been awarded with one half jointly to Zhores I. Alferov and Herbert Kroemer for developing semiconductor heterostructures used in high-speed- and opto-electronics and one half to Jack St. Clair Kilby for this part in the invention of the integrated circuit. The development of the semiconductor heterostructures technology requires a profound understanding of the basic growth mechanisms involved in any technological process, including any type of epitaxy, either the liquid phase epitaxy (LPE), or the metalorganic vapor phase epitaxy (MOVPE), or the molecular beam epitaxy (MBE). Starting from this pioneering works on semiconductor heterostructures till present time, Professor Zh. Alferov has always paid much attention to complex and comprehensive study of the subject. This covers the growth - as well as the post-growth technology including the theoretical modeling of the technology, the characterization of the heterostructures, and the device design. Such complex approach has master mined the scientific and technological success of Abraham loffe Institute in the area of semiconductor heterostructures, and later, nano structures. (Orig../A.B.)

  14. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  15. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  16. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  17. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  18. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  19. High voltage semiconductor devices and methods of making the devices

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2018-01-23

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.

  20. Technology of quantum devices

    CERN Document Server

    Razeghi, Manijeh

    2009-01-01

    This overview of solid state physics provides up-to-date developments in semiconductors and nanotechnology. Mathematical results are carefully described in a standardized style and notation, while ample problems illustrate principles throughout the text.

  1. Building devices from colloidal quantum dots.

    Science.gov (United States)

    Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V

    2016-08-26

    The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. Copyright © 2016, American Association for the Advancement of Science.

  2. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  3. Chalcopyrite semiconductors for quantum well solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar; Sadewasser, Sascha; Albert, Juergen; Lehmann, Sebastian; Abou-Ras, Daniel; Lux-Steiner, Martha C. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Marron, David Fuertes [Instituto de Energia Solar - ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria s.n., 28040 Madrid (Spain); Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois, 1304 W. Green Street, Urbana, IL 61801 (United States); Raesaenen, Esa [Nanoscience Center, Department of Physics University of Jyvaeskylae, FI-40014 Jyvaeskylae (Finland)

    2011-11-15

    The possibilities of using highly absorbing chalcopyrite semiconductors of the type Cu(In,Ga)Se{sub 2} in a quantum well solar cell structure are explored. Thin alternating layers of 50 nm CuInSe{sub 2} and CuGaSe{sub 2} were grown epitaxially on a GaAs(100) substrate. The optical properties of a resulting structure of three layers indicate charge carrier confinement in the low band gap CuInSe{sub 2} layer. By compositional analysis interdiffusion of In and Ga at the interfaces was found. The compositional profile was converted into a conduction-band diagram, for which the quantization of energy levels was numerically confirmed using the effective-mass approximation. The results provide a promising basis for the future development of chalcopyrite-type quantum well structures and their application, i.e. in quantum well solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Interfacing external quantum devices to a universal quantum computer.

    Directory of Open Access Journals (Sweden)

    Antonio A Lagana

    Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  5. Quantum spin transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  6. Quantum spin transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Schindler, Christoph

    2012-01-01

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  7. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    Afshar, A.M.

    1996-12-01

    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  8. Specific heat in diluted magnetic semiconductor quantum ring

    Science.gov (United States)

    Babanlı, A. M.; Ibragimov, B. G.

    2017-11-01

    In the present paper, we have calculated the specific heat and magnetization of a quantum ring of a diluted magnetic semiconductor (DMS) material in the presence of magnetic field. We take into account the effect of Rashba spin-orbital interaction, the exchange interaction and the Zeeman term on the specific heat. We have calculated the energy spectrum of the electrons in diluted magnetic semiconductor quantum ring. Moreover we have calculated the specific heat dependency on the magnetic field and Mn concentration at finite temperature of a diluted magnetic semiconductor quantum ring.

  9. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  10. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  11. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  12. Quantum Dot Devices for Optical Signal Processing

    DEFF Research Database (Denmark)

    Chen, Yaohui

    and the continuum. Additional to the conventional time-domain modeling scheme, a small-signal perturbation analysis has been used to assist the investigation of harmonic modulation properties. The static properties of quantum dot devices, for example high saturation power, have been quantitatively analyzed....... Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency....... We also investigate the gain dynamics in the presence of pulsed signals, in particular the steady gain response to a periodic pulse trains with various time periods. Additional to the analysis of high speed patterning free amplication up to 150-200 Gb/s in quantum dot semiconductor optical ampliers...

  13. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  14. Colloidal crystal formation in a semiconductor quantum plasma

    International Nuclear Information System (INIS)

    Zeba, I.; Uzma, Ch.; Jamil, M.; Salimullah, M.; Shukla, P. K.

    2010-01-01

    The static shielding and the far-field dynamical oscillatory wake potentials in an ion-implanted piezoelectric semiconductor with colloid ions as test particles have been investigated in detail. The dielectric response function of the semiconductor is contributed by the quantum effect of electrons through the Bohm potential and lattice electron-phonon coupling effects. It is found that the quantum effect causes tighter binding of the electrons reducing the quantum Debye shielding length and the effective length of the wake potential to several angstroms. Hence, a quasiquantum lattice of colloid ions can be formed in the semiconductor in the quantum scales giving rise to drastic modifications of the ion-implanted semiconductor properties.

  15. Physical limitations of semiconductor devices defects, reliability and esd protection

    CERN Document Server

    Vashchenko, V A

    2008-01-01

    Provides an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics. This title focuses on power semiconductor devices and self-triggering pulsed power devices for ESD protection clamps.

  16. Electrically Induced Two-Photon Transparency in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hayat, Alex; Nevet, Amir; Orenstein, Meir

    2009-01-01

    We demonstrate experimentally two-photon transparency, achieved by current injection into a semiconductor quantum-well structure which exhibits two-photon emission. The two-photon induced luminescence is progressively reduced by the injected current, reaching the point of two-photon transparency - a necessary condition for semiconductor two-photon gain and lasing. These results agree with our calculations.

  17. The Physics of Semiconductors An Introduction Including Devices and Nanophysics

    CERN Document Server

    Grundmann, Marius

    2006-01-01

    The Physics of Semiconductors provides material for a comprehensive upper-level-undergrauate and graduate course on the subject, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. For the interested reader some additional advanced topics are included, such as Bragg mirrors, resonators, polarized and magnetic semiconductors are included. Also supplied are explicit formulas for many results, to support better understanding. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from ...

  18. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  19. Exciton absorption of entangled photons in semiconductor quantum wells

    Science.gov (United States)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  20. Dopant atoms as quantum components in silicon nanoscale devices

    Science.gov (United States)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  1. Discrete quantum Fourier transform in coupled semiconductor double quantum dot molecules

    International Nuclear Information System (INIS)

    Dong Ping; Yang Ming; Cao Zhuoliang

    2008-01-01

    In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary transformations. The current scheme would be a useful step towards the realization of complex quantum algorithms in the quantum dot system

  2. Opto-electronic and quantum transport properties of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sabathil, M.

    2005-01-01

    In this work a novel and efficient method for the calculation of the ballistic transport properties of open semiconductor nanostructures connected to external reservoirs is presented. It is based on the Green's function formalism and reduces the effort to obtain the transmission and the carrier density to a single solution of a hermitian eigenvalue problem with dimensions proportional to the size of the decoupled device and the multiple inversion of a small matrix with dimensions proportional to the size of the contacts to the leads. Using this method, the 4-band GaAs hole transport through a 2-dimensional three-terminal T-junction device, and the resonant tunneling current through a 3-dimensional InAs quantum dot molecule embedded into an InP heterostructure have been calculated. The further extension of the method into a charge self-consistent scheme enables the efficient prediction of the IV-characteristics of highly doped nanoscale field effect transistors in the ballistic regime, including the influence of quasi bound states and the exchange-correlation interaction. Buettiker probes are used to emulate the effect of inelastic scattering on the current for simple 1D devices, systematically analyzing the dependence of the density of states and the resulting self-consistent potential on the scattering strength. The second major topic of this work is the modeling of the optical response of quantum confined neutral and charged excitons in single and coupled self-assembled InGaAs quantum dots. For this purpose the existing device simulator nextnano{sup 3} has been extended to incorporate particle-particle interactions within the means of density functional theory in local density approximation. In this way the exciton transition energies for neutral and charged excitons as a function of an externally applied electric field have been calculated, revealing a systematic reduction of the intrinsic dipole with the addition of extra holes to the exciton, a finding

  3. Physics of Quantum Structures in Photovoltaic Devices

    Science.gov (United States)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  4. Propagation and collision of soliton rings in quantum semiconductor plasmas

    International Nuclear Information System (INIS)

    El-Shamy, E.F.; Gohman, F.S.

    2014-01-01

    The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be described by solitary pulses. The collision properties of these pulses are investigated. In the present study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze the collision of localized coherent electrostatic waves in quantum semiconductor plasmas. - Highlights: • The propagation and the collision of pulses in quantum semiconductor plasmas are studied. • Numerical calculations reveal that pulses may exist only in dark soliton rings for electron–hole quantum plasmas. • Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. • It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. • The degenerate pressure terms of electrons and holes have strong impact on the phase shift

  5. Relationship between quantum repeating devices and quantum seals

    International Nuclear Information System (INIS)

    He Guangping

    2009-01-01

    It is revealed that quantum repeating devices and quantum seals have a very close relationship, thus the theory in one field can be applied to the other. Consequently, it is shown that the fidelity bounds and optimality of quantum repeating devices for decoding quantum information can be violated when they are used for decoding classical information from quantum states and the security bounds for protocols sealing quantum data exist.

  6. Phase-quantum tunnel device

    International Nuclear Information System (INIS)

    Sugahara, M.; Ando, N.; Kaneda, H.; Nagai, M.; Ogawa, Y.; Yoshikawa, N.

    1985-01-01

    Theoretical and Experimental study on granular superconductors shows that they are classified into two groups; fixed-phase superconductor (theta-superconductor) and fixed-pair-number superconductor (N-superconductor) and that a new macroscopic quantum device with conjugate property to Josephson effect can be made by use of N-superconductors

  7. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  8. Iterative solution of the semiconductor device equations

    Energy Technology Data Exchange (ETDEWEB)

    Bova, S.W.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.

  9. Semiconductor device and method of manufacturing the same

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region, a base region and a collector region (1, 2, 3) of, respectively, a first conductivity type, a second conductivity type opposite to the first conductivity type,

  10. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  11. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  12. Probing dopants in wide semiconductor quantum point contacts

    International Nuclear Information System (INIS)

    Yakimenko, I I; Berggren, K-F

    2016-01-01

    Effects of randomly distributed impurities on conductance, spin polarization and electron localization in realistic gated semiconductor quantum point contacts (QPCs) have been simulated numerically. To this end density functional theory in the local spin-density approximation has been used. In the case when the donor layer is embedded far from the two-dimensional electron gas (2DEG) the electrostatic confinement potential exhibits the conventional parabolic form, and thus the usual ballistic transport phenomena take place both in the devices with split gates alone and with an additional metallic gate on the top. In the opposite case, i.e. when the randomly distributed donors are placed not far away from the 2DEG layer, there are drastic changes like the localization of electrons in the vicinity of confinement potential minima which give rise to fluctuations in conductance and resonances. The conductance as a function of the voltage applied to the top gate for asymmetrically charged split gates has been calculated. In this case resonances in conductance caused by randomly distributed donors are shifted and decrease in amplitude while the anomalies caused by interaction effects remain unmodified. It has been also shown that for a wide QPC the polarization can appear in the form of stripes. The importance of partial ionization of the random donors and the possibility of short range order among the ionized donors are emphasized. The motivation for this work is to critically evaluate the nature of impurities and how to guide the design of high-mobility devices. (paper)

  13. Optical properties of the semiconductor quantum structure

    International Nuclear Information System (INIS)

    Haratizadeh, H.; Holtz, P.O.; Monemar, B.; Karlsoon, K.F.; Moskalenko, E.S.; Amano, H.; Akasaki, I.; Schoenfeld, W.V.; Garcia, J.M.; Petroff, P.M.

    2004-01-01

    Optical properties of the quantum structures have been discussed with emphasize of the AlGaN/GaN multiple quantum wells and InAs/GaAs quantum dot structures. We report on a detailed study of low temperature photoluminescence in Al 0 .07Ga 0 .93 N/GaN multiple quantum wells. The structures were nominally undoped multiple quantum well grown on sapphire substrate. The structure from discrete well width variations is here resolved in photoluminescence spectra. The results demonstrate that the theoretically estimated fields in this work are consistent with the experimental spectra

  14. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  15. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    Science.gov (United States)

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  16. Thermo-mechanical challenges for quantum devices

    NARCIS (Netherlands)

    Gielen, A.W.J.; McKenzie, F.V.

    2014-01-01

    In the last few years Technical University of Delft, under leadership of Prof.dr.ir. Leo Kouwenhoven, has developed several successful concepts for quantum devices that are suitable for quantum computing and quantum communication. From a quantum research point of view we are still in a very

  17. Exploring semiconductor quantum dots and wires by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e Ing Metalurgica y Q. Inorganica, F. de Ciencias, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Gonzalez, L; Ripalda, J M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M; Pennycook, S J, E-mail: sergio.molina@uca.e [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2010-02-01

    We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled {sup S}elf-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE){sup .}

  18. Entanglement and Zeeman interaction in diluted magnetic semiconductor quantum dot

    International Nuclear Information System (INIS)

    Hichri, A.; Jaziri, S.

