WorldWideScience

Sample records for semiarid shrub-steppe ecosystem

  1. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Linking the spatial patterns of organisms and abiotic factors to ecosystem function and management: insights from semi-arid environments

    Directory of Open Access Journals (Sweden)

    F. T. Maestre

    2006-12-01

    Full Text Available Numerous theoretical and modeling studies have demonstrated the ecological significance of the spatial patterning of organisms on ecosystem functioning and dynamics. However, there is a paucity of empirical evidence that quantitatively shows how changes in the spatial patterns of the organisms forming biotic communities are directly related to ecosystem structure and functioning. In this article, I review a series of experiments and observational studies conducted in semi-arid environments from Spain (degraded calcareous shrubland, steppes dominated by Stipa tenacissima, and gypsum shrublands to: 1 evaluate whether the spatial patterns of the dominant biotic elements in the community are linked to ecosystem structure and functioning, and 2 test if these patterns, and those of abiotic factors, can be used to improve ecosystem restoration. In the semiarid steppes we found a significant positive relationship between the spatial pattern of the perennial plant community and: i the water status of S. tenacissima and ii perennial species richness and diversity. Experimental plantings conducted in these steppes showed that S. tenacissima facilitated the establishment of shrub seedlings, albeit the magnitude and direction of this effect was dependent on rainfall conditions during the first yr after planting. In the gypsum shrubland, a significant, direct relationship between the spatial pattern of the biological soil crusts and surrogates of ecosystem functioning (soil bulk density and respiration was found. In a degraded shrubland with very low vegetation cover, the survival of an introduced population of the shrub Pistacia lentiscus showed marked spatial patterns, which were related to the spatial patterns of soil properties such as soil compaction and sand content. These results provide empirical evidence on the importance of spatial patterns for maintaining ecosystem structure and functioning in semi-arid ecosystems

  3. The infrared emissivities of soil and Artemisia tridentata and subsequent temperature corrections in a shrub-steppe ecosystem

    International Nuclear Information System (INIS)

    Hipps, L.E.

    1989-01-01

    The determination of plant and soil temperatures using remote sensing technology is examined in a shrub-steppe ecosystem. The emissivities of Artemisia tridentata L. shrubs and the soil surface were examined in such an ecosystem. The emissivity of A. tridentata plants was calculated to be 0.97, which is in the range of reported values for other green plants. The soil emissivity was 0.93. Temperature readings from an infrared thermometer (IRT) must be corrected for the emissivity value of the target and the reflected sky radiation. Although these two factors produce errors which are opposite in sign, they will not offset one another. An analysis is presented which quantifies the temperature error resulting from ignoring the corrections. The error is negligible only for emissivity values greater than 0.98. The error is proportional to temperature, and increases rapidly with decreases in emissivity. The true emissivities must be determined, and the above corrections must be calculated in order to obtain accurate temperatures in an ecosystem from remote sensing methods. (author)

  4. The infrared emissivities of soil and Artemisia tridentata and subsequent temperature corrections in a shrub-steppe ecosystem

    International Nuclear Information System (INIS)

    Hipps, L.E.

    1989-01-01

    The determination of plant and soil temperatures using remote sensing technology is examined in a shrub-steppe ecosystem. The emissivities of Artemisia tridentata L. shrubs and the soil surface were examined in such an ecosystem. The emissivity of A. tridentata plants was calculated to be 0.97, which is in the range of reported values for other green plants. The soil emissivity was 0.93. Temperature readings from an infrared thermometer (IRT) must be corrected for the emissivity value of the target and the reflected sky radiation. Although these two factors produce errors which are opposite in sign, they will not offset one another. An analysis is presented which quantifies the temperature error resulting from ignoring the corrections. The error is negligible only for emissivity values greater than 0.98. The error is proportional to temperature, and increases rapidly with decreases in emissivity. The true emissivities must be determined, and the above corrections must be calculated in order to obtain accurate temperatures in an ecosystem from remote sensing methods

  5. Community structure affects annual grass weed invasion during restoration of a shrub-steppe ecosystem

    Science.gov (United States)

    Phil S. Allen; Susan E. Meyer

    2014-01-01

    Ecological restoration of shrub-steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will...

  6. Influence of shrubs on soil chemical properties in Alxa desert steppe, China

    Science.gov (United States)

    Hua Fu; Shifang Pei; Yaming Chen; Changgui Wan

    2007-01-01

    Alxa desert steppe is one of severely the degraded rangelands in the Northwest China. Shrubs, as the dominant life form in the desert steppe, play an important role in protecting this region from further desertification. Chemical properties of three soil layers (0 to 10, 10 to 20 and 20 to 30 cm) at three locations (the clump center [A], in the periphery of shrub...

  7. [Assemblage effect of ground arthropod community in desert steppe shrubs with different ages].

    Science.gov (United States)

    Liu, Ren-Tao; Zhu, Fan; Chai, Yong-Qing

    2014-01-01

    Taking the 6-, 15-, 24- and 36-year-old Caragana intermedia shrubs in desert steppe as a subject, an investigation on soil properties and ground arthropod community was carried out under the shrub and in the open to probe into the assemblage effect of ground arthropod community in desert steppe shrubs with different ages. The results were as follows: 1) In the 6-year-old shrubland, significant differences were only found in soil physical properties (soil texture, soil moisture and electrical conductivity) between the microhabitats under shrub and in the open. Beginning from the 15-year-old shrubland, however, soil organic matter and nutrition (N, P) increased significantly. 2) A total of 27 groups were captured in the studied sites which dominated by Carabidae, Tenebrionidae and Formicidae. From 6- to 15-year-old shrubland, the number of dominant groups decreased while that of common groups increased for the ground arthropod community under the shrub. From 15- to 24- and 36-year-old shrubland, the difference between the microhabitats under the shrub and in the open decreased firstly, and then increased. Some special groups appeared under the shrub in the 36-year-old shrubland, and dung beetles became dominant. 3) In the 6- and 24-year-old shrublands, there were no significant differences in group richness, abundance, and diversity index between the microhabitats under the shrub and in the open. As for the 15- and 36-year-old shrublands, however, significant differences were observed. 4) The shrub age had a stronger effect on the distribution of ground arthropods living under the shrubs compared to that in the open. The changes in soil texture, pH and electrical conductivity could significantly influence on the distribution of ground arthropods under the shrub, also in the open to some degree. It was suggested that the development of shrubland had strong impact on assemblage effect of ground arthropods, which was closely correlated with the stand age and would

  8. Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem

    DEFF Research Database (Denmark)

    Lellei-Kovacs, E.; Kovacs-Lang, E.; Kalapos, T.

    2008-01-01

    are still limited. Soil respiration rate-measured monthly between April and November from 2003 to 2006-remained very low (0.09 - 1.53 mu mol CO2 m(-2) s(-1))in accordance with the moderate biological activity and low humus content of the nutrient poor, coarse sandy soil. Specific soil respiration rate...... ( calculated for unit soil organic matter content), however, was relatively high (0.36 - 7.92 mu mol CO g(-1) C(org)h(-1)) suggesting substrate limitation for soil biological activity. During the day, soil respiration rate was significantly lower at dawn than at midday, while seasonally clear temperature......The influence of simulated climate change on soil respiration was studied in a field experiment on 4 m x 5 m plots in the semiarid temperate Pannonian sand forest-steppe. This ecosystem type has low productivity and soil organic matter content, and covers large areas, yet data on soil carbon fluxes...

  9. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    snow. These results indicate that as snow water subsidies decrease, ecosystems may shift from tree and shrub dominated to grassland dominated. As climate change progresses, shifts in the precipitation regimes in semi-arid environments may lead to changes in species composition and carbon stores throughout the intermountain west.

  10. Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes.

    Science.gov (United States)

    Wang, Qi; Bao, Yuying; Liu, Xiaowei; Du, Guoxin

    2014-10-01

    Temporal and spatial patterns of arbuscular mycorrhizal fungi (AMF) and glomalin and soil enzyme activities were investigated in different managed semiarid steppes located in Inner Mongolia, North China. Soils were sampled in a depth up to 30 cm from non-grazed, overgrazed, and naturally restored steppes from June to September. Roots of Leymus chinense (Trin.) Tzvel. and Stipagrandis P. Smirn. were also collected over the same period. Results showed that overgrazing significantly decreased the total mycorrhizal colonization of S. grandis; total colonization of L. chinensis roots was not significantly different in the three managed steppes. Nineteen AMF species belonging to six genera were isolated. Funneliformis and Glomus were dominant genera in all three steppes. Spore density and species richness were mainly influenced by an interaction between plant growth stage and management system (P soil depth. AMF species richness was significantly positively correlated with soil acid phosphatase activity, alkaline phosphatase activity, and two Bradford-reactive soil protein (BRSP) fractions (P soil glomalin and phosphatase activity in different managed semiarid steppes. Based on these observations, AMF communities could be useful indicators for evaluating soil quality and function of semiarid grassland ecosystems.

  11. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe.

    Science.gov (United States)

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-28

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m(-2) across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  12. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe

    Science.gov (United States)

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m-2 across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  13. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    Science.gov (United States)

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  14. Ecological restoration of peatlands in steppe and forest-steppe areas

    Science.gov (United States)

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  15. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    Science.gov (United States)

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  16. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    Science.gov (United States)

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant

  17. New Possibilities for High-Resolution, Large-Scale Ecosystem Assessment of the World's Semi-Arid Regions

    Science.gov (United States)

    Burney, J. A.; Goldblatt, R.

    2016-12-01

    Understanding drivers of land use change - and in particular, levels of ecosystem degradation - in semi-arid regions is of critical importance because these agroecosystems (1) are home to the world's poorest populations, almost all of whom depend on agriculture for their livelihoods, (2) play a critical role in the global carbon and climate cycles, and (3) have in many cases seen dramatic changes in temperature and precipitation, relative to global averages, over the past several decades. However, assessing ecosystem health (or, conversely, degradation) presents a difficult measurement problem. Established methods are very labor intensive and rest on detailed questionnaires and field assessments. High-resolution satellite imagery has a unique role semi-arid ecosystem assessment in that it can be used for rapid (or repeated) and very simple measurements of tree and shrub density, an excellent overall indicator for dryland ecosystem health. Because trees and large shrubs are more sparse in semi-arid regions, sub-meter resolution imagery in conjunction with automated image analysis can be used to assess density differences at high spatial resolution without expensive and time-consuming ground-truthing. This could be used down to the farm level, for example, to better assess the larger-scale ecosystem impacts of different management practices, to assess compliance with REDD+ carbon offset protocols, or to evaluate implementation of conservation goals. Here we present results comparing spatial and spectral remote sensing methods for semi-arid ecosystem assessment across new data sources, using the Brazilian Sertão as an example, and the implications for large-scale use in semi-arid ecosystem science.

  18. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  19. Soils of the Pacific Northwest shrub-steppe. Occurrence and properties of soils on the Arid Land Ecology Reserve, Hanford Reservation

    International Nuclear Information System (INIS)

    Wildung, R.E.

    1977-07-01

    The soils of the Arid Land Ecology Reserve, encompassing the IBP Grassland Biome intensive study site on the ERDA Hanford Reservation, are representative of a larger geographical region including much of the Columbia Plateau and Pacific Northwest shrub-steppe. This results from a unique diversity in parent materials of mixed origin derived from the loess eolian, lacustrine and stream-laid material including glacial outwashes, river terraces, flood plains and alluvial fans and meteorological factors accompanying a marked change in altitude within the Reserve resulting in development of soils over a range in temperature, moisture and vegetative regimes. The Reserve and the IBP Grassland Biome intensive study site serve as valuable, representative areas for the study of soil genesis and morphology in the shrub-steppe. The role of soils can be determined in basic environmental processes involving the flow of energy, cyclization of nutrients or the fate and behavior of pollutants. These processes may be examined to provide baseline information for comparison to other, more disturbed areas. Or, for investigative purposes, processes may be systematically altered to determine the influence of soil-perturbing activities such as agriculture, mining and industry on the terrestrial ecosystem

  20. Differential nitrogen cycling in semiarid sub-shrubs with contrasting leaf habit.

    Directory of Open Access Journals (Sweden)

    Sara Palacio

    Full Text Available Nitrogen (N is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental (15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.

  1. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão

    Directory of Open Access Journals (Sweden)

    Ran Goldblatt

    2017-12-01

    Full Text Available Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3–0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes—trees, shrubs/grasses, and bare land—across 1000 km 2 of the semi-arid Sertão region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses. This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.

  2. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau

    Science.gov (United States)

    Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua

    2018-01-01

    Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.

  3. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  4. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Science.gov (United States)

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  5. Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture

    Science.gov (United States)

    Li, Sheng-Gong; Eugster, Werner; Asanuma, Jun; Kotani, Ayumi; Davaa, Gombo; Oyunbaatar, Dambaravjaa; Sugita, Michiaki

    2008-03-01

    The examination of vegetation productivity and use of light and water resources is important for understanding the carbon and water cycles in semiarid and arid environments. We made continuous measurements of carbon dioxide and water vapor fluxes over an arid steppe ecosystem in Mongolia by using the eddy covariance (EC) technique. These measurements allow an examination of EC-estimated gross ecosystem productivity (GEP), light use efficiency (LUE), and water use efficiency (WUE) of the steppe. Daily variations of GEP, LUE, and WUE were associated with daily variations of incident photosynthetically active radiation (PAR), ambient temperature (Ta), and vapor pressure deficit (VPD). The magnitudes of these variations were also dependent on canopy development. On the daily basis, GEP linearly correlated with evapotranspiration rate and PAR. LUE correlated positively with leaf area index, Ta, and soil moisture availability but negatively with the surface reflectivity for short-wave solar radiation. Throughout the growing season, both GEP and LUE responded strongly to precipitation-fed soil moisture in the top 20 cm of the soil. An examination of the responses of LUE and WUE to PAR under different soil moisture conditions shows that when soil water availability exceeded VPD, the steppe was most efficient in light use, whereas it was less efficient in water use. The multivariate analysis of variance also suggests that soil moisture availability, especially water status in the upper 20-cm soil layer with dense distribution of grass roots, is the most significant factor that governs GEP, WUE, and LUE. This study provides a preliminary assessment of the use of available water and light by the Mongolian arid steppe ecosystems under seasonally varying soil moisture conditions. A better understanding of these functional responses is required to predict how climate change may affect arid steppe ecosystems.

  6. Pleistocene Park: the restoration of steppes as a tool to mitigate climate change through albedo effect

    Science.gov (United States)

    Zimov, N.; Loranty, M. M.; Edgar, C.; Kropp, H.; Zimov, S. A.

    2017-12-01

    In the late Pleistocene, the world largest ecosystem was the mammoth steppe. It stretched from the Iberian Peninsula to Canada and from the New Siberian Islands to China. It was a highly productive steppe ecosystem with numerous predators and herbivores that maintained the dominance of grasslands. With the end of the Pleistocene, the climate warmed and humans entered Siberia and the Americas. The introduction of humans as predators in these regions led to the extinction of most large animals, and the further degradation of the steppes. Mosses, shrubs and larch forest soon replaced grasses and herbs. Pleistocene Park is an experiment conducted in the far north of Siberia; its main goal is to revive the extinct steppe ecosystem in the Arctic. This would increase the richness of the northern ecosystems and, bioproductivity, and through a series of ecological mechanisms help to mitigate climate change. To conduct the experiment, was fenced 2000 hectares of land, and continue the ongoing process of introducing animals that either lived on this territory in the past or that can adapt to the modern northern environment. Through grazing, animals slowly transform the vegetation, replacing mosses, shrubs, and trees with grasses and herbs. Here we present the effects grazing animals have on the albedo of the landscape. Several years of year-round measurement of albedo and incoming and reflected radiation conducted in the grasslands in the park indicate substantially higher albedo compared with most modern ecosystems like larch forest and shrublands. Since grasses are lighter than forest, they reflect a higher portion of energy back to space. Results indicate the most dramatic difference in reflected solar radiation is in April and early May. Grasslands covered with snow reflect most of the sun's energy, while dark stems of forests and shrubs absorb that energy and promote warming. We argue that large-scale promotion of highly productive steppes in the Arctic will

  7. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  8. Current ecosystem processes in steppe near Lake Baikal

    Science.gov (United States)

    Vanteeva, Julia

    2015-04-01

    The steppes and forest steppes complexes of Priol'khonie at the Lake Baikal (southern Siberia, Russia) were studied in this research. Recreational activity has a significant impact on the Priol'khonie region. During soviet time this area was actively used for agriculture. Nowadays, this territory is the part of Pribaikalskyi National Park and special protection is needed. As the landscapes satisfy different human demands there are many land-management conflicts. The specific climate and soil conditions and human activity lead to erosion processes on study area. Sediment loads are transferred into the Lake Baikal and cause water pollution. Consequently, vegetation cover and phytomass play an important role for regulating hydrological processes in the ecosystems. The process of phytomass formation and its proactive role playing on sedimentation and mitigate silt detaching by rill and inter-rill erosion are considered in the research as important indicators of the ecosystem functions for steppe landscapes. These indicators were studied for the different land cover types identified on the area because the study area has a large variety of steppe and forest steppe complexes, differing in the form of relief, soil types, vegetation species composition and degree of land degradation. The fieldwork was conducted in the study area in the July and August of 2013. Thirty-two experimental sites (10 x 10 m) which characterized different types of ecosystem were established. The level of landscape degradation was estimated. The method of clipping was used for the valuation of above-ground herbaceous phytomass. The phytomass of tree stands was calculated using the volume-conversion rates for forest-steppe complexes. For the quantification of transferred silt by inter-rill erosion in different conditions (vegetation, slope, soil type, anthropogenic load) a portable rainfall simulator was created with taking into account the characteristics of the study area. The aboveground

  9. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China. We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.

  10. Assessing Ecosystem Model Performance in Semiarid Systems

    Science.gov (United States)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  11. Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar

    Science.gov (United States)

    Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.

    2017-12-01

    Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in

  12. Ecosystem responses to warming and watering in typical and desert steppes

    OpenAIRE

    Zhenzhu Xu; Yanhui Hou; Lihua Zhang; Tao Liu; Guangsheng Zhou

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two ...

  13. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Science.gov (United States)

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  14. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J

    2014-04-01

    Shrub canopies in semi-arid environments often produce positive effects on soil fertility, and on the richness and biomass of understorey plant communities. However, both positive and negative effects of shrub encroachment on plant and soil attributes have been reported at the landscape-level. The contrasting results between patch- and landscape-level effects in shrublands could be caused by differences in the degree of shrub encroachment or grazing pressure, both of which are likely to reduce the ability of individual shrubs to ameliorate their understorey environment.We examined how grazing and shrub encroachment (measured as landscape-level shrub cover) influence patch-level effects of shrubs on plant density, biomass and similarity in species composition between shrub understories and open areas, and on soil stability, nutrient cycling, and infiltration in two semi-arid Australian woodlands.Individual shrubs had consistently positive effects on all plant and soil variables (average increase of 23% for all variables). These positive patch-level effects persisted with increasing shrub cover up to our maximum of 50% cover. Heavy grazing negatively affected most of the variables studied (average decline of 11%). It also altered, for some variables, how individual shrubs affected their sub-canopy environment with increasing shrub cover. Thus for species density, biomass and soil infiltration, the positive effect of individual shrubs with increasing shrub cover diminished under heavy grazing. Our study refines predictions of the effects of woody encroachment on ecosystem structure and functioning by showing that heavy grazing, rather than differences in shrub cover, explains the contrasting effects on ecosystem structure and function between individual shrubs and those in dense aggregations. We also discuss how species-specific traits of the encroaching species, such as their height or its ability to fix N, might influence the relationship between their patch

  15. Bumble bee (Hymenoptera: Apidae) community structure on two sagebrush steppe sites in southern Idaho

    Science.gov (United States)

    Stephen P. Cook; Sara M. Birch; Frank W. Merickel; Carrie Caselton Lowe; Deborah Page-Dumroese

    2011-01-01

    Although sagebrush, Artemisia spp., does not require an insect pollinator, there are several native species of bumble bees, Bombus spp. (Hymenoptera: Apidae), that are present in sagebrush steppe ecosystems where they act as pollinators for various forbs and shrubs. These native pollinators contribute to plant productivity and reproduction. We captured 12 species of...

  16. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain)

    International Nuclear Information System (INIS)

    Moro, M. J.; Were, A.; Morillas, L.; Villagarcia, L.; Canton, Y.; Lazaro, R.; Serrano-Ortiz, P.; Kowalski, A. S.; Domingo, F.

    2009-01-01

    Dewfall deposition can be a significant source of moisture in arid and semiarid ecosystems, thus contribution to improve daily and annual water balances. Occurrence, frequency and amount of dewfall were measured in the Balsa Blanca site (Cabo de Gata, Almeria, Spain) from January 2007 to May 2008. this area has a sparse vegetation cover dominated by Stipa tenacissima combined with bare soil and biological soil crusts. (Author) 3 refs.

  17. Ecosystem responses to warming and watering in typical and desert steppes

    Science.gov (United States)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  18. Shrub mound formation and stability on semi-arid slopes in the Northern Negev Desert of Israel: A field and simulation study

    NARCIS (Netherlands)

    Buis, E.; Temme, A.J.A.M.; Veldkamp, A.; Boeken, B.; Jongmans, A.G.; Breemen, van N.; Schoorl, J.M.

    2010-01-01

    In semi-arid areas vegetation is scarce and often dominated by individual shrubs on raised mounds. The processes of formation of these mounds are diverse and still debated. Often, shrub mound formation is directly related to the formation of vegetation patterns, thereby assuming that shrub mound

  19. Identification, Classification, Mapping of Model and Secondary Steppe Ecosystems Within the Orenburg-Kazakhstan Cross-Border Region

    Directory of Open Access Journals (Sweden)

    Yakovlev Ilya Gennadyevich

    2014-09-01

    Full Text Available The article deals with the current issues of modern steppe management in the Orenburg-Kazakhstan cross-border region. The authors use the data of their own field research over the period of 2009-2014 aimed at detection and classification of model and secondary steppe ecosystems in the region. For the last 6 years it has been revealed that some steppe and fallow lands have different squares. The detected lands are multiple-aged and differ according to their qualitative composition depending on aged-specific (time for completion of agricultural activity, soil-lithogenous and floristic features.The authors detected sites of anthropogenic influence on steppe ecosystems as well as the factors that have favorable affect on restoration of natural ecosystems. The article also reveals the centers of restoration of traditional steppe fauna within the Orenburg-Kazakhstan region and the distribution area of marmot, little bustard, bustard, saiga antelope. The authors carried out the comparative analysis of agro-ecological situation in the region for a few last years as well as over long period of time according to archival and polling data.

  20. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  1. Changes in Nitrogen Cycling in a Shrub-Encroached Dryland

    Science.gov (United States)

    Turpin-Jelfs, T. C.; Michaelides, K.; Biederman, J. A.; Evershed, R. P.; Anesio, A. M.

    2017-12-01

    Land degradation is estimated to have occurred in 10-20% of Earth's drylands, where the environmental and socioeconomic consequences have affected 250 million people. The prevailing form of land degradation in drylands over the past ca. 150 years has been the encroachment of woody plants into arid and semi-arid grasslands. The density of mesquite (Prosopis spp.), a significant nitrogen (N)-fixing woody encroacher, has increased within the arid and semi-arid grasslands of the southwestern US by >400% over the past 30 years to occupy an area of >38 Mha. However, the impacts of an increasing density of N-fixing shrubs on the cycling and spatial variability of N within these ecosystems remains poorly understood. Here, we quantify how concentrations of N (ammonium-N, nitrate-N, organic N), as well as carbon (C; total C and organic C) and phosphorous (P; loosely-bound P, iron- and aluminium-bound P, apatite P and calcite-bound P, and residual P), and the structure of the microbial community (phospholipid fatty acids), change in the soils underneath and between shrub canopies along a gradient of shrub-encroachment for a semiarid grassland in the Santa Rita Experimental Range (SRER) Arizona, US. This gradient of encroachment was comprised of five sites that ranged from a grass dominated state to a shrub-dominated state characterised by mosaics of shrub patches and bare-soil interspaces. Our results show that the organic C and total N content of soils between shrubs decreased by >50% between grass dominant and shrub dominant end-member sites. Conversely, the organic C and total N content of soils beneath shrub canopies remained relatively constant along the encroachment gradient.

  2. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  3. Antecedent conditions influence soil respiration differences in shrub and grass patches

    Science.gov (United States)

    Quantifying the response of soil respiration to past environmental conditions is critical for predicting how future climate and vegetation change will impact ecosystem carbon balance. Increased shrub dominance in semiarid grasslands has potentially large effects on soil carbon cycling. The goal of t...

  4. Indicators of ecosystem function identify alternate states in the sagebrush steppe.

    Science.gov (United States)

    Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E

    2011-10-01

    Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics

  5. Seasonal Distribution and Diversity of Ground Arthropods in Microhabitats Following a Shrub Plantation Age Sequence in Desertified Steppe

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  6. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  7. THE ROLE OF POLYPLOIDY IN ADAPTATION AND SETTLING OF STEPPE SHRUBS IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    Natalia V Ekimova

    2011-03-01

    Full Text Available Chromosome numbers for some species of Central Asia steppe shrubs are given: Rhamnus erythroxylon Pall. (Rhamnaceae, Caragana buriatica Peschk. (Fabaceae, Amygdalus pedunculata Pall., Armeniaca sibirica (L. Lam. (Rosaceae, Atraphaxis pungens (Bieb. Jaub. et Spach. and A. frutescens (L. C. Koch (Polygonaceae. Chromosome numbers of some species were determined for the first time. Comparative analysis of adaptive properties of polyploid and diploid species has been conducted. It was established that natural polyploids are more adaptive to existence in extreme conditions. They possess by high potential for survival and characterized by more high level of intraspecific polymorphism, abundant flowering and fruitification, ability of propagate both generative and vegetative means, high seed germination.

  8. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  9. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    Science.gov (United States)

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  10. Current stage of the restoration of Chernozems in rangeland ecosystems of the steppe zone

    Science.gov (United States)

    Rusanov, A. M.