    2004-01-01

    We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p-d exchange interaction in diluted magnetic semiconductor (Cd 0.57 Mn 0.43 Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund-Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures

  19. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  1. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    Science.gov (United States)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  2. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  3. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  4. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    CERN Document Server

    Li, Simon

    2012-01-01

    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  5. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  6. Order-disorder transition in nanoscopic semiconductor quantum rings

    NARCIS (Netherlands)

    Borrmann, P.; Harting, J.D.R.

    2001-01-01

    Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between spin ordered and disordered Wigner crystals. Because of the small number of particles the transition

  7. Semiconductor-Metal transition in a quantum well

    International Nuclear Information System (INIS)

    Nithiananthi, P.; Jayakumar, K.

    2007-01-01

    We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result

  8. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  9. Field-effect magnetization reversal in ferromagnetic semiconductor quantum wellls

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 65, č. 19 (2002), s. 193311-1-193311-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductor quantum wells * magnetization reversal process Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  10. Positive and negative gain exceeding unity magnitude in silicon quantum well metal-oxide-semiconductor transistors

    Science.gov (United States)

    Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark

    2017-10-01

    Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.

  11. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    Science.gov (United States)

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  12. Wonder of nanotechnology quantum optoelectronic devices and applications

    CERN Document Server

    Razeghi, Manijeh; von Klitzing, Klaus

    2013-01-01

    When you look closely, Nature is nanotechnology at its finest. From a single cell, a factory all by itself, to complex systems, such as the nervous system or the human eye, each is composed of specialized nanostructures that exist to perform a specific function. This same beauty can be mirrored when we interact with the tiny physical world that is the realm of quantum mechanics.The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, edited by Manijeh Razeghi, Leo Esaki, and Klaus von Klitzing focuses on the application of nanotechnology to modern semiconductor optoelectr

  13. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  14. Improvements in or relating to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, M

    1981-08-26

    A method of testing a field effect device for radiation hardness is described which does not involve irradiating the device. In a low temperature environment the conductance of the device is measured as a function of gate voltage at a first and at a second different substrate bias potential and by comparing the two an assessment of radiation hardness is made.

  15. Tunnelling and relaxation in semiconductor double quantum wells

    International Nuclear Information System (INIS)

    Ferreira, R.; Bastard, G.

    1997-01-01

    Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)

  16. Main principles of developing exploitation models of semiconductor devices

    Science.gov (United States)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  17. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  18. Finite element method for simulation of the semiconductor devices

    International Nuclear Information System (INIS)

    Zikatanov, L.T.; Kaschiev, M.S.

    1991-01-01

    An iterative method for solving the system of nonlinear equations of the drift-diffusion representation for the simulation of the semiconductor devices is worked out. The Petrov-Galerkin method is taken for the discretization of these equations using the bilinear finite elements. It is shown that the numerical scheme is a monotonous one and there are no oscillations of the solutions in the region of p-n transition. The numerical calculations of the simulation of one semiconductor device are presented. 13 refs.; 3 figs

  19. Full quantum treatment of charge dynamics in amorphous molecular semiconductors

    Science.gov (United States)

    de Vries, Xander; Friederich, Pascal; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2018-02-01

    We present a treatment of charge dynamics in amorphous molecular semiconductors that accounts for the coupling of charges to all intramolecular phonon modes in a fully quantum mechanical way. Based on ab initio calculations, we derive charge transfer rates that improve on the widely used semiclassical Marcus rate and obtain benchmark results for the mobility and energetic relaxation of electrons and holes in three semiconductors commonly applied in organic light-emitting diodes. Surprisingly, we find very similar results when using the simple Miller-Abrahams rate. We conclude that extracting the disorder strength from temperature-dependent charge transport studies is very possible but extracting the reorganization energy is not.

  20. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  1. Quantum computing based on semiconductor nanowires

    NARCIS (Netherlands)

    Frolov, S.M.; Plissard, S.R.; Nadj-Perge, S.; Kouwenhoven, L.P.; Bakkers, E.P.A.M.

    2013-01-01

    A quantum computer will have computational power beyond that of conventional computers, which can be exploited for solving important and complex problems, such as predicting the conformations of large biological molecules. Materials play a major role in this emerging technology, as they can enable

  2. Methods of forming semiconductor devices and devices formed using such methods

    Science.gov (United States)

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  3. Development and Application of Semiconductor Quantum Dots to Quantum Computing

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... Several major milestones were achieved during the present program including the demonstration of optically induced and detected quantum entanglement of two qubits, Rabi oscillation (one bit rotation...

  4. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  5. Dynamics of spins in semiconductor quantum wells under drift

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2009-01-01

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  6. Dynamics of spins in semiconductor quantum wells under drift

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-15

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  7. Electron Liquids in Semiconductor Quantum Structures

    International Nuclear Information System (INIS)

    Pinczuk, Aron

    2009-01-01

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  8. Industrial application of atom probe tomography to semiconductor devices

    NARCIS (Netherlands)

    Giddings, A.D.; Koelling, S.; Shimizu, Y.; Estivill, R.; Inoue, K.; Vandervorst, W.; Yeoh, W.K.

    2018-01-01

    Advanced semiconductor devices offer a metrology challenge due to their small feature size, diverse composition and intricate structure. Atom probe tomography (APT) is an emerging technique that provides 3D compositional analysis at the atomic-scale; as such, it seems uniquely suited to meet these

  9. David Adler Lectureship Award Talk: III-V Semiconductor Nanowires on Silicon for Future Devices

    Science.gov (United States)

    Riel, Heike

    Bottom-up grown nanowires are very attractive materials for direct integration of III-V semiconductors on silicon thus opening up new possibilities for the design and fabrication of nanoscale devices for electronic, optoelectronic as well as quantum information applications. Template-Assisted Selective Epitaxy (TASE) allows the well-defined and monolithic integration of complex III-V nanostructures and devices on silicon. Achieving atomically abrupt heterointerfaces, high crystal quality and control of dimension down to 1D nanowires enabled the demonstration of FETs and tunnel devices based on In(Ga)As and GaSb. Furthermore, the strong influence of strain on nanowires as well as results on quantum transport studies of InAs nanowires with well-defined geometry will be presented.

  10. Single electron-spin memory with a semiconductor quantum dot

    International Nuclear Information System (INIS)

    Young, Robert J; Dewhurst, Samuel J; Stevenson, R Mark; Atkinson, Paola; Bennett, Anthony J; Ward, Martin B; Cooper, Ken; Ritchie, David A; Shields, Andrew J

    2007-01-01

    We show storage of the circular polarization of an optical field, transferring it to the spin-state of an individual electron confined in a single semiconductor quantum dot. The state is subsequently read out through the electronically-triggered emission of a single photon. The emitted photon shares the same polarization as the initial pulse but has a different energy, making the transfer of quantum information between different physical systems possible. With an applied magnetic field of 2 T, spin memory is preserved for at least 1000 times more than the exciton's radiative lifetime

  11. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  12. The research progress of microdose effect in semiconductor devices

    International Nuclear Information System (INIS)

    Yan Yihua; Fan Ruyu; Guo Xiaoqiang; Lin Dongsheng; Guo Hongxia; Zhang Fengqi; Chen Wei

    2012-01-01

    The localized dose deposited around the track of a heavy ion can be high enough to induce a permanent failure in the semiconductor devices, such as the stuck bit error or functional failure. In this paper, progresses in studies on microdose effect are reviewed. Two basic failure mechanisms, i.e. the localized total dose effect and the strong coulomb repulsive force effect, are discussed. Typical failure modes in several types of devices, and the main impact factors, are discussed, too. (authors)

  13. Computational models for the berry phase in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca [M2NeT Lab, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5 (Canada); Sebetci, A. [Department of Mechanical Engineering, Mevlana University, 42003, Konya (Turkey)

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  14. Quantum Computation with Superconducting Quantum Devices

    National Research Council Canada - National Science Library

    Orlando, Terry P

    2008-01-01

    .... Important to the future implementation of these qubits for quantum computing applications is the demonstration of microwave sideband cooling of the qubits as well as a resonant read-out scheme...

  15. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  16. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan; Mannsfeld, Stefan C. B.; Miller, Chad E.; Salleo, Alberto; Toney, Michael F.

    2012-01-01

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale

  17. Electromagnetic radiation screening of semiconductor devices for long life applications

    Science.gov (United States)

    Hall, T. C.; Brammer, W. G.

    1972-01-01

    A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.

  18. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  19. Electronic structure of semiconductor quantum films

    International Nuclear Information System (INIS)

    Zhang, S.B.; Yeh, C.; Zunger, A.

    1993-01-01

    The electronic structure of thin (≤30 A) free-standing ideal films of Si(001), Si(110), and GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation based on the simple effective-mass model, we find the following. (i) The band gaps of (001) quantum films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to sine-type envelope functions which vanish at the film boundaries, some states have cosine envelope functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band maximum a state whose energy does not vary with the film thickness. Such zero confinement states have constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of forbidden direct transitions can be enhanced by several orders of magnitude. These findings, obtained in direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this approach the film's wave functions are expanded in terms of pairs of bulk wave functions exhibiting a destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk band structure evaluated at special k points which satisfy the boundary conditions. We find that the TC representation reproduces accurately the above-mentioned results of direct diagonalization of the film's Hamiltonian. This provides a simple alternative to the effective-mass model and relates the properties of quantum structures to those of the bulk material

  20. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  1. Application of Semiconductor Devices in Computer Technique.

    Science.gov (United States)

    1960-10-14

    large number of circuits v&th point-contact triod.es are used in practice f’^J" - £"i? 7° Yfe shall consider below only sojae of 7 «. -X... la a number of devices, for example in adders and registersj for the control and for connection with other circuits it is necessary to pick up... la discontin tied the voltage on the collector remains the saaaes fox’ some tiae and passing through •’the has© and collector is the space

  2. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  3. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  4. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  5. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  6. Spin transitions in semiconductor quantum rings

    International Nuclear Information System (INIS)

    Baxevanis, Benjamin; Pfannkuche, Daniela

    2010-01-01

    We adopt the path integral Monte Carlo method to accurately resolve the total spin of the ground state of electrons confined in a quantum ring with different geometries. Using this method, an evaluation of the ground state of three electrons in a ring shows a spin transition to the fully polarized state by increasing the radius and thereby enhancing the Coulomb interaction. The total spin of the ground state is determined by the mutual interplay of confinement and electron-electron interaction. An analysis of the four-electron ring demonstrates that in this case no spin transitions take place. Furthermore, the effect of geometric distortion of the ring on its ground state has been investigated. Elliptically deforming the ring breaks the symmetry of the system and leads to the removal of orbital degeneracy. For strong distortion the splitting between hybridized states is sufficient to overcome the exchange-energy saving associated with a higher spin state. We have found that this effect removes the polarization of three electrons. Even in a four-electron ring the ground state is forced by the distortion to be unpolarized and thus suppressing the Hund's rule ground state.

  7. Exciton coherence in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro

    2009-01-01

    The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Fully Device-Independent Quantum Key Distribution

    Science.gov (United States)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  9. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  10. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    Science.gov (United States)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  11. Towards room temperature solid state quantum devices at the edge of quantum chaos for long-living quantum states

    International Nuclear Information System (INIS)

    Prati, Enrico

    2015-01-01

    Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics. (paper)

  12. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces

    Science.gov (United States)

    Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.

    2017-11-01

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  13. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    Science.gov (United States)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  14. Parallel Device-Independent Quantum Key Distribution

    OpenAIRE

    Jain, Rahul; Miller, Carl A.; Shi, Yaoyun

    2017-01-01

    A prominent application of quantum cryptography is the distribution of cryptographic keys with unconditional security. Recently, such security was extended by Vazirani and Vidick (Physical Review Letters, 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of N multiplayer games, where N is the security parame...

  15. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  16. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  17. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  18. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    Science.gov (United States)

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  19. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  20. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  1. Hartman effect in a Kane-type semiconductor quantum ring

    International Nuclear Information System (INIS)

    Cakmaktepe, S

    2007-01-01

    The Hartman effect for a tunnelling particle implies that group delay time is independent of the opaque barrier width. In the present study, the tunnelling delay time in the transmission mode is studied taking into account the real band structure of an InSb-type semiconductor quantum ring and compared with that of a parabolic band structure. The system considered in this study consists of a circular loop in the presence of Aharonov-Bohm flux. It is shown that while tunnelling through an opaque barrier, the group delay time for a given incident energy becomes independent of the barrier thickness as well as the magnitude of the flux

  2. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  3. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    Bina, M.

    2014-01-01

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  4. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  5. Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Zhi-Bing, Wang; Hui-Chao, Zhang; Jia-Yu, Zhang; Su, Huaipeng; Wang, Y. Andrew

    2010-01-01

    The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions are changed under external electric fields. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Electrothermal Simulation of Large-Area Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    C Kirsch

    2017-06-01

    Full Text Available The lateral charge transport in thin-film semiconductor devices is affected by the sheet resistance of the various layers. This may lead to a non-uniform current distribution across a large-area device resulting in inhomogeneous luminance, for example, as observed in organic light-emitting diodes (Neyts et al., 2006. The resistive loss in electrical energy is converted into thermal energy via Joule heating, which results in a temperature increase inside the device. On the other hand, the charge transport properties of the device materials are also temperature-dependent, such that we are facing a two-way coupled electrothermal problem. It has been demonstrated that adding thermal effects to an electrical model significantly changes the results (Slawinski et al., 2011. We present a mathematical model for the steady-state distribution of the electric potential and of the temperature across one electrode of a large-area semiconductor device, as well as numerical solutions obtained using the finite element method.

  7. Quantum of optical absorption in two-dimensional semiconductors.

    Science.gov (United States)

    Fang, Hui; Bechtel, Hans A; Plis, Elena; Martin, Michael C; Krishna, Sanjay; Yablonovitch, Eli; Javey, Ali

    2013-07-16

    The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be ∼1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, AQ = πα/nc for each set of interband transitions in a 2D semiconductor, where α is the fine structure constant and nc is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene.

  8. Critical strain region evaluation of self-assembled semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sales, D L [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Garcia, R [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Trevisi, G [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Frigeri, P [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Nasi, L [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Franchi, S [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Molina, S I [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain)

    2007-11-28

    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga)As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor devices.

  9. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  10. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  11. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Pinczuk, Aron [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Wind, Shalom J. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics

    2018-01-13

    Award Period: September 1st, 2013 through February 15th, 2017 Submitted to the USDOE Office of Basic Energy Sciences By Aron Pinczuk and Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 January 2017 Award # DE-SC0010695 ABSTRACT Research in this project seeks to design, create and study a class of tunable artificial quantum structures in order to extend the range and scope of new and exciting physical phenomena and to explore the potential for new applications. Advanced nanofabrication was used to create an external potential landscape that acts as a lattice of confinement sites for electrons (and/or holes) in a two-dimensional electron gas in a high perfection semiconductor in such a manner that quantum interactions between different sites dictate the significant physics. Our current focus is on ‘artificial graphene’ (AG) in which a set of quantum dots (or sites) are patterned in a honeycomb lattice. The combination of leading edge nanofabrication with ultra-pure semiconductor materials in this project extends the frontier for small period, low-disorder AG systems, enabling the exploration of graphene physics in a semiconductor platform. TECHNICAL DESCRIPTION Contemporary condensed matter science has entered an era of discovery of new low-dimensional materials, such as graphene and other atomically thin materials, that exhibit exciting new physical phenomena that were previously inaccessible. Concurrent with the discovery and development of these new materials are impressive advancements in nanofabrication, which offer an ever-expanding toolbox for creating a myriad of high quality patterns at nanoscale dimensions. This project started about four years ago. Among its major achievements are the realizations of very small period artificial lattices with honeycomb topology in GaAs quantum wells. In our most recent work the periods of the ‘artificial graphene’ (AG) lattices extend down to 40 nm. These

  12. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  13. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  14. Irradiation damages of semiconductor devices and their improvement

    Energy Technology Data Exchange (ETDEWEB)

    Uwatoko, Yoshiya [Saitama Univ., Urawa (Japan); Ohyama, Hidenori; Hayama, Kiyoteru; Hakata, Tetsuya; Kudou, Tomohiro

    1998-01-01

    In this study, effect of radiation on semiconductor devices was evaluated at both sides of electrical and crystalline properties for two years from 1995 fiscal years. And, damage of Si(sub 1-x)Ge(sub x) device was considered at viewpoints of Ge content and sprung-out atomic number and non ionization energy loss of constituting atom formed by radiation on its radiation source dependency of damage. This paper was a report on proton beam damage of the Si(sub 1-x)Ge(sub x) device, neutron damage of InGaAs photodiode, and effect of Ga content and kinds of beam on their damages. (G.K.)

  15. Dependence of the modulation response of quantum dot based nanocavity devices on the number of emitters

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...... of the modulation response in such devices on the number of emitters coupled to the cavity mode. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)...

  16. Theory of semiconductor junction devices a textbook for electrical and electronic engineers

    CERN Document Server

    Leck, J H

    1967-01-01

    Theory of Semiconductor Junction Devices: A Textbook for Electrical and Electronic Engineers presents the simplified numerical computation of the fundamental electrical equations, specifically Poisson's and the Hall effect equations. This book provides the fundamental theory relevant for the understanding of semiconductor device theory. Comprised of 10 chapters, this book starts with an overview of the application of band theory to the special case of semiconductors, both intrinsic and extrinsic. This text then describes the electrical properties of conductivity, semiconductors, and Hall effe

  17. The Integration of Bacteriorhodopsin Proteins with Semiconductor Heterostructure Devices

    Science.gov (United States)

    Xu, Jian

    2008-03-01

    Bioelectronics has emerged as one of the most rapidly developing fields among the active frontiers of interdisciplinary research. A major thrust in this field is aimed at the coupling of the technologically-unmatched performance of biological systems, such as neural and sensing functions, with the well developed technology of microelectronics and optoelectronics. To this end we have studied the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. Successful integration will potentially lead to ultrasensitive sensors with polarization selectivity and built-in preprocessing capabilities that will be useful for high speed tracking, motion and edge detection, biological detection, and artificial vision systems. In this presentation we will summarize our progresses in this area, which include fundamental studies on the transient dynamics of photo-induced charge shift in BR and the coupling mechanism at protein-semiconductor interface for effective immobilizing and selectively integrating light sensitive proteins with microelectronic devices and circuits, and the device engineering of BR-transistor-integrated optical sensors as well as their applications in phototransceiver circuits. Work done in collaboration with Pallab Bhattacharya, Jonghyun Shin, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; Robert R. Birge, Department of Chemistry, University of Connecticut, Storrs, CT 06269; and György V'ar'o, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Science, H-6701 Szeged, Hungary.

  18. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  19. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  20. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived th...... energies of 0.2–0.4 pJ. The superiority of QD SOAs is based on: 1) the faster achievement of the regime of maximum gain in QD SOAs compared to QW and bulk SOAs and 2) the lower effective cross section of photon-carrier interaction in QDs....... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  1. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  2. Dynamics of Photoexcited State of Semiconductor Quantum Dots

    Science.gov (United States)

    Trivedi, Dhara J.

    In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.

  3. Optimal control and quantum simulations in superconducting quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel J.

    2014-10-31

    Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.

  4. Light-matter Interactions in Semiconductors and Metals: From Nitride Optoelectronics to Quantum Plasmonics

    Science.gov (United States)

    Narang, Prineha

    This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the

  5. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.

    2006-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  6. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.

    2005-01-01

    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  7. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  8. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. III-nitride semiconductors and their modern devices

    CERN Document Server

    2013-01-01

    This book is dedicated to GaN and its alloys AlGaInN (III-V nitrides), semiconductors with intrinsic properties well suited for visible and UV light emission and electronic devices working at high temperature, high frequency, and harsh environments. There has been a rapid growth in the industrial activity relating to GaN, with GaN now ranking at the second position (after Si) among all semiconductors. This is mainly thanks to LEDs, but also to the emergence of lasers and high power and high frequency electronics. GaN-related research activities are also diversifying, ranging from advanced optical sources and single electron devices to physical, chemical, and biological sensors, optical detectors, and energy converters. All recent developments of nitrides and of their technology are gathered here in a single volume, with chapters written by world leaders in the field. This third book of the series edited by B. Gil is complementary to the preceding two, and is expected to offer a modern vision of nitrides and...

  10. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R

    2015-11-01

    Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.

  11. Semiconductor quantum dots for bioimaging and biodiagnostic applications.

    Science.gov (United States)

    Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  12. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    NARCIS (Netherlands)

    Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2016-01-01

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the

  13. Quantum optical device accelerating dynamic programming

    OpenAIRE

    Grigoriev, D.; Kazakov, A.; Vakulenko, S.

    2005-01-01

    In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers

  14. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    International Nuclear Information System (INIS)

    Wu, Yuchang; Asryan, Levon V.

    2016-01-01

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  15. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuchang, E-mail: yuchangw@cumt.edu.cn [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116 (China); School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Asryan, Levon V., E-mail: asryan@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-08-28

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  16. Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices

    Science.gov (United States)

    Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.

    2014-03-01

    Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.

  17. Quantum theory of novel parametric devices

    International Nuclear Information System (INIS)

    Drummond, P.D.; Reid, M.D.; Dechoum, K.; Chaturvedi, S.; Olsen, M.; Kheruntsyan, K.; Bradley, A.

    2005-01-01

    While the parametric amplifier is a widely used and important source of entangled and squeezed photons, there are many possible ways to investigate the physics of intracavity parametric devices. Novel quantum theory of parametric devices in this talk will cover several new types of unconventional devices, including the following topics:- Critical intracavity paramp - We calculate intrinsic limits to entanglement of a quantum paramp, caused by nonlinear effects originating in phase noise of the pump. - Degenerate planar paramp - We obtain universal quantum critical fluctuations in a planar paramp device by mapping to the equations of magnetic Lifshitz points Nondegenerate planar paramp - The Mermin-Wagner theorem is used to demonstrate that there is no phase transition in the case of a nondegenerate planar device - Coupled channel paramp - A robust and novel integrated entanglement source can be generated using type I waveguides coupled inside a cavity to generate spatial entanglement - Cascade paramps - This possible 'GHZ-type' source is obtained by cascading successive down conversion crystals inside the same cavity, giving two thresholds Parallel paramps - Tripartite entanglement can be generated if three intracavity paramp crystals are operated in parallel, each idler mode acting as a signal for the next. Finally, we briefly treat the relevant experimental developments. (author)

  18. Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors

    Directory of Open Access Journals (Sweden)

    Jiadong Yu

    2017-03-01

    Full Text Available By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers’ radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.

  19. Theoretical study of excitonic complexes in semiconductors quantum wells

    International Nuclear Information System (INIS)

    Dacal, Luis Carlos Ogando

    2001-08-01

    A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al 0.3 Ga 0.7 As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)

  20. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  1. Semiconductor Devices Inspired By and Integrated With Biology

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [University of Illinois

    2012-04-25

    Biology is curved, soft and elastic; silicon wafers are not. Semiconductor technologies that can bridge this gap in form and mechanics will create new opportunities in devices that adopt biologically inspired designs or require intimate integration with the human body. This talk describes the development of ideas for electronics that offer the performance of state-of-the-art, wafer- based systems but with the mechanical properties of a rubber band. We explain the underlying materials science and mechanics of these approaches, and illustrate their use in (1) bio- integrated, ‘tissue-like’ electronics with unique capabilities for mapping cardiac and neural electrophysiology, and (2) bio-inspired, ‘eyeball’ cameras with exceptional imaging properties enabled by curvilinear, Petzval designs.

  2. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    Science.gov (United States)

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  3. Measurement device-independent quantum dialogue

    Science.gov (United States)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  4. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  5. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We

  6. Degradation of quantum dots and change of their energy spectra in semimagnetic semiconductors under nuclear irradiation

    Directory of Open Access Journals (Sweden)

    G. V. Vertsimakha

    2011-09-01

    Full Text Available Spreading of the potential profile for the charge carriers in quantum dots in binary semiconductors and the shift of the quantum levels for electrons, holes and excitons under the nuclear irradiation has been investigated. The spreading occurs because of the redistribution of atoms of different kinds between the barrier and quantum dot due to radiationenhanced diffusion. It is shown that in semimagnetic semiconductors (e.g. CdTe/(Cd, MnTe, in which a giant magnetic splitting of exciton levels exists, the redistribution of magnetic ions under irradiation causes significant increase in the splitting of exciton levels in a magnetic field in a quantum dot.

  7. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  8. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  9. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  10. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  11. Experimental and theoretical investigations of photocurrents in non-centrosymmetric semiconductor quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Huynh Thanh; Foerstner, Jens; Meier, Torsten [Department of Physics and CeOPP, University Paderborn (Germany); Priyadarshi, Shekar; Racu, Ana Maria; Pierz, Klaus; Siegner, Uwe; Bieler, Mark [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2010-07-01

    We compute photocurrents generated by femtosecond single-color laser pulses in non-centrosymmetric semiconductor quantum wells by combining a 14 x 14 k.p band structure theory with multi-band semiconductor Bloch equations. The transient photocurrents are investigated experimentally by measuring the associated Terahertz emission. The dependencies of the photocurrent and the Terahertz emission on the excitation conditions are discussed for (110)-oriented GaAs quantum wells. The comparison between theory and experiment shows a good agreement.

  12. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  13. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  14. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  15. Logical Qubit in a Linear Array of Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Cody Jones

    2018-06-01

    Full Text Available We design a logical qubit consisting of a linear array of quantum dots, we analyze error correction for this linear architecture, and we propose a sequence of experiments to demonstrate components of the logical qubit on near-term devices. To avoid the difficulty of fully controlling a two-dimensional array of dots, we adapt spin control and error correction to a one-dimensional line of silicon quantum dots. Control speed and efficiency are maintained via a scheme in which electron spin states are controlled globally using broadband microwave pulses for magnetic resonance, while two-qubit gates are provided by local electrical control of the exchange interaction between neighboring dots. Error correction with two-, three-, and four-qubit codes is adapted to a linear chain of qubits with nearest-neighbor gates. We estimate an error correction threshold of 10^{-4}. Furthermore, we describe a sequence of experiments to validate the methods on near-term devices starting from four coupled dots.