    2015-06-01

    The results of two rounds of soil and geobotanic surveys of rangeland ecosystems in the steppe zone are presented. The same sites with southern chernozems (Calcic Chernozems) under steppe plant communities at different stages of pasture degradation were investigated at the end of the 1980s, when they suffered maximum anthropogenic loads, and in 2011-2013, after a long period of relative rest. In the 1980s, degradation of soil physical properties in rangeland ecosystems under the impact of long-term unsustainable management was noted. At the same time, it was found that the major qualitative and quantitative properties of humus in the chernozems were preserved independently from the level of pasture degradation. The following period of moderate grazing pressure had a favorable effect on the soil properties. Owing to the good characteristics of the soil humus, the restoration of the physical properties of chernozems-including their structural state, water permeability, and bulk density-took place in a relatively short period. It is argued that the soil bulk density is a natural regulator of the species composition of steppe vegetation, because true grasses (Poaceae)-typical representatives of the steppe flora-have a fibrous root system requiring the soils with low density values. The improvement of the properties of chernozems is related to the development of secondary ecosystems with a higher portion of grasses in place of damaged rangelands and to the increase in the area of nominal virgin phytocenoses.

  11. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 1

    Science.gov (United States)

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Steven T. Knick; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver

    2015-01-01

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  12. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  13. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  14. Development of land degradation spectral indices in a semi-arid Mediterranean ecosystem

    Science.gov (United States)

    Chabrillat, Sabine; Kaufmann, Hermann J.; Palacios-Orueta, Alicia; Escribano, Paula; Mueller, Andreas

    2004-10-01

    The goal of this study is to develop remote sensing desertification indicators for drylands, in particular using the capabilities of imaging spectroscopy (hyperspectral imagery) to derive soil and vegetation specific properties linked to land degradation status. The Cabo de Gata-Nijar Natural Park in SE Spain presents a still-preserved semiarid Mediterranean ecosystem that has undergone several changes in landscape patterns and vegetation cover due to human activity. Previous studies have revealed that traditional land uses, particularly grazing, favoured in the Park the transition from tall arid brush to tall grass steppe. In the past ~40 years, tall grass steppes and arid garrigues increased while crop field decreased, and tall arid brushes decreased but then recovered after the area was declared a Natural Park in 1987. Presently, major risk is observed from a potential effect of exponential tourism and agricultural growth. A monitoring program has been recently established in the Park. Several land degradation parcels presenting variable levels of soil development and biological activity were defined in summer 2003 in agricultural lands, calcareous and volcanic areas, covering the park spatial dynamics. Intensive field spectral campaigns took place in Summer 2003 and May 2004 to monitor inter-annual changes, and assess the landscape spectral variability in spatial and temporal dimension, from the dry to the green season. Up to total 1200 field spectra were acquired over ~120 targets each year in the land degradation parcels. The targets were chosen to encompass the whole range of rocks, soils, lichens, and vegetation that can be observed in the park. Simultaneously, acquisition of hyperspectral images was performed with the HyMap sensor. This paper presents preliminary results from mainly the field spectral campaigns. Identifying sources of variability in the spectra, in relation with the ecosystem dynamics, will allow the definition of spectral indicators of

  15. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  16. Antecedent Moisture and Biological Inertia as Predictors of Plant and Ecosystem Productivity in Arid and Semiarid Systems

    Science.gov (United States)

    Ogle, K.

    2011-12-01

    Many plant and ecosystem processes in arid and semiarid systems may be affected by antecedent environmental conditions (e.g., precipitation patterns, soil water availability, temperature) that integrate over past days, weeks, months, seasons, or years. However, the importance of such antecedent exogenous effects relative to conditions occurring at the time of the observed process is relatively unexplored. Even less is known about the potential importance of antecedent endogenous effects that describe the influence of past ecosystem states on the current ecosystem state; e.g., how is current ecosystem productivity related to past productivity patterns? We hypothesize that incorporation of antecedent exogenous and endogenous factors can improve our predictive understanding of many plant and ecosystem processes, especially in arid and semiarid ecosystems. Furthermore, the common approach to quantifying the effects of antecedent (exogenous) variables relies on arbitrary, deterministic definitions of antecedent variables that (1) may not accurately describe the role of antecedent conditions and (2) ignore uncertainty associated with applying deterministic definitions. In this study, we employ a stochastic framework for (1) computing the antecedent variables that estimates the relative importance of conditions experienced each time unit into the past, also providing insight into potential lag responses, and (2) estimating the effect of antecedent factors on the response variable of interest. We employ this approach to explore the potential roles of antecedent exogenous and endogenous influences in three settings that illustrate the: (1) importance of antecedent precipitation for net primary productivity in the shortgrass steppe in northern Colorado, (2) dependency of tree growth on antecedent precipitation and past growth states for pinyon growing in western Colorado, and (3) influence of antecedent soil water and prior root status on observed root growth in the Mojave

  17. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    Science.gov (United States)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  18. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    Science.gov (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-07-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  19. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Science.gov (United States)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  20. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Science.gov (United States)

    A.G. Lapenis; G.B. Lawrence; S.W. Bailey; B.F. Aparin; A.I. Shiklomanov; N.A. Speranskaya; M.S. Torn; M. Calef

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe...

  1. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    Science.gov (United States)

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  2. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 3: Site level restoration decisions

    Science.gov (United States)

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Bruce A. Roundy; Eugene W. Schupp; Steven T. Knick; Mark Brunson; James D. McIver

    2017-01-01

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  3. Shrub-Steppe Seasons A Natural History of the Mid-Columbia Basin

    Energy Technology Data Exchange (ETDEWEB)

    LE Rogers

    1995-08-01

    This book collects and updates a series of articles about the natural history of the Mid-Columbia region. The articles first appeared as a monthly column titled ''Natural History'' in the Tri-City Herald, beginning in May 1991. My approach has been to condense the best of what is known about the ecology of the region to a manageable length with little in the way of technical language and terms. Admittedly, there is a bias toward those topics and species on which I have either been personally involved or observed as part of the ecology research programs conducted on the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve. The ALE Reserve is situated on the northeast-facing flank of the Rattlesnake Hills. Rattlesnake Mountain with a crest of over 3,600 feet is visible throughout much of the Mid-Columbia. Shrub-steppe grasslands once covered a large part of the western United States but most have been converted to other uses. The ALE site is the only remaining sizeable acreage (120 square miles) that is in near pristine condition and provides the only clear indication as to what the early trappers, traders, pioneers, and tribal members may have encountered in their day-to-day activities. In this respect, ALE provides a visible touchstone linking the past with the present for all of us.

  4. Soil nitrogen availability in the open steppe with Stipa tenacissima

    Science.gov (United States)

    Novosadova, Irena; Damian Ruiz Sinoga, Jose; Záhora, Jaroslav

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Iberian Peninsula and show a higher degree of variability in composition and structure (Maestre et al., 2007). Vegetation patchiness, which are seen as mosaics including vegetated and non-vegetated components, is a common feature of such open steppes (Valentin et al., 1999). Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). First, soil moisture is greater beneath the clumps, due to water harvesting through rainfall interception, uptake by roots from adjacent unvegetated areas and water redistribution from gaps to clumps (Bergkamp et al., 1999; Puigdefá bregas et al., 1999). Second, the canopy diminishes the intense solar radiation (Maestre et al., 2001) avoiding the sun-baking effect, which is an important factor for soil temperature change and physical disruption (Magid et al., 1999). Plant clumps either functioned as microbial hotspots where enhanced microbially driven ecosystem processes took place or as microbial banks capable of undergoing a burst of activity under favourable climatic conditions (Goberna et al., 2007). The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). On the other hand there exists experimental evidence of a non-patchy distribution of certain soil microbial properties in semi-arid Mediterranean patchy ecosystems (Goberna et al., 2007). The microbial nutrient release processes have a fundamental role in ecosystem

  5. Reclamation after oil and gas development does not speed up succession or plant community recovery in big sagebrush ecosystems in Wyoming

    Science.gov (United States)

    Rottler, Caitlin M.; Burke, Ingrid C.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2018-01-01

    Article for intended outlet: Restoration Ecology. Abstract: Reclamation is an application of treatment(s) following a disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in re-establishing late-successional plant communities. Re-establishment of these plant communities is especially important and potentially challenging in regions such as drylands and shrub steppe ecosystems where succession proceeds slowly. Dryland shrub steppe ecosystems are frequently associated with areas rich in fossil-fuel energy sources, and as such the need for effective reclamation after disturbance from fossil-fuel-related energy development is great. Past research in this field has focused primarily on coal mines; few researchers have studied reclamation after oil and gas development. To address this research gap and to better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, USA and quantified the extent of recovery for major functional groups on reclaimed and unreclaimed (recovered via natural succession) wellpads relative to the undisturbed plant community. Reclamation increased the rate of recovery for all forb and grass species as a group and for perennial grasses, but did not affect other functional groups. Rather, analyses comparing recovery to environmental variables and time since wellpad abandonment showed that recovery of other groups were affected primarily by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help re-establish late-successional plant communities more quickly than they would re-establish naturally.

  6. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    Science.gov (United States)

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  7. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    Science.gov (United States)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions

  8. SPATIAL AND TEMPORAL VARIABILITY OF DRY STEPPES OF EASTERN MONGOLIA

    Directory of Open Access Journals (Sweden)

    Galina Ogureeva

    2011-01-01

    Full Text Available Spatial-temporal structure and coenotic diversity of dry steppes of Eastern Mongolia was identified by analyzing characteristics of naturally occurring vegetation connection to the regional landscape structure. Different types of combinations of plant communities (phytocoenochores were determined in the vegetation structure of the Eastern Steppe Station Tumén-Tsogt (in Sukhebator district. Temporal dynamics of steppe ecosystems was defined from the studies of steppe cover fluctuations in 2008. The coenotic role of eight annual plant species that form synusiae in the steppe communities was shown through analysis of species constancy, projective cover, and activity. Knowledge about the trend of successions and the manifestation of fluctuations in vegetation cover is necessary for the development of science-based system of management options to maintain the number and abundance of different plant groups in plant communities. Monitoring the state of natural ecosystems has a major scientific and practical importance, since steppe ecosystems are the basic component of the pasture’s resources of the country.

  9. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods

  10. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Science.gov (United States)

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  11. The Bering Land Bridge: a moisture barrier to the dispersal of steppe-tundra biota?

    Science.gov (United States)

    Elias, Scott A.; Crocker, Barnaby

    2008-12-01

    The Bering Land Bridge (BLB) connected the two principal arctic biological refugia, Western and Eastern Beringia, during intervals of lowered sea level in the Pleistocene. Fossil evidence from lowland BLB organic deposits dating to the Last Glaciation indicates that this broad region was dominated by shrub tundra vegetation, and had a mesic climate. The dominant ecosystem in Western Beringia and the interior regions of Eastern Beringia was steppe-tundra, with herbaceous plant communities and arid climate. Although Western and Eastern Beringia shared many species in common during the Late Pleistocene, there were a number of species that were restricted to only one side of the BLB. Among the vertebrate fauna, the woolly rhinoceros was found only to the west of the BLB, North American camels, bonnet-horned musk-oxen and some horse species were found only to the east of the land bridge. These were all steppe-tundra inhabitants, adapted to grazing. The same phenomenon can be seen in the insect faunas of the Western and Eastern Beringia. The steppe-tundra beetle fauna of Western Beringia was dominated by weevils of the genus Stephanocleonus, a group that was virtually absent from Eastern Beringia. The dry-adapted weevils, Lepidophorus lineaticollis and Vitavitus thulius were important members of steppe-tundra communities in Eastern Beringia, but were either absent or rare in Western Beringia. The leaf beetles Chrysolina arctica, C. brunnicornis bermani, and Galeruca interrupta circumdata were typical members of the Pleistocene steppe-tundra communities of Western Beringia, but absent from Eastern Beringia. On the other hand, some steppe tundra-adapted leaf beetles managed to occupy both sides of the BLB, such as Phaedon armoraciae. Much of the BLB remains unstudied, but on biogeographic grounds, it appears that there was some kind of biological filter that blocked the movements of some steppe-tundra plants and animals across the BLB.

  12. Microbial Community Activity And Plant Biomass Are Insensitive To Passive Warming In A Semiarid Ecosystem

    Science.gov (United States)

    Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2017-12-01

    Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil

  13. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    Most people if asked what association they have to the phrase - ice age, will answer - "Mammoth". But mammoths are not only big wooly elephants which went extinct in the beginning of Holocene. They were also part of a great ecosystem, the Northern Steppe or Mammoth Ecosystem, which was the world's largest ecosystem for hundreds thousand of years. This ecosystem, with extremely high rates of biocycling, could maintain animal densities which can be hardly found anywhere in the modern world. Northern steppe played an important role in shaping the glacial climate of the planet. High albedo grasslands reflected a much bigger portion of sun heat back to the atmosphere. Cold soils and permafrost served as sinks of carbon, helping to keep greenhouse gas concentration in the atmosphere at low levels. In the beginning of Holocene, simultaneously with wave of human expansion, an extinction wave took place. Tens of megafauna species became extinct at that time worldwide, while ones that resisted the extinction substantially dropped in numbers. The Northern Steppe ecosystem became imbalanced. Without large numbers of herbivores grazing and trampling the pasture, trees, shrubs and moss invaded grasslands. Within just a few hundreds years the mammoth ecosystem was gone, replaced by much lower productivity ecosystems. Already 14 thousand year ago, by simply increasing hunting pressure, humans managed to dramatically change Earth's appearance. We propose that by artificially maintaining a high animal density and diversity on a limited territory for extended period of time, it will be possible to reverse the shift, reestablishing the productive Northern Steppe ecosystem. Moss, shrubs and tree sprouts are not able to resist grazing pressure so they will be quickly replaced by grasses and herbs. Animals digesting all aboveground biomass would accelerate nutrition cycling and consequently increase bioproductivity. Higher bioproductivity would increase evapotranspiration, keeping soils

  14. [Effects of cutting and reseeding on the ground-dwelling arthropod community in Caragana intermedia forest in desert steppe].

    Science.gov (United States)

    Liu, Ren-Tao; Chai, Yong-Qing; Yang, Xin-Guo; Song, Nai-Ping; Wang, Xin-Yun; Wang, Lei

    2013-01-01

    Taking a 25-year-old Caragana intermedia forest in desert steppe as test object, an investigation was conducted on the ground-dwelling arthropod community in cutting and no-cutting stands with and without reseeding, aimed to understand the effects of cutting, reseeding and their interaction on the individual number and group richness of ground-dwelling arthropod in C. intermedia forest. There were significantly lower number and richness of ground-dwelling arthropod in the open spaces than under the shrubs in the no-cutting and no-reseeding stands. Cutting, reseeding and both of them could significantly increase the number and richness of ground-dwelling arthropod in the open spaces, but not under the shrubs, compared with no cutting or reseeding. Consequently, there were no significant differences in the distribution of ground-dwelling arthropod in the open spaces and under the shrubs in the cutting, reseeding, or cutting and reseeding stands. Further, there was a similar buffer effect between cutting and reseeding on the ground-dwelling arthropod. No significant differences were observed in the ground-dwelling arthropod distribution, between cutting stand and reseeding stand, between cutting stand and cutting and reseeding stand, and between reseeding stand and cutting and reseeding stand. It was suggested that cutting, reseeding, or both of them could significantly improve the ground-dwelling arthropod diversity especially in the open spaces, being beneficial for the restoration of degraded grassland ecosystem and the rational management on artificial C. intermedia forest in desert steppe.

  15. Phenotypic sex ratios of Atriplex canescens shrubs in relation to cattle browsing

    Science.gov (United States)

    Andres F. Cibils; David M. Swift; Richard H. Hart

    2001-01-01

    Previous studies conducted at our research site on the shortgrass steppe in Colorado showed that phenotypic sex ratios of tetraploid fourwing saltbush (Atriplex canescens Pursh [Nutt]) shrubs were less female biased in grazed pastures than in adjacent exclosures. The potential effects of cattle browsing on shrub sex ratios were studied both in the field and in a...

  16. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    Science.gov (United States)

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  17. Soil microbial diversity in the vicinity of desert shrubs.

    Science.gov (United States)

    Saul-Tcherkas, Vered; Unc, Adrian; Steinberger, Yosef

    2013-04-01

    Water and nutrient availability are the major limiting factors of biological activity in arid and semiarid ecosystems. Therefore, perennial plants have developed different ecophysiological adaptations to cope with harsh conditions. The chemical profile of the root exudates varies among plant species and this can induce variability in associated microbial populations. We examined the influence of two shrubs species, Artemisia sieberi and Noaea mucronata, on soil microbial diversity. Soil samples were collected monthly, from December 2006 to November 2007, near canopies of both shrubs (0-10-cm depth). Samples were used for abiotic tests and determination of soil bacterial diversity. No significant differences were found in the abiotic variables (soil moisture, total organic matter, and total soluble nitrogen (TSN)) between soil samples collected from under the two shrubs during the study period. No obvious differences in the Shannon-Weaver index, evenness values, or total phylogenetic distances were found for the soil microbial communities. However, detailed denaturing gradient gel electrophoresis (DGGE) clustering as well as taxonomic diversity analyses indicated clear shifts in the soil microbial community composition. These shifts were governed by seasonal variability in water availability and, significantly, by plant species type.

  18. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  19. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire

    International Nuclear Information System (INIS)

    Engle, Mark A.; Sexauer Gustin, Mae; Johnson, Dale W.; Murphy, James F.; Miller, Wally W.; Walker, Roger F.; Wright, Joan; Markee, Melissa

    2006-01-01

    Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36 ± 0.13 g ha -1 , respectively, with litter and vegetation being the most important sources

  20. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    Science.gov (United States)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  1. Assessment of the Current State of Agropastoral Landscapes in Semi-Arid Areas of the Republic of Kalmykia with Application of Gis-Technologies

    Directory of Open Access Journals (Sweden)

    Mushaeva Kermen Batnasunovna

    2015-04-01

    Full Text Available The state of lands in arid areas of southern Russia is entirely dependent on the state of natural steppe, dry steppe and semi-desert ecosystems. The study of vegetation traditionally enjoys a commanding position in synecological studies, because plant communities form the framework of terrestrial ecosystems. In this paper we give a detailed geobothanical description of the test plots made as a result of field research in the semi-desert areas of Kalmykia. In addition, we obtained photo samples of soils that were subsequently processed, analyzed and entered into the database of soils and used as an identifier of rangeland degradation, located in the semi-arid zone of the country. The creation of this database will improve the quality of remote sensing in the region. In the course of computer processing of materials using GIS technology, the geoinformation analysis of land degradation in the studied territory was held, and the area of these lands according to the levels of degradation was calculated.

  2. Ecosystem functional response across precipitation extremes in a sagebrush steppe.

    Science.gov (United States)

    Tredennick, Andrew T; Kleinhesselink, Andrew R; Taylor, J Bret; Adler, Peter B

    2018-01-01

    Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response

  3. Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa

    CSIR Research Space (South Africa)

    Archibald, SA

    2009-01-01

    Full Text Available and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed...

  4. Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs

    Science.gov (United States)

    Baker, Bruce W.; Augustine, David J.; Sedgwick, James A.; Lubow, Bruce C.

    2013-01-01

    Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single-place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black-tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black-tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off-colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White-tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black-tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black-tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing-tolerant shortgrasses at both complexes. Variation in modification of

  5. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    Science.gov (United States)

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  6. Behavior of pyrophite shrubs in mediterranean terrestrial ecosystems (i): Population and reproductive model.

    Science.gov (United States)

    Usó-Doménech, Josep-Lluis; Nescolarde-Selva, Josué-Antonio; Lloret-Climent, Miguel; González-Franco, Lucía

    2018-03-01

    The mathematical submodel ULEX is used to study the dynamic behavior of the green, floral and woody biomass of the main pyrophite shrub species, the gorse (Ulex parviflorus Pourret), and its relationship with other shrub species, typical of a Mediterranean ecosystem. The focus are the ecological conditions of post-fire stage growth, and its efficacy as a protective cover against erosion processes in the short, medium and long term, both in normal conditions and at the limits of desertification conditions. The model sets a target to observe the behavior and to anticipate and consequently intervene with adequate protection, restoration and management measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Assessing effect of rainfall on rate of alien shrub expansion in a southern African savanna

    NARCIS (Netherlands)

    Masocha, Mhosisi; Dube, Timothy; Skidmore, A.K.; Holmgren, Milena; Prins, Herbert

    2017-01-01

    Understanding the environmental factors governing the spread of alien shrubs is crucial for conserving biodiversity. In the semi-arid savannas of Africa, alien shrub invasion often occurs simultaneously with native shrub encroachment but climate-dependent differences in encroachments of native and

  8. Transitions and coexistence along a grazing gradient in the Eurasian steppe

    Science.gov (United States)

    Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin

    2017-04-01

    Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations

  9. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Science.gov (United States)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  10. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought

    Science.gov (United States)

    Scott, Russell L.; Biederman, Joel A.; Hamerlynck, Erik P.; Barron-Gafford, Greg A.

    2015-12-01

    Global-scale studies indicate that semiarid regions strongly regulate the terrestrial carbon sink. However, we lack understanding of how climatic shifts, such as decadal drought, impact carbon sequestration across the wide range of structural diversity in semiarid ecosystems. Therefore, we used eddy covariance measurements to quantify how net ecosystem production of carbon dioxide (NEP) differed with relative grass and woody plant abundance over the last decade of drought in four Southwest U.S. ecosystems. We identified a precipitation "pivot point" in the carbon balance for each ecosystem where annual NEP switched from negative to positive. Ecosystems with grass had pivot points closer to the drought period precipitation than the predrought average, making them more likely to be carbon sinks (and a grass-free shrubland, a carbon source) during the current drought. One reason for this is that the grassland located closest to the shrubland supported higher leaf area and photosynthesis at the same water availability. Higher leaf area was associated with a greater proportion of evapotranspiration being transpiration (T/ET), and therefore with higher ecosystem water use efficiency (gross ecosystem photosynthesis/ET). Our findings strongly show that water availability is a primary driver of both gross and net semiarid productivity and illustrate that structural differences may contribute to the speed at which ecosystem carbon cycling adjusts to climatic shifts.

  11. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  12. Alternative states of a semiarid grassland ecosystem: implications for ecosystem services

    Science.gov (United States)

    Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.

    2011-01-01

    Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.

  13. Remote sensing data to classify functional groups of vegetation and their distribution and abundance in a semiarid mountain watershed, Idaho, USA

    Science.gov (United States)

    Loughridge, R. E.; Benner, S. G.; McNamara, J. P.; Flores, A. N.

    2012-12-01

    In water-limited montane ecosystems, topography is a significant driver of energy balance and soil moisture and therefore governs the distribution and abundance of terrestrial vegetation. Few studies have made a concerted effort to quantify spatial patterns in vegetation along physiographic gradients that control microclimate such as slope, elevation, and aspect. Furthermore, spectral mixing of different vegetation species within individual visible and near-infrared remote sensing pixels makes it difficult to constrain the temporal growth and senescence of individual plant functional types. We report on a study that seeks to understand the interacting roles of topography, soil moisture, and solar radiation on the distribution of different plant functional types within the Dry Creek Experimental Watershed (DCEW). Boise State University maintains the 27 km2 watershed which is located in the Boise Front Mountains of southwest Idaho. It is qualitatively observed in DCEW that low elevations are dominated by sage-steppe ecosystems and high elevations transition to conifer forests. It is also observed that aspect has a major control in which sage-steppe is evident at high elevations on south facing slopes conversely from north facing slopes. To quantify these trends we measured percent ground cover of functional groups (i.e. forbs, grass, shrubs, etc.) at 77 sites within DCEW spanning a large gradient in the controlling biophysiographic variables. In addition, vegetation water content (VWC) and spectral reflectance from the 325 to 1075 nm wavelengths was collected for specific vegetation types at eight permanent soil moisture monitoring sites contained in DCEW throughout the 2012 green-up/senescence transition. To develop a watershed-wide classification we built a supervised multilayer perceptron (MLP) backpropagating artificial neural network (ANN) using temporal Landsat 5 images to classify 4 major groups: sage-steppe, Douglas fir, ponderosa pine, and deciduous trees

  14. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    Science.gov (United States)

    Fang, Ying; Xun, Fen; Bai, Wenming; Zhang, Wenhao; Li, Linghao

    2012-01-01

    Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N

  15. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland.

    Science.gov (United States)

    Ru, Jingyi; Zhou, Yaqiong; Hui, Dafeng; Zheng, Mengmei; Wan, Shiqiang

    2018-03-01

    Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013-2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra-annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions. © 2017 John Wiley & Sons Ltd.

  16. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    Science.gov (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  17. Retaining of botanical diversity of steppe ecosystems at the Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2005-01-01

    The nuclear tests conducted on the STS area have an effect on steppe biome. Regime of military secrecy allowed retaining extensive diversity of steppe vegetation at the area of the former Semipalatinsk test site, although the vegetation was liquidated in the most part of Kazakhstan. Unique biologic diversity of the steppe vegetation requires status of particularly secured vegetation of the STS area. (author)

  18. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  19. An Improved Estimation of Regional Fractional Woody/Herbaceous Cover Using Combined Satellite Data and High-Quality Training Samples

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-01-01

    Full Text Available Mapping vegetation cover is critical for understanding and monitoring ecosystem functions in semi-arid biomes. As existing estimates tend to underestimate the woody cover in areas with dry deciduous shrubland and woodland, we present an approach to improve the regional estimation of woody and herbaceous fractional cover in the East Asia steppe. This developed approach uses Random Forest models by combining multiple remote sensing data—training samples derived from high-resolution image in a tailored spatial sampling and model inputs composed of specific metrics from MODIS sensor and ancillary variables including topographic, bioclimatic, and land surface information. We emphasize that effective spatial sampling, high-quality classification, and adequate geospatial information are important prerequisites of establishing appropriate model inputs and achieving high-quality training samples. This study suggests that the optimal models improve estimation accuracy (NMSE 0.47 for woody and 0.64 for herbaceous plants and show a consistent agreement with field observations. Compared with existing woody estimate product, the proposed woody cover estimation can delineate regions with subshrubs and shrubs, showing an improved capability of capturing spatialized detail of vegetation signals. This approach can be applicable over sizable semi-arid areas such as temperate steppes, savannas, and prairies.

  20. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  1. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  2. Soil macrofauna (invertebrates of Kazakhstanian Stipa lessingiana dry steppe

    Directory of Open Access Journals (Sweden)

    Bragina Tatyana М.

    2016-12-01

    Full Text Available Stipa lessingiana steppes used to be prevalent on the dry Trans-Ural denudation plains, particularly, on the Sub-Ural and the Turgay Plateau. But, most of them have been lost because they were plowed up during the Virgin Land campaign in the second part of 20th century. This paper presents a detailed study of the faunistic composition and the structure of soil-dwelling invertebrate communities (macrofauna of a temperate-dry bunch feather grass steppe in the Turgai Plateau (Northern-Turgai physical-geographical province of steppe Kazakhstan, Kostanay Oblast. The study site is located in the territory of the Naurzum State Nature Reserve, a part of the UNESCO World Heritage site “Saryarka Steppe and Lakes of Northern Kazakhstan”, where remnants of Virgin S. lessingiana steppes have been preserved to the present day. This region is the driest and most continental in climate of all the dry steppes of Kazakhstan. The total abundance and biomass of soil invertebrate communities in the investigated site were lower than in the northern and western steppe areas. Soil invertebrates are among the major components that determine the functioning of terrestrial natural ecosystems.