  16. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different

  17. Transport through semiconductor nanowire quantum dots in the Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Schmaus, Stefan; Koerting, Verena; Woelfle, Peter [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)

    2008-07-01

    Recent experiments on quantum dots made of semiconductor nanowires in the Coulomb blockade regime have shown the influence of several approximately equidistant levels on the conductance. We study a model with three levels occupied by three electrons. At finite bias voltage charge energy conserving excitations into several higher lying states occur leading to features in the differential conductance. We restrict our study to the six lowest lying states by performing a Schrieffer-Wolff type projection onto this subspace. The emerging effective Kondo Hamiltonian is treated in non-equilibrium perturbation theory in the coupling to the leads. For convenience we use a pseudoparticle representation and an exact projection method. The voltage-dependence of the occupation numbers is discussed. The density matrix on the dot turns out to be off-diagonal in the dot eigenstate Hilbert space in certain parameter regimes. The dependence of the differential conductance on magnetic field and temperature is calculated in lowest order in the dot-lead coupling and the results are compared with experiment.

  18. The discretized Schroedinger equation and simple models for semiconductor quantum wells

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Klimeck, Gerhard

    2004-01-01

    The discretized Schroedinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schroedinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unfortunate since the discretized equation is more productively viewed from the perspective of solid-state physics, which naturally links the discrete model to realistic semiconductor quantum wells and nanoelectronic devices. While the relationship between the discrete model and a one-dimensional tight-binding model has been known for some time, the fact that the discrete Schroedinger equation admits analytic solutions for quantum wells has gone unnoted. Here we present a solution to this new analytically solvable problem. We show that the differences between the discrete and continuous models are due to their fundamentally different bandstructures, and present evidence for our belief that the discrete model is the more physically reasonable one

  19. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A.

    2006-01-01

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation

  20. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Marti, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)]. E-mail: amarti@etsit.upm.es; Lopez, N. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Antolin, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Canovas, E. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain); Stanley, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Farmer, C. [Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cuadra, L. [Departamento de Teoria de la Senal y Comunicaciones- Escuela Politecnica Superior, Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33600, 28805-Alcala de Henares (Madrid) (Spain); Luque, A. [Instituto de Energia Solar-UPM, ETSIT de Madrid, Ciudad Universitaria sn, 28040 Madrid (Spain)

    2006-07-26

    The Quantum Dot Intermediate Band Solar Cell (QD-IBSC) has been proposed for studying experimentally the operating principles of a generic class of photovoltaic devices, the intermediate band solar cells (IBSC). The performance of an IBSC is based on the properties of a semiconductor-like material which is characterised by the existence of an intermediate band (IB) located within what would otherwise be its conventional bandgap. The improvement in efficiency of the cell arises from its potential (i) to absorb below bandgap energy photons and thus produce additional photocurrent, and (ii) to inject this enhanced photocurrent without degrading its output photo-voltage. The implementation of the IBSC using quantum dots (QDs) takes advantage of the discrete nature of the carrier density of states in a 0-dimensional nano-structure, an essential property for realising the IB concept. In the QD-IBSC, the IB arises from the confined electron states in an array of quantum dots. This paper reviews the operation of the first prototype QD-IBSCs and discusses some of the lessons learnt from their characterisation.

  1. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer

  2. Towards quantum optics and entanglement with electron spin ensembles in semiconductors

    NARCIS (Netherlands)

    van der Wal, Caspar H.; Sladkov, Maksym

    We discuss a technique and a material system that enable the controlled realization of quantum entanglement between spin-wave modes of electron ensembles in two spatially separated pieces of semiconductor material. The approach uses electron ensembles in GaAs quantum wells that are located inside

  3. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz

    Science.gov (United States)

    Moustakas, Theodore D.; Paiella, Roberto

    2017-10-01

    This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, ‘visible blind’ and ‘solar blind’ detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.

  4. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  5. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  6. Recent progress in InAs/InP quantum dash nanostructures and devices

    KAUST Repository

    Ooi, Boon S.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee

    2016-01-01

    In this talk, we will give an outline and introduction to the broad inter-band emission devices focusing on the InAs/InP quantum dash material system, device physics and establishment of ultrabroad stimulated emission behavior. In addition, technologies for growing these nanostructures as well as engineer the bandgap of quantum dash based system using epitaxy growth techniques and postgrowth intermixing methods will be presented. At device level, we will focus our discussion on our recent progress in extending the ultra-broad lasing emission from quantum dash lasers, and achievements in broad gain semiconductor optical amplifiers (SOA), mode locked lasers, comb-lasers, wide band superluminsect diodes fabricated on this material system. © 2015 IEEE.

  7. Recent progress in InAs/InP quantum dash nanostructures and devices

    KAUST Repository

    Ooi, Boon S.

    2016-03-24

    In this talk, we will give an outline and introduction to the broad inter-band emission devices focusing on the InAs/InP quantum dash material system, device physics and establishment of ultrabroad stimulated emission behavior. In addition, technologies for growing these nanostructures as well as engineer the bandgap of quantum dash based system using epitaxy growth techniques and postgrowth intermixing methods will be presented. At device level, we will focus our discussion on our recent progress in extending the ultra-broad lasing emission from quantum dash lasers, and achievements in broad gain semiconductor optical amplifiers (SOA), mode locked lasers, comb-lasers, wide band superluminsect diodes fabricated on this material system. © 2015 IEEE.

  8. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  9. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    Science.gov (United States)

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  10. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  11. Using Quantum Confinement to Uniquely Identify Devices

    Science.gov (United States)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  12. A model of quantum communication device for quantum hashing

    International Nuclear Information System (INIS)

    Vasiliev, A

    2016-01-01

    In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)

  13. Medical applications of superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Uehara, Gen

    2011-01-01

    SQUIDs (Superconducting Quantum Interference Devices) are applied to clinical areas and basic medical science fields because of their potential for measuring a minute magnetic signal from the human body. Magnetoencephalography, one of their applications, is used for the functional mapping of the brain cortex before surgery and the localization of focus of epilepsy. Recently, their applications to the early-stage detection of dementia and the localization of brain ischemia are suggested. Another application of SQUIDs is magnetospinography, which detects the conduction block in spinal cord signal propagation. (author)

  14. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  15. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  16. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-05-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-840] Certain Semiconductor Integrated Circuit... States after importation of certain semiconductor integrated circuit devices and products containing same... No. 6,847,904 (``the '904 patent''). The complaint further alleges that an industry in the United...

  17. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  18. 77 FR 60721 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Notice of...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-840] Certain Semiconductor Integrated... certain semiconductor integrated circuit devices and products containing same by reason of infringement of...,783; and 6,847,904. The complaint further alleges the existence of a domestic industry. The Commission...

  19. Key Topics in Producing New Ultraviolet Led and Laser Devices Based on Transparent Semiconductor Zinc Oxide

    International Nuclear Information System (INIS)

    Tuezemen, S.

    2004-01-01

    Recently, it has been introduced that ZnO as II-VI semiconductor is promising various technological applications, especially for optoelectronic short wavelength light emitting devices due to its wide and direct band gap profile. The most important advantage of ZnO over the other currently used wide band gap semiconductors such as GaN is that its nearly 3 times higher exciton binding energy (60 meV), which permits efficient excitonic emission at room temperature and above. As-grown ZnO is normally n-type because of the Zn-rich defects such as zinc interstitials (Zn i ) oxygen vacancies (Vo), natively acting as shallow donors and main source of n-type conductivity in as-grown material. Therefore, making p-type ZnO has been more difficult due to unintentional compensation of possible acceptors by these residual donors. In order to develop electro luminescent and laser devices based on the ultraviolet (UV) exciton emission of ZnO, it will be important to fabricate good p-n junctions. Attempts to observe p-type conductivity in ours and our collaborators' laboratories in USA, either by co-doping with N or tuning O pressure have been first successful achievements, resulting in hole concentrations up to 10 1 9 cm - 3 in reactively sputtered thin layers of ZnO. Moreover, in order to produce ZnO based quantum well lasers similar to the previously introduced n-AlGaAs/GaAs/p-AlGaAs structures; we have attempted to grow Zn 1 -xSn x O thin films to enlarge the band gap energy. An increase up to 170 meV has been observed in Zn 1 -xSn x O thin films and this is enough barrier to be able to trap electron-hole pairs in quantum well structures. As a result, two important key issues; p-type conductivity and enhancement of the band gap energy in order to step forward towards the production of electro luminescent UV LEDs and quantum well lasers have been investigated and will be presented in this study

  20. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    Science.gov (United States)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  1. Optical response of hybrid semiconductor quantum dot-metal nanoparticle system: Beyond the dipole approximation

    Science.gov (United States)

    Mohammadzadeh, Atefeh; Miri, MirFaez

    2018-01-01

    We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.

  2. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  3. Enhancement of superconducting critical current by injection of quasiparticles in superconductor semiconductor devices

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Sørensen, C. B.

    2000-01-01

    We report new measurements on 3-terminal superconductor semiconductor injection devices, demonstrating enhancement of the supercurrent by injection from a superconducting injector electrode. Two other electrodes were used as detectors. Applying a small voltage to the injector, reduced the maximum...

  4. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    Science.gov (United States)

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  5. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  6. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  7. Temperature control of power semiconductor devices in traction applications

    Science.gov (United States)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  8. THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1996-02-01

    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  9. Fundamental properties of devices for quantum information technology

    DEFF Research Database (Denmark)

    Nielsen, Per Kær

    This thesis reports a theoretical investigation of the influence of the electronphonon interaction on semiconductor cavity quantum electrodynamical systems, specifically a quantum dot coupled to an optical microcavity. We develop a theoretical description of the decay dynamics of the quantum dot...... interacting with the cavity and the phonons. It is shown that the presence of the phonon interaction, fundamentally changes the spontaneous emission decay behavior of the quantum dot. Especially in the regime where the quantum dotcavity spectral detuning is significantly larger than any linewidth...... of the system, the effect of the phonon interaction is very pronounced. A simple approximate analytical expression for the quantum dot decay rate is derived, which predicts a strong asymmetry with respect to the quantum dot-cavity detuning at low temperatures, and allows for a clear interpretation...

  10. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  11. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  13. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  14. Radiation hardness and qualification of semiconductor electronic devices for nuclear reactors

    International Nuclear Information System (INIS)

    Friant, A.; Payat, R.

    1984-05-01

    After a brief review of radiation effects in semiconductors and radiation damage in semiconductor devices, the problems of qualification of electronic equipment to be used in nuclear reactors are compared to those relative to nuclear weapons or space experiments. The conclusion is that data obtained at very high dose rates or under pulsed irradiation in weapons and space programs should not be directly applied to nuclear plant instrumentation. The need for a specific qualification of semiconductor devices appropriate for nuclear reactors is emphasized. Some irradiation studies at IRDI/DEIN (CEN-Saclay) are related [fr

  15. Growth and Characterization of III-V Semiconductors for Device Applications

    Science.gov (United States)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  16. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  17. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, K., E-mail: kmiao@purdue.edu; Charles, J.; Klimeck, G. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States); Sadasivam, S.; Fisher, T. S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, T. [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-03-14

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  18. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Miao, K.; Charles, J.; Klimeck, G.; Sadasivam, S.; Fisher, T. S.; Kubis, T.

    2016-01-01

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  19. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    Science.gov (United States)

    Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.

    2016-03-01

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  20. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    International Nuclear Information System (INIS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-01-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics

  1. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    Science.gov (United States)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-07-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  2. Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization

    International Nuclear Information System (INIS)

    Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee

    2013-01-01

    The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: ► The spin polarized transport through a diluted magnetic quantum dot is studied. ► The model is based on the Green’s function and the equation of motion method.► The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. ► The system is suitable for current-induced spin-transfer torque application. ► A large tunneling current and a high TMR are possible for sensor application.

  3. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  4. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  5. Robust Optimal Design of Quantum Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ociel Morales

    2018-01-01

    Full Text Available We consider the optimal design of a sequence of quantum barriers, in order to manufacture an electronic device at the nanoscale such that the dependence of its transmission coefficient on the bias voltage is linear. The technique presented here is easily adaptable to other response characteristics. There are two distinguishing features of our approach. First, the transmission coefficient is determined using a semiclassical approximation, so we can explicitly compute the gradient of the objective function. Second, in contrast with earlier treatments, manufacturing uncertainties are incorporated in the model through random variables; the optimal design problem is formulated in a probabilistic setting and then solved using a stochastic collocation method. As a measure of robustness, a weighted sum of the expectation and the variance of a least-squares performance metric is considered. Several simulations illustrate the proposed technique, which shows an improvement in accuracy over 69% with respect to brute-force, Monte-Carlo-based methods.

  6. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  7. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  8. A semiclassical method in the theory of light scattering by semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lang, I. G.; Korovin, L. I.; Pavlov, S. T.

    2008-01-01

    A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained

  9. Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Paiella, Roberto [Boston Univ., MA (United States); Moustakas, Theodore D. [Boston Univ., MA (United States)

    2017-07-31

    This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles located within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and geometrical

  10. Thermal activation of carriers from semiconductor quantum wells

    International Nuclear Information System (INIS)

    Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

    1999-01-01

    Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

  11. Measurement-Device-Independent Quantum Cryptography

    Science.gov (United States)

    Tang, Zhiyuan

    Quantum key distribution (QKD) enables two legitimate parties to share a secret key even in the presence of an eavesdropper. The unconditional security of QKD is based on the fundamental laws of quantum physics. Original security proofs of QKD are based on a few assumptions, e.g., perfect single photon sources and perfect single-photon detectors. However, practical implementations of QKD systems do not fully comply with such assumptions due to technical limitations. The gap between theory and implementations leads to security loopholes in most QKD systems, and several attacks have been launched on sophisticated QKD systems. Particularly, the detectors have been found to be the most vulnerable part of QKD. Much effort has been put to build side-channel-free QKD systems. Solutions such as security patches and device-independent QKD have been proposed. However, the former are normally ad-hoc, and cannot close unidentified loopholes. The latter, while having the advantages of removing all assumptions on devices, is impractical to implement today. Measurement-device-independent QKD (MDI-QKD) turns out to be a promising solution to the security problem of QKD. In MDI-QKD, all security loopholes, including those yet-to-be discovered, have been removed from the detectors, the most critical part in QKD. In this thesis, we investigate issues related to the practical implementation and security of MDI-QKD. We first present a demonstration of polarization-encoding MDI-QKD. Taking finite key effect into account, we achieve a secret key rate of 0.005 bit per second (bps) over 10 km spooled telecom fiber, and a 1600-bit key is distributed. This work, together with other demonstrations, shows the practicality of MDI-QKD. Next we investigate a critical assumption of MDI-QKD: perfect state preparation. We apply the loss-tolerant QKD protocol and adapt it to MDI-QKD to quantify information leakage due to imperfect state preparation. We then present an experimental demonstration of

  12. Charge transport in nanoscale vertical organic semiconductor pillar devices

    NARCIS (Netherlands)

    Wilbers, J.G.E.; Xu, B.; Bobbert, P.A.; de Jong, M.P.; van der Wiel, W.G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust

  13. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  14. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    Science.gov (United States)

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  15. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population osci...

  16. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  17. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

    KAUST Repository

    Rivnay, Jonathan

    2012-10-10

    A study was conducted to demonstrate quantitative determination of organic semiconductor microstructure from the molecular to device scale. The quantitative determination of organic semiconductor microstructure from the molecular to device scale was key to obtaining precise description of the molecular structure and microstructure of the materials of interest. This information combined with electrical characterization and modeling allowed for the establishment of general design rules to guide future rational design of materials and devices. Investigations revealed that a number and variety of defects were the largest contributors to the existence of disorder within a lattice, as organic semiconductor crystals were dominated by weak van der Waals bonding. Crystallite size, texture, and variations in structure due to spatial confinement and interfaces were also found to be relevant for transport of free charge carriers and bound excitonic species over distances that were important for device operation.

  18. Quantum wells, wires and dots theoretical and computational physics of semiconductor nanostructures

    CERN Document Server

    Harrison, Paul

    2016-01-01

    Quantum Wells, Wires and Dots provides all the essential information, both theoretical and computational, to develop an understanding of the electronic, optical and transport properties of these semiconductor nanostructures. The book will lead the reader through comprehensive explanations and mathematical derivations to the point where they can design semiconductor nanostructures with the required electronic and optical properties for exploitation in these technologies. This fully revised and updated 4th edition features new sections that incorporate modern techniques and extensive new material including: - Properties of non-parabolic energy bands - Matrix solutions of the Poisson and Schrodinger equations - Critical thickness of strained materials - Carrier scattering by interface roughness, alloy disorder and impurities - Density matrix transport modelling -Thermal modelling Written by well-known authors in the field of semiconductor nanostructures and quantum optoelectronics, this user-friendly guide is pr...

  19. Quantum transport in nanowire-based hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Guenel, Haci Yusuf

    2013-05-08

    We have studied the low-temperature transport properties of nanowires contacted by a normal metal as well as by superconducting electrodes. As a consequence of quantum coherence, we have demonstrated the electron interference effect in different aspects. The mesoscopic phase coherent transport properties were studied by contacting the semiconductor InAs and InSb nanowires with normal metal electrodes. Moreover, we explored the interaction of the microscopic quantum coherence of the nanowires with the macroscopic quantum coherence of the superconductors. In superconducting Nb contacted InAs nanowire junctions, we have investigated the effect of temperature, magnetic field and electric field on the supercurrent. Owing to relatively high critical temperature of superconducting Nb (T{sub c} ∝ 9 K), we have observed the supercurrent up to 4 K for highly doped nanowire-based junctions, while for low doped nanowire-based junctions a full control of the supercurrent was achieved. Due to low transversal dimension of the nanowires, we have found a monotonous decay of the critical current in magnetic field dependent measurements. The experimental results were analyzed within narrow junction model which has been developed recently. At high bias voltages, we have observed subharmonic energy gap structures as a consequence of multiple Andreev reflection. Some of the nanowires were etched, such that the superconducting Nb electrodes are connected to both ends of the nanowire rather than covering the surface of the nanowire. As a result of well defined nanowire-superconductor interfaces, we have examined quasiparticle interference effect in magnetotransport measurements. Furthermore, we have developed a new junction geometry, such that one of the superconducting Nb electrodes is replaced by a superconducting Al. Owing to the smaller critical magnetic field of superconducting Al (B{sub c} ∝ 15-50,mT), compared to superconducting Nb (B{sub c} ∝ 3 T), we were able to studied

  20. Spin relaxation in semiconductor quantum rings and dots--a comparative study.

    Science.gov (United States)

    Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M

    2011-03-23

    We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.

  1. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  2. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  3. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  4. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  5. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  6. Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, Federico, E-mail: federico.grasselli@unimore.it; Goldoni, Guido, E-mail: guido.goldoni@unimore.it [Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy); CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy); Bertoni, Andrea, E-mail: andrea.bertoni@nano.cnr.it [CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy)

    2015-01-21

    We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.

  7. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    Science.gov (United States)

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  8. Nodal ground states and orbital textures in semiconductor quantum dots

    Czech Academy of Sciences Publication Activity Database

    Lee, J.; Výborný, Karel; Han, J.E.; Žutič, I.

    2014-01-01

    Roč. 89, č. 4 (2014), "045315-1"-"045315-17" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : quantum dots * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  9. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  10. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  11. Optical studies of wide bandgap semiconductor epilayers and quantum well structures

    International Nuclear Information System (INIS)

    May, L.

    1998-09-01

    This thesis contains research on the optical properties of wide bandgap semiconductors, which are potentially useful for blue and UV emitters. The research covers materials from both the II-VI and III-V groups. In Chapter 1, a general introduction to the topic of blue and UV emitters is presented. The properties required of materials used for these applications are outlined, and the technological significance of these devices is discussed, in order to place this work into context. In Chapter 2, the main experimental techniques used in this work are outlined. These are photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and white light reflectivity. Chapter 3 begins with a discussion of the properties of ZnS. Then, following a brief outline of the sample growth technique, the optical studies of a series of ZnS single epitaxial layers are presented. The samples were characterised by photoluminescence spectroscopy, and the effect of strain on their properties studied in some detail. The results of tellurium and nitrogen doping studies are also presented. The chapter concludes with a study of ZnCdS epilayers. Chapter 4 begins with the growth and PL characterisation of a series of ZnS/ZnCdS multiple quantum well structures. Optically pumped stimulated emission experiments were then carried out on selected MQW samples. The results of these experiments are presented in the latter part of Chapter 4, followed by a discussion of the lasing mechanisms in II-VI quantum well structures. In Chapter 5, the growth and characterisation of a series of GaN epilayers are described. After an introduction outlining some of the key properties of GaN, the MOCVD growth procedure is described. Studies of the samples by PL, PLE and reflectivity are then presented. Finally, a study of p-type GaN epilayers is presented, and excimer laser annealing is investigated as a possible means of activating the dopant

  12. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.

    Science.gov (United States)

    Wu, Kaifeng; Lim, Jaehoon; Klimov, Victor I

    2017-08-22

    Application of colloidal semiconductor quantum dots (QDs) in optical and optoelectronic devices is often complicated by unintentional generation of extra charges, which opens fast nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the extra carrier(s) and ultimately dissipated as heat. Previous studies of Auger recombination have primarily focused on neutral and, more recently, negatively charged multicarrier states. Auger dynamics of positively charged species remains more poorly explored due to difficulties in creating, stabilizing, and detecting excess holes in the QDs. Here we apply photochemical doping to prepare both negatively and positively charged CdSe/CdS QDs with two distinct core/shell interfacial profiles ("sharp" versus "smooth"). Using neutral and charged QD samples we evaluate Auger lifetimes of biexcitons, negative and positive trions (an exciton with an extra electron or a hole, respectively), and multiply negatively charged excitons. Using these measurements, we demonstrate that Auger decay of both neutral and charged multicarrier states can be presented as a superposition of independent elementary three-particle Auger events. As one of the manifestations of the superposition principle, we observe that the biexciton Auger decay rate can be presented as a sum of the Auger rates for independent negative and positive trion pathways. By comparing the measurements on the QDs with the "sharp" versus "smooth" interfaces, we also find that while affecting the absolute values of Auger lifetimes, manipulation of the shape of the confinement potential does not lead to violation of the superposition principle, which still allows us to accurately predict the biexciton Auger lifetimes based on the measured negative and positive trion dynamics. These findings indicate considerable robustness of the superposition principle as applied to Auger decay of charged and neutral multicarrier states

  13. High-Tc superconductor quantum interference devices

    International Nuclear Information System (INIS)

    1991-01-01

    This patent describes a superconductive quantum interferometric device for sensing a characteristic of a magnetic field. It comprises a substrate having a surface, the substrate being selected from the group which consists of strontium titanate, aluminum oxide, sapphire, ZrO 2 and mixtures thereof; a coating of MgO on the surface of the substrate; two identical thin-strip films of a high-critical temperature superconductor on the coating, each of the films having a pair of mutually parallel arms in the form of superconductor strips extending toward and aligned with super conductor strips forming corresponding arms of the other thin-strip film, and a crossbar strip connecting the arms of each thin-strip film at right angles to the arms, the high-critical-temperature superconductor being selected from the group which consists of yttrium-barium-calcium-copper-oxides, bismuth-strontium-calcium-copper-oxides, thallium-barium-copper-oxides, thallium-barium-calcium-copper-oxides, barium oxide: potassium oxide: bismuth oxides, and calcium oxide: zinc oxide: iron oxides; and insulating films on the coating between corresponding free ends of the arms thin-strip films, the insulating films being composed of a material selected from the group which consists of silicon dioxide, silicon nitride, magnesium oxide and mixture thereof

  14. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices

    International Nuclear Information System (INIS)

    Park, Joon Seok; Maeng, Wan-Joo; Kim, Hyun-Suk; Park, Jin-Seong

    2012-01-01

    The present article is a review of the recent progress and major trends in the field of thin-film transistor (TFT) research involving the use of amorphous oxide semiconductors (AOS). First, an overview is provided on how electrical performance may be enhanced by the adoption of specific device structures and process schemes, the combination of various oxide semiconductor materials, and the appropriate selection of gate dielectrics and electrode metals in contact with the semiconductor. As metal oxide TFT devices are excellent candidates for switching or driving transistors in next generation active matrix liquid crystal displays (AMLCD) or active matrix organic light emitting diode (AMOLED) displays, the major parameters of interest in the electrical characteristics involve the field effect mobility (μ FE ), threshold voltage (V th ), and subthreshold swing (SS). A study of the stability of amorphous oxide TFT devices is presented next. Switching or driving transistors in AMLCD or AMOLED displays inevitably involves voltage bias or constant current stress upon prolonged operation, and in this regard many research groups have examined and proposed device degradation mechanisms under various stress conditions. The most recent studies involve stress experiments in the presence of visible light irradiating the semiconductor, and different degradation mechanisms have been proposed with respect to photon radiation. The last part of this review consists of a description of methods other than conventional vacuum deposition techniques regarding the formation of oxide semiconductor films, along with some potential application fields including flexible displays and information storage.

  15. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... the scattered photons. Even though the non-linearity also alters the pulse spectrum due to a four-wave mixing process, we demonstrate that input pulses with a Gaussian spectrum can be mapped to the output with up to 80 % fidelity. Using two identical two-level emitters, we propose a setup for a deterministic...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  16. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    Science.gov (United States)

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  17. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  18. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  19. Fabrication of coupled graphene–nanotube quantum devices

    International Nuclear Information System (INIS)

    Engels, S; Weber, P; Terrés, B; Dauber, J; Volk, C; Wichmann, U; Stampfer, C; Meyer, C; Trellenkamp, S

    2013-01-01

    We report on the fabrication and characterization of all-carbon hybrid quantum devices based on graphene and single-walled carbon nanotubes. We discuss both carbon nanotube quantum dot devices with graphene charge detectors and nanotube quantum dots with graphene leads. The devices are fabricated by chemical vapor deposition growth of carbon nanotubes and subsequent structuring of mechanically exfoliated graphene. We study the detection of individual charging events in the carbon nanotube quantum dot by a nearby graphene nanoribbon and show that they lead to changes of up to 20% of the conductance maxima in the graphene nanoribbon, acting as a well performing charge detector. Moreover, we discuss an electrically coupled graphene–nanotube junction, which exhibits a tunneling barrier with tunneling rates in the low GHz regime. This allows us to observe Coulomb blockade on a carbon nanotube quantum dot with graphene source and drain leads. (paper)

  20. Metal/Semiconductor and Transparent Conductor/Semiconductor Heterojunctions in High Efficient Photoelectric Devices: Progress and Features

    Directory of Open Access Journals (Sweden)

    M. Melvin David Kumar

    2014-01-01

    Full Text Available Metal/semiconductor and transparent conductive oxide (TCO/semiconductor heterojunctions have emerged as an effective modality in the fabrication of photoelectric devices. This review is following a recent shift toward the engineering of TCO layers and structured Si substrates, incorporating metal nanoparticles for the development of next-generation photoelectric devices. Beneficial progress which helps to increase the efficiency and reduce the cost, has been sequenced based on efficient technologies involved in making novel substrates, TCO layers, and electrodes. The electrical and optical properties of indium tin oxide (ITO and aluminum doped zinc oxide (AZO thin films can be enhanced by structuring the surface of TCO layers. The TCO layers embedded with Ag nanoparticles are used to enhance the plasmonic light trapping effect in order to increase the energy harvesting nature of photoelectric devices. Si nanopillar structures which are fabricated by photolithography-free technique are used to increase light-active surface region. The importance of the structure and area of front electrodes and the effect of temperature at the junction are the value added discussions in this review.