  3. Using vegetation structure estimates derived from multi-source remote sensing to predict dynamics of a semi-arid ecosystem in the western US

    Science.gov (United States)

    Shrestha, R.; Mitchell, J. J.; Glenn, N. F.; Flores, A. N.

    2014-12-01

    The distribution of species and vegetation types across the western US are expected to shift in response to climate change. Previous studies have documented the change in fire regime and the increasing fire-invasive grass cycle occurring in the western U.S. The change in vegetation structure due to climate change and invasive species alters the fuel load, making these ecosystems vulnerable to high-severity fire. Synergistic remote sensing data, such as hyperspectral data and high-resolution lidar, can be leveraged to capture the composition and structural variability of short-statured semiarid vegetation (e.g. sagebrush, annual grasses). We use a random-forests based fusion technique to integrate multi-source airborne data (hyperspectral and LiDAR) and generate spatially-explicit estimates of vegetation composition and structure (biomass, cover, density, height, LAI) and associated uncertainty across a climate and elevation gradient in southern Idaho. The results will be used to initialize an individual-based terrestrial biosphere model (Ecosystem Demography, ED2) and estimate structural dynamics under future scenarios. This study will provide a basis for understanding feedback mechanisms related to changing climate conditions, fire regimes and patterns of non-native plant invasion. The forthcoming field and remote sensing collection campaigns are also designed for parameterizing a dryland shrub plant functional type in the ED2 model.

  4. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  5. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  6. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  7. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    OpenAIRE

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of ...

  8. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    Science.gov (United States)

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  9. Postfire encroachment of Fabiana imbricata is real? Assessing changes of shrubland occupation during 40 years in NW Patagonia steppe

    Science.gov (United States)

    Lasaponara, Rosa; Oddi, Facundo; Ghermandi, Luciana

    2014-05-01

    Landscapes are dynamic in space and time, being spatio-temporal processes of particular interest for landscape ecology. In particular, grasslands can change their structure through the expansion of shrubs in the landscape matrix. Shrub encroachment affect biodiversity as well as forage availability that is the key component of the productive use of rangelands. However, despite its recognition as a global problem, knowledge on the rates, dynamics and encroachment patterns is even scarce. For example, although it is generally accepted that fire control shrub encroachment, certain shrubby species could be favored by the occurrence of fire. In northwestern Patagonian steppe, Fabiana imbricata form large monospecific shrublands that are part of the landscape mosaic and its dynamics of regeneration is strongly related to fire. This long-lived shrub (≡ 150 years) is a typical seeder that is killed by fire and recruits seedlings almost exclusively in post-fire, establishing even-age patches. Our objective was to determine whether F. imbricata shrublands have expanded during the last 40 years in a landscape fire prone. The study area corresponds to San Ramon ranch (22,000 ha) located in northwestern Patagonia steppe, Argentina (latitude -41° 04'; longitude -70° 51'). Two distribution maps of the species were made that corresponds to the study area in 1968 and 2011. The 1968 map was elaborated from the digitalization of aerial photographs (1:45000) while the 2011 map was produced with very high resolution satellite images, current aerial photographs and GPS field data. Both maps were loaded into a GIS environment, in which landscape metrics at patch and class level were determined and then compared. From remote sensing and dendroecological techniques, we know that the study area was almost entirely affected by fires during the study period. Therefore, the comparison of both maps allows us to know post-fire changes in the shrublands spatial configuration at the landscape

  10. Transitions in Land Use Architecture under Multiple Human Driving Forces in a Semi-Arid Zone

    Directory of Open Access Journals (Sweden)

    Issa Ouedraogo

    2015-07-01

    Full Text Available The present study aimed to detect the main shifts in land-use architecture and assess the factors behind the changes in typical tropical semi-arid land in Burkina Faso. Three sets of time-series LANDSAT data over a 23-year period were used to detect land use changes and their underpinning drivers in multifunctional but vulnerable ecologies. Group discussions in selected villages were organized for mapping output interpretation and collection of essential drivers of change as perceived by local populations. Results revealed profound changes and transitions during the study period. During the last decade, shrub and wood savannahs exhibited high net changes (39% and −37% respectively with a weak net positive change for cropland (only 2%, while cropland and shrub savannah exhibited high swap (8% and 16%. This suggests that the area of cropland remained almost unchanged but was subject to relocation, wood savannah decreased drastically, and shrub savannah increased exponentially. Cropland exhibited a null net persistence while shrub and wood savannahs exhibited positive and negative net persistence (1.91 and −10.24, respectively, indicating that there is movement toward agricultural intensification and wood savannah tended to disappear to the benefit of shrub savannah. Local people are aware of the changes that have occurred and support the idea that illegal wood cutting and farming are inappropriate farming practices associated with immigration; absence of alternative cash generation sources, overgrazing and increasing demand for wood energy are driving the changes in their ecosystems. Policies that integrate restoration and conservation of natural ecosystems and promote sustainable agroforestry practices in the study zone are highly recommended.

  11. Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters

    Science.gov (United States)

    Campos, Xochi; Germino, Matthew; de Graaff, Marie-Anne

    2017-01-01

    AimsChanging precipitation regimes in semiarid ecosystems will affect the balance of soil carbon (C) input and release, but the net effect on soil C storage is unclear. We asked how changes in the amount and timing of precipitation affect litter decomposition, and soil C stabilization in semiarid ecosystems.MethodsThe study took place at a long-term (18 years) ecohydrology experiment located in Idaho. Precipitation treatments consisted of a doubling of annual precipitation (+200 mm) added either in the cold-dormant season or in the growing season. Experimental plots were planted with big sagebrush (Artemisia tridentata), or with crested wheatgrass (Agropyron cristatum). We quantified decomposition of sagebrush leaf litter, and we assessed organic soil C (SOC) in aggregates, and silt and clay fractions.ResultsWe found that: (1) increased precipitation applied in the growing season consistently enhanced decomposition rates relative to the ambient treatment, and (2) precipitation applied in the dormant season enhanced soil C stabilization.ConclusionsThese data indicate that prolonged increases in precipitation can promote soil C storage in semiarid ecosystems, but only if these increases happen at times of the year when conditions allow for precipitation to promote plant C inputs rates to soil.

  12. An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Meyer, Debbie; Granneman, Brian J.

    2013-01-01

    Characterizing and quantifying distributions of shrubland ecosystem components is one of the major challenges for monitoring shrubland vegetation cover change across the United States. A new approach has been developed to quantify shrubland components as fractional products within National Land Cover Database (NLCD). This approach uses remote sensing data and regression tree models to estimate the fractional cover of shrubland ecosystem components. The approach consists of three major steps: field data collection, high resolution estimates of shrubland ecosystem components using WorldView-2 imagery, and coarse resolution estimates of these components across larger areas using Landsat imagery. This research seeks to explore this method to quantify shrubland ecosystem components as continuous fields in regions that contain wide-ranging shrubland ecosystems. Fractional cover of four shrubland ecosystem components, including bare ground, herbaceous, litter, and shrub, as well as shrub heights, were delineated in three ecological regions in Arizona, Florida, and Texas. Results show that estimates for most components have relatively small normalized root mean square errors and significant correlations with validation data in both Arizona and Texas. The distribution patterns of shrub height also show relatively high accuracies in these two areas. The fractional cover estimates of shrubland components, except for litter, are not well represented in the Florida site. The research results suggest that this method provides good potential to effectively characterize shrubland ecosystem conditions over perennial shrubland although it is less effective in transitional shrubland. The fractional cover of shrub components as continuous elements could offer valuable information to quantify biomass and help improve thematic land cover classification in arid and semiarid areas.

  13. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Directory of Open Access Journals (Sweden)

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  14. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  15. Spectroscopic surrogates of soil organic matter resilience in crusted semiarid Mediterranean ecosystems

    Science.gov (United States)

    Miralles Mellado, Isabel; Almendros, Gonzalo; Ortega, Raúl; Cantón, Yolanda; Poveda, Francisco; van Wesemael, Bas

    2016-04-01

    Arid and semiarid ecosystems represent nearly a third of the Earth's total land surface. In these ecosystems, there is a critical balance between C sequestration and biodegradation that could easily be altered due to human disturbance or global change. These ecosystems are widely characterized by the presence of biological soil crusts (BSCs) which play the most important role in the C-cycle in arid and semiarid areas. Consequently, soil organic matter (SOM) characteristics of crusted soil could readily reflect important information on the resilience of SOM in response to any global temperature increase or to inappropriate soil management practices. In this research, representative BSCs and underlying soils were studied in two different semiarid ecosystems in Southern Spain, i.e., Amoladeras (located in Cabo de Gata Natural Park), and El Cautivo (located in Tabernas desert). Chemical fractionation and characterization of the SOM in BSCs and underlying soils were carried out in order to assess not only the total amount of organic C sequestered but mainly the quality of humic-type organic fractions. After isolating the major organic fractions (particulate fraction, humic acid-like (HA), alkali-extracted fulvic acid (FA) and H3PO4-FAs), the macromolecular, HA fraction was purified and studied by derivative visible spectroscopy and resolution-enhanced infrared (IR) spectroscopy. Our results show differences in the structural characteristics of the HA-type substances, interpreted as progressive stages of diagenetic transformation of biomacromolecules. Amoladeras showed higher SOM content, and higher values of HA and HA/FA ratio than El Cautivo, with lower SOM content in BSCs and underlying soils. The latter site accumulates SOM consisting mainly of comparatively less recalcitrant organic fractions with small molecular sizes (H3PO4-FAs and FAs). Moreover HAs in samples from Amoladeras showed higher condensation and aromaticity (higher E4, lower E4/E6 ratio), pointing to

  16. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    Science.gov (United States)

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.

  17. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    Science.gov (United States)

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  18. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  19. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...

  20. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  1. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  2. Microbial inoculants and organic amendment improves the establishment of autochtonous shrub species and microbial activity recovery in a semiarid soil

    Science.gov (United States)

    Mengual, Carmen; Schoebitz, Mauricio; Azcon, Rosario; Torres, Pilar; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (B. megaterium, Enterobacter sp, B. thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium+SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp+SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis+SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.

  3. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Huber, S.

    2015-01-01

    strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights...... between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties...

  4. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe

    Science.gov (United States)

    Questions: How does long-term grazing exclusion influence plant community composition in a semiarid grassland? Can spatial variation in the effects of grazing exclusion be explained by variation in soil texture? Location: The shortgrass steppe of northeastern Colorado, USA, located in the North Amer...

  5. Considerations of Socio-Economic and Global Change Effects on Eurasian Steppes Ecosystem and Land-Atmosphere Interactions

    Science.gov (United States)

    Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.

    2004-12-01

    Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.

  6. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  7. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    Science.gov (United States)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  8. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  9. Does browsing reduce shrub survival and vigor following summer fires?

    Science.gov (United States)

    Fulbright, Timothy E.; Dacy, Emily C.; Drawe, D. Lynn

    2011-01-01

    Periodic fire is widely hypothesized to limit woody plant encroachment in semiarid grasslands. In southern Texas, however, most of the woody plants that have invaded grasslands during the past two centuries are resistant to fire. We hypothesized that browsing by Odocoileus virginianus increases mortality of palatable shrubs and reduces vigor of shrubs following fire. We randomly selected ten pairs of each of three shrub species -Condalia hookeri, Acacia farnesiana, and Celtis ehrenbergiana - in each of three locations before prescribed burns during summer 2001. Following burns, we used a wire fence to protect one shrub of each pair from browsing. We estimated intensity of O. virginianus browsing and number and height of sprouts 4, 12, 20, 30, 38, and 47 weeks post-fire. We determined shrub height, survival, and biomass one year post-fire. Averaged across species, browsing intensity on unfenced shrubs was greater (LS Means, P 0.05) one year post-burn. Browsing by O. virginianus at the intensity in our study does not increase mortality or reduce vigor of C. hookeri, A. farnesiana, and Condalia ehrenbergiana producing new growth following destruction of aboveground tissues by a single fire compared to shrubs that are not browsed following fire.

  10. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available Biological soil crusts (BSC contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between –11.31 and –17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, –26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards

  11. Use of AIRSAR to identify woody shrub invasion and other indicators of desertification in the Jornada LTER

    Science.gov (United States)

    Musick, H. Brad; Schaber, Gerald G.; Breed, Carol S.

    1995-01-01

    The replacement of semidesert grassland by woody shrubland is a widespread form of desertification. This change in physiognomy and species composition tends to sharply reduce the productivity of the land for grazing by domestic livestock, increase soil erosion and reduce soil fertility, and greatly alter many other aspects of ecosystem structure and functioning. Remote sensing methods are needed to assess and monitor shrubland encroachment. Detection of woody shrubs at low density would provide a particularly useful baseline on which to access changes, because an initially low shrub density often tends to increase even after cessation of the disturbance (e.g., overgrazing, drought, or fire suppression) responsible for triggering the initial stages of the invasion (Grover and Musick, 1990). Limited success has been achieved using optical remote sensing. In contrast to other forms of desertification, biomass does not consistently decrease with a shift from grassland to shrubland. Estimation of green vegetation amount (e.g., by NDVI) is thus of limited utility, unless the shrubs and herbaceous plants differ consistently in phenology and the area can be viewed during a season when only one of these is green. The objective of this study was to determine if the potential sensitivity of active microwave remote sensing to vegetation structure could be used to assess the degree of shrub invasion of grassland. Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were acquired for a semiarid site containing varied mixtures of shrubs and herbaceous vegetation and compared with ground observations of vegetation type and other landsurface characteristics. In this preliminary report we examine the response of radar backscatter intensity to shrub density. The response of other multipolarization parameters will be examined in future work.

  12. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem

    NARCIS (Netherlands)

    Lesschen, J.P.; Cammeraat, L.H.; Kooijman, A.M.; van Wesemael, B.

    2008-01-01

    To mitigate erosion on abandoned fields in semi-arid ecosystems, it is important to understand how vegetation and soil properties and patterns develop after land abandonment. Our objective was to investigate the development of spatial heterogeneity in vegetation and soil properties after land

  13. Carbon dioxide effluxes and their environmental controls in sagebrush steppe ecosystems along an elevation gradient in the Reynolds Creek Critical Zone Observatory

    Science.gov (United States)

    Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2017-12-01

    The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration

  14. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  15. A synopsis of short-term response to alternative restoration treatments in sagebrush-steppe: the SageSTEP project

    Science.gov (United States)

    McIver, James; Brunson, Mark; Bunting, Steve; Chambers, Jeanne; Doescher, Paul; Grace, James; Hulet, April; Johnson, Dale; Knick, Steven T.; Miller, Richard; Pellant, Mike; Pierson, Fred; Pyke, David; Rau, Benjamin; Rollins, Kim; Roundy, Bruce; Schupp, Eugene; Tausch, Robin; Williams, Jason

    2014-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the

  16. Arid oil-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs

    Science.gov (United States)

    1. Long-lived, drought-tolerant shrubs are dominant components of many arid ecosystems, and shrubs provide multiple ecosystem services (e.g., soil stabilization, herbaceous plant facilitation, carbon storage and wildlife habitat). On denuded sites, shrub restoration is hindered by abiotic (erosion ...

  17. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  18. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  19. Spatial distribution of overland flow and sediment yield in semi-arid rangelands

    International Nuclear Information System (INIS)

    Sarah, P.; Lavee, H.

    2009-01-01

    Feedbacks and mutual links exist among soil, vegetation and water; they enable co-evolution of these features within eco-geomorphic systems, These relations are fragile, especially in semi-arid areas where grazing is the main land use. The simples subdivision of the surface of many semi-arid rangelands is into a two-component mosaic pattern comprising shrub patches interspersed with open spaces, with the former acting s skinks for water and other resources, and the latter as sources. However close observations in areas under grazing in the northern Negev region of Israel suggested that the spatial patterns of surface components is more complicated, and that the open space between shrubs consists of two components: herbaceous areas, separated by trampling routes that support no vegetation. (Author)

  20. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    Science.gov (United States)

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate

  1. Impacts of day versus night warming on soil microclimate: Results from a semiarid temperate steppe

    International Nuclear Information System (INIS)

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-01-01

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13 W m -2 with constant power mode) significantly increased daily mean soil temperature at 10 cm depth by 0.71, 0.78, and 1.71 o C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 o C) than day warming did (0.60 and 0.66 o C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 o C) and night (0.81 and 1.10 o C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40 cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming.

  2. Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa

    2015-01-01

    he Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ......), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable...

  3. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    Science.gov (United States)

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  4. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    Science.gov (United States)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with

  5. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  6. Potential of native shrubs Haloxylon salicornicum and Calligonum Polygonoides for restoration of degraded lands in Arid Western Rajasthan, India.

    Science.gov (United States)

    Rathore, V S; Singh, J P; Bhardwaj, S; Nathawat, N S; Kumar, Mahesh; Roy, M M

    2015-01-01

    Shrub-induced soil property spatial heterogeneity is common in arid and semi-arid ecosystems and aids desertified land restoration. However, the effectiveness of this technique may rely on the plant species used and the habitat conditions present. To assess the degree to which planting two native species, Haloxylon salicornicum and Calligonum polygonoides, facilitates degraded land restoration, soil and herbaceous plant community properties were measured 7 years after planting. Soil samples were extracted at two depths (0-5 and 5-20 cm) from three sub-habitats, i.e., under the shrub canopy, from alleys between shrubs and from the open area. Shrub planting increased the quantity of silt + clay content (30-39 %); enhanced water holding capacities (24-30 %); increased the levels of organic carbon (48-69 %), available nitrogen (31-47 %), available phosphorus (32-41 %), and electrical conductivity (21-33 %); and decreased the pH (7-12 %) and bulk density levels (5-6 %) in the surface layer of soils beneath the canopy. Soil property changes were more significant at the surface (0-5 cm) than in the deeper layer (5-20 cm), and were more pronounced under H. salicornicum than under C. polygonoides. Furthermore, the density and biomass levels of herbaceous plants were 1.1 to 1.2 and 1.4 to 1.6 times greater, respectively, in the shrub alleys than in open area. H. salicornicum induced more robust soil amelioration and herbaceous plant facilitative properties than did C. polygonoides. Artificially planting these shrubs may thus be employed to restore degraded areas of arid regions.

  7. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  8. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  9. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  10. Mean species cover: a harmonized indicator of shrub cover for forest inventories

    Science.gov (United States)

    Iciar Alberdi; Sonia Condés; Ronald E. Mcroberts; Susanne Winter

    2018-01-01

    Because shrub cover is related to many forest ecosystem functions, it is one of the most relevant variables for describing these communities. Nevertheless, a harmonized indicator of shrub cover for large-scale reporting is lacking. The aims of the study were threefold: to define a shrub indicator that can be used by European countries for harmonized shrub cover...

  11. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe.

    Science.gov (United States)

    Peng, Yunfeng; Li, Fei; Zhou, Guoying; Fang, Kai; Zhang, Dianye; Li, Changbin; Yang, Guibiao; Wang, Guanqin; Wang, Jun; Yang, Yuanhe

    2017-12-01

    Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment. © 2017 John Wiley & Sons Ltd.

  12. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L. in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1 identified and located the six predominant treeline vegetation types; 2 modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3 simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2 and (3 to 4 locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix, Rhododendron-dominated, Juniperus-dominated and mixed heathland were predicted with high accuracy (AUC >0.9. Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29% would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2% and Alnus viridis (4.8%. The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the

  13. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial

  14. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Ritchie, Jerry C.; Nearing, Mark A.; Rhoton, Fred E.

    2009-01-01

    Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137 Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137 Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137 Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing -5.6 and -3.2 t ha -1 yr -1 , respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be -4.3 t ha -1 yr -1 from the shrub-dominated subwatershed and -0.1 t ha -1 yr -1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a

  15. Eurasian perspectives on the role of kurgans in the conservation and restoration of steppe vegetation

    Science.gov (United States)

    Deák, Balázs; Valkó, Orsolya; Török, Péter; Sudnik-Wójcikowska, Barbara; Moysiyenko, Ivan; Bragina, Tatyana; Apostolova, Iva; Dembicz, Iwona; Bykov, Nikolai; Tóthmérész, Béla

    2017-04-01

    Steppe is among the most endangered biomes of the world, especially in Europe, where more than 90% of original steppes have been destroyed due to conversion into croplands, afforestation and other human activities. Because of the socio-economic changes of the past centuries, steppe vegetation is now often restricted to places inadequate for ploughing, such as ancient burial mounds called kurgans. Thus, beside that kurgans are millennia-old iconic historical monuments of the steppic landscape, they are vital in preserving both our cultural and natural heritage. We collected and synthesised existing knowledge on kurgans by a review of research papers and grey literature and provided recommendations for elaborating the involvement of kurgans into agri-environmental schemes. We found that the proportions of kurgans covered by steppe vegetation increase from west to east and from lowlands to uplands. Despite their small size, kurgans act as biodiversity hotspots and harbour many red-listed plant species. High biodiversity is maintained by a pronounced fine-scale environmental heterogeneity provided by the special micro-topography of the kurgans. We found that landscape-level land use changes such as intensified agriculture and construction works are the major threatening factors for biodiversity of kurgans. Despite the vital role of kurgans in sustaining steppe vegetation, we identified serious knowledge gaps on their distribution, vegetation, flora and fauna and their potential role in steppe restoration. We conclude that these sacral places play a crucial role in preserving steppe vegetation, especially in intensively used agricultural landscapes in the western part of the steppe zone. They maintain ecosystem functions at the landscape-level by providing refugia for rare grassland specialist species and ensuring habitat connectivity in anthropogenic landscapes. Based on our results we suggest improving existing agri-environmental schemes which only focus on the

  16. Stand structure modulates the long-term vulnerability of Pinus halepensis to climatic drought in a semiarid Mediterranean ecosystem.

    Science.gov (United States)

    Moreno-Gutiérrez, Cristina; Battipaglia, Giovanna; Cherubini, Paolo; Saurer, Matthias; Nicolás, Emilio; Contreras, Sergio; Querejeta, José Ignacio

    2012-06-01

    We investigated whether stand structure modulates the long-term physiological performance and growth of Pinus halepensis Mill. in a semiarid Mediterranean ecosystem. Tree radial growth and carbon and oxygen stable isotope composition of latewood (δ(13)C(LW) and δ(18)O(LW), respectively) from 1967 to 2007 were measured in P. halepensis trees from two sharply contrasting stand types: open woodlands with widely scattered trees versus dense afforested stands. In both stand types, tree radial growth, δ(13)C(LW) and δ(18)O(LW) were strongly correlated with annual rainfall, thus indicating that tree performance in this semiarid environment is largely determined by inter-annual changes in water availability. However, trees in dense afforested stands showed consistently higher δ(18)O(LW) and similar δ(13)C(LW) values compared with those in neighbouring open woodlands, indicating lower stomatal conductance and photosynthesis rates in the former, but little difference in water use efficiency between stand types. Trees in dense afforested stands were more water stressed and showed lower radial growth, overall suggesting greater vulnerability to drought and climate aridification compared with trees in open woodlands. In this semiarid ecosystem, the negative impacts of intense inter-tree competition for water on P. halepensis performance clearly outweigh potential benefits derived from enhanced infiltration and reduced run-off losses in dense afforested stands. © 2011 Blackwell Publishing Ltd.

  17. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.

    Science.gov (United States)

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas

    2015-01-01

    The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics

  18. Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?

    Science.gov (United States)

    Issoufou, Hassane Bil-Assanou; Rambal, Serge; Le Dantec, Valérie; Oï, Monique; Laurent, Jean-Paul; Saadou, Mahamane; Seghieri, Josiane

    2015-02-01

    It is crucial to understand the adaptive mechanisms of woody plants facing periodic drought to assess their vulnerability to the increasing climate variability predicted in the Sahel. Guiera senegalensis J.F.Gmel is a semi-evergreen Combretaceae commonly found in Sahelian rangelands, fallows and crop fields because of its value as an agroforestry species. We compared canopy leafing, and allometric measurements of leaf area, stem area and stem length and their relationships with leaf water potential, stomatal conductance (gs) and soil-to-leaf hydraulic conductance (KS-L), in mature and current-year resprouts of G. senegalensis in Sahelian Niger. In mature shrubs, seasonal drought reduced the ratio of leaf area to cross-sectional stem area (AL : AS), mainly due to leaf shedding. The canopy of the current-year resprouts remained permanently leafed as the shrubs produced leaves and stems continuously, and their AL : AS ratio increased throughout the dry season. Their KS-L increased, whereas gs decreased. West, Brown and Enquist's (WBE) model can thus describe allometric trends in the seasonal life cycle of undisturbed mature shrubs, but not that of resprouts. Annual clear cutting drives allometric scaling relationships away from theoretical WBE predictions in the current-year resprouts, with scaling exponents 2.5 times greater than those of mature shrubs. High KS-L (twice that of mature shrubs) supports this intensive regeneration process. The adaptive strategy described here is probably common to many woody species that have to cope with both severe seasonal drought and regular disturbance over the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xiaoming; Wang, Jinzhi; Rui, Yichao; Niu, Haishan [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Hao, Yanbin; Cui, Xiaoyong; Wang, Yanfen [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Life Sciences; Li, Changsheng [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Ocean and Space

    2011-06-15

    Purpose: In this study, a process-oriented biogeochemistry model, denitrification-decomposition (DNDC), was employed and adapted to interpret and integrate the field observations that the tested ecosystem was a weak sink of atmospheric carbon dioxide (CO{sub 2}) in 2004 but a strong source in 2005 during the growing seasons. Then we applied the model to predict long-term impacts of climate change on carbon (C) dynamics in the semiarid grassland. Materials and methods: To adapt DNDC for the targeted grassland, we modified the default values of several grass parameters such as maximum biomass production, biomass partitions, plant tissue C/N ratio, and accumulative thermal degree days based on local observations. Daily weather data for 2004 and 2005 in conjunction with soil properties and management practices for the location were utilized as inputs to simulate the grass growth and soil C dynamics. The modeled C fluxes were compared with the eddy tower data. Sensitivity tests were conducted with a baseline and twelve alternative climate scenarios of 100 years for the target grassland. Results and discussion: The observed and modeled CO{sub 2} fluxes data were well in agreement (P < 0.0001), both showing that the grassland shifted from a sink to a source of atmospheric CO{sub 2} from a wet year (2004) to a dry year (2005) over growing season. Simulations of 100 years found that, under the fenced conditions, (1) the tested ecosystem would gain C with the baseline climate conditions at a rate of 200 kg C/ha/year; (2) the warmer and drier climate scenario made the worst case having the lowest grass production with 72 kg C/ha/year lost from the soil carbon pool; and (3) the cooler and wetter climate scenario made the best case having the highest biomass production with 790 kg C/ha/year sequestered in the soil during the simulated 100 years. Conclusions: DNDC model could be used for the prediction of C dynamics in this semiarid grassland ecosystem. Since the ecosystem

  20. Effect of desertification on productivity in a desert steppe.

    Science.gov (United States)

    Tang, Zhuangsheng; An, Hui; Deng, Lei; Wang, Yingying; Zhu, Guangyu; Shangguan, Zhouping

    2016-06-14

    Desertification, one of the most severe types of land degradation in the world, is of great importance because it is occurring, to some degree, on approximately 40% of the global land area and is affecting more than 1 billion people. In this study, we used a space-for-time method to quantify the impact of five different desertification regimes (potential (PD), light (LD), moderate (MD), severe (SD), and very severe (VSD)) on a desert steppe ecosystem in northern China to examine the relationship between the productivity of the vegetation and soil properties and to determine the mechanism underlying the effects of desertification on productivity. Our results showed that the effects of desertification on TP (total phosphorus) and AP (available phosphorus) were not significant, and desertification decreased productivity in the desert steppe as a result of direct changes to soil physical properties, which can directly affect soil chemical properties. Therefore, intensive grassland management to improve soil quality may result in the long-term preservation of ecosystem functions and services.