  1. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.

    Science.gov (United States)

    Miah, M Idrish

    2009-01-17

    We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.

  2. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.

  3. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  4. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  5. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  6. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  7. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  8. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  9. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-01-01

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  10. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-01-01

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix

  11. Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Kobashi, K.; Chen, B.

    2010-01-01

    Low-dimensional III-V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs...

  12. Transient radiation effects in GaAs semiconductor devices

    International Nuclear Information System (INIS)

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  13. Resin bleed improvement on surface mount semiconductor device

    Science.gov (United States)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  14. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  15. Practical device-independent quantum cryptography via entropy accumulation.

    Science.gov (United States)

    Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas

    2018-01-31

    Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.

  16. Quantum theory of terahertz conductivity of semiconductor nanostructures

    Czech Academy of Sciences Publication Activity Database

    Ostatnický, T.; Pushkarev, Vladimir; Němec, Hynek; Kužel, Petr

    2018-01-01

    Roč. 97, č. 8 (2018), s. 1-8, č. článku 085426. ISSN 2469-9950 R&D Projects: GA ČR GA17-03662S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : nanostructures * nanoparticles * terahertz conductivity * quantum theory * linear response Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  17. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  18. Electron-electron scattering and mobilities in semiconductors and quantum wells

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1986-01-01

    The effect of electron-electron scattering on the mobility in semiconductors and semiconductor quantum wells is examined. A general exact formula is derived for the mobility, when the electron-electron collision rate is much faster than other scattering rates such as those by ionized impurities and phonons. In this limit, the transport relaxation rate is independent of the carrier's energy and contributions to the inverse mobility from individual scattering mechanism add up. The mobility becomes significantly reduced from its value in the absence of electron-electron scattering. When the collision rates are not necessarily dominated by electron-electron scattering, the mobility is calculated by the Kohler-Sondheimer variational method in the presence of ionized-impurity scattering and acoustic-phonon scattering in a nondegenerate two-dimensional quantum well

  19. Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots

    Science.gov (United States)

    Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas

    2009-08-01

    The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.

  20. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  1. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  2. Injection induced enhancement of supercurrent in a mesoscopic three terminal superconductor semiconductor device

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Jensen, S

    2001-01-01

    The studied devices consist of three superconducting (Al) electrodes connected to the same piece of degenerate Semiconductor (n++ GaAs) in a planar geometry. When a current is injected from one of the superconducting electrodes at an injection bias V = Delta (T)/e, the critical supercurrent betwe...

  3. A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)

    2012-11-01

    This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.

  4. Proceedings of the 3rd international workshop on radiation effects on semiconductor devices for space application

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is the collection of the paper presented at the title workshop. The main purpose of the workshop is to bring the chance for exchange of information between scientists and engineers who work in the field of research and development of semiconductor devices used in strong radiation environment in space. The 27 of the presented papers are indexed individually. (J.P.N.)

  5. Temperature-dependent built-in potential in organic semiconductor devices

    NARCIS (Netherlands)

    Kemerink, M.; Kramer, J.M.; Gommans, H.H.P.; Janssen, R.A.J.

    2006-01-01

    The temperature dependence of the built-in voltage of organic semiconductor devices is studied. The results are interpreted using a simple analytical model for the band bending at the electrodes. It is based on the notion that, even at zero current, diffusion may cause a significant charge density

  6. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  7. Improvement of cosmic ray ruggedness of hybrid vehicles power semiconductor devices

    International Nuclear Information System (INIS)

    Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Shoji, Tomoyuki; Ishiko, Masayasu

    2010-01-01

    Power semiconductors which are used under high voltage conditions in HVs (Hybrid Vehicles) are required to have high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, an SEB (Single Event Burnout) failure mechanism induced by cosmic rays in IGBTs (Insulated Gate Bipolar Transistors) was investigated. Through an optimized device design in which thyristor action was suppressed, the device destruction tolerance was greatly improved. (author)

  8. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li

    2012-12-01

    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  9. Relaxation of electron energy in the coupled polar semiconductor quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2001-01-01

    Roč. 49, 10-11 (2001), s. 1011-1018 ISSN 0015-8208 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : coupled polar semiconductor quantum dots * electron energy relaxation Subject RIV: BE - The oretical Physics Impact factor: 1.043, year: 2001

  10. Second harmonic spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Yu, Ping; Bozhevolnyi, Sergey I.

    1999-01-01

    Semiconductor nanostructures and their application to optoelectronic devices have attracted much attention recently. Lower-dimensional structures, and in particular quantum dots, are highly anisotropic resulting in broken symmetry as compared to their bulk counterparts. This is not only reflected...

  11. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  12. Persistent current through a semiconductor quantum dot with Gaussian confinement

    International Nuclear Information System (INIS)

    Boyacioglu, Bahadir; Chatterjee, Ashok

    2012-01-01

    The persistent diamagnetic current in a GaAs quantum dot with Gaussian confinement is calculated. It is shown that except at very low temperature or at high temperature, the persistent current increases with decreasing temperature. It is also shown that as a function of the dot size, the diamagnetic current exhibits a maximum at a certain confinement length. It is furthermore shown that for a shallow potential, the persistent current shows an interesting maximum structure as a function of the depth of the potential. At low temperature, the peak structure is pretty sharp but becomes broader and broader with increasing temperature.

  13. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.

    2001-01-01

    Second-harmonic (SH) optical imaging of self-assembled InAlGaAs quantum dots (QD's) grown on a GaAs(0 0 1) substrate has been accomplished at room temperature by use of respectively a scanning far-field optical microscope in reflection mode and a scanning near-field optical microscope...... in transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  14. Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Bel'kov, V V; Ganichev, S D; Ivchenko, E L; Tarasenko, S A; Weber, W; Giglberger, S; Olteanu, M; Tranitz, H-P; Danilov, S N; Schneider, Petra; Wegscheider, W; Weiss, D; Prettl, W

    2005-01-01

    We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers

  15. Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring

    International Nuclear Information System (INIS)

    Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.

    2004-01-01

    In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring

  16. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  17. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  18. Single-electron regime and Pauli spin blockade in a silicon metal-oxide-semiconductor double quantum dot

    Science.gov (United States)

    Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  20. Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization

    Science.gov (United States)

    Rohrbaugh, Nathaniel W.

    As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without

  1. Functionalization of Semiconductor Nanomaterials for Optoelectronic Devices And Components

    Science.gov (United States)

    2015-03-04

    pristine single and multiwalled carbon nanotubes as different stacking layers in bulk heterojunction solar cells,” M. Alam Khan, Michio Matsumura and M. O...Phys. Lett. 102, 051904 (2013). http://dx.doi.org/10.1063/1.4789908 13. “Synthesis of iron pyrite nanocrystals utilizing trioctylphosphine oxide ...O. Manasreh, IEEE Electron Device Letters (Submitted). 20. “Characteristics of p-ZnO/n-GaN heterojunction photodetector,” Abla Al-Zouhbi, N. S

  2. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    Science.gov (United States)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  3. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  4. Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors

    International Nuclear Information System (INIS)

    Asai, Tetsuya; Adamatzky, Andrew; Amemiya, Yoshihito

    2004-01-01

    Reaction-diffusion (RD) chemical systems are known to realize sensible computation when both data and results of the computation are encoded in concentration profiles of chemical species; the computation is implemented via spreading and interaction of either diffusive or phase waves. Thin-layer chemical systems are thought of therefore as massively-parallel locally-connected computing devices, where micro-volume of the medium is analogous to an elementary processor. Practical applications of the RD chemical systems are reduced however due to very low speed of traveling waves which makes real-time computation senseless. To overcome the speed-limitations while preserving unique features of RD computers we propose a semiconductor RD computing device where minority carriers diffuse as chemical species and reaction elements are represented by p-n-p-n diodes. We offer blue-prints of the RD semiconductor devices, and study in computer simulation propagation phenomena of the density wave of minority carriers. We then demonstrate what computational problems can be solved in RD semiconductor devices and evaluate space-time complexity of computation in the devices

  5. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  6. Barrier penetration effects on thermopower in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Vaidya, R. G.; Sankeshwar, N. S.; Mulimani, B. G.

    2014-01-01

    Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In x Ga 1−x N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation

  7. Quantum theory of terahertz conductivity of semiconductor nanostructures

    Science.gov (United States)

    Ostatnický, T.; Pushkarev, V.; Němec, H.; Kužel, P.

    2018-02-01

    Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the analysis based on Kubo formula and relaxation time approximation. We show that this current is required to ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping of the conductivity spectra up to terahertz or multiterahertz spectral ranges, where the electron scattering rate is typically comparable to or larger than the probing frequency.

  8. Theory of semiconductor lasers from basis of quantum electronics to analyses of the mode competition phenomena and noise

    CERN Document Server

    Yamada, Minoru

    2014-01-01

    This book provides a unified and complete theory for semiconductor lasers, covering topics ranging from the principles of classical and quantum mechanics to highly advanced levels for readers who need to analyze the complicated operating characteristics generated in the real application of semiconductor lasers.   The author conducts a theoretical analysis especially on the instabilities involved in the operation of semiconductor lasers. A density matrix into the theory for semiconductor lasers is introduced and the formulation of an improved rate equation to help understand the mode competition phenomena which cause the optical external feedback noise is thoroughly described from the basic quantum mechanics. The derivation of the improved rate equation will allow readers to extend the analysis for the different types of semiconductor materials and laser structures they deal with.   This book is intended not only for students and academic researchers but also for engineers who develop lasers for the market, ...

  9. Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

    Science.gov (United States)

    Malfavon-Ochoa, Mario

    This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable

  10. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  11. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Sara [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Vespini, Veronica, E-mail: v.vespini@isasi.cnr.it [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Olivieri, Federico [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); University of Naples Federico II, Department of Chemical Materials and Production Engineering, Piazzale Tecchio 80, Naples 80125 (Italy); Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy)

    2017-03-31

    Highlights: • A quantum dots self-patterning on micrometrical polymeric array is proposed. • The effect of a quantum dots mix on the array is evaluated. • A PDMS membrane is exploited to transfer the pattern on it. - Abstract: Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  12. The role of surface ligands in quantum-dot devices: Villain or unsung hero?

    Energy Technology Data Exchange (ETDEWEB)

    Pietryga, Jeffrey Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-20

    For over three decades, the study of nanocrystal quantum dots (QDs), which are solution-synthesized nanometer-scale bits of semiconductor materials, has produced singular advances in both our understanding of quantum confinement effects, and in our ability to make use of them in tech-relevant materials. Accordingly, QDs have found their way into the marketplace, specifically as high-performance fluorophores for, e.g., displays and biolabeling. In such applications, optimization of the QD surface, including the passivating ligands, is key to keeping photo-excited carriers from leaving the QD interior before recombining, resulting in a high fluorescence efficiency. Increasingly, attention has turned to realize the promise of QDs for optoelectronic applications (e.g., solar cells, LEDs, sensors) which require charge carriers to controllably enter, exit and/or travel through QDs, a much more challenging problem. In this scenario, the role of the QD surface must be completely reimagined, from being an impenetrable wall to being a gateway, or even a ramp. In this talk, I’ll explore the inherent contrast between QD fluorophore and device applications, and describe how ligands, originally thought only to be impediments to QD electronic devices, may actually give the savvy QD device designer control over function and performance in a manner unknown in bulk semiconductor devices. Finally, I’ll survey recent efforts at Los Alamos to develop a universal tool box for deposition of conductive QD films that may finally allow the manufacturing of economical, high-performance devices for a wide range of applications.

  13. Measurement-device-independent quantum communication with an untrusted source

    Science.gov (United States)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  14. Control of the spin geometric phase in semiconductor quantum rings.

    Science.gov (United States)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  15. Quantum computation: algorithms and implementation in quantum dot devices

    Science.gov (United States)

    Gamble, John King

    In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques

  16. Electron–hole two-stream instability in a quantum semiconductor plasma with exchange-correlation effects

    International Nuclear Information System (INIS)

    Zeba, I.; Yahia, M.E.; Shukla, P.K.; Moslem, W.M.