  1. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  2. Climate Compatible Development in the Mongolia Steppe: analysis of vulnerability and adaptation response to global changes

    Science.gov (United States)

    Ojima, D. S.; Togtokh, C.; Galvin, K. A.

    2015-12-01

    INTRODUCTION: Climate change and variability, market and policy changes are shaping pastoral communities' decisions on what pathways their future livelihoods will take and how the steppe landscapes and river basins, are managed. Recent droughts and damaging winter storms (zuds) of the past two decades have exacerbated the situation and undermined the natural capital on which the pastoral livelihoods depend upon. River basins are critical natural resources well-being of social-ecological systems in Mongolia. River basins provide the ecosystem services which support pastoral communities and industrial and urban development. Green development strategies are strongly dependent on water resources. Consequently, integrated planning of river basin management is needed to maintain these critical ecosystem services to meet the multiple needs of livelihoods of communities in these basins and to support sustainable development activities within the basins. For this study our team worked in nine sums (i.e., county level administrative areas) in three river basins in two provinces (aimags) to collect household data from 144 households. We also collected census data from the aimags and national level to understand trends at the level of ecosystems and river basins. We have selected 3 sums in each river basis, representing forest steppe, steppe and desert steppe regions for comparison across river basins and ecological zones. FINDINGS: Integrated planning efforts would be enhanced through, one, use of a social-ecological framework and, two, the development of a cross-ministerial working group to address natural resource considerations. Across the three basins agriculture, pastoral, industrial, and urban needs vie for similar ecosystem services. The natural capital and ecosystem services of these basins need to be assessed to understand the vulnerability and capacity of the resources. The most frequently listed "best coping strategy" across all ecosystem types was for herders to

  3. Effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function on woodland-encroached sagebrush steppe, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.

    2017-12-01

    Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to

  4. Homogenization of the soil surface following fire in semiarid grasslands

    Science.gov (United States)

    Carleton S. White

    2011-01-01

    Semiarid grasslands accumulate soil beneath plant "islands" that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting...

  5. Water use efficiency and functional traits of a semiarid shrubland

    Science.gov (United States)

    Perez-Priego, Oscar; Lopez-Ballesteros, Ana; Sánchez-Cañete, Enrique P.; Serrano-Ortiz, Penélope; Carrara, Arnaud; Palomares-Palacio, Agustí; Oyonarte, Cecilio; Domingo, Francisco; Kowalski, Andrew S.

    2013-04-01

    In semiarid climates, water is the fundamental factor determining ecosystem productivity and thereby the capacity for carbon sequestration. Increased water use efficiency (WUE), the ratio of carbon dioxide assimilation (canopy photosynthesis, Pc) to water transpired (canopy evaporation, Ec), is assumed to be an adaptive strategy for sclerophyll shrublands to improve productivity and stress resistance in water-limited environments. However, the real complexity of WUE lies in its dependence on both plant physiological traits (e.g. stomatal resistance, photosynthetic capacity, leaf chemical composition, structure) and on environmental conditions (e.g. atmospheric CO2 concentration, vapour pressure deficit, temperature, light, soil water availability). We used a transient-state closed canopy-chamber to characterise CO2 and water vapour exchanges at the whole plant scale under different environmental conditions and phenological stages. Diurnal and seasonal variations in Pc, Ec and WUE were explained by both physiological and environmental variables. All species showed symmetric patterns in both Pc and Ec when not water limited, but asymmetry during summer drought when leaf water potential was low. During drought, grasses (Festuca sp.) showed a marked decline in functioning (Pc and Ec), whereas shrubs (Genista sp., Hormathophylla sp.) maintained spring-like assimilation rates all morning until stomatal controls shut down gas exchanges. While grasses showed the highest WUE when not water limited, their near senescence during summer drought yielded the lowest WUE. Shrubs showed reduced WUE under moderate drought stress, in contradiction to the assumptions made in global ecosystem models. The importance of the appropriate time-scale for calculating WUE (daily versus hourly), together with water use strategies and ecological functions of individual species, will be further discussed.

  6. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    Science.gov (United States)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  7. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  8. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  9. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Science.gov (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  10. Methods for measuring arctic and alpine shrub growth: A review

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.G.W.; Rayback, S.A.

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding of

  11. Diversity and activity of denitrifiers of Chilean arid soil ecosystems

    Directory of Open Access Journals (Sweden)

    Julieta eOrlando

    2012-04-01

    Full Text Available The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study, we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of

  12. Diversity and activity of denitrifiers of chilean arid soil ecosystems.

    Science.gov (United States)

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

  13. Early warning signals of desertification transitions in semiarid ecosystems.

    Science.gov (United States)

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2014-12-01

    The identification of early warning signals for regime shifts in ecosystems is of crucial importance given their impact in terms of economic and social effects. We present here the results of a theoretical study on the desertification transition in semiarid ecosystems under external stress. We performed numerical simulations based on a stochastic cellular automaton model, and we studied the dynamics of the vegetation clusters in terms of percolation theory, assumed as an effective tool for analyzing the geometrical properties of the clusters. Focusing on the role played by the strength of external stresses, measured by the mortality rate m, we followed the progressive degradation of the ecosystem for increasing m, identifying different stages: first, the fragmentation transition occurring at relatively low values of m, then the desertification transition at higher mortality rates, and finally the full desertification transition corresponding to the extinction of the vegetation and the almost complete degradation of the soil, attained at the maximum value of m. For each transition we calculated the spanning probabilities as functions of m and the percolation thresholds according to different spanning criteria. The identification of the different thresholds is proposed as an useful tool for monitoring the increasing degradation of real-world finite-size systems. Moreover, we studied the time fluctuations of the sizes of the biggest clusters of vegetated and nonvegetated cells over the entire range of mortality values. The change of sign in the skewness of the size distributions, occurring at the fragmentation threshold for the biggest vegetation cluster and at the desertification threshold for the nonvegetated cluster, offers new early warning signals for desertification. Other new and robust indicators are given by the maxima of the root-mean-square deviation of the distributions, which are attained respectively inside the fragmentation interval, for the vegetated

  14. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan

    2015-01-01

    , including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field......-emitting wet depressions could become more abundant in the lowland tundra landscape, at the cost of permafrost-stabilizing low shrub vegetation....

  15. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    Science.gov (United States)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  16. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Hai-Wei Wei

    Full Text Available Plant nitrogen (N use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2 yr(-1 and prescribed fire (annual burning on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP, inorganic N, and N uptake, decreased N response efficiency (NRE, but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  17. Book title: Exotic brome grasses in arid and semi-arid ecosystems of the western US: causes, consequences, and management implications

    Science.gov (United States)

    Exotic invasive annual grass research and management in arid and semiarid ecosystems of the western US have historically focused on the outcome of efforts to reduce weed abundance. Given the current impact of invasive annual grasses and their continued spread in this region, we assessed components ...

  18. Transfer of 137Cs in Zea mays and Phaseolus vulgaris in a semi-arid ecosystem

    International Nuclear Information System (INIS)

    Cervantes, M.L.; Segovia, N.; Gaso P, M.I.; Palacios, J.C.

    1999-01-01

    With the objective to analyse the transference of 137 Cs from soil to plants, it is realized a study in maize and bean plants in the Radioactive Waste Storage Center (CADER). This site is located in a semi-arid region with a characteristic vegetation of a sub humid temperature zone. So those plants maize and beans were cultivated in four zones near CADER during a four years period. The obtained results for 1991 to 1994 for 137 Cs in soil samples for those zones showed an evident contamination in zone 1, due to a rupture of an industrial source. In 1994 the effect of decontamination was evident since the values of specific activity found in roots were around magnitude lesser than found in 1992. In spite of exhaustive studies have been reported about the transference factors for 137 Cs in different agricultural foods, relatively few of them have paid attention to the interactions between cereals and leguminous associated in semiarid ecosystems. (Author)

  19. Future stratospheric ozone depletion will affect a subarctic dwarf shrub ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Ulf

    1997-02-01

    The stratospheric ozone depletion and the concomitant increase in ultraviolet-B (UV-B, 280-320 nm) radiation is of global concern due to the effects of UV-B on living organisms. To investigate the effects of increased levels of UV-B, a field irradiation system was established at a subarctic dwarf shrub heath in Northern Sweden (68 deg N). An ozone depletion of 15% under clear sky conditions was simulated over a naturally growing ecosystem. The response of both individual components and processes was studied to reveal changes in ecosystem structure and function. Species with different life strategies (evergreen or deciduous) responded differently both in magnitude and direction. The evergreen species were more responsive to UV-B regarding shoot growth, which could be due to cumulative effects in long-lived tissues, since the retardation in relative growth increased over time of exposure. Leaves of evergreen species became thicker under enhanced UV-B, while leaves of deciduous species became thinner. Decomposition studies (laboratory and in situ) showed that indirect effects of UV-B, due to changes in leaf tissue chemistry affected microbial activity and slowed down the decomposition rate. More directly, UV-B decreased the abundance of some fungal species and hence the composition of species. However, no altered decomposition rate was found when decomposition progressed under high UV-B even if the microorganisms were fewer. This could be due to the increased direct photo degradation of litter that compensates for lower microbial activity. The decomposition rate is therefore strongly dependent on the interception of UV-B at the litter layer. This research has shown that ecosystem components and processes are affected in a number of ways and that there are indications of changes in species composition in a long-term perspective due to differences in responsiveness between the different species. 128 refs, 7 figs

  20. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    Science.gov (United States)

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  1. The availability of mineral nitrogen in Mediterranean open steppe dominated by Stipa tenacissima L.

    Directory of Open Access Journals (Sweden)

    Irena Novosádová

    2011-01-01

    Full Text Available The area of interest is located in the Sierra de los Filabres in semi-arid steppe of the province of Almeria in Spain. The amount of water in the soil is a limiting factor and its availability affects the structure and species composition of ecosystem. On the other hand, the type of vegetation affects the water loss via evapotranspiration and thus the soil microclimate. It has a great influence on the growth and activity of soil microbial communities and hence the dynamics of decomposition of organic matter and nutrient availability. The aim of this study was to assess the intensity of microbial transformations of soil organic nitrogen and describe changes in the content of nitrogen mineral forms at different depths in the semi-arid climate soil in the Mediterranean region. Availability and movement of nitrogen was monitored by capturing the mineral nitrogen into the structures of ion exchange resin applied to the soil in three different variants (control variant, a variant with the addition of cellulose, and the variant with the addition of raw silk. Ion exchange resins have been installed into soil profile in 2008, 2009, and 2010. After the in situ exposure the ion exchange resins were removed from the soil profile and the quantity of captured mineral N was determined by distillation titration method. The availability of ammonia-nitrogen was significantly affected by the addition of different substrates mainly by the additions of the raw silk, where the availability was regularly the highest. However, the availability of ammonia-nitrogen form was generally higher than the availability of nitrate form.

  2. Effects of Spring Drought on Carbon Sequestration, Evapotranspiration and Water Use Efficiency in the Songnen Meadow Steppe in Northeast China.

    Science.gov (United States)

    Gang Dong; Jixun Guo; Jiquan Chen; Ge Sun; Song Gao; et al

    2011-01-01

    Global climate change projections suggest an increasing frequency of droughts and extreme rain events in the steppes of the Eurasian region. Using the eddy covariance method, we measured carbon and water balances of a meadow steppe ecosystem in Northeast China during 2 years which had contrasting precipitation patterns in spring seasons in 2007 and 2008. The meadow...

  3. Light use efficiency over two temperate steppes in inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Vegetation light use efficiency (LUE is a key parameter of Production Efficiency Models (PEMs for simulating gross primary production (GPP of vegetation, from regional to global scales. Previous studies suggest that grasslands have the largest inter-site variation of LUE and controlling factors of grassland LUE differ from those of other biomes, since grasslands are usually water-limited ecosystems. Combining eddy covariance flux data with the fraction of photosynthetically active radiation absorbed by the plant canopy from MODIS, we report LUE on a typical steppe and a desert steppe in Inner Mongolia, northern China. Results show that both annual average LUE and maximum LUE were higher on the desert steppe (0.51 and 1.13 g C MJ(-1 than on the typical steppe (0.34 and 0.88 g C MJ(-1, despite the higher GPP of the latter. Water availability was the primary limiting factor of LUE at both sites. Evaporative fraction (EF or the ratio of actual evapotranspiration to potential evapotranspiration (AET/PET can explain 50-70% of seasonal LUE variations at both sites. However, the slope of linear regression between LUE and EF (or AET/PET differed significantly between the two sites. LUE increased with the diffuse radiation ratio on the typical steppe; however, such a trend was not found for the desert steppe. Our results suggest that a biome-dependent LUE(max is inappropriate, because of the large inter-site difference of LUE(max within the biome. EF could be a promising down-regulator on grassland LUE for PEMs, but there may be a site-specific relationship between LUE and EF.

  4. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  5. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  6. Soil microbial respiration beneath Stipa tenacissima L. and in surrounding bare soil

    Directory of Open Access Journals (Sweden)

    Irena Novosádová

    2011-01-01

    Full Text Available Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa. Ecosystem functioning of these steppes is strongly related to the spatial pattern of grass tussocks. Soils beneath Stipa tenacissima L. grass show different fertility and different microclimatic conditions than in surrounding bare soil. The objective of this study was to assess the effect of Stipa tenacissima L. on the key soil microbial activities under controlled incubation conditions (basal and potential respiration. Basal and potential microbial respirations in the soils beneath Stipa tenacissima L. were, in general, not significantly different from the bare soils. The differences were less than 10%. Significantly less ethylene produced by microbial activity in soils beneath Stipa tenacissima L. after the addition of glucose could indicate the dependence of rhizospheric microbial communities on available carbon compounds. It can be concluded, that the soil respiration in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  7. Methods for measuring arctic and alpine shrub growth

    DEFF Research Database (Denmark)

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding...... of tundra vegetation dynamics and environmental changes. However, dendrochronological methods developed for trees, need to be adapted for the morphology and growth eccentricity of shrubs. Here, we review current and developing methods to measure radial and axial growth, estimate age, and assess growth...... dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  8. Fun in the Sun: Effects of Solar Radiation on Carbon Cycling in Semiarid Ecosystems of South America

    Science.gov (United States)

    Austin, A.; Berenstecher, P.; Méndez, M. S.; Ballare, C. L.

    2016-12-01

    Plant litter decomposition is an essential process in the first stages of carbon turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter due to exposure to solar radiation, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid and semiarid ecosystems. Nevertheless, the indirect effects of photodegradation and wavelength dependence on biotic stimulation or inhibition of carbon turnover have been debated in recent studies. In controlled conditions of a two-phase experiment, we demonstrated that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Field studies in Patagonian woodland ecosystems confirm the importance of biotic facilitation on litter decomposition, which appears to have larger stimulatory effects than those observed in controlled conditions. Litter decomposition of previously exposed grass litter decomposed more than two times faster than unexposed litter in a one year field experiment, while strong seasonal effects of direct photodegradation and biotic facilitation of solar radiation were observed in a second experiment with changes in solar irradiance using attenuation filters. The generalized positive effect of solar radiation exposure on subsequent microbial activity appears to be mediated by increased accessibility to cell wall polysaccharides, which is consistent in both field and controlled condition experiments. These results suggests that photodegradation is quantitatively important in determining rates of mass loss and nutrient release through its impacts on biotic decomposition, which has implications for the potential alterations in carbon turnover in semiarid ecosystems to predicted climate or land-use change.

  9. Characterization of shrubland ecosystem components as continuous fields in the northwest United States

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Rigge, Matthew B.; Shi, Hua; Meyer, Debbie

    2015-01-01

    Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystem conditions in arid and semiarid lands. An innovative approach was developed by integrating multiple sources of information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of several procedures including field sample collections, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, medium resolution estimates of shrubland components following different climate zones using Landsat 8 phenological mosaics and regression tree models, and product validation. Fractional covers of nine shrubland components were estimated: annual herbaceous, bare ground, big sagebrush, herbaceous, litter, sagebrush, shrub, sagebrush height, and shrub height. Our study area included the footprint of six Landsat 8 scenes in the northwestern United States. Results show that most components have relatively significant correlations with validation data, have small normalized root mean square errors, and correspond well with expected ecological gradients. While some uncertainties remain with height estimates, the model formulated in this study provides a cross-validated, unbiased, and cost effective approach to quantify shrubland components at a regional scale and advances knowledge of horizontal and vertical variability of these components.

  10. Impact of Climate Change and Anthropogenic Activities in the Dynamics of Land Cover in Mediterranean Steppe West Algeria

    Science.gov (United States)

    Si Tayeb, Tayeb

    2016-08-01

    The last thirty years, there is a real dynamic change of land cover with intensive degradation of the natural vegetation especially in arid zone. Indeed, the adverse effects of drought periods from the year 1970 combined with population growth and economic conditions experienced by the country in the 1980s have greatly upset the delicate balance of the natural environment. These adverse effects may result in partial or total disappearance of some natural ecosystems.The objective of this work is to study the distribution of plant formations that constitute the ecosystem typical of west Algeria and their dynamics in time and space, as well as to develop a method to monitor the degradation process and a system capable of effectively protecting areas classified for their plant and animal species.The Landsat satellite images were used to map the vegetation of the study area at a scale of 1:200,000. A comparison was then made between the map obtained from satellite images (Landsat 8) of 2014 and (Landsat 5) of 1987.The results show the following main trends in the distribution patterns of steppe species, a strong decrease of land occupied by steppe of Stipatenacissima and steppe of Artimesiaherba-alba, witch replaced by three taxa Thymelaeamicrophylla, Salsolavermiculata and Peganumharmala. Steppe of Artemisia herbaalba has been transformed by steppe of. taxa Thymelaeamicrophylla, Salsolavermiculata and Lygeumspartum. Woody species such as Quercus ilex and Juniperusphoenicea are characterized by a large regression.

  11. On the operationalization of a spatially explicit evaluation of the complexity of land use trajectories in semi-arid Mediterranean agro-ecosystems

    DEFF Research Database (Denmark)

    Nainggolan, Doan

    This thesis aims to unpack the complexity of trajectories of land use change in semi-arid Mediterranean agro-ecosystems – illustrated using findings from the Torrealvilla catchment in south-eastern Spain. The research looks at multiple dimensions of land use change and addresses the past, present...

  12. Symptoms of main Callistephus chinensis L. Nees. diseases under Ukrainian urban ecosystem conditions of the forest-steppe zone

    Directory of Open Access Journals (Sweden)

    Marchenko Alla

    2017-12-01

    Full Text Available Phytopathological monitoring of C. chinensis (L. Nees. has proven withering and root rot to be the dominating diseases in agrobiocenoses under Ukrainian urban ecosystem conditions of the forest-steppe zone. Their spread was 5,1 and 4 times more than one of spotting. The complex of plant pathogenic overground and underground microflora consists of 24 causative agents. B. cinerea, F. oxysporum, V. albo-atrum have been found on all the vegetative and reproductive parts of Callistephus chinensis (L. Nees., , Ph. cactorum – on plant overground and underground parts, Rh. solani – on underground parts and seeds, A. zinniae – on overground parts and seeds. The main C. chinensis (L. Nees. disease symptoms have been diagnosed (leaf spots, powdery mildew, verticillium wilt, rust, ramularia spot, septoria spots, botrytis blight, grey mold rot, late blight, fusarium blight, black stem.

  13. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  14. Serial Analysis of Ten Precipitation-Based Indices by Land Use in Semiarid Regions

    Directory of Open Access Journals (Sweden)

    Victor M. Rodríguez-Moreno

    2015-01-01

    Full Text Available Open ecosystems in Mexico are under increasing pressure, due particularly to the expansion of cities and agricultural activities. These developments occur without integrating biodiversity concerns in land use planning and result in extensive fragmentation and transformation of the landscapes. The semiarid region of Mesa Central was characterized using ten precipitation-based indices. Using multivariate statistical and geostatistical spatial analysis techniques, the influence of those indices on five land use strata was explored. Land use analysis indicated that the maximum values of the five significant precipitation-based indices were found in Grasslands, Agricultural Use, and Shrubs; minimum values were characteristic of substrates Secondary Desert Vegetation and Other Use. Our results suggest that the greatest number of extreme precipitation events is likely to occur in open ecosystems and consequently will have a strong influence on landscaping and land use. The semivariogram analysis and geostatistical layers demand attention from research institutions, policy makers, researchers, and food producers to take the appropriate and coordinated actions to propose scenarios to deal with climate change. Perhaps this study can stimulate thought concerning research endeavours aimed at promoting initiatives for biodiversity conservation and planning programs for climate change mitigation.

  15. Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico

    Science.gov (United States)

    Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.

    2015-12-01

    Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.

  16. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  17. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos).

    Science.gov (United States)

    Spaul, Robert J; Heath, Julie A

    2016-11-01

    Different forms of outdoor recreation have different spatiotemporal activity patterns that may have interactive or cumulative effects on wildlife through human disturbance, physical habitat change, or both. In western North America, shrub-steppe habitats near urban areas are popular sites for motorized recreation and nonmotorized recreation and can provide important habitat for protected species, including golden eagles. Our objective was to determine whether recreation use (i.e., number of recreationists) or recreation features (e.g., trails or campsites) predicted golden eagle territory occupancy, egg-laying, or the probability a breeding attempt resulted in ≥1 offspring (nest survival). We monitored egg-laying, hatching and fledging success, eagle behavior, and recreation activity within 23 eagle territories near Boise, Idaho, USA. Territories with more off-road vehicle (ORV) use were less likely to be occupied than territories with less ORV use (β = -1.6, 85% CI: -2.8 to -0.8). At occupied territories, early season pedestrian use (β = -1.6, 85% CI: -3.8 to -0.2) and other nonmotorized use (β = -3.6, 85% CI: -10.7 to -0.3) reduced the probability of egg-laying. At territories where eagles laid eggs, short, interval-specific peaks in ORV use were associated with decreased nest survival (β = -0.5, 85% CI: -0.8 to -0.2). Pedestrians, who often arrived near eagle nests via motorized vehicles, were associated with reduced nest attendance (β = -11.9, 85% CI: -19.2 to -4.5), an important predictor of nest survival. Multiple forms of recreation may have cumulative effects on local populations by reducing occupancy at otherwise suitable territories, decreasing breeding attempts, and causing nesting failure. Seasonal no-stopping zones for motorized vehicles may be an alternative to trail closures for managing disturbance. This study demonstrates the importance of considering human disturbance across different parts of the annual cycle, particularly where

  18. Wyoming big sagebrush: Efforts towards development of target plants for restoration

    Science.gov (United States)

    Kayla R. Herriman

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis) is a dominant shrub throughout much of the interior western United States. It is a key component of sagebrush steppe ecosystems, which have been degraded due to European settlement, improper land use, and changing fire regimes resulting from the invasion of exotic...

  19. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  20. Land use

    International Nuclear Information System (INIS)

    Rickard, W.H.; Rogers, L.E.

    1977-01-01

    Justification for large land holdings at the Hanford Reservation has centered around a need for security and also as a buffer zone in the event of accidents. In recent years the importance of these large land holdings have become nationally recognized as highly desirable locations for ecological research concerning the function and structure of terrestrial ecosystems and as places to investigate the response of terrestrial ecosystems to long-term man-imposed environmental stresses. Carefully selected and protected land areas exist on the 110 square mile Arid Land Ecology Reserve (ALE) at Hanford. The projects described here provide supporting research for several applied projects that deal with environmental impact and land restoration. Information gained from this research has wide use and applicability to all kinds of energy technologies centered in the semi-arid shrub-steppe region of the northwestern United States. Ecological information reported includes: biotic characterization, including description of major habitats and endangered or threatened species; performances of native plant species, including determination of growth habits, nutrient requirements, and productivity; and, mineral cycling, including particularly the estimation of availability and behavior of airborne deposits to green plants

  1. About rehabilitation of vegetation of disturbed ecosystems of the Semipalatinsk test sites

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S.V.

    2005-01-01

    Full text: Semipalatinsk Test Sites are the place where 470 nuclear tests were conducted in 1949-1989: 26 surface, 87 air, 357 underground. Total area of polluted territories within the test sites reaches 400 square kilometers and 32 squire kilometers at adjoining territory. Radioactive precipitation spread at the territory of 304 thousand square kilometers by traces of radioactive clouds. The precipitation promoted negative processes in environment and damaged public health. One of the most negative factors is products of nuclear decay after underground nuclear tests. They accumulate in soil. Vertical and horizontal migration of radionuclides occurs. The radionuclides accumulate in plants and reach human organism through food chain. Vegetation cover of former Semipalatinsk Test Sites was partly destroyed or damaged on the test sites mentioned above. Nuclear explosions, military and technical construction, building of roads and communication network were conducted out here. Present vegetation cover of breached areas is represented by plant aggregations and communities. They are attributed to different stages of the process of restoration of initial (steppe) vegetation. Rates of rehabilitation of breached ecosystems are conditioned by degree of moisture and properties of formed technogene substratum (soil texture, presence of detritus, and quantity of fine earth). The higher rates of rehabilitation of breached vegetation are typical for ecosystems of flood lands, depressions between hills and slopes of hills of northern exposition. Rehabilitation of zonal ecosystems (sagebrush-eather-grass communities on light chestnut soils) in conditions of arid climate and insignificant water content in substratum of technogene objects proceeds slowly. Rates of restoration of haloxerophyte communities are conditioned by additional moistening of surface washing down of moist ure into micro depressions occupied by sanotiazol. The process of vegetation rehabilitation of damaged

  2. Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach

    Directory of Open Access Journals (Sweden)

    L. Belelli Marchesini

    2007-08-01

    Full Text Available Steppe ecosystems represent an interesting case in which the assessment of carbon balance may be performed through a cross validation of the eddy covariance measurements against ecological inventory estimates of carbon exchanges (Ehman et al., 2002; Curtis et al., 2002.

    Indeed, the widespread presence of ideal conditions for the applicability of the eddy covariance technique, as vast and homogeneous grass vegetation cover over flat terrains (Baldocchi, 2003, make steppes a suitable ground to ensure a constrain to flux estimates with independent methodological approaches.

    We report about the analysis of the carbon cycle of a true steppe ecosystem in southern Siberia during the growing season of 2004 in the framework of the TCOS-Siberia project activities performed by continuous monitoring of CO2 fluxes at ecosystem scale by the eddy covariance method, fortnightly samplings of phytomass, and ingrowth cores extractions for NPP assessment, and weekly measurements of heterotrophic component of soil CO2 effluxes obtained by an experiment of root exclusion.

    The carbon balance of the monitored natural steppe was, according to micrometeorological measurements, a sink of carbon of 151.7±36.9 g C m−2, cumulated during the growing season from May to September. This result was in agreement with the independent estimate through ecological inventory which yielded a sink of 150.1 g C m−2 although this method was characterized by a large uncertainty (±130% considering the 95% confidence interval of the estimate. Uncertainties in belowground process estimates account for a large part of the error. Thus, in particular efforts to better quantify the dynamics of root biomass (growth and turnover have to be undertaken in order to reduce the uncertainties in the assessment of NPP. This assessment should be preferably based on the application of multiple methods, each one characterized by its

  3. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Science.gov (United States)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under

  4. Inter-annual Variability of Evapotranspiration in a Semi-arid Oak-savanna Ecosystem: Measured and Modeled Buffering to Precipitation Changes

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Baldocchi, D. D.

    2010-12-01

    Precipitation (P) is the primary control on vegetation dynamics and productivity, implying that climate induced disturbances in frequency and timing of P are intimately coupled with fluxes of carbon, water and energy. Future climate change is expected to increase extreme rainfall events as well as droughts, suggesting linked vegetation changes to an unknown extent. Semi-arid climates experience large inter-annual variability (IAV) in P, creating natural conditions adequate to study how year-to-year changes in P affect atmosphere-biosphere fluxes. We used a 10-year flux database collected at a semi-arid savanna site in order to: (1) define IAV in P by means of frequency and timing; (2) investigate how changes in P affect the ecohydrology of the forest and its partitioning into the main vapor fluxes, and (3) evaluate model capability to predict IAV of carbon and water fluxes above and below the canopy. This is based on the perception that the capability of process-oriented models to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site was a low density and low LAI (0.8) semi-arid (P=523±180 mm yr-1) savanna site, combined of oaks and grass, and located at Tonzi ranch, California. Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Measured fluxes were compared to modeled based on two bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Our results show that IAV in P was large, and standard deviation (STD) was 38% of the average. Accordingly, the wet soil period (measured volumetric water content > 8%) varied between 156 days in dry years to 301 days in wet years. IAV of the vapor fluxes were lower than that of P (STD was 17% for the trees and 23% for the floor components), suggesting on ecosystem buffering to changes in P. The timing of grass green up

  5. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  6. Ecosystem services provided by agricultural terraces in semi-arid climates.

    Science.gov (United States)

    Romero-Díaz, Asunción; Díaz-Pereira, Elvira; Boix-Fayos, Carolina; de Vente, Joris

    2016-04-01

    Since ancient times, agricultural terraces are common features throughout the world, especially on steep slope gradients. Nowadays many terraces have been abandoned or removed and few new terraces are build due to increased mechanisation and intensification of agriculture. However, terraces are amongst the most effective soil conservation practices, reducing the slope gradient and slope length, as well as runoff rate and soil erosion, and without terraces, it would be impossible to cultivate on many hillslopes. Moreover, their scenic interest is undeniable, as in some cases, terraced slopes have even become part of UNESCO World Heritage. In order to highlight the potential benefits, requirements and limitations of terraces, we reviewed different types of sustainable land management practices related to terraces and characterised their implications for provisioning, regulating, supporting, and cultural ecosystem services. We centred our review on terraces in semi-arid environments worldwide, as were documented in the WOCAT (World Overview of Conservation Approaches and Technologies) database. Our results show that the most important ecosystem services provided by terraces relate to regulation of the on-site and off-site effects of runoff and erosion, and maintenance of soil fertility and vegetation cover. The presence of terraces also favours the provision of food, fiber, and clean water. In short, our results stress the crucial environmental, geomorphological and hydrological functions of terraces that directly relate to improving the quality of life of the people that use them. These results highlight the need for renewed recognition of the value of terraces for society, their preservation and maintenance.

  7. The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs

    DEFF Research Database (Denmark)

    Cano, Aurelio; Saleh, Kauzar; Wigneron, Jean-Pierre

    2010-01-01

    shrub land, as no data were available over this biome. For that purpose, multi-angular and dual polarimetric measurements (H, V) were obtained by the EMIRAD L-band radiometer from a 14-m tower. Results of this study indicate a small and constant impact of vegetation on the microwave emission of shrub...... land, and L-MEB parameters for shrub land were obtained. In addition, the study highlights the need for calibrating microwave soil roughness, which was found to be constant at the site. Depending on the number of retrieved parameters, soil moisture (SM) near the surface could be estimated with errors...

  8. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    Science.gov (United States)

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    methods applying TLS to vegetation inventory. Improving application of TLS to studies of shrub-steppe ecosystems will serve immediate management needs by enhancing vegetation inventories, environmental modeling studies, and the ability to train broader datasets collected from air and space.

  9. Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events.

    Science.gov (United States)

    Densmore-McCulloch, Justine A; Thompson, Donald L; Fraser, Lauchlan H

    2016-01-01

    Climate change is expected to alter precipitation patterns. Droughts may become longer and more frequent, and the timing and intensity of precipitation may change. We tested how shifting precipitation patterns, both seasonally and by frequency of events, affects soil nitrogen availability, plant biomass and diversity in a shrub-steppe temperate grassland along a natural productivity gradient in Lac du Bois Grasslands Protected Area near Kamloops, British Columbia, Canada. We manipulated seasonal watering patterns by either exclusively watering in the spring or the fall. To simulate spring precipitation we restricted precipitation inputs in the fall, then added 50% more water than the long term average in the spring, and vice-versa for the fall precipitation treatment. Overall, the amount of precipitation remained roughly the same. We manipulated the frequency of rainfall events by either applying water weekly (frequent) or monthly (intensive). After 2 years, changes in the seasonality of watering had greater effects on plant biomass and diversity than changes in the frequency of watering. Fall watering reduced biomass and increased species diversity, while spring watering had little effect. The reduction in biomass in fall watered treatments was due to a decline in grasses, but not forbs. Plant available N, measured by Plant Root Simulator (PRS)-probes, increased from spring to summer to fall, and was higher in fall watered treatments compared to spring watered treatments when measured in the fall. The only effect observed due to frequency of watering events was greater extractable soil N in monthly applied treatments compared to weekly watering treatments. Understanding the effects of changing precipitation patterns on grasslands will allow improved grassland conservation and management in the face of global climatic change, and here we show that if precipitation is more abundant in the fall, compared to the spring, grassland primary productivity will likely be

  10. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  11. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  12. Effects of cattle and rabbit grazing on clonal expansion of spiny shrubs in wood-pastures

    NARCIS (Netherlands)

    Smit, Christian; Bakker, Elisabeth S.; Apol, M. Emile F.; Olff, Han

    2010-01-01

    Spiny shrubs protect non-defended plants against herbivores. Therefore, they play a role for the diversity in grazed ecosystems. While the importance of these keystone nurse shrubs is presently recognized, little is known about the factors controlling them. This knowledge is required to understand

  13. Combining multiple ecosystem productivity measurements to constrain carbon uptake estimates in semiarid grasslands and shrublands

    Science.gov (United States)

    Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.

    2016-12-01

    Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.

  14. Water storage capacity, stemflow and water funneling in Mediterranean shrubs

    Science.gov (United States)

    Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J.

    2010-08-01

    SummaryTo predict water losses and other hydrological and ecological features of a given vegetation, its water storage capacity and stemflow need to be accurately determined. Vast areas of the Mediterranean region are occupied by shrublands yet there is scarce data available on their rainwater interception capacity. In this study, simulated rainfall tests were conducted in controlled conditions on nine Mediterranean shrubs of varying anatomic and morphological features to determine water storage capacity, stemflow and the funneling ratio. After assessing correlations between these hydrological variables and the biometric characteristics of the shrubs, we compared two methods of determining storage capacity: rainfall simulation and immersion. Mean water storage capacity was 1.02 mm (0.35-3.24 mm), stemflow was 16% (3.8-26.4%) and the funneling ratio was 104 (30-260). Per unit biomass, mean storage capacity was 0.66 ml g -1 and ranged from 0.23 ml g -1 for Cistus ladanifer to 2.26 ml g -1 for Lavandula latifolia. Despite their small size, shrubs may generate high water losses to the atmosphere when they form dense communities and this can have a significant impact in regions where water is scarce. When considered the whole shrubs in absolute terms (ml per plant), water storage capacity and stemflow were correlated to biomass and the dendrometric characteristics of the shrubs, yet in relative terms (expressed per surface area unit or as %), anatomic features such as pubescence, branch rigidity or leaf insertion angle emerged as determining factors. The use of a simple procedure to assess storage capacity was inefficient. The immersion method underestimated storage capacity to a different extent for each species. Some shrubs returned high stemflow values typical of their adaptation to the semiarid climate. In contrast, other shrubs seem to have structures that promote stemflow yet have developed other drought-adaptation mechanisms. In this report, we discuss the

  15. Trophic cascades: linking ungulates to shrub-dependent birds and butterflies.

    Science.gov (United States)

    J Teichman, Kristine; Nielsen, Scott E; Roland, Jens

    2013-11-01

    1. Studies demonstrating trophic cascades through the loss of top-down regulatory processes in productive and biologically diverse terrestrial ecosystems are limited. 2. Elk Island National Park, Alberta and surrounding protected areas have a wide range of ungulate density due to the functional loss of top predators, management for high ungulate numbers and variable hunting pressure. This provides an ideal setting for studying the effects of hyper-abundant ungulates on vegetation and shrub-dependent bird and butterfly species. 3. To examine the cascading effects of high ungulate density, we quantified vegetation characteristics and abundances of yellow warbler Dendroica petechia and Canadian tiger swallowtail Papilio canadensis under different ungulate density in and around Elk Island National Park. 4. Using Structural Equation Models we found that ungulate density was inversely related to shrub cover, whereas shrub cover was positively related to yellow warbler abundance. In addition, chokecherry Prunus virginiana abundance was inversely related to browse impact but positively related to P. canadensis abundance. 5. These results demonstrate a cascade resulting from hyper-abundant ungulates on yellow warblers and Canadian tiger swallowtails through reductions in shrub cover and larval host plant density. The combined effect of the functional loss of top predators and management strategies that maintain high ungulate numbers can decouple top-down regulation of productive temperate ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  16. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Cropley, Ford

    2015-01-01

    variable in scaling carbon fluxes from ground observations using earth observation data. The net ecosystem exchange of carbon dioxide (NEE) 2010-2013 was measured using the eddy covariance technique at a grazed semi-arid savanna site in Senegal, West Africa. Night-time NEE was not related to temperature......-arid savanna sites; half-hourly GPP and Reco peaked at -43μmol CO2m-2s-1 and 20μmol CO2m-2s-1, and daily GPP and Reco peaked at -15gCm-2 and 12gCm-2, respectively. Possible explanations for the high CO2 fluxes are a high fraction of C4 species, alleviated water stress conditions, and a strong grazing pressure...

  17. IMPACTS ON FLOODPLAINS BY AN INVASIVE SHRUB, BUDDLEJA DAVIDII

    Science.gov (United States)

    Despite its popularity, the ornamental, Buddleja davidii, a woody shrub of Asian origin, is considered problematic because of its ability to rapidly colonize and dominate floodplain and riparian ecosystems. Dominance during early succession may influence community dynamics and ec...

  18. Detection of damaged areas caused by the oil extraction in a steppe region using winter landsat imagery

    Science.gov (United States)

    Mjachina, Ksenya; Hu, Zhiyong; Chibilyev, Alexander

    2018-01-01

    Oil production in a steppe region disturbs the landscape and damages the steppe ecosystem. The objective of this research was to detect areas damaged by oil production in an oil field within the Russian Volga-Ural steppe region using winter Landsat imagery. We developed a practicable and effective approach using winter snow season multispectral Landsat satellite imagery. To this end, we applied seven algorithms of spectral or texture-based transformation: K-means, maximum likelihood estimation, topsoil grain size index, soil brightness, normalized differential snow index, tasselled cap, and co-occurrence measures. The co-occurrence texture measure variance shows the optimal result of identifying damaged areas. The unique feature of our method is that it can differentiate damaged areas from the bare soil of cropland within a cold steppe region where the area damaged by oil production is mixed with bare (fallow) croplands that have a polygonal shape similar to well pads. Such similarities can lead to confusion in object-based classification. Using the co-occurrence measures, we found that from 1988 to 2015, damaged area is nearly three times as big in the peak period of the oil field development (2001 and 2009) as in 1988. Landscape fragmentation also peaked in 2001 and 2009. Our approach for this project is useful and cost effective regular monitoring of damages from oil production for both the Volga-Ural steppe region and other cold steppe regions.

  19. Utility of surface pollen assemblages to delimit Eastern Eurasian steppe types.

    Directory of Open Access Journals (Sweden)

    Feng Qin

    Full Text Available Modern pollen records have been used to successfully distinguish between specific prairie types in North America. Whether the pollen records can be used to detect the occurrence of Eurasian steppe, or even to further delimit various steppe types was until now unclear. Here we characterized modern pollen assemblages of meadow steppe, typical steppe and desert steppe from eastern Eurasia along an ecological humidity gradient. The multivariate ordination of the pollen data indicated that Eurasian steppe types could be clearly differentiated. The different steppe types could be distinguished primarily by xerophilous elements in the pollen assemblages. Redundancy analysis indicated that the relative abundances of Ephedra, Tamarix, Nitraria and Zygophyllaceae were positively correlated with aridity. The relative abundances of Ephedra increased from meadow steppe to typical steppe and desert steppe. Tamarix and Zygophyllaceae were found in both typical steppe and desert steppe, but not in meadow steppe. Nitraria was only found in desert steppe. The relative abundances of xerophilous elements were greater in desert steppe than in typical steppe. These findings indicate that Eurasian steppe types can be differentiated based on recent pollen rain.

  20. Investigation of anatomical anomalies in Hanford Site mule deer

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M. [and others

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.

  1. Investigation of anatomical anomalies in Hanford Site mule deer

    International Nuclear Information System (INIS)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    1997-03-01

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd's unique nature and high degree of public interest. A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd's overall health and reproductive status

  2. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Directory of Open Access Journals (Sweden)

    N. Bischoff

    2018-01-01

    Full Text Available Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak by assessing the organic carbon (OC stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity, and the microbial community composition based on phospholipid fatty acid (PLFA patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i soil OC stocks decrease along the salinity gradient, (ii the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii sodicity reduces the proportion and stability of mineral-associated OM, and (iv the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only  <  10 % in all three soil types, while mineral-associated OM contributed  >  90 %. Isotopic data (δ13C, 14C activity and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe

  3. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  4. Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Smith, A.P.; Robertson, M.J.; Whitbread, A.; Huth, N.I.; Davoren, W.; Emms, J.; Llewellyn, R.

    2014-01-01

    Old man saltbush (Atriplex nummularia Lindl.) is a useful forage shrub for livestock in the low-rainfall areas of the world, and particularly in Australia. In these semi-arid and arid environments, saltbush is valuable for increasing the production from otherwise marginal areas of the farm and

  5. First-order fire effects on herbs and Shrubs: present knowledge and process modeling needs

    Science.gov (United States)

    Kirsten Stephan; Melanie Miller; Matthew B. Dickinson

    2010-01-01

    Herbaceous plants and shrubs have received little attention in terms of fire effects modeling despite their critical role in ecosystem integrity and resilience after wildfires and prescribed burns. In this paper, we summarize current knowledge of direct effects of fire on herb and shrub (including cacti) vegetative tissues and seed banks, propose key components for...

  6. Ecophysiological aspects of the interactions between Bromus kopetdaghensis and two nurse shrubs, Astragalus meschedensis and Acantholimon raddeanam in a semiarid rangeland.

    Science.gov (United States)

    Jankju, M; Maghamnia, A

    2010-07-01

    Plant-plant interactions are known as the main biotic drivers of the vegetation dynamics. Therefore, understanding such processes is beneficial for the applied vegetation management. The aim of this research was to investigate the type and intensity of plant-plant interaction during the time course of a growth season. We studied ecophysiological aspects of facilitation and competition between two aridland shrubs, A. meschedensis Bunge and A. raddeanam Czernjak and one perennial grass, B. kopetdaghensis Krasch. Soil and plant sampling were carried out for shrubs and the grass that were either growing alone or the grass was growing under the canopy of shrubs. In Spring (May), soil humidity weight was higher under the shrubs+grass than the grass-only site. By the beginning of Summer (July) grass consumed the common soil water and rapidly terminated its yearly growth. Therefore, in August and September, soil humidity weight was lower under the shrubs+grass than shrub-only sites. Photosynthesis rate of B. kopetdaghensis was sharply reduced from the beginning towards the end of growth season, but was not varied between the different plant combinations. Leaf proline measurement in July indicated higher stress for B. kopetdaghensis that were growing under shrubs than those of open areas. In conclusion, we found facilitation effects of shrubs on the grass at the early times of growth season, but it shifted into the competition for water during summer times. The outcome of plant interaction was positive for the grass but negative for the shrubs, especially A. meschedensis.

  7. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  8. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem.

    Science.gov (United States)

    Bai, Gegenbaoleer; Bao, Yuying; Du, Guoxin; Qi, Yunlong

    2013-05-01

    The impact of rest grazing on arbuscular mycorrhizal fungi (AMF) and the interactions of AMF with vegetation and soil parameters under rest grazing condition were investigated between spring and late summer in a desert steppe ecosystem with different grazing managements (rest grazing with different lengths of resting period, banned or continuous grazing) in Inner Mongolia, China. AMF diversity and colonization, vegetation biomass, soil properties and soil phosphatase activity were examined. In rest grazing areas of 60 days, AMF spore number and diversity index at a 0-10 cm soil depth as well as vesicular and hyphal colonization rates were higher compared with other grazing treatments. In addition, soil organic matter and total N contents were highest and soil alkaline phosphatase was most active under 60-day rest grazing. In August and September, these areas also had the highest amount of aboveground vegetation. The results indicated that resting grazing for an appropriate period of time in spring has a positive effect on AMF sporulation, colonization and diversity, and that under rest grazing conditions, AMF parameters are positively correlated with some soil characteristics.

  9. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo

    2016-06-01

    Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  11. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.

    Science.gov (United States)

    Schwinning, Susanne; Sala, Osvaldo E

    2004-10-01

    In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

  12. Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration

    Science.gov (United States)

    Cao, Shixiong; Chen, Li; Shankman, David; Wang, Chunmei; Wang, Xiongbin; Zhang, Hong

    2011-02-01

    Afforestation is a primary tool for controlling desertification and soil erosion in China. Large-scale afforestation, however, has complex and poorly understood consequences for the structure and composition of future ecosystems. Here, we discuss the potential links between China's historical large-scale afforestation practices and the program's effects on environmental restoration in arid and semi-arid regions in northern China based on a review of data from published papers, and offer recommendations to overcome the shortcomings of current environmental policy. Although afforestation is potentially an important approach for environmental restoration, current Chinese policy has not been tailored to local environmental conditions, leading to the use of inappropriate species and an overemphasis on tree and shrub planting, thereby compromising the ability to achieve environmental policy goals. China's huge investment to increase forest cover seems likely to exacerbate environmental degradation in environmentally fragile areas because it has ignored climate, pedological, hydrological, and landscape factors that would make a site unsuitable for afforestation. This has, in many cases, led to the deterioration of soil ecosystems and decreased vegetation cover, and has exacerbated water shortages. Large-scale and long-term research is urgently needed to provide information that supports a more effective and flexible environmental restoration policy.

  13. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  14. Caractérisation des miels produits dans la région steppique de Djelfa en Algérie

    Directory of Open Access Journals (Sweden)

    Mekious, S.

    2015-01-01

    Full Text Available Characterization of honeys produced in the region of Djelfa steppe land in Algeria. Description of the subject. This paper deals with the quality of honeys produced in the steppe areas of Algeria and discusses the possibility of their valorization. Objectives. The objective was to characterize and compare the physical and chemical quality of honeys and to determine their pollen composition according to their geographical origin in three areas of the Djelfa semi-arid region of Algeria. Method. Thirty-eight samples of honey produced in 11 localities in the north, centre and south of the Djelfa semi-arid steppe region were harvested in July for two consecutive years. Pollen analyses were performed and the following properties of the honey samples were determined: water content, pH level, electrical conductivity, color, hydroxymethylfurfural content, saccharase index, diastase index and carbohydrate profile. Results. The results of the pollen analyses identified 34 taxa of pollen. The most abundant pollens were from the Ziziphus lotus, which were present in 97.12% of the samples. The pollens from this shrub were dominant in 27 of the honey samples tested, with a pollen percentage of greater than 45%. Over 55% of the pollen frequencies found came from plants belonging to Asteracae, Brassicaceae, Cistaceae and more particularly to Euphorbia bupleuroides, Peganum harmala, Thapsia garganica, Echium sp. and Retama retam. Conclusions. The physicochemical parameters of the honey samples studied comply with European and international quality standards, which opens up perspectives for their valorization.

  15. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 2. Photosynthetically active radiation interception of the woody layer

    International Nuclear Information System (INIS)

    Bégué, A.; Hanan, N.P.; Prince, S.D.

    1994-01-01

    Interception by the woody layer of photosynthetically active radiation (PAR) was measured and calculated for two Guiera senegalensis J.F. Gmel, shrub savannas in Ouallam, Western Niger, in 1991 as part of the HAPEX-Sahel experiment. Two different scales were considered. At the plant scale, PAR interception was measured throughout the day with amorphous silicon sensors, together with detailed measurements of the structure of the shrubs (size of the ‘envelope’ of the shrub, area index, and angular distribution of the leaves and the branches). These data permitted us to develop and validate a simple radiative transfer model in which the shrubs are represented by porous cylinders; the total transmissivity (or porosity) of the shrubs estimated by the model was approximately 0.4. It indicates that semi-arid shrubs cannot be considered opaque objects and that the fraction of ground covered with plants is a poor indicator of the PAR interception efficiency of the canopy. The model was also applied at a landscape scale to calculate the daily PAR interception of two shrub savanna sites. This value is needed to model primary production in conjunction with remotely sensed and production data acquired simultaneously on the sites. (author)

  16. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term.

    Science.gov (United States)

    González-De Vega, S; De Las Heras, J; Moya, D

    2016-12-15

    In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems

  17. Mediterranean shrub diversity and its effect on food intake in goats

    Directory of Open Access Journals (Sweden)

    Tomislav Šarić

    2014-07-01

    Full Text Available Mediterranean ecosystem offers a variety of shrubs that were over long periods of time involved in the evolution of complex plant-animal interactions. Biochemical components of these plants enter different metabolic pathways after digestion and absorption, resulting in development of dietary preferences in browsing animals. Herbivores in general were found to perform better when grazing in a mixed plant community composed of diverse species, and show preferential feeding behaviours for mixed vs single species diet. Our findings demonstrate an asymptotic relationship among Mediterranean shrubs species diversity and their voluntary intake by goats. Shrub biomass intake showed linear increase when number of different shrubs in diet increased from one to three. However, goats did not further increase intake when the number of shrub species increased from four to eight. As the number of shrub species offered increased, goats exhibited more preferential feeding behaviour for Quercus pubescens, Fraxinus ornus, Rubus heteromorphus and Arbutus unedo and decreased the intake of Hedera helix, Juniperus oxycedrus and Helichrysum italicum. This asymptotic relationship indicates that the maintenance of plant species richness in Mediterranean shrublands can overall benefit domestic goat farming, goat’s productive performance, and the conservation of plant biodiversity.

  18. Study on Rangeland production Potential and its Limitations in the Semi-Arid lands of Northern Kenya

    International Nuclear Information System (INIS)

    Keya, G.A.; Hornetz, B.

    1999-01-01

    Results obtained from recent studies focused on rangeland potential as influenced by human activity and climatic factors in the semi-arid and pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document the primary production potential in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory field and numeric methods were employed over several seasons and years. Forb and grass production was more viable than that of the brows (dwarf shrub) layer. Compared to forbs and dwarf shrubs, The grass layer contributed less to the total of production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variations in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal difference were very evident, with highest estimates in the long rainy and lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential and were identified to be moisture deficiency, resource-use conflicts, an increasing and partial sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can increase rangelands production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information systems, GIS); (b) technical interventions (i.e. soil and water conservation,restoration of degraded ares, fodder production); (c)socio-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development, improvement of livestock marketing channels, etc) and (d) continued

  19. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-01-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes. (letter)

  20. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  1. Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China.

    Science.gov (United States)

    Yang, Fulin; Zhou, Guangsheng

    2013-01-01

    Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO₂ flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO₂ throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of -7.2, -22.9, and 26.0 g C m⁻² yr⁻¹ in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEE(sat)) and the temperature sensitivity coefficient of ecosystem respiration (R(eco)) exhibited significant variations. The values of NEE(sat) were -2.6, -2.9, and -1.4 µmol CO₂ m⁻² s⁻¹ in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and R(eco), and the drought sensitivity of GPP was greater than that of R(eco). The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.

  2. Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Fulin Yang

    Full Text Available Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO₂ flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm was close to the long-term average (183.9±47.6 mm, while the precipitation in 2008 (136.3 mm and 2010 (141.3 mm was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO₂ throughout the study period, with a net ecosystem carbon dioxide exchange (NEE of -7.2, -22.9, and 26.0 g C m⁻² yr⁻¹ in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEE(sat and the temperature sensitivity coefficient of ecosystem respiration (R(eco exhibited significant variations. The values of NEE(sat were -2.6, -2.9, and -1.4 µmol CO₂ m⁻² s⁻¹ in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP and R(eco, and the drought sensitivity of GPP was greater than that of R(eco. The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.