    2012-01-01

    The electron–hole two-stream instability in a quantum semiconductor plasma has been studied including electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures of the plasma species. Typical values of GaAs and GaSb semiconductors are used to estimate the growth rate of the two-stream instability. The effects of electron– and hole–phonon collision, quantum recoil effects, the streaming velocities, and the corresponding threshold on the growth rate are investigated numerically. Considering the phonon susceptibility allows the acoustic mode to exist and the collisional instability arises in combination with drift of the holes. -- Highlights: ► Electron–hole two stream instability in quantum plasmas is presented. ► Typical values of GaAs and GaSb semiconductors are used to estimate the growth rate. ► The streaming velocities and the corresponding threshold on the growth rate are investigated numerically.

  17. Supplymentary type semiconductor device and manufacturing method. Soho gata handotai sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masaaki

    1990-01-08

    As a supplementary type semiconductor device has a complicated structure, it is extremely difficult to construct it in a three dimensional structure. This invention aims to reduce its occupying area by forming p-channel and n-channel transistors in a solid structure; moreover in an easy method of production. In other words, an opening is made in the element-forming region of a semiconductor substrate, forming a gate-insulation film on each of the p-type and n-type semiconductors which are exposed on the two facing surfaces; on it formed a gate electrode; p-type semiconductor surface is used as a channel domain; a drain region of n-channel transistor on one surface and a source region on another surface; the n-type semiconductor surface corresponding to the gate electrode is used as a channel region; a source region of the n-channel transistor is formed on the same surface and the drain region on the substrate surface. Occupied area is thus made less and the production gets easier. 20 figs.

  18. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  19. Nonequilibrium Green's function formulation of quantum transport theory for multi-band semiconductors

    International Nuclear Information System (INIS)

    Zhao, Peiji; Horing, Norman J.M.; Woolard, Dwight L.; Cui, H.L.

    2003-01-01

    We present a nonequilibrium Green's function formulation of many-body quantum transport theory for multi-band semiconductor systems with a phonon bath. The equations are expressed exactly in terms of single particle nonequilibrium Green's functions and self-energies, treating the open electron-hole system in weak interaction with the bath. A decoupling technique is employed to separate the individual band Green's function equations of motion from one another, with the band-band interaction effects embedded in ''cross-band'' self-energies. This nonequilibrium Green's function formulation of quantum transport theory is amenable to solution by parallel computing because of its formal decoupling with respect to inter-band interactions. Moreover, this formulation also permits coding the simulator of an n-band semiconductor in terms of that for an (n-1)-band system, in step with the current tendency and development of programming technology. Finally, the focus of these equations on individual bands provides a relatively direct route for the determination of carrier motion in energy bands, and to delineate the influence of intra- and inter-band interactions. A detailed description is provided for three-band semiconductor systems

  20. 3D-printed components for quantum devices.

    Science.gov (United States)

    Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P

    2018-05-30

    Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.

  1. Proceedings of defect engineering in semiconductor growth, processing and device technology

    International Nuclear Information System (INIS)

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control

  2. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  3. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  4. Multiplexed charge-locking device for large arrays of quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Puddy, R. K., E-mail: rkp27@cam.ac.uk; Smith, L. W; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Al-Taie, H.; Kelly, M. J. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Pepper, M. [Department of Electronic and Electrical Engineering, University College London, WC1E 7JE (United Kingdom)

    2015-10-05

    We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.

  5. Emergence of the persistent spin helix in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2008-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics

  6. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Koralek, Jake

    2011-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  7. Magneto-Gyrotropic Photogalvanic Effects in Semiconductor Quantum Wells

    Science.gov (United States)

    Ganichev, S. D.

    The spin-orbit coupling provides a versatile tool to generate and to manipulate the spin degree of freedom in low-dimensional semiconductor structures. The spin Hall effect, where an electric current drives a transverse spin current and causes a nonequilibrium spin accumulation near the sample boundary,1,2 the spin-galvanic effect, where a nonequilibrium spin polarization drives an electric current3,4 or the reverse process, in which an electrical current generates a non-equilibrium spin-polarization,5-9 are all consequences of spin-orbit coupling. In order to observe a spin Hall effect a bias driven current is an essential prerequisite. Then spin separation is caused via spin-orbit coupling either by Mott scattering (extrinsic spin Hall effect) or by spin splitting of the band structure (intrinsic spin Hall effect). Recently an elementary effect causing spin separation which is fundamentally different from that of the spin Hall effect has been observed.10 In contrast to the spin Hall effect it does not require an electric current to flow: it is spin separation achieved by spin-dependent scattering of electrons in media with suitable symmetry. It is show that by free carrier (Drude) absorption of terahertz radiation spin separation is achieved in a wide range of temperatures from liquid helium temperature up to room temperature. Moreover the experimental results demonstrate that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy relaxation processes of non-equilibrium carriers. In order to demonstrate the existence of the spin separation due to asymmetric scattering the pure spin current was converted into an electric current. It is achieved by application of a magnetic field which polarizes spins. This is analogues to spin-dependent scattering in transport experiments: spin-dependent scattering in an unpolarized electron gas causes the extrinsic spin Hall effect, whereas in a spin-polarized electron

  8. Robustness and device independence of verifiable blind quantum computing

    International Nuclear Information System (INIS)

    Gheorghiu, Alexandru; Kashefi, Elham; Wallden, Petros

    2015-01-01

    Recent advances in theoretical and experimental quantum computing bring us closer to scalable quantum computing devices. This makes the need for protocols that verify the correct functionality of quantum operations timely and has led to the field of quantum verification. In this paper we address key challenges to make quantum verification protocols applicable to experimental implementations. We prove the robustness of the single server verifiable universal blind quantum computing protocol of Fitzsimons and Kashefi (2012 arXiv:1203.5217) in the most general scenario. This includes the case where the purification of the deviated input state is in the hands of an adversarial server. The proved robustness property allows the composition of this protocol with a device-independent state tomography protocol that we give, which is based on the rigidity of CHSH games as proposed by Reichardt et al (2013 Nature 496 456–60). The resulting composite protocol has lower round complexity for the verification of entangled quantum servers with a classical verifier and, as we show, can be made fault tolerant. (paper)

  9. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    International Nuclear Information System (INIS)

    El Tokhy, M.E.S.M.E.S.

    2012-01-01

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate

  10. Defect-tolerance analysis of fundamental quantum-dot cellular automata devices

    Directory of Open Access Journals (Sweden)

    Yongqiang Zhang

    2015-04-01

    Full Text Available Quantum-dot cellular automata (QCA is a burgeoning technology at the nano-scale range, with the potential for lower power consumption, smaller size and faster speed than conventional complementary metal–oxide semiconductor-based technology. Because of its ultra-density integration and its inherent physical properties, fault-tolerance is an important property to consider in the research and manufacture of QCA. In this paper, one type of defect, in which displacement and misalignment occur coinstantaneously, is investigated in detail on rudimentary QCA devices (majority voter (MV, inverter, wire with QCADesigner. Another MV with rotated cells is also proposed, and it is more robust than the original one. Simulation results present the defect-tolerance of these devices, that is, the maximum precise region the defective cell can be moved moreover, with correct logical function. These conclusions have a meaningful guiding significance for QCA physical implementation and fault-tolerance research.

  11. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  12. Highly efficient quantum dot-based photoconductive THz materials and devices

    Science.gov (United States)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  13. Quantum communications system with integrated photonic devices

    Science.gov (United States)

    Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2017-11-14

    Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.

  14. Spiking neuron devices consisting of single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Single-flux-quantum (SFQ) circuits can be used for making spiking neuron devices, which are useful elements for constructing intelligent, brain-like computers. The device we propose is based on the leaky integrate-and-fire neuron (IFN) model and uses a SFQ pulse as an action signal or a spike of neurons. The operation of the neuron device is confirmed by computer simulator. It can operate with a short delay of 100 ps or less and is the highest-speed neuron device ever reported

  15. Room-temperature luminescence decay of colloidal semiconductor quantum dots: Nonexponentiality revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bodunov, Evgeny N. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Danilov, Vladimir V. [Department of Physics, Petersburg State Transport University, St. Petersburg (Russian Federation); Vavilov State Optical Institute, St. Petersburg (Russian Federation); Panfutova, Anastasia S. [Vavilov State Optical Institute, St. Petersburg (Russian Federation); Simoes Gamboa, A.L. [Center of Information Optical Technologies, ITMO University, St. Petersburg (Russian Federation)

    2016-04-15

    While time-resolved luminescence spectroscopy is commonly used as a quantitative tool for the analysis of the dynamics of photoexcitation in colloidal semiconductor quantum dots, the interpretation of the virtually ubiquitous nonexponential decay profiles is frequently ambiguous, because the assumption of multiple discrete exponential components with distinct lifetimes for resolving the decays is often arbitrary. Here, an interpretation of the room-temperature luminescence decay of CdSe/ZnS semiconductor quantum dots in colloidal solutions is presented based on the Kohlrausch relaxation function. It is proposed that the decay can be understood by using the concept of Foerster resonance energy transfer (FRET) assuming that the role of acceptors of photoexcitation energy is played by high-frequency anharmonic molecular vibrations in the environment of the quantum dots. The term EVFRET (Electronic - Vibrational Foerster Resonance Energy Transfer) is introduced in order to unequivocally refer to this energy transfer process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. 77 FR 19032 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same Notice of Receipt...

    Science.gov (United States)

    2012-03-29

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Semiconductor Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).

  17. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  18. Toxicological studies of semiconductor quantum dots on immune cells.

    Energy Technology Data Exchange (ETDEWEB)

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested

  19. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...

  20. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  1. Memory attacks on device-independent quantum cryptography.

    Science.gov (United States)

    Barrett, Jonathan; Colbeck, Roger; Kent, Adrian

    2013-01-04

    Device-independent quantum cryptographic schemes aim to guarantee security to users based only on the output statistics of any components used, and without the need to verify their internal functionality. Since this would protect users against untrustworthy or incompetent manufacturers, sabotage, or device degradation, this idea has excited much interest, and many device-independent schemes have been proposed. Here we identify a critical weakness of device-independent protocols that rely on public communication between secure laboratories. Untrusted devices may record their inputs and outputs and reveal information about them via publicly discussed outputs during later runs. Reusing devices thus compromises the security of a protocol and risks leaking secret data. Possible defenses include securely destroying or isolating used devices. However, these are costly and often impractical. We propose other more practical partial defenses as well as a new protocol structure for device-independent quantum key distribution that aims to achieve composable security in the case of two parties using a small number of devices to repeatedly share keys with each other (and no other party).

  2. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  3. Performance analysis of Arithmetic Mean method in determining peak junction temperature of semiconductor device

    Directory of Open Access Journals (Sweden)

    Mohana Sundaram Muthuvalu

    2015-12-01

    Full Text Available High reliability users of microelectronic devices have been derating junction temperature and other critical stress parameters to improve device reliability and extend operating life. The reliability of a semiconductor is determined by junction temperature. This paper gives a useful analysis on mathematical approach which can be implemented to predict temperature of a silicon die. The problem could be modeled as heat conduction equation. In this study, numerical approach based on implicit scheme and Arithmetic Mean (AM iterative method will be applied to solve the governing heat conduction equation. Numerical results are also included in order to assert the effectiveness of the proposed technique.

  4. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  5. Ballistic transport and quantum interference in InSb nanowire devices

    International Nuclear Information System (INIS)

    Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe

    2017-01-01

    An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)

  6. Predicting the valley physics of silicon quantum dots directly from a device layout

    Science.gov (United States)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  7. Optical Resonance of A Three-Level System in Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The optical resonance of a three-level system of the strongly correlated electrons in the twolevel semiconductor quantum dot interacting with the linearly polarized monochromatic electromagnetic radiation is studied. With the application of the Green function method the expressions of the state vectors and the energies of the stationary states of the system in the regime of the optical resonance are derived. The Rabi oscillations of the electron populations at different levels as well as the Rabi splitting of the peaks in the photon emission spectra are investigated. PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc

  8. Electron Raman scattering in semiconductor quantum wire in an external magnetic field

    International Nuclear Information System (INIS)

    Betancourt-Riera, Ri; Nieto Jalil, J M; Riera, R; Betancourt-Riera, Re; Rosas, R

    2008-01-01

    The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement is calculated. We assume a single parabolic conduction band. The emission spectra for different scattering configurations and the selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The electron Raman scattering studied here can be used to provide direct information about the electron band and subband structure of these confinement systems. The magnetic field distribution is considered constant with value B 0 inside the wire and zero outside

  9. Pressure study on the semiconductor-metal transition in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthi, P.; Jayakumar, K. [Department of Physics, Gandhigram Rural University, Tamilnadu (India)

    2009-06-15

    The effect of {gamma}-X band crossing due to the applied hydrostatic pressure on the semiconductor-metal transition in a quasi-two-dimensional system like GaAs/Al{sub x}Ga{sub 1-x}As quantum well has been shown through the drastic change in diamagnetic susceptibility of donors at critical concentration in the effective mass approximation using the variational principle. The nonparabolicity of the conduction band has been taken into account in the calculation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  11. Quantum Wells, Wires and Dots Theoretical and Computational Physics of Semiconductor Nanostructures

    CERN Document Server

    Harrison, Paul

    2011-01-01

    Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their

  12. Device-independent quantum key distribution secure against collective attacks

    International Nuclear Information System (INIS)

    Pironio, Stefano; Gisin, Nicolas; AcIn, Antonio; Brunner, Nicolas; Massar, Serge; Scarani, Valerio

    2009-01-01

    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. In this paper, we present in detail the security proof for a DIQKD protocol introduced in AcIn et al (2008 Phys. Rev. Lett. 98 230501). This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit only the no-signaling principle), but only holds against collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically in each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.