  3. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    Science.gov (United States)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  4. Woody plants in agro-ecosystems of semi-arid regions

    NARCIS (Netherlands)

    Breman, H.; Kessler, J.J.

    1995-01-01

    A quantitative analysis of the role of woody plants in semi-arid regions, focusing on the Sahel and Sudan zones in West-Africa, is given for the assessment of their benefits in agro-sylvopastoral land-use systems with productive and sustainability objectives.

  5. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  6. Prosopis laevigata and Mimosa biuncifera (Leguminosae, jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystem

    Directory of Open Access Journals (Sweden)

    Rosalva García-Sánchez

    2012-03-01

    Full Text Available Prosopis laevigata and Mimosa biuncifera are frequently found in arid and semiarid shrublands, but scarce information is available about their influence on plant community structure and soil fertility. We compared plant community structure, diversity and soil nutrients of three semiarid shrubland sites located in Mezquital Valley, Mexico. These sites differ in their dominant species: Site 1 (Bingu P. laevigata, Site 2 (González M. biuncifera, and Site 3 (Rincón with the presence of both legumes. The results showed that the plant community with P. laevigata and M. biuncifera (Site 3 had more cover, taller plants and higher plant diversity than sites with only one legume (Site 1 and Site 2. Soil organic matter (SOM, soil organic carbon (SOC, total nitrogen (TN, phosphorus-Olsen (P and C mineralization were higher in the soil under the canopy of both legumes than in bare soil. In contrast, soil cation concentrations were lower under the canopy of P. laevigata, but not for M. biuncifera. In addition, the density of arbuscular mycorrhizal fungi spores was higher within the soil under the canopy of M. biuncifera than in the soil under the canopy of P. laevigata. Thus, resource islands (RI created by P. laevigata increased the amounts of SOC, TN and P when compared with the RI of M. biuncifera. This study provided evidences about the importance of species identity in order to expand the niche availability for the establishment of other plants, and highlights that P. laevigata and M. biuncifera jointly influencing plant colonization within semiarid ecosystems

  7. Use of carbon isotope analysis to understand semi-arid erosion dynamics and long-term semi-arid land degradation.

    Science.gov (United States)

    Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland

    2008-06-01

    Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments. John Wiley & Sons, Ltd

  8. Desertification of Rangelands

    Science.gov (United States)

    Desertification, the broad-scale conversion of perennial grasslands to dominance by xerophytic shrubs, and the attendant consequences to ecosystem services has affected arid and semiarid regions globally over the past several centuries. This state change is expected to continue in the future as envi...

  9. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  10. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems

    Science.gov (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.

    2017-12-01

    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  11. The effect of herbaceous species removal, fire and cheatgrass (Bromus tectorum) on soil water availability in sagebrush steppe

    Science.gov (United States)

    Alison Whittaker; Bruce Roundy; Jeanne Chambers; Susan Meyer; Robert Blank; Stanley Kitchen; John Korfmacher

    2008-01-01

    Over the past several decades, cheatgrass (Bromus tectorum) has been continually expanding in the sagebrush steppe ecosystem. There has been very little research that examines why cheatgrass is able to invade these communities. To determine the effects of herbaceous vegetation removal and fire on available water for cheatgrass invasion, as well as...

  12. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    Science.gov (United States)

    Bochet, E.

    2015-01-01

    Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist

  13. The Spatial Pattern and Interactions of Woody Plants on the Temperate Savanna of Inner Mongolia, China: The Effects of Alternating Seasonal Grazing-Mowing Regimes.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available Ulmus pumila tree-dominated temperate savanna, which is distributed widely throughout the forest-steppe ecotone on the Mongolian Plateau, is a relatively stable woody-herbaceous complex ecosystem in northern China. Relatively more attention has been paid to the degradation of typical steppe areas, whereas less focus has been placed on the succession of this typical temperate savanna under the present management regime. In this study, we established 3 sample plots 100 m×100 m in size along a gradient of fixed distances from one herder's stationary site and then surveyed all the woody plants in these plots. A spatial point pattern analysis was employed to clarify the spatial distribution and interaction of these woody plants. The results indicated that old U. pumila trees (DBH ≥ 20 cm showed a random distribution and that medium U. pumila trees (5 cm ≤ DBH < 20 cm showed an aggregated distribution at a smaller scale and a random distribution at a larger scale; few or no juvenile trees (DBH < 5 cm were present, and seedlings (without DBH formed aggregations in all 3 plots. These findings can be explained by an alternate seasonal grazing-mowing regime (exclosure in summer, mowing in autumn and grazing in winter and spring; the shrubs in all 3 plots exist along a grazing gradient that harbors xerophytic and mesophytic shrubs. Of these shrubs, xerophytic shrubs show significant aggregation at a smaller scale (0-5.5 m, whereas mesophytic shrubs show significant aggregation at a larger scale (0-25 m, which may be the result of the dual effects of grazing pressure and climate change. Medium trees and seedlings significantly facilitate the distributions of xerophytic shrubs and compete significantly with mesophytic shrubs due to differences in water use strategies. We conclude that the implementation of an alternative grazing-mowing regime results in xerophytic shrub encroachment or existence, breaking the chain of normal succession in a U. pumila

  14. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  15. Minimizing risk associated with shallow burial of waste in semiarid ecosystems: Erosion and vegetation dynamics

    International Nuclear Information System (INIS)

    Breshears, D.D.; Martens, S.N.; Nyhan, J.W.; Springer, E.P.; Wilcox, B.P.

    1994-01-01

    Numerous regulations govern the disposal of low-level radioactive and hazardous waste by burial in shallow pits. The overall goal of these regulations is to reduce the risk to humans and components of the ecosystem for 500 to 1 000 years. Erosional loss of the soil profile covering waste and contamination of groundwater by leachate are two pathways that influence human and ecological risks. Screening calculations for a waste site in a pinyon-juniper woodland at Los Alamos National Laboratory predict the entire 2 m cover of a waste site could be lost by erosion in less than 500 years. In contrast, less than 0.001% of the waste would reach groundwater by leachate. Predicted erosion rates depend highly on plant cover. The boundary between ponderosa pine forest and pinyon-juniper woodland has shifted more than 1 km in less than 50 years in the Los Alamos region and additional boundary shifts have been hypothesized in conjunction with global warming. High erosion rates (> 0.2 cm per year) have been measured in these transition zones. In concert, these results suggest that risk associated with erosional loss of the waste site cover may greatly exceed risks associated with groundwater contamination in semiarid ecosystems

  16. Ecosystem process interactions between central Chilean habitats

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2015-01-01

    Full Text Available Understanding ecosystem processes is vital for developing dynamic adaptive management of human-dominated landscapes. We focus on conservation and management of the central Chilean silvopastoral savanna habitat called “espinal”, which often occurs near matorral, a shrub habitat. Although matorral, espinal and native sclerophyllous forest are linked successionally, they are not jointly managed and conserved. Management goals in “espinal” include increasing woody cover, particularly of the dominant tree Acacia caven, improving herbaceous forage quality, and increasing soil fertility. We asked whether adjacent matorral areas contribute to espinal ecosystem processes related to the three main espinal management goals. We examined input and outcome ecosystem processes related to these goals in matorral and espinal with and without shrub understory. We found that matorral had the largest sets of inputs to ecosystem processes, and espinal with shrub understory had the largest sets of outcomes. Moreover, we found that these outcomes were broadly in the directions preferred by management goals. This supports our prediction that matorral acts as an ecosystem process bank for espinal. We recommend that management plans for landscape resilience consider espinal and matorral as a single landscape cover class that should be maintained as a dynamic mosaic. Joint management of espinal and matorral could create new management and policy opportunities.

  17. Effects of sand burial on the survival and growth of two shrubs dominant in different habitats of northern China.

    Science.gov (United States)

    Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min

    2017-04-01

    Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.

  18. Filling the interspace—restoring arid land mosses: source populations, organic matter, and overwintering govern success

    Science.gov (United States)

    Condon, Lea; Pyke, David A.

    2016-01-01

    Biological soil crusts contribute to ecosystem functions and occupy space that could be available to invasive annual grasses. Given disturbances in the semiarid shrub steppe communities, we embarked on a set of studies to investigate restoration potential of mosses in sagebrush steppe ecosystems. We examined establishment and growth of two moss species common to the Great Basin, USA: Bryum argenteum and Syntrichia ruralis from two environmental settings (warm dry vs. cool moist). Moss fragments were inoculated into a third warm dry setting, on bare soil in spring and fall, both with and without a jute net and with and without spring irrigation. Moss cover was monitored in spring seasons of three consecutive years. Both moss species increased in cover over the winter. When Bryum received spring irrigation that was out of sync with natural precipitation patterns, moss cover increased and then crashed, taking two seasons to recover. Syntrichia did not respond to the irrigation treatment. The addition of jute net increased moss cover under all conditions, except Syntrichia following fall inoculation, which required a second winter to increase in cover. The warm dry population of Bryum combined with jute achieved on average 60% cover compared to the cool moist population that achieved only 28% cover by the end of the study. Differences were less pronounced for Syntrichia where moss from the warm dry population with jute achieved on average 51% cover compared to the cool moist population that achieved 43% cover by the end of the study. Restoration of arid land mosses may quickly protect soils from erosion while occupying sites before invasive plants. We show that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.

  19. Incorporating historical ecosystem diversity into conservation planning efforts in grass and shrub ecosystems

    Science.gov (United States)

    Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew

    2011-01-01

    Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...

  20. Effects of shrub revegetation with Atriplex halimus L. and Retama sphaerocarpa L. in gypsiferous soils. Influence in soil properties

    Science.gov (United States)

    Bienes, Ramón; Marques, Maria Jose; Ruiz-Colmenero, Marta; Arevalo, Diana; Sastre, Blanca; Garcia-Diaz, Andrés

    2014-05-01

    The low crop yield obtained in semi-arid climates has led to the decline of agriculture and the abandonment of large areas resulting in a high risk of land degradation due to the lack of vegetation. Revegetation with shrubs is considered a way to prevent land degradation and enhance soil conditions, particularly in problematic soils. The study area is located in Colmenar de Oreja (Madrid, Spain, UTM 30T X=455236, Y=4436368). This is a semi-arid region, close to aridity in certain years, with a mean annual rainfall of 390 mm and annual evapotranspiration (Thornthwaite) of 769 mm. The soil is developed over gypsum marls with a xeric moisture regime. These soils are frequent in semiarid and arid countries in the world because leaching is prevented due to low rainfall. They usually show shallow depth, high penetration resistance and compaction, particularly when the soil is dry. Moreover they exhibit low fertility and small water retention capacity. All these circumstances hinder the development of roots and therefore the spontaneous recovery of vegetation after abandonment. Two different species of shrubs -Atriplex halimus L. and Retama sphaerocarpa L.- were planted in USLE plots (80 m2) in 2003 in a sloping area (average 10%). Changes in the physical and chemical properties of soils beneath these different treatments were studied since then, and they were compared with spontaneous vegetation. We considered soil indicators such as bulk density, intrapedal porosity, soil organic matter content, aggregate stability and soil penetration resistance. Two years after planting, vegetation coverage in the low part of the plots covered 70% of soil, rising 80% after the third year. The litter generated by shrubs did not change soil organic matter content at the site where it occurred, but rather a few feet below, where it was deposited by water erosion. Five years later, the lower section of the plots exhibited an increase in soil organic matter (from 2.3 to 3.2%), a decrease

  1. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  2. URJC GB dataset: Community-based seed bank of Mediterranean high-mountain and semi-arid plant species at Universidad Rey Juan Carlos (Spain).

    Science.gov (United States)

    Alonso, Patricia; Iriondo, José María

    2014-01-01

    The Germplasm Bank of Universidad Rey Juan Carlos was created in 2008 and currently holds 235 accessions and 96 species. This bank focuses on the conservation of wild-plant communities and aims to conserve ex situ a representative sample of the plant biodiversity present in a habitat, emphasizing priority ecosystems identified by the Habitats Directive. It is also used to store plant material for research and teaching purposes. The collection consists of three subcollections, two representative of typical habitats in the center of the Iberian Peninsula: high-mountain pastures (psicroxerophylous pastures) and semi-arid habitats (gypsophylic steppes), and a third representative of the genus Lupinus. The high-mountain subcollection currently holds 153 accessions (63 species), the semi-arid subcollection has 76 accessions (29 species,) and the Lupinus subcollection has 6 accessions (4 species). All accessions are stored in a freezer at -18 °C in Kilner jars with silica gel. The Germplasm Bank of Universidad Rey Juan Carlos follows a quality control protocol which describes the workflow performed with seeds from seed collection to storage. All collectors are members of research groups with great experience in species identification. Herbarium specimens associated with seed accessions are preserved and 63% of the records have been georreferenced with GPS and radio points. The dataset provides unique information concerning the location of populations of plant species that form part of the psicroxerophylous pastures and gypsophylic steppes of Central Spain as well as populations of genus Lupinus in the Iberian Peninsula. It also provides relevant information concerning mean seed weight and seed germination values under specific incubation conditions. This dataset has already been used by researchers of the Area of Biodiversity and Conservation of URJC as a source of information for the design and implementation of experimental designs in these plant communities. Since

  3. URJC GB dataset: Community-based seed bank of Mediterranean high-mountain and semi-arid plant species at Universidad Rey Juan Carlos (Spain

    Directory of Open Access Journals (Sweden)

    Patricia Alonso

    2014-03-01

    Full Text Available The Germplasm Bank of Universidad Rey Juan Carlos was created in 2008 and currently holds 235 accessions and 96 species. This bank focuses on the conservation of wild-plant communities and aims to conserve ex situ a representative sample of the plant biodiversity present in a habitat, emphasizing priority ecosystems identified by the Habitats Directive. It is also used to store plant material for research and teaching purposes. The collection consists of three subcollections, two representative of typical habitats in the center of the Iberian Peninsula: high-mountain pastures (psicroxerophylous pastures and semi-arid habitats (gypsophylic steppes, and a third representative of the genus Lupinus. The high-mountain subcollection currently holds 153 accessions (63 species, the semi-arid subcollection has 76 accessions (29 species, and the Lupinus subcollection has 6 accessions (4 species. All accessions are stored in a freezer at -18 °C in Kilner jars with silica gel. The Germplasm Bank of Universidad Rey Juan Carlos follows a quality control protocol which describes the workflow performed with seeds from seed collection to storage. All collectors are members of research groups with great experience in species identification. Herbarium specimens associated with seed accessions are preserved and 63% of the records have been georreferenced with GPS and radio points. The dataset provides unique information concerning the location of populations of plant species that form part of the psicroxerophylous pastures and gypsophylic steppes of Central Spain as well as populations of genus Lupinus in the Iberian Peninsula. It also provides relevant information concerning mean seed weight and seed germination values under specific incubation conditions. This dataset has already been used by researchers of the Area of Biodiversity and Conservation of URJC as a source of information for the design and implementation of experimental designs in these plant

  4. WILDFIRE INDUCED DEGRADATION OF WOODY VEGETATION IN DRY ZONE OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    A. Terekhov

    2012-08-01

    Full Text Available Small bushy tree species dominate the semi-arid areas of Kazakhstan. In the course of their life cycle, they form a layer of litter that is resistant to wind transport. This small shrub species with its own litter play a significant role in the spectral characteristics of the Earth surface. Changes in the density of shrub canopy forms or replacing them with herbaceous species is accompanied by significant changes in the spectral characteristics in the visible and near infrared spectral bands in the autumn. These changes can be recorded from satellite data. LANDSAT-TM images during 1985–2007 years and MODIS data (USGS: MOD09Q1, 2000–2010 used to diagnose changes in relation between woody\\herbaceous vegetation species in the dry zone of Kazakhstan. It was found that over the past 10 years, spreading small shrub forms of semi-arid vegetation significantly decreased. There is a persistent expansion of herbal forms, leading to the semi-steppe formation areas. The mechanism of repression of wood forms constructed through the accumulation of dry plant mass during wet years, with its subsequent burnout during wildfires. In the case of a strong fire, a complete destruction of species is observed. The restoration of small shrub cover demands more than 20 years. Comparative analysis of LANDSAT-TM images showed a 10 times increasing of the fire scar areas in the test area in the central part of Kazakhstan between 1985 and 2007. According MOD09Q1 was conducted mapping small shrub forms of degradation in Kazakhstan. Reducing the area occupied by woody vegetation, semi-desert was about 30 million hectares or over 30% of their total range in Kazakhstan.

  5. Short-term seasonal variability in 7Be wet deposition in a semiarid ecosystem of central Argentina

    International Nuclear Information System (INIS)

    Juri Ayub, J.; Di Gregorio, D.E.; Velasco, H.; Huck, H.; Rizzotto, M.; Lohaiza, F.

    2009-01-01

    The 7 Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7 Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7 Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l -1 to 3.2 ± 0.7 Bq l -1 , with a mean value of 1.7 Bq l -1 (sd = 0.53 Bq l -1 ). No relationship was found between 7 Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7 Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7 Be depositional fluxes ranged from 1.1 to 120 Bq m -2 , with a mean value of 32.7 Bq m -2 (sd = 29.9 Bq m -2 ). The annual depositional flux was estimated at 1140 ± 120 Bq m -2 y -1 . Assuming the same monthly deposition pattern and that the 7 Be content in soil decreases only through radioactive decay, the seasonal variation of 7 Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7 Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.

  6. Plant water use characteristics of five dominant shrub species of the Lower Rio Grande Valley, Texas, USA: implications for shrubland restoration and conservation.

    Science.gov (United States)

    Adhikari, Arjun; White, Joseph D

    2014-01-01

    The biogeographic distribution of plant species is inherently associated with the plasticity of physiological adaptations to environmental variation. For semi-arid shrublands with a legacy of saline soils, characterization of soil water-tolerant shrub species is necessary for habitat restoration given future projection of increased drought magnitude and persistence in these ecosystems. Five dominant native shrub species commonly found in the Lower Rio Grande Valley, TX, USA, were studied, namely Acacia farnesiana, Celtis ehrenbergiana, Forestiera angustifolia, Parkinsonia aculeata and Prosopis glandulosa. To simulate drought conditions, we suspended watering of healthy, greenhouse-grown plants for 4 weeks. Effects of soil salinity were also studied by dosing plants with 10% NaCl solution with suspended watering. For soil water deficit treatment, the soil water potential of P. glandulosa was the highest (-1.20 MPa), followed by A. farnesiana (-4.69 MPa), P. aculeata (-5.39 MPa), F. angustifolia (-6.20 MPa) and C. ehrenbergiana (-10.02 MPa). For the soil salinity treatment, P. glandulosa also had the highest soil water potential value (-1.60 MPa), followed by C. ehrenbergiana (-1.70 MPa), A. farnesiana (-1.84 MPa), P. aculeata (-2.04 MPa) and F. angustifolia (-6.99 MPa). Within the species, only C. ehrenbergiana and F. angustifolia for soil water deficit treatment and A. farnesiana for the salinity treatment had significantly lower soil water potential after 4 weeks of treatment (P < 0.05). We found that soil water potential, stomatal conductance and net photosynthesis of the species significantly reduced over time for both treatments (P < 0.05). We conclude that while all species exhibited capacities to withstand current water availability, some species demonstrated limited tolerance for extreme water stress that may be important for management of future shrub diversity in Lower Rio Grande Valley.

  7. Biodiversity conservation in an anthropized landscape: Trees, not patch size drive, bird community composition in a low-input agro-ecosystem.

    Science.gov (United States)

    Mellink, Eric; Riojas-López, Mónica E; Cárdenas-García, Melinda

    2017-01-01

    One of the most typical agro-ecosystems in the Llanos de Ojuelos, a semi-arid region of central Mexico, is that of fruit-production orchards of nopales (prickly pear cacti). This perennial habitat with complex vertical structure provides refuge and food for at least 112 species of birds throughout the year. Nopal orchards vary in their internal structure, size and shrub/tree composition, yet these factors have unknown effects on the animals that use them. To further understand the conservation potential of this agro-ecosystem, we evaluated the effects of patch-size and the presence of trees on bird community composition, as well as several habitat variables, through an information-theoretical modelling approach. Community composition was obtained through a year of census transects in 12 orchards. The presence of trees in the orchards was the major driver of bird communities followed by seasonality; bird communities are independent of patch size, except for small orchard patches that benefit black-chin sparrows, which are considered a sensitive species. At least 55 species of six trophic guilds (insectivores, granivores, carnivores, nectivores, omnivores, and frugivores) used the orchards. Orchards provide adequate habitat and food resources for several sensitive species of resident and migratory sparrows. The attributes that make orchards important for birds: trees, shrubs, herb seeds, and open patches can be managed to maintain native biodiversity in highly anthropized regions with an urgent need to find convergence between production and biological conservation.

  8. Pruning Shrubs

    OpenAIRE

    French, Sue (Sue C.); Appleton, Bonnie Lee, 1948-2012

    2009-01-01

    Understanding the "natural habit" or "shape" of shrubs will help you determine how to prune them. This publication explores how and when to prune, maintenance and rejuvenation pruning, and the growth habit of shrubs.

  9. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs

    DEFF Research Database (Denmark)

    Hansen, Anja Hoff; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    -arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea × polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were...

  10. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    Energy Technology Data Exchange (ETDEWEB)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-07-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  11. How development and disturbance of biological soil crust do affect runoff and erosion in drylands?

    International Nuclear Information System (INIS)

    Chamizo, S.; Canton, Y.; Afana, A.; Lazaro, R.; Domingo, F.; Sole-Benet, A.

    2009-01-01

    Deserts and semiarid ecosystems (shrub lands and grasslands) are the largest terrestrial biome, covering more than 40% of the Earth's terrestrial surface and Biological Soil Crusts (BSCs) are the predominant surface type in most of those ecosystems covering up to 70% of its surface. BSCs have been demonstrated to be very vulnerable to disturbance due to human activities and their loss has been implicated as a factor leading to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of the their disturbance is likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The aim of this work is to analyse the influence of crust disturbance on infiltration and erosion. Extreme rainfall simulations at micro plots scale were performed in two semiarid ecosystems with different lithology and conditions of occurrence of BSCs: El Cautivo and Amoladeras. (Author) 10 refs.

  12. Steppe Eagle in the Karaganda Region, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2018-03-01

    Full Text Available Between June 22 and July 18, 2017, fieldworks were carried out to study the population structure and demographic characteristics of the Steppe Eagle breeding groups (Aquila nipalensis in the central part of the Karaganda region of Kazakhstan. In the course of the work 808 birds we found, 280 Steppe Eagle breeding territories were localized. Within 10 registration areas 277 Steppe Eagle breeding territories (96.18 % were examined, including 70 successful nests with 102 nestlings. The occupation of breeding territories was 87.73 %, while the percentage of active nests in the occupied breeding territories was 69.14 %. Successful were 42.26 % of nests from the number of active nests and 25.63 % from the number of identified breeding territories. The number of nestlings in broods ranged from 1 to 3, averaging (n=71 1.45±0.56 nestlings per successful nest and (n=168 0.61±0.80 nestlings per occupied nest. With a very high percentage of nests with unsuccessful breeding (54.46 % of the number of active ones, high percentage of nests with dead clutch was recorded – 34.55 % of the number of nests with unsuccessful breeding. Distribution density of Steppe Eagle active nests averaged 7.67/100 km2, varying in different areas from 4.11 to 12.90/100 km2. The distribution density of Steppe Eagle successful nests on the areas varied from 0 to 4.81/100 km2 averaged 3.24/100 km2. For the area of habitats suitable for breeding across the Karaganda region (142,549.9 km2, the abundance of the Steppe Eagle in nesting was 4,794–5,814, at average 5,275 pairs and 2,183–2,647, at average 2,402 successful pairs.

  13. U.S. Geological Survey shrub/grass products provide new approach to shrubland monitoring

    Science.gov (United States)

    Young, Steven M.

    2017-12-11

    In the Western United States, shrubland ecosystems provide vital ecological, hydrological, biological, agricultural, and recreational services. However, disturbances such as livestock grazing, exotic species invasion, conversion to agriculture, climate change, urban expansion, and energy development are altering these ecosystems.Improving our understanding of how shrublands are distributed, where they are changing, the extent of the historical change, and likely future change directions is critical for successful management of these ecosystems. Remote-sensing technologies provide the most likely data source for large-area monitoring of ecosystem disturbance—both near-real time and historically. A monitoring framework supported by remote-sensing data can offer efficient and accurate analysis of change across a range of spatial and temporal scales.The U.S. Geological Survey has been working to develop new remote-sensing data, tools, and products to characterize and monitor these changing shrubland landscapes. Nine individual map products (components) have been developed that quantify the percent of shrub, sagebrush, big sagebrush, herbaceous, annual herbaceous, litter, bare ground, shrub height, and sagebrush height at 1-percent intervals in each 30-meter grid cell. These component products are designed to be combined and customized to widely support different applications in rangeland monitoring, analysis of wildlife habitat, resource inventory, adaptive management, and environmental review.

  14. over time

    Directory of Open Access Journals (Sweden)

    Sara K. Hanna

    2015-01-01

    Full Text Available Sagebrush steppe ecosystems of the Intermountain West have experienced a decline over the past 150 years due to changing fire regimes, invasive species and conifer encroachment. Prescribed fire is a common and cost-effective tool used in sagebrush restoration and fuels management. We examined the post-fire succession of a sagebrush steppe community over a nearly 30-year period at two study sites in northeastern California. The long-term nature of this study was particularly significant, as invasive annual grasses dominated the plant community in the years immediately following fire, but native perennial grasses and shrubs successfully out-competed them in the long term. Shrubs were slow to recover but had returned to pre-fire levels by the end of the study period. There was also notable increase in western juniper throughout the study sites, particularly in areas that had not been burned. Our results indicate that mean fire return intervals of 50 years or less would help reduce western juniper encroachment and preserve sagebrush habitat, especially for potentially threatened species such as the sage grouse.

  15. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities.

    Science.gov (United States)

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T; Escudero, Adrián; Valladares, Fernando

    2013-04-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa , our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent.

  16. Changes in rainfall amount and frequency do not affect the outcome of the interaction between the shrub Retama sphaerocarpa and its neighbouring grasses in two semiarid communities

    Science.gov (United States)

    Soliveres, Santiago; García-Palacios, Pablo; Maestre, Fernando T.; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    We evaluated the net outcome of the interaction between the shrub Retama sphaerocarpa, our target plant, and different herbaceous neighbours in response to changes in the magnitude and frequency of rainfall events during three years. The experiment was conducted in natural and anthropogenic grasslands dominated by a perennial stress-tolerator and ruderal annual species, respectively. In spite of the neutral or positive effects of neighbours on water availability, neighbouring plants reduced the performance of Retama juveniles, suggesting competition for resources other than water. The negative effects of grasses on the photochemical efficiency of Retama juveniles decreased with higher water availabilities or heavier irrigation pulses, depending on the grassland studied; however, these effects did not extent to the survival and growth of Retama juveniles. Our findings show the prevalence of competitive interactions among the studied plants, regardless of the water availability and its temporal pattern. These results suggest that positive interactions may not prevail under harsher conditions when shade-intolerant species are involved. This study could be used to further refine our predictions of how plant-plant interactions will respond to changes in rainfall, either natural or increased by the ongoing climatic change, in ecosystems where grass-shrubs interactions are prevalent. PMID:25914429

  17. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae across Ecosystem Boundaries Using Multiple Sampling Methods.

    Directory of Open Access Journals (Sweden)

    Michal Wiezik

    Full Text Available Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting and open habitats (pitfall trapping, and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24 than litter sifting (16. Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated

  18. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods.

    Science.gov (United States)

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling

  19. Cellular-automata model of the dwarf shrubs populations and communities dynamics

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2015-06-01

    Full Text Available The probabilistic cellular-automata model of development and long-time dynamics of dwarf shrub populations and communities is developed. It is based on the concept of discrete description of the plant ontogenesis and joint model approaches in terms of probabilistic cellular automata and L-systems by Lindenmayer. Short representation of the basic model allows evaluation of the approach and software implementation. The main variables of the model are a number of partial bushes in clones or area projective cover. The model allows us to investigate the conditions of self-maintenance and sustainability population under different environmental conditions (inaccessibility of the territory for settlement, mosaic moisture conditions of soil and wealth. The model provides a forecast of the total biomass dynamics shrubs and their fractions (stems, leaves, roots, fine roots, fruits on the basis of the data obtained in the discrete description of ontogenesis and further information on the productivity of the plant fractions. The inclusion of the joint dynamics of biomass of shrubs and soil in EFIMOD models cycle of carbon and nitrogen to evaluate the role of shrubs in these circulations, especially at high impact, such as forest fires and clear cutting, allow forecasting of the dynamics of populations and ecosystem functions of shrubs (regulation of biogeochemical cycles maintaining biodiversity, participation in the creation of non-wood products with changing climatic conditions and strong damaging effects (logging, fires; and application of the models developed to investigate the stability and productivity of shrubs and their participation in the cycle of carbon and nitrogen in different climatic and edaphic conditions.

  20. Determining the Frequency of Dry Lake Bed Formation in Semi-Arid Mongolia From Satellite Data

    Directory of Open Access Journals (Sweden)

    Yuta Demura

    2017-12-01

    Full Text Available In the Mongolian Plateau, the desert steppe, mountains, and dry lake bed surfaces may affect the process of dust storm emissions. Among these three surface types, dry lake beds are considered to contribute a substantial amount of global dust emissions and to be responsible for “hot spots” of dust outbreaks. The land cover types in the study area were broadly divided into three types, namely desert steppe, mountains, and dry lake beds, by a classification based on Normalized Difference Water Index (NDWI calculated from MODIS Terra satellite images, and Digital Elevation Model (DEM. This dry lake beds extracting method using remote sensing offers a new technique for identifying dust hot spots and potential untapped groundwater in the dry lands of the Gobi region. In the study area, frequencies of dry lake bed formation were calculated during the period of 2001 to 2014. The potential dry lake area corresponded well with the length of the river network based on hydrogeological characterization (R2 = 0.77, p < 0.001. We suggest that the threshold between dry lake bed areas and the formation of ephemeral lakes in semi-arid regions is eight days of total precipitation.

  1. DEER BELIEF AND DEER SACRIFICE AROUND STEPPE CULTURE

    Directory of Open Access Journals (Sweden)

    Aslı KAHRAMAN ÇINAR

    2016-04-01

    Full Text Available Turkish people have spreaded on a large area historically. They have left a mark on all the places they reach. The history of Turks begun in Central Asian Steppes. In reaction to the steppe culture, the human communities of Turks are hunter-nomad communities. The hunter-nomad comminuties make a living from stockfarming and apiculture. The deer is one of the essential animals for t he hunter-nomad communities in the daily life. In the steppe, the deer is seen in all area of social life. Further, the deer motives are commonly used in political, military, financial, the most religious areas. The hunter-nomad comminuties benefit by the meat, milk, leather, horns, nails, etc of the deer. In this study, we dwell on the deer with regard to its intended purposes and usage areas according to steppe culture. The references of this study are references are inscriptions, mythologic stories and archeological datas.

  2. Spectral Demixing and Spectral Index Correlations for Subpixel Quantification of Land-Cover Components from Coarse Resolution Imagery at Fort Bliss, Texas

    Science.gov (United States)

    2003-12-01

    Application to Land-Cover Change in the Brazilian Amazon ,” Remote Sensing of Environment, vol 52, pp 137-154. Anderson, G.L., J.D. Hanson, and R.H. Haas...FORTRAN, Cambridge University Press. Price, K.P., D. A. Pyke,and L. Mendes. 1992. “Shrub Dieback in a Semiarid Ecosystem; The Integration of Remote

  3. Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems

    Science.gov (United States)

    Reisner, Michael D.; Grace, James B.; Pyke, David A.; Doescher, Paul S.

    2013-01-01

    1. Ecosystem invasibility is determined by combinations of environmental variables, invader attributes, disturbance regimes, competitive abilities of resident species and evolutionary history between residents and disturbance regimes. Understanding the relative importance of each factor is critical to limiting future invasions and restoring ecosystems.

  4. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  5. Are biological effects of desert shrubs more important than physical effects on soil microorganisms?

    Science.gov (United States)

    Berg, Naama; Steinberger, Yosef

    2010-01-01

    Vegetation cover plays a major role in providing organic matter and in acting as a physical barrier, with both together contributing to the formation of "fertile islands," which play an active role in prolonging biological activity in desert ecosystems. By undertaking this study, a longterm research, we designed an experiment to separate the two components-the physical and biotic parts of the perennial plants-and to identify the factor that contributes the most to the ecosystem. The study site was located in the northern Negev Desert, Israel, where 50 Hammada scoparia shrubs and 50 artificial plants were randomly marked. Soil samples were collected monthly over 3 years of research at three locations: under the canopy of H. scoparia shrubs, in the vicinity of the artificial plants, and between the shrubs (control). The contribution to microbial activity was measured by evaluation of the microbial community functions in soil. The functional aspects of the microbial community that were measured were CO2 evolution, microbial biomass, microbial functional diversity, and the physiological profile of the community. The results of this study are presented in two ways: (1) according to the three locations/treatments; and (2) according to the phenological situation of the vegetation (annual and perennial plants) in the research field: the growing phase, the drying process, and the absence of annual plants. The only parameters that were found to affect microbial activity were the contribution of the organic matter of perennial shrubs and the growth of vegetation (annual and perennial) during the growing seasons. The physical component was found to have no effect on soil microbial functional diversity, which elucidates the important contribution of the desert shrub in enhancing biological multiplicity and activity.

  6. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  7. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  8. Plant-soil interactions promote co-occurrence of three nonnative woody shrubs.

    Science.gov (United States)

    Kuebbing, Sara E; Classen, Aimée T; Call, Jaime J; Henning, Jeremiah A; Simberloff, Daniel

    2015-08-01

    Ecosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives. However, plant-soil interactions could promote nonnative co-occurrence if a nonnative accumulates beneficial soil mutualists that also assist other nonnatives. Here, we use greenhouse and field experiments to ask whether plant-soil interactions (1) promote the codominance of two common nonnative shrubs (Ligustrum sinense and Lonicera maackii) and (2) facilitate the invasion of a less-common nonnative shrub (Rhamnus davurica) in deciduous forests of the southeastern United States. In the greenhouse, we found that two of the nonnatives, L. maackii and R. davurica, performed better in soils conditioned by nonnative shrubs compared to uninvaded forest soils, which. suggests that positive feedbacks among co-occurring nonnative shrubs can promote continued invasion of a site. In both greenhouse and field experiments, we found consistent signals that the codominance of the nonnatives L. sinense and L. maackii may be at least partially explained by the increased growth of L. sinense in L. maackii soils. Overall, significant effects of plant-soil interactions on shrub performance indicate that plant-soil interactions can potentially structure the co-occurrence patterns of these nonnatives.

  9. Modelling annual evapotranspiration in a semi-arid, African savanna ...

    African Journals Online (AJOL)

    Accurately measuring evapotranspiration (ET) is essential if we are to derive reasonable estimates of production and water use for semi-arid savannas. Estimates of ET are also important in defining the health of an ecosystem and the quantity of water used by the vegetation when preparing a catchment-scale water balance.

  10. 137 ancient human genomes from across the Eurasian steppes.

    Science.gov (United States)

    Damgaard, Peter de Barros; Marchi, Nina; Rasmussen, Simon; Peyrot, Michaël; Renaud, Gabriel; Korneliussen, Thorfinn; Moreno-Mayar, J Víctor; Pedersen, Mikkel Winther; Goldberg, Amy; Usmanova, Emma; Baimukhanov, Nurbol; Loman, Valeriy; Hedeager, Lotte; Pedersen, Anders Gorm; Nielsen, Kasper; Afanasiev, Gennady; Akmatov, Kunbolot; Aldashev, Almaz; Alpaslan, Ashyk; Baimbetov, Gabit; Bazaliiskii, Vladimir I; Beisenov, Arman; Boldbaatar, Bazartseren; Boldgiv, Bazartseren; Dorzhu, Choduraa; Ellingvag, Sturla; Erdenebaatar, Diimaajav; Dajani, Rana; Dmitriev, Evgeniy; Evdokimov, Valeriy; Frei, Karin M; Gromov, Andrey; Goryachev, Alexander; Hakonarson, Hakon; Hegay, Tatyana; Khachatryan, Zaruhi; Khaskhanov, Ruslan; Kitov, Egor; Kolbina, Alina; Kubatbek, Tabaldiev; Kukushkin, Alexey; Kukushkin, Igor; Lau, Nina; Margaryan, Ashot; Merkyte, Inga; Mertz, Ilya V; Mertz, Viktor K; Mijiddorj, Enkhbayar; Moiyesev, Vyacheslav; Mukhtarova, Gulmira; Nurmukhanbetov, Bekmukhanbet; Orozbekova, Z; Panyushkina, Irina; Pieta, Karol; Smrčka, Václav; Shevnina, Irina; Logvin, Andrey; Sjögren, Karl-Göran; Štolcová, Tereza; Tashbaeva, Kadicha; Tkachev, Alexander; Tulegenov, Turaly; Voyakin, Dmitriy; Yepiskoposyan, Levon; Undrakhbold, Sainbileg; Varfolomeev, Victor; Weber, Andrzej; Kradin, Nikolay; Allentoft, Morten E; Orlando, Ludovic; Nielsen, Rasmus; Sikora, Martin; Heyer, Evelyne; Kristiansen, Kristian; Willerslev, Eske

    2018-05-09

    For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century BC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.

  11. Modeling responses of the meadow steppe dominated by Leymus chinensis to climate change

    International Nuclear Information System (INIS)

    Wang, Yuhui; Zhou, Guangsheng; Wang, Yonghe

    2007-01-01

    Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future

  12. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  13. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán

    2011-01-01

    efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity......Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...

  14. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    Science.gov (United States)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    In arid and semi-arid Mediterranean coastal areas, metals and metalloids (MM) pollution coming from unreclaimed brownfields has increased the negative environmental stresses leading to ecosystems degradations as soil erosion and losses of organic matter and biodiversity. On these sites, maintaining or restoring a local vegetation cover is considered as a key step to stop the degradation cycle. Furthermore, in a context of high pollution occurring in natural areas, phytoremediation is considered as an attractive alternative to conventional soil remediation techniques, the first reducing pollution transfers, improving the soil quality. In protected or natural areas, it is also important to perceive then design phytoremediation as a way to assist ecosystems recovery, using the restoration ecology concepts. However, only few works in the literature deal with the potential use of native Mediterranean plant species for phytoremediation. On the South-East coast of Marseille (France), the activity of the former smelting factory of l'Escalette, ceased since 1925. However, its brownfield is still a source of pollution by trace metals and metalloids for abiotic and biotic components of the surrounding massif. This massif hosts a rich biodiversity with rare and protected plant species despite the metallic pollution and this area has been included in the recently created first peri-urban French National Park of Calanques. In this context, an integrated research project is being conducted with local actors and stakeholders, from the selection of native plant species, assessment and optimization of phytostabilization capacities of selected species, to the development of ecological engineering techniques well adapted to local constraints and phytostabilization field trials. The first part of this study has been conducted on two areas, corresponding to different pollution pattern, plant communities and environmental drivers: a halophytic area, characterized by typical coastal

  15. Measuring carbon in shrubs. Chapter 5

    Science.gov (United States)

    David C. Chojnacky; Mikaila Milton

    2008-01-01

    Although shrubs are a small component of the overall carbon budget, shrub lands and shrub cover within forested lands warrant monitoring with consistent procedures to account for carbon in shrubs and to track carbon accumulation as communities change from shrubs to trees and vice versa. Many different procedures have been used to sample and measure shrubs (Bonham 1989...

  16. Mediterranean shrub vegetation: soil protection vs. water availability

    Science.gov (United States)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  17. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    Science.gov (United States)

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  18. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  19. Chorological classification approach for species and ecosystem conservation practice

    Science.gov (United States)

    Rogova, T. V.; Kozevnikova, M. V.; Prokhorov, V. E.; Timofeeva, N. O.

    2018-01-01

    The habitat type allocation approach based on the EUNIS Habitat Classification and the JUICE version 7 software is used for the conservation of species and ecosystem biodiversity. Using the vegetation plots of the Vegetation Database of Tatarstan, included in the EVA (European Vegetation Archive) and GIVD (Global Index of Vegetation-plots Databases) types of habitats of dry meadows and steppes are distinguished by differing compositions of the leading families composing their flora - Asteraceae, Fabaceae, Poaceae and Rosaceae. E12a - Semi-dry perennial calcareous grassland, and E12b - Perennial calcareous grassland and basic steppes were identified. The selected group of relevés that do not correspond to any of the EUNIS types can be considered specific for ecotone forest-steppe landscapes of the southeast of the Republic of Tatarstan. In all types of studied habitats, rare and protected plant species are noted, most of which are South-East-European-Asian species.

  20. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity

    Science.gov (United States)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli

    2018-01-01

    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  1. Seasonal and Spatial Variations of Bulk Nitrogen Deposition and the Impacts on the Carbon Cycle in the Arid/Semiarid Grassland of Inner Mongolia, China.

    Science.gov (United States)

    Li, Xianglan; Shi, Huiqiu; Xu, Wenfang; Liu, Wei; Wang, Xiujun; Hou, Longyu; Feng, Fei; Yuan, Wenping; Li, Linghao; Xu, Hua

    2015-01-01

    Atmospheric nitrogen (N) deposition is an important component that affects the structure and function of different terrestrial ecosystem worldwide. However, much uncertainty still remains concerning the magnitude of N deposition on grassland ecosystem in China. To study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4+-N and NO3--N) concentration in rainfall were measured at 12 sites across a 1200 km grassland transect in Inner Mongolia, China, and the respective N deposition rates were estimated. The inorganic N deposition rates ranged from 4.53 kg N ha-1 to 12.21 kg N ha-1 with a mean value of 8.07 kg N ha-1 during the entire growing season, decreasing steadily from the eastern to the western regions. Inorganic N deposition occurred mainly in July and August across meadow steppe, typical steppe, and desert steppe, which corresponded to the seasonal distribution of mean annual precipitation. A positive relationship was found between inorganic N deposition and mean annual precipitation (R2 = 0.54 ~ 0.72, P ecosystem respiration, but has no effect on root biomass and soil respiration. We must clarify that we used the bulk deposition samplers during the entire sampling process and estimated the dissolved NH4+-N and NO3--N deposition rates during the entire growing season. Long-term N deposition monitoring networks should be constructed to study the patterns of N deposition and its potential effect on grassland ecosystem, considering various N species, i.e., gaseous N, particle N, and wet N deposition.

  2. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  3. Steppe of Tbilisi environs (East Georgia, South Caucasus

    Directory of Open Access Journals (Sweden)

    N.J. Lachashvili

    2017-09-01

    Full Text Available Steppes of Tbilisi environs are studied. In the Tbilisi surroundings the steppe vegetation is either of primary or secondary origin. Steppe vegetation in the Tbilisi environs are represented by 4 formations: (1 Bothriochloeta ischaemum, (2 Festuceta valesiaci, (3 Stipeta pennatae and (4 Gramino-Mixtoherbeta. From them Bothriochloeta ischaemum and Festuceta valesiaci formations have more area covering and characterized by the comparatively rich typological composition. Typological composition of each formation is established. For each separated plant communities the basic structural characteristics (general projective coverage, sodding degree, dominant-edificatory plant, characteristic species, number of species, moss cover, litter, species richness, spectrum of life forms, distribution area in the Tbilisi environs and main physical-geographical conditions (altitude, exposure, inclination, soil type are given.

  4. Modelling the impact of mulching the soil with plant remains on water regime formation, crop yield and energy costs in agricultural ecosystems

    Science.gov (United States)

    Gusev, Yeugeniy M.; Dzhogan, Larisa Y.; Nasonova, Olga N.

    2018-02-01

    The model MULCH, developed by authors previously for simulating the formation of water regime in an agricultural field covered by straw mulch layer, has been used for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of Russia and Ukraine. It simulates the dynamics of water budget components in a soil rooting zone at daily time step from the beginning of spring snowmelt to the beginning of the period with stable negative air temperatures. The model was designed for estimation of mulching efficiency in terms of increase in plant water supply and crop yield under climatic and soil conditions of the steppe and forest-steppe zones. It is used for studying the mulching effect on some characteristics of water regime and yield of winter wheat growing at specific sites located in semi-arid and arid regions of the steppe and forest-steppe zones of the eastern and southern parts of the East-European (Russian) plain. In addition, a previously developed technique for estimating the energetic efficiency of various agricultural technologies with accounting for their impact on changes in soil energy is applied for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of the steppe and forest-steppe zones of the European Russia: (1) moldboard tillage of soil without irrigation, (2) moldboard tillage of soil with irrigation, (3) subsurface cultivation, and (4) subsurface cultivation with mulching the soil with plant remains.

  5. Chapter 22. Rosaceous shrubs

    Science.gov (United States)

    Nancy L. Shaw; Stephen B. Monsen; Richard Stevens

    2004-01-01

    Important shrubs of the Rose Family (Rosaceae) in the Intermountain region are distributed from blackbrush and salt desert shrub communities through high elevation forests and meadows. Growth habits of this group vary from trailing brambles to upright shrubs and small trees. Some species are evergreen while others are deciduous. Many of these species are highly valued...

  6. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    Science.gov (United States)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  7. Food habits of rodents inhabiting arid and semi-arid ecosystems of central New Mexico

    Science.gov (United States)

    Hope, Andrew G.; Parmenter, Robert R.

    2007-01-01

    In this study, we describe seasonal dietary composition for 15 species of rodents collected in all major habitats on the Sevilleta National Wildlife Refuge (Socorro County) in central New Mexico. A comprehensive literature review of food habits for these species from throughout their distribution also is provided. We collected rodents in the field during winter, spring and late summer in 1998 from six communities: riparian cottonwood forest; piñon-juniper woodland; juniper-oak savanna; mesquite savanna; short-grass steppe; and Chihuahuan Desert scrubland. Rodents included Spermophilus spilosoma (Spotted Ground Squirrel), Perognathus flavescens (Plains Pocket Mouse), Perognathus flavus (Silky Pocket Mouse), Dipodomys merriami (Merriam’s Kangaroo Rat), Dipodomys ordii (Ord’s Kangaroo Rat), Dipodomys spectabilis (Banner-tailed Kangaroo Rat), Reithrodontomys megalotis (Western Harvest Mouse), Peromyscus boylii (Brush Mouse), Peromyscus eremicus (Cactus Mouse), Peromyscus leucopus (White-footed Mouse), Peromyscus truei (Piñon Mouse), Onychomys arenicola (Mearn’s Grasshopper Mouse), Onychomys leucogaster (Northern Grasshopper Mouse), Neotoma albigula/leucodon (White-throated Woodrats), and Neotoma micropus (Southern Plains Woodrat). We collected stomach contents of all species, and cheek-pouch contents of heteromyids, and quantified them in the laboratory. We determined seasonal diets in each habitat by calculating mean percentage volumes of seeds, arthropods and green vegetation (plant leaves and stems) for each species of rodent. Seeds consumed by each rodent were identified to genus, and often species, and quantified by frequency counts. Comparisons of diets between and among species of rodents, seasons, and ecosystems were also examined. We provide an appendix of all plant taxa documented.

  8. Comparing methane emissions from different sheep-keeping systems in semiarid regions: A case study of Syria

    Directory of Open Access Journals (Sweden)

    Omar Hijazi

    2014-06-01

    Full Text Available Sheep husbandry represents a significant source of methane (CH4 in semiarid grassland regions such as Syria. However, the contribution of sheep to CH4 emissions in Syria is still unknown. This study was designed to quantify CH4 emissions and identify possible mitigation strategies for their reduction. Methodology developed by the Intergovernmental Panel on Climate Change (IPCC was used to estimate CH4 emissions. A survey was conducted on 64 farms from different locations in Syria in 2009. Data were collected concerning sheep-keeping systems (SKSs, body mass, milk and wool yield, farm locations, feed rations, periods of grazing on the Steppe, the duration of pasturing on agricultural residuals and time periods when sheep were kept in stables. Using a linear statistical model, the influence of SKS, geographical region and sheep body mass on emitted CH4 were analysed. The results showed that the geographical region, SKS and sheep body mass had significant effects (P < 0.05 on CH4 emissions. According to the model, the mean values of estimated CH4 emissions from extensive, semi-intensive and intensive SKSs were 26 ± 0.9, 22.5 ± 1.3 and 13.5 ± 1.7 kg/sheep year, respectively. In comparing differences between the least square means of CH4 emissions, the extensive and semi-intensive SKSs produced 92% and 66% higher CH4 emissions compared to intensive SKS. The differences in CH4 emissions within the distinct SKSs were attributed to dietary composition. Extensive SKS used a less concentrated feeding regime (98 ± 17 day/year than semi-intensive SKS (114 ± 47 day/year, and intensive SKS employed concentrated feeding year round. Furthermore, it was observed that sheep with the same body mass produced higher CH4 emissions in extensive SKS than in semi-intensive and intensive SKSs. Moreover, the semi-intensive SKS occupied more natural pastures than extensive SKS, which caused an overuse of the Steppe. Therefore, an effective mitigation

  9. Comment on: Shukla, M.K. et al., 2006: Physical and chemical properties of soils under some pinon-juniper-oak canopies in a semi-arid ecosystem in New Mexico

    DEFF Research Database (Denmark)

    Mollerup, Mikkel; Jensen, Jens Raunsø

    2008-01-01

    The paper by Shukla et al. [2006. Physical and chemical properties of soils under some pinon-juniper-oak canopies in an semi-arid ecosystem in New Mexico. Journal of Arid Environment 66, 673-685] treats interesting topics of sustainability of different ecosystems and their water availability....... However, the physical-based infiltration theories by Green and Ampt [1911. Studies on soil physics, I, flow of air and water through soils. Journal of Agricultural Science 4, 1-24] and Philip [1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science 83, 345-357] seems...... to be applied without necessary reflections. The actual analysis can have resulted in coefficients without their original physical significance...

  10. Effect of summer fire on cursorial spider (Aranei and beetle (Coleoptera assemblages in meadow steppes of Central European Russia

    Directory of Open Access Journals (Sweden)

    Polchaninova Nina

    2016-12-01

    Full Text Available Fire is an important structuring force for grassland ecosystems. Despite increased incidents of fire in European steppes, their impact on arthropod communities is still poorly studied. We assessed short-term changes in cursorial beetle and spider assemblages after a summer fire in the meadow steppe in Central European Russia. The responses of spider and beetle assemblages to the fire event were different. In the first post-fire year, the same beetle species dominated burnt and unburnt plots, the alpha-diversity of beetle assemblages was similar, and there were no pronounced changes in the proportions of trophic groups. Beetle species richness and activity density increased in the second post-fire year, while that of the spiders decreased. The spider alpha-diversity was lowest in the first post-fire year, and the main dominants were pioneer species. In the second year, the differences in spider species composition and activity density diminished. The main conclusion of our study is that the large-scale intensive summer fire caused no profound changes in cursorial beetle and spider assemblages of this steppe plot. Mitigation of the fire effect is explained by the small plot area, its location at the edge of the fire site and the presence of adjacent undisturbed habitats with herbaceous vegetation.

  11. Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China

    NARCIS (Netherlands)

    Qu, Laiye; Huang, Yuanyuan; Ma, Keming; Zhang, Yuxin; Biere, A.

    2016-01-01

    Plant establishment is widely recognized as an effective way to prevent soil erosion in arid and semiarid ecosystems. Artemisia gmelinii, a pioneering species in many degraded ecosystems in China, is effective in improving soil properties and controlling runoff and soil loss, but mechanisms

  12. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and 14c analysis

    International Nuclear Information System (INIS)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-01-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. δ 1 3 C and δ 1 5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  13. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant–interspace heterogeneity

    Directory of Open Access Journals (Sweden)

    J. Gong

    2018-01-01

    Full Text Available We used process-based modelling to investigate the roles of carbon-flux (C-flux components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation. The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  14. Why Be a Shrub? A Basic Model and Hypotheses for the Adaptive Values of a Common Growth Form

    Science.gov (United States)

    Götmark, Frank; Götmark, Elin; Jensen, Anna M.