  13. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires.

    Science.gov (United States)

    Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin

    2014-02-21

    The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas.

  14. The Device-Independent Outlook On Quantum Physics

    International Nuclear Information System (INIS)

    Scarani, V.

    2012-01-01

    This text is an introduction to an operational outlook on Bell inequalities, which has been very fruitful in the past few years. It has lead to the recognition that Bell tests have their own place in applied quantum technologies, because they quantify non-classicality in a device-independent way, that is, without any need to describe the degrees of freedom under study and the measurements that are performed. At the more fundamental level, the same device-independent outlook has allowed the falsification of several other alternative models that could hope to reproduce the observed statistics while keeping some classical features that quantum theory denies; and it has shed new light on the long-standing quest for deriving quantum theory from physical principles. (author)

  15. Atomtronics: Material and Device Physics of Quantum Gases

    Science.gov (United States)

    matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials

  16. Quantum Devices Bonded Beneath a Superconducting Shield: Part 2

    Science.gov (United States)

    McRae, Corey Rae; Abdallah, Adel; Bejanin, Jeremy; Earnest, Carolyn; McConkey, Thomas; Pagel, Zachary; Mariantoni, Matteo

    The next-generation quantum computer will rely on physical quantum bits (qubits) organized into arrays to form error-robust logical qubits. In the superconducting quantum circuit implementation, this architecture will require the use of larger and larger chip sizes. In order for on-chip superconducting quantum computers to be scalable, various issues found in large chips must be addressed, including the suppression of box modes (due to the sample holder) and the suppression of slot modes (due to fractured ground planes). By bonding a metallized shield layer over a superconducting circuit using thin-film indium as a bonding agent, we have demonstrated proof of concept of an extensible circuit architecture that holds the key to the suppression of spurious modes. Microwave characterization of shielded transmission lines and measurement of superconducting resonators were compared to identical unshielded devices. The elimination of box modes was investigated, as well as bond characteristics including bond homogeneity and the presence of a superconducting connection.

  17. Memory-assisted measurement-device-independent quantum key distribution

    Science.gov (United States)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  18. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    Science.gov (United States)

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  19. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    Science.gov (United States)

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  20. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  1. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots

    International Nuclear Information System (INIS)

    Chuang, Chi-Hung; Burda, Clemens; Chen, Xiaobo

    2013-01-01

    Using femtosecond transient absorption spectroscopy, we investigated hot carrier distributions in semiconductor cadmium selenide quantum dots. The relaxation processes represent the behavior of an ensemble of QDs. This concept is applied for analysis with the Fermi-Dirac distribution and relaxation processes among different electron-hole pair states. By extracting the experimental hot carrier distribution and fitting with the Fermi-Dirac function, we resolved the rapid thermalization processes, such as carrier-carrier and carrier-phonon interactions was resolved within one picosecond upon photoexcitation. The analysis, using the Fermi-Dirac distribution modulated by the density of states, provides a general route to understanding the carrier cooling and heat dissipation processes in quantum dot-based systems. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers

    Science.gov (United States)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.

    2013-05-01

    We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.

  3. A semiconductor device thermal model taking into account non-linearity and multhipathing of the cooling system

    International Nuclear Information System (INIS)

    Górecki, K; Zarȩbski, J

    2014-01-01

    The paper is devoted to modelling thermal properties of semiconductor devices at the steady state. The dc thermal model of a semiconductor device taking into account the multipath heat flow is proposed. Some results of calculations and measurements of thermal resistance of a power MOSFET operating at different cooling conditions are presented. The obtained results of calculations fit the results of measurements, which proves the correctness of the proposed model.

  4. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  5. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  6. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  7. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  8. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    International Nuclear Information System (INIS)

    Schwager, Heike

    2012-01-01

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  9. Formulation of a Mesoscopic Electron Beam Splitter with Application in Semiconductor Based Quantum Computing

    OpenAIRE

    Shanker, A.; Bhowmik, D.; Bhattacharya, T. K.

    2010-01-01

    We aim to analytically arrive at a beam splitter formulation for electron waves. The electron beam splitter is an essential component of quantum logical devices. To arrive at the beam splitter structure, the electrons are treated as waves, i.e. we assume the transport to be ballistic. Ballistic electrons are electrons that travel over such short distances that their phase coherence is maintained. For mesoscopic devices with size smaller than the mean free path, the phase relaxation length and...

  10. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  11. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  12. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  13. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.

    Science.gov (United States)

    Wang, Huaping; Yu, Gui

    2016-07-01

    Graphene is the most broadly discussed and studied two-dimensional material because of its preeminent physical, mechanical, optical, and thermal properties. Until now, metal-catalyzed chemical vapor deposition (CVD) has been widely employed for the scalable production of high-quality graphene. However, in order to incorporate the graphene into electronic devices, a transfer process from metal substrates to targeted substrates is inevitable. This process usually results in contamination, wrinkling, and breakage of graphene samples - undesirable in graphene-based technology and not compatible with industrial production. Therefore, direct graphene growth on desired semiconductor and dielectric substrates is considered as an effective alternative. Over the past years, there have been intensive investigations to realize direct graphene growth using CVD methods without the catalytic role of metals. Owing to the low catalytic activity of non-metal substrates for carbon precursor decomposition and graphene growth, several strategies have been designed to facilitate and engineer graphene fabrication on semiconductors and insulators. Here, those developed strategies for direct CVD graphene growth on semiconductors and dielectrics for transfer-free fabrication of electronic devices are reviewed. By employing these methods, various graphene-related structures can be directly prepared on desired substrates and exhibit excellent performance, providing versatile routes for varied graphene-based materials fabrication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mini array of quantum Hall devices based on epitaxial graphene

    International Nuclear Information System (INIS)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A.

    2016-01-01

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R H,2 at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R H,2  = 2 h/e 2 was smaller than the relative standard uncertainty of the measurement (<1 × 10 −7 ) limited by the used resistance bridge.

  15. Quantum dots for future nanophotonic devices : lateral ordering, position, and number control

    NARCIS (Netherlands)

    Nötzel, R.; Sritirawisarn, N.; Selçuk, E.; Wang, H.; Yuan, J.

    2009-01-01

    We review our recent advances in the lateral ordering, position, and number control of self-organized epitaxial semiconductor quantum dots based on self-organized anisotropic strain engineering, growth on patterned substrates, and selective area growth.

  16. InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium

    Directory of Open Access Journals (Sweden)

    Teeravat Limwongse

    2013-01-01

    Full Text Available Storage density on magnetic medium is increasing at an exponential rate. The magnetic region that stores one bit of information is correspondingly decreasing in size and will ultimately reach quantum dimensions. Magnetic quantum dots (QDs can be grown using semiconductor as a host and magnetic constituents added to give them magnetic properties. Our results show how molecular beam epitaxy and, particularly, lattice-mismatched heteroepitaxy can be used to form laterally aligned, high-density semiconducting host in a single growth run without any use of lithography or etching. Representative results of how semiconductor QD hosts arrange themselves on various stripes and cross-hatch patterns are reported.

  17. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    Science.gov (United States)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  18. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  19. Infrared detectors and emitters on the basis of semiconductor quantum structures

    International Nuclear Information System (INIS)

    Kruck, P. R.

    1997-08-01

    Intersubband transitions in Si/SiGe and GaAs/AlGaAs semiconductor quantum structures have been investigated with respect to possible application as infrared detectors and emitters. Investigation of the polarization dependence of subband absorption in Si/SiGe quantum wells shows both transverse magnetic and transverse electric polarized excitations. Intersubband transitions to several excited states are identified by comparison with self-consistent Luttinger-Kohn type calculations. On the basis of these investigations a quantum well infrared photodetector operating between 3 and 8 μm with a detectivity as high as D*=2 x 10 10 cm Hz 1/2 W -1 under normal incidence illumination and at an operating temperature of T=77K is realized. The polarization dependence of the photoconductivity shows the importance of both the absorption and the vertical transport properties of the photoexcited carriers for the detection mechanism. On the basis of the GaAs/AlGaAs material system a unipolar quantum cascade light emitting diode (LED) has been realized. The LED operates at a wavelength of 6.9 μm. A detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm 2 the optical output power lies in the ten nanowatt range. (author)

  20. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  1. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  2. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    Science.gov (United States)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  3. Jumping magneto-electric states of electrons in semiconductor multiple quantum wells

    International Nuclear Information System (INIS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2011-01-01

    Orbital and spin electron states in semiconductor multiple quantum wells in the presence of an external magnetic field transverse to the growth direction are considered. Rectangular wells of GaAs/GaAlAs and InAs/AlSb are taken as examples. It is shown that, in addition to magneto-electric states known from one-well systems, there appear magneto-electric states having a much stronger dependence of energies on a magnetic field and exhibiting an interesting anti-crossing behavior. The origin of these states is investigated and it is shown that the strong field dependence of the energies is related to an unusual 'jumping' behavior of their wavefunctions between quantum wells as the field increases. The ways of investigating the jumping states by means of interband magneto-luminescence transitions or intraband cyclotron-like transitions are considered and it is demonstrated that the jumping states can be observed. The spin g factors of electrons in the jumping states are calculated using the real values of the spin–orbit interaction and bands' nonparabolicity for the semiconductors in question. It is demonstrated that the jumping states offer a wide variety of the spin g factors

  4. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  5. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  6. Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Stehr, D.

    2007-12-28

    This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2p{sub z} confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. These results also require reinterpretation of previous experimental data. The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 {mu}m and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements. Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. By varying the carrier

  7. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  8. Development of quantum device simulator NEMO-VN1

    Science.gov (United States)

    Hien, Dinh Sy; Thi Luong, Nguyen; Hoang Minh, Le; Tien Phuc, Tran; Thanh Trung, Pham; Dong, Bui An; Thu Thao, Huynh Lam; Van Le Thanh, Nguyen; Tuan, Thi Tran Anh; Hoang Trung, Huynh; Thi Thanh Nhan, Nguyen; Viet Nga, Dinh

    2009-09-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  9. Development of quantum device simulator NEMO-VN1

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Nguyen Thi Luong; Le Hoang Minh; Tran Tien Phuc; Pham Thanh Trung; Bui An Dong; Huynh Lam Thu Thao; Nguyen Van Le Thanh; Thi Tran Anh Tuan; Huynh Hoang Trung; Nguyen Thi Thanh Nhan; Dinh Viet Nga

    2009-01-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  10. Quantum dot lasers: From promise to high-performance devices

    Science.gov (United States)

    Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.

    2009-03-01

    Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.

  11. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  12. H+-type and OH−-type biological protonic semiconductors and complementary devices

    Science.gov (United States)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-01-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083

  13. H+-type and OH- -type biological protonic semiconductors and complementary devices.

    Science.gov (United States)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Roudsari, Anita Fadavi; Rousdari, Anita Fadavi; Helms, Brett A; Zhong, Chao; Anantram, M P; Rolandi, Marco

    2013-10-03

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H(+) hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH(-) as proton holes. Discriminating between H(+) and OH(-) transport has been elusive. Here, H(+) and OH(-) transport is achieved in polysaccharide- based proton wires and devices. A H(+)- OH(-) junction with rectifying behaviour and H(+)-type and OH(-)-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H(+) and OH(-) to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  14. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  15. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  16. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  17. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    International Nuclear Information System (INIS)

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-01-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity

  18. Calculation of neutron-induced single-event upset cross sections for semiconductor memory devices

    International Nuclear Information System (INIS)

    Ikeuchi, Taketo; Watanabe, Yukinobu; Nakashima, Hideki; Sun, Weili

    2001-01-01

    Neutron-induced single-event upset (SEU) cross sections for semiconductor memory devices are calculated by the Burst Generation Rate (BGR) method using LA150 data and QMD calculation in the neutron energy range between 20 MeV and 10 GeV. The calculated results are compared with the measured SEU cross sections for energies up to 160 MeV, and the validity of the calculation method and the nuclear data used is verified. The kind of reaction products and the neutron energy range that have the most effect on SEU are discussed. (author)

  19. Evaluation of pelletron accelerator facility to study radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Prakash, A. P. Gnana; Pushpa, N.; Praveen, K. C.; Naik, P. S.; Revannasiddaiah, D.

    2012-01-01

    In this paper we present the comprehensive results on the effects of different radiation on the electrical characteristics of different semiconductor devices like Si BJT, n-channel MOSFETs, 50 GHz and 200 GHz silicon-germanium heterojunction bipolar transistor (SiGe HBTs). The total dose effects of different radiation are compared in the same total dose ranging from 100 krad to 100 Mrad. We show that the irradiation time needed to reach very high total dose can be reduced by using Pelletron accelerator facilities instead of conventional irradiation facilities.

  20. Micro and nanophotonics for semiconductor infrared detectors towards an ultimate uncooled device

    CERN Document Server

    Jakšic, Zoran

    2014-01-01

    The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of