    2016-01-01

    Shrubs are multi-stemmed short woody plants, more widespread than trees, important in many ecosystems, neglected in ecology compared to herbs and trees, but currently in focus due to their global expansion. We present a novel model based on scaling relationships and four hypotheses to explain the adaptive significance of shrubs, including a review of the literature with a test of one hypothesis. Our model describes advantages for a small shrub compared to a small tree with the same above-ground woody volume, based on larger cross-sectional stem area, larger area of photosynthetic tissue in bark and stem, larger vascular cambium area, larger epidermis (bark) area, and larger area for sprouting, and faster production of twigs and canopy. These components form our Hypothesis 1 that predicts higher growth rate for a small shrub than a small tree. This prediction was supported by available relevant empirical studies (14 publications). Further, a shrub will produce seeds faster than a tree (Hypothesis 2), multiple stems in shrubs insure future survival and growth if one or more stems die (Hypothesis 3), and three structural traits of short shrub stems improve survival compared to tall tree stems (Hypothesis 4)—all hypotheses have some empirical support. Multi-stemmed trees may be distinguished from shrubs by more upright stems, reducing bending moment. Improved understanding of shrubs can clarify their recent expansion on savannas, grasslands, and alpine heaths. More experiments and other empirical studies, followed by more elaborate models, are needed to understand why the shrub growth form is successful in many habitats. PMID:27507981

  15. Impacts of the removal of shrubs on the physiological and biochemical characteristics of Syntrichia caninervis Mitt: in a temperate desert.

    Science.gov (United States)

    Yin, Ben-Feng; Zhang, Yuan-Ming; Lou, An-Ru

    2017-04-04

    Moss crusts play important roles in biological soil crusts biomass and soil surface stabilization. However, because of increasingly intensive human activities, especially grazing, the growth and survival of shrubs are seriously threatened. This study aimed to test whether the presence of shrubs affects the physiological state of the bryophyte Syntrichia caninervis Mitt. in this desert ecosystem. We simulated animal-grazed shrubs at three levels in the Gurbantunggut Desert and compared these simulations to exposed areas, measuring the indicators of growth and stress tolerance exhibited by bryophytes. The results showed that the removal of shrubs significantly decreased chlorophyll fluorescence activity and soluble protein content in S. caninervis, especially under the total shrub removal treatment. The ratio between the total removal of shrubs and other treatments in antioxidative enzymes and in osmotic adjustment substances of S. caninervis exhibited two types of responses. With the exception of malonyldialdehyde (MDA) and superoxide dismutase (SOD), the variables examined fitted as downward parabolic then upward parabolic temporal dynamics. The removal of shrubs is harmful to the survival of S.caninervis. In resource-constrained conditions, SOD is an important antioxidant enzyme that of peroxidase (POD), catalase (CAT) and osmotic adjustment substances, for S. caninervis survival.

  16. [Temporal diversity dynamics of the arbuscular mycorrhizal fungi of Larrea tridentata (Sesse & Mocino ex DC) Coville in a semi-arid ecosystem].

    Science.gov (United States)

    Hernández-Zamudio, Genoveva; Sáenz-Mata, Jorge; Moreno-Reséndez, Alejandro; Castañeda-Gaytán, Gamaliel; Ogaz, Alfredo; Carballar-Hernández, Santos; Hernández-Cuevas, Laura

    2017-12-06

    Arbuscular mycorrhizal fungi (AMF) of arid and semiarid ecosystems are important for the development of plants that grow under biotic stress in wild or in agro-ecosystems. There is little information on the temporal diversity of these organisms in perennial plants from arid ecosystems in northern Mexico. On this study, the mycorrhizal colonization and the temporal diversity of AMF in the rhizosphere of Larrea tridentata, perennial plant abundant in the Chihuahuan Desert region were explored. Samples of the rhizosphere and roots of fifteen plants in each of the three sampling dates during the 2015 year were obtained. A total of 17 species of HMA belonging to 12 genera and 7 families within the phylum Glomeromycota in all three sampling dates were found. Funneliformis geosporum was the dominant species belonging to the family Glomeraceae which possess the highest genera number on L. tridentata. The highest mycorrhization percentage was in February with 83.22, followed by September and May with 75.27 and 65.27%, respectively. A maximum of 16 AM fungal species were isolated and identified from L. tridentata rhizosphere in February, 15 species in May and 12 species in September. Statistical analysis showed significant differences between sampling dates in the spores number. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe

    Science.gov (United States)

    Chen, Yizhao; Ju, Weimin; Groisman, Pavel; Li, Jianlong; Propastin, Pavel; Xu, Xia; Zhou, Wei; Ruan, Honghua

    2017-11-01

    The temperate Eurasian steppe (TES) is a region where various environmental, social, and economic stresses converge. Multiple types of disturbance exist widely across the landscape, and heavily influence carbon cycling in this region. However, a current quantitative assessment of the impact of disturbances on carbon sequestration is largely lacking. In this study, we combined the boreal ecosystem productivity simulator (BEPS), the Shiyomi grazing model, and the global fire model (Glob-FIRM) to investigate the impact of the two major types of disturbance in the TES (i.e. domestic grazing and fire) on regional carbon sequestration. Model performance was validated using satellite data and field observations. Model outputs indicate that disturbance has a significant impact on carbon sequestration at a regional scale. The annual total carbon lost due to disturbances was 7.8 TgC yr-1, accounting for 14.2% of the total net ecosystem productivity (NEP). Domestic grazing plays the dominant role in terrestrial carbon consumption, accounting for 95% of the total carbon lost from the two disturbances. Carbon losses from both disturbances significantly increased from 1999 to 2008 (R 2 = 0.82, P ecosystems.

  18. Diurnal Freeze-Thaw Cycles Modify Winter Soil Respiration in a Desert Shrub-Land Ecosystem

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-07-01

    Full Text Available Winter soil respiration (Rs is becoming a significant component of annual carbon budgets with more warming in winter than summer. However, little is known about the controlling mechanisms of winter Rs in dryland. We made continuous measurements of Rs in four microsites (non-crust (BS, lichen (LC, moss (MC, and a mixture of moss and lichen (ML in a desert shrub-land ecosystem northern China, to investigate the causes of Rs dynamics in winter. The mean winter Rs ranged from 0.10 to 0.17 µmol CO2 m−2·s−1 across microsites, with the highest value in BS. Winter Q10 (known as the increase in respiration rate per 10 °C increase in temperature values (2.8–19 were much higher than those from the growing season (1.5. Rs and Q10 were greatly enhanced in freeze-thaw cycles compared to frozen days. Diurnal patterns of Rs between freeze-thaw and frozen days differed. Although the freeze-thaw period was relatively short, its cumulative Rs contributed significantly to winter Rs. The presence of biocrust might induce lower temperature, thus having fewer freeze-thaw cycles relative to bare soil, leading to the lower Rs for microsites with biocrusts. In conclusion, winter Rs in drylands was sensitive to soil temperature (Ts and Ts-induced freeze-thaw cycles. The temperature impact on Rs varied among soil cover types. Winter Rs in drylands may become more important as the climate is continuously getting warmer.

  19. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska.

    Science.gov (United States)

    Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C

    2016-05-01

    Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015

  20. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    Science.gov (United States)

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  1. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  2. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and {sup 1}4c analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-07-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. {delta}{sup 1}3 C and {delta}{sup 1}5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  3. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.

    Science.gov (United States)

    Palmquist, Kyle A; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K

    2016-09-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: (1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems, and (2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT, to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, whereas changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer, drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big

  4. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources

    Science.gov (United States)

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.

    2016-01-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big

  5. Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter?

    Science.gov (United States)

    Richard, Franck; Selosse, Marc-André; Gardes, Monique

    2009-04-01

    Positive plant-plant interaction is a widespread phenomenon, especially in harsh environments, which can contribute to secondary successions. Here, we investigated whether Arbutus unedo positively influences Quercus ilex establishment in shrub communities by abiotic and/or biotic interactions in a Mediterranean forest ecosystem, where we previously showed that A. unedo and Q. ilex share numerous species of mycorrhizal fungi. In a first field experiment, patterns of Q. ilex survivorship were documented. During the summer following germination, a majority of seedlings survived in A. unedo chaparral (AU), whereas most of them died in previous succession stages dominated by Erica arborea (EA). These results showed that survival of the Q. ilex seedling is succession stage dependent, probably due to the differential effects of the summer drought. In a second experiment, Q. ilex seedlings were used as bait plants to investigate the mycorrhizal inoculum in EA and AU. Morphotyping and molecular typing revealed 2.5 times higher colonization in AU than in EA, with more diverse fungi. Our results demonstrate that A. unedo facilitates mycorrhization of Q. ilex by hosting compatible ectomycorrhizal symbionts and positively influences seedling survival by buffering abiotic conditions. A comprehensive understanding of facilitation should thus include investigations of the soil biological patterns.

  6. Seasonal and Spatial Variations of Bulk Nitrogen Deposition and the Impacts on the Carbon Cycle in the Arid/Semiarid Grassland of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Xianglan Li

    Full Text Available Atmospheric nitrogen (N deposition is an important component that affects the structure and function of different terrestrial ecosystem worldwide. However, much uncertainty still remains concerning the magnitude of N deposition on grassland ecosystem in China. To study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4+-N and NO3--N concentration in rainfall were measured at 12 sites across a 1200 km grassland transect in Inner Mongolia, China, and the respective N deposition rates were estimated. The inorganic N deposition rates ranged from 4.53 kg N ha-1 to 12.21 kg N ha-1 with a mean value of 8.07 kg N ha-1 during the entire growing season, decreasing steadily from the eastern to the western regions. Inorganic N deposition occurred mainly in July and August across meadow steppe, typical steppe, and desert steppe, which corresponded to the seasonal distribution of mean annual precipitation. A positive relationship was found between inorganic N deposition and mean annual precipitation (R2 = 0.54 ~ 0.72, P < 0.0001 across the grassland transect. Annual estimation of inorganic N deposition was 0.67 Pg yr-1 in Inner Mongolia, China based on the correlation between N deposition rates and precipitation. N deposition was an important factor controlling aboveground biomass and ecosystem respiration, but has no effect on root biomass and soil respiration. We must clarify that we used the bulk deposition samplers during the entire sampling process and estimated the dissolved NH4+-N and NO3--N deposition rates during the entire growing season. Long-term N deposition monitoring networks should be constructed to study the patterns of N deposition and its potential effect on grassland ecosystem, considering various N species, i.e., gaseous N, particle N, and wet N deposition.

  7. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  8. Can land degradation drive differences in the C exchange of two similar semiarid ecosystems?

    Science.gov (United States)

    López-Ballesteros, Ana; Oyonarte, Cecilio; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Rosario Moya, M.; Domingo, Francisco

    2018-01-01

    Currently, drylands occupy more than one-third of the global terrestrial surface and are recognized as areas vulnerable to land degradation. The concept of land degradation stems from the loss of an ecosystem's biological productivity due to long-term loss of natural vegetation or depletion of soil nutrients. Drylands' key role in the global carbon (C) balance has been recently demonstrated, but the effects of land degradation on C sequestration by these ecosystems still need to be investigated. In the present study, we compared net C and water vapor fluxes, together with satellite, meteorological and vadose zone (CO2, water content and temperature) measurements, between two nearby (˜ 23 km) experimental sites representing natural (i.e., site of reference) and degraded grazed semiarid grasslands. We utilized data acquired over 6 years from two eddy covariance stations located in southeastern Spain with highly variable precipitation magnitude and distribution. Results show a striking difference in the annual C balances with an average net CO2 exchange of 196 ± 40 (C release) and -23 ± 2 g C m-2 yr-1 (C fixation) for the degraded and natural sites, respectively. At the seasonal scale, differing patterns in net CO2 fluxes were detected over both growing and dry seasons. As expected, during the growing seasons, greater net C uptake over longer periods was observed at the natural site. However, a much greater net C release, probably derived from subterranean ventilation, was measured at the degraded site during drought periods. After subtracting the nonbiological CO2 flux from net CO2 exchange, flux partitioning results point out that, during the 6 years of study, gross primary production, ecosystem respiration and water use efficiency were, on average, 9, 2 and 10 times higher, respectively, at the natural site versus the degraded site. We also tested differences in all monitored meteorological and soil variables and CO2 at 1.50 m belowground was the variable

  9. Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs.

    Science.gov (United States)

    Gao, Qiong; Yu, Mei; Zhou, Chan

    2013-01-01

    Shrubs and subshrubs can tolerate wider ranges of moisture stresses in both soil and air than other plant life forms, and thus represent greater nonlinearity and uncertainty in ecosystem physiology. The objectives of this paper are to model shrub/subshrub stomatal conductance by synthesizing the field leaf gas exchanges data of 24 species in China, in order to detect the differences between deciduous shrubs and Artemisia subshrubs in their responses of stomatal conductance to changes in the moisture stresses. We revised a model of stomatal conductance by incorporating the tradeoff between xylem hydraulic efficiency and cavitation loss risk. We then fit the model at the three hierarchical levels: global (pooling all data as a single group), three functional groups (deciduous non-legume shrubs, deciduous legume shrubs, and subshrubs in Artemisia genus), and individual observations (species × sites). Bayesian inference with Markov Chain Monte Carlo method was applied to obtain the model parameters at the three levels. We found that the model at the level of functional groups is a significant improvement over that at the global level, indicating the significant differences in the stomatal behavior among the three functional groups. The differences in tolerance and sensitivities to changes in moisture stresses are the most evident between the shrubs and the subshrubs: The two shrub groups can tolerate much higher soil water stress than the subshrubs. The analysis at the observation level is also a significant improvement over that at the functional group level, indicating great variations within each group. Our analysis offered a clue for the equivocal issue of shrub encroachment into grasslands: While the invasion by the shrubs may be irreversible, the dominance of subshrubs, due to their lower resistance and tolerance to moisture stresses, may be put down by appropriate grassland management.

  10. Modern pollen rain in Canary Island ecosystems and its implications for the interpretation of fossil records

    DEFF Research Database (Denmark)

    de Nascimento, Lea; Nogué, Sandra; Fernández-Lugo, Silvia

    2015-01-01

    -represented (.Pinus, Morella and Ericaceae trees, Chenopodiaceae, Poaceae, Rumex and Urticaceae herbs and shrubs) or under-represented (Lauraceae trees, Fabaceae and Euphorbia shrubs). Results indicate that pollen composition is a good reflection of vegetation in Canarian ecosystems and can be used effectively...

  11. A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation

    Directory of Open Access Journals (Sweden)

    A. M. Reid

    2010-09-01

    Full Text Available Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.

  12. The effect of the halophytic shrub Lycium ruthenium (Mutt) on selected soil properties of a desert ecosystem in central Iran

    Science.gov (United States)

    Gholam Ali Jalali; Hossein Akbarian; Charles Rhoades; Hamed Yousefzadeh

    2012-01-01

    We compared soil properties beneath naturally-occurring patches of Lycium ruthenicum Murray (fam. Solanaceae) to evaluate the shrub’s potential to improve the fertility of saline soils. Soil pH, total nitrogen and carbon and extractable potassium, magnesium and phosphorus were respectively significantly higher in the A and B horizons of Lycium shrub patches...

  13. Artemisia pollen-indicated steppe distribution in southern China during the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    Liu Hongyan

    2013-07-01

    Full Text Available The Last Glacial Maximum (LGM was the coldest period during the previous 20,000 years. There have been different points of views on steppe distribution during the LGM period in southern China, partly due to the different interpretations of Artemisia occurrences. To make a reliable interpretation of the pollen fossil Artemisia, the modern distribution of Artemisia species and the relationship of pollen with climate and vegetation over a large spatial scale in China was thoroughly analyzed. Information about Artemisia species and pollen distributions used in this paper were collected from published works completed by other researchers as well as ourselves. The southern limit of steppe vegetation during the LGM period was interpreted from the published contour map of Artemisia pollen percentages during the LGM. Artemisia species in China are mostly distributed either in the horizontally distributed steppe regions or in the vertically distributed desert-steppe in the desert region, which indicates a cold and dry climate. The steppe is a distribution center of Artemisia pollen. Fractions of Artemisia in surface pollen assemblages are lower in both the desert and the temperate forest. Neither high Artemisia species cover nor high percentages of Artemisia pollen were found in the coast areas of China. Twenty-five percent of Artemisia pollen in sediments might indicate a local occurrence of steppe vegetation. Percentages of Artemisia pollen in the subtropical and tropical forest are less than 10%. A close relationship between Artemisia pollen and temperate steppe in China is demonstrated. The southern edge of the steppe vegetation during the LGM might be along the middle reach of the Yangtze River. Our results support the hypothesis that the isolated high fraction of Artemisia pollen along the northern edge of the South China Sea was transported from a large source area.

  14. River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    Directory of Open Access Journals (Sweden)

    Violeta Cabello

    2015-09-01

    Full Text Available River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted.

  15. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    Science.gov (United States)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  16. A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe).

    Science.gov (United States)

    Willner, Wolfgang; Kuzemko, Anna; Dengler, Jürgen; Chytrý, Milan; Bauer, Norbert; Becker, Thomas; Biţă-Nicolae, Claudia; Botta-Dukát, Zoltán; Čarni, Andraž; Csiky, János; Igić, Ruzica; Kącki, Zygmunt; Korotchenko, Iryna; Kropf, Matthias; Krstivojević-Ćuk, Mirjana; Krstonošić, Daniel; Rédei, Tamás; Ruprecht, Eszter; Schratt-Ehrendorfer, Luise; Semenishchenkov, Yuri; Stančić, Zvjezdana; Vashenyak, Yulia; Vynokurov, Denys; Janišová, Monika

    2017-01-01

    What are the main floristic patterns in the Pannonian and western Pontic steppe grasslands? What are the diagnostic species of the major subdivisions of the class Festuco-Brometea (temperate Euro-Siberian dry and semi-dry grasslands)? Carpathian Basin (E Austria, SE Czech Republic, Slovakia, Hungary, Romania, Slovenia, N Croatia and N Serbia), Ukraine, S Poland and the Bryansk region of W Russia. We applied a geographically stratified resampling to a large set of relevés containing at least one indicator species of steppe grasslands. The resulting data set of 17 993 relevés was classified using the TWINSPAN algorithm. We identified groups of clusters that corresponded to the class Festuco-Brometea . After excluding relevés not belonging to our target class, we applied a consensus of three fidelity measures, also taking into account external knowledge, to establish the diagnostic species of the orders of the class. The original TWINSPAN divisions were revised on the basis of these diagnostic species. The TWINSPAN classification revealed soil moisture as the most important environmental factor. Eight out of 16 TWINSPAN groups corresponded to Festuco-Brometea . A total of 80, 32 and 58 species were accepted as diagnostic for the orders Brometalia erecti , Festucetalia valesiacae and Stipo-Festucetalia pallentis , respectively. In the further subdivision of the orders, soil conditions, geographic distribution and altitude could be identified as factors driving the major floristic patterns. We propose the following classification of the Festuco-Brometea in our study area: (1) Brometalia erecti (semi-dry grasslands) with Scabioso ochroleucae-Poion angustifoliae (steppe meadows of the forest zone of E Europe) and Cirsio-Brachypodion pinnati (meadow steppes on deep soils in the forest-steppe zone of E Central and E Europe); (2) Festucetalia valesiacae (grass steppes) with Festucion valesiacae (grass steppes on less developed soils in the forest-steppe zone of E Central

  17. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut desert in northwestern China.

    Science.gov (United States)

    Tiemuerbieke, Bahejiayinaer; Min, Xiao-Jun; Zang, Yong-Xin; Xing, Peng; Ma, Jian-Ying; Sun, Wei

    2018-09-01

    In water-limited ecosystems, spatial and temporal partitioning of water sources is an important mechanism that facilitates plant survival and lessens the competition intensity of co-existing plants. Insights into species-specific root functional plasticity and differences in the water sources of co-existing plants under changing water conditions can aid in accurate prediction of the response of desert ecosystems to future climate change. We used stable isotopes of soil water, groundwater and xylem water to determine the seasonal and inter- and intraspecific differences variations in the water sources of six C 3 and C 4 shrubs in the Gurbantonggut desert. We also measured the stem water potentials to determine the water stress levels of each species under varying water conditions. The studied shrubs exhibited similar seasonal water uptake patterns, i.e., all shrubs extracted shallow soil water recharged by snowmelt water during early spring and reverted to deeper water sources during dry summer periods, indicating that all of the studied shrubs have dimorphic root systems that enable them to obtain water sources that differ in space and time. Species in the C 4 shrub community exhibited differences in seasonal water absorption and water status due to differences in topography and rooting depth, demonstrating divergent adaptations to water availability and water stress. Haloxylon ammodendron and T. ramosissima in the C 3 /C 4 mixed community were similar in terms of seasonal water extraction but differed with respect to water potential, which indicated that plant water status is controlled by both root functioning and shoot eco-physiological traits. The two Tamarix species in the C 3 shrub community were similar in terms of water uptake and water status, which suggests functional convergence of the root system and physiological performance under same soil water conditions. In different communities, Haloxylon ammodendron differed in terms of summer water extraction

  18. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important

  19. Grazing Effects on Water Use Efficiency on a Mongolian Desert Steppe

    Science.gov (United States)

    Shao, C.; Chen, J.; Li, L.; John, R.; Ouyang, Z.

    2015-12-01

    Ecosystem-level water use efficiency (WUE), defined as the ratio of gross primary production (GPP) to evapotranspiration (ET), was assessed by continuous and simultaneous direct eddy-covariance (EC) measurements of carbon and water fluxes on adjacent pastures of grazed (DS) and ungrazed steppes (FS) in the Mongolia Plateau for a two-year period from 2010 to 2012. We found that the WUE was well positively linear correlated (r2=0.90) with the GEP both in the DS and FS. Due to our desert steppe was very sensitive to the precipitation, WUE was co-varied with the precipitation. WUE increased with the GEP increase under good water conditions, when the GEP reached its maximal value (DS: 3 g C m-2, FS: 2 g C m-2), the WUE was suppressed and kept a stable value during the peak growing season. Both GEP and WUE was near zero when the soil moisture was lower. We also found that the WUE was negatively correlated with ET. The WUE was higher in GS than that in FS. The mean seasonal WUE was 0.93 in GS and 0.54 g C kg-1 H2O in FS, with a peak monthly WUE of 1.32 in GS and 0.73 g C kg-1 H2O in FS, respectively. The difference between GS and FS mainly caused by that the ET was changed with the GEP during the entire growing season. This suggests the importance of both plant population dynamics and water statues should be considered in WUE studies.

  20. Permafrost collapse after shrub removal shifts tundra ecosystem into methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming. In recent decades, Arctic tundra ecosystems have changed rapidly,

  1. Insights from a network of long-term measurements of biosphere-atmospheric exchanges of water vapor and carbon dioxide in a water-limited semiarid region

    Science.gov (United States)

    Scott, Russell; Biederman, Joel

    2017-04-01

    Around one-third of Earth's land surface is classified as semiarid, and carbon dioxide exchange in these regions has been shown to be an important regulator of both the trend and interannual variability of the terrestrial carbon sink. Fifteen years ago, when we began making measurements of biosphere-atmospheric exchanges of energy, water vapor, and carbon dioxide using eddy covariance in southern Arizona USA, there was paucity of semiarid observations in flux networks like AmeriFlux and EuroFlux. We started by establishing riparian sites across a woody plant encroachment gradient to quantify the productivity and consumptive plant water use along a iconic and ecologically important desert river. Soon thereafter, we added semiarid grassland, shrubland, and savanna sites that do not have access to groundwater in order to better understand how water limitation and changes in vegetation structure affect ecosystem productivity. Here, we highlight the value of multiyear, multisite flux data for addressing regional to global scale problems associated with groundwater pumping, land cover change, drought, and climate change. For the riparian sites, we find that ecosystem water availability is altered by vegetation structure such that ecosystems with more deeply rooted trees have higher productivity but at a cost of greater groundwater use. For the non-riparian sites, precipitation strongly controls ecosystem water availability and the resultant productivity, but differences in ecosystem structure impact water use efficiency due to the partitioning of evapotranspiration into its component sources. Also, the productivity at sites with more grass, and less woody, plants responds more quickly to precipitation fluctuations including long-term drought conditions. In semiarid regions, variability in water and carbon fluxes is much larger than in more mesic climes. Across our riparian and non-riparian sites, access to more stable groundwater reserves reduces variability in water and

  2. Chapter 23. Shrubs of other families

    Science.gov (United States)

    Stephen B. Monsen; Richard Stevens; Nancy L. Shaw

    2004-01-01

    Numerous genera and species of shrubs occur throughout the Intermountain region in addition to those included in the Asteraceae, Chenopodiaceae, and Rosaceae families. Although shrubs are widespread throughout this region and dominate many areas, species richness is low compared to the shrub flora of the Pacific United States, Chile, western Australia, and South Africa...

  3. Spatial and temporal patterns in golden eagle diets in the western United States, with implications for conservation planning

    Science.gov (United States)

    Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.

    2017-01-01

    Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources

  4. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  5. Soil fertility management strategies and practices by smallholder farmers in semi-arid areas of Zimbabwe

    NARCIS (Netherlands)

    Mapfumo, P.; Giller, K.E.

    2001-01-01

    Indigenous soil fertility management strategies in semi-arid Communal Areas of Zimbabwe have largely been driven by an extensive use of resources. The shrinking of common property resources (CPRs) due to expansion of cultivated lands, the general loss of productivity in natural ecosystems (e.g.,

  6. Evaluation of methods for delineating riparian zones in a semi-arid montane watershed

    Science.gov (United States)

    Jessica A. Salo; David M. Theobald; Thomas C. Brown

    2016-01-01

    Riparian zones in semi-arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high-resolution imagery and terrain data...

  7. Transfer of {sup 137}Cs in Zea mays and Phaseolus vulgaris in a semi-arid ecosystem; Transferencia de {sup 137}Cs en Zea mays y Phaseolus vulgaris en un ecosistema semiarido

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, M.L.; Segovia, N.; Gaso P, M.I.; Palacios, J.C. [Instituto Nacional de Investigaciones Nucleares, Laboratorio de Vigilancia Radiologica Ambiental, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    With the objective to analyse the transference of {sup 137} Cs from soil to plants, it is realized a study in maize and bean plants in the Radioactive Waste Storage Center (CADER). This site is located in a semi-arid region with a characteristic vegetation of a sub humid temperature zone. So those plants maize and beans were cultivated in four zones near CADER during a four years period. The obtained results for 1991 to 1994 for {sup 137} Cs in soil samples for those zones showed an evident contamination in zone 1, due to a rupture of an industrial source. In 1994 the effect of decontamination was evident since the values of specific activity found in roots were around magnitude lesser than found in 1992. In spite of exhaustive studies have been reported about the transference factors for {sup 137} Cs in different agricultural foods, relatively few of them have paid attention to the interactions between cereals and leguminous associated in semiarid ecosystems. (Author)

  8. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Fujing ePan

    2016-05-01

    Full Text Available In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM and causes nitrogen (N and/or phosphorus (P limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015 where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass C (MBC, and β-1,4-N-acetylglucosaminidase (NAG on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  9. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  10. Effects of sub-Arctic shrub canopies on snowmelt energetics

    Science.gov (United States)

    Bewley, D.; Essery, R.; Pomeroy, J.

    2006-12-01

    Much of the low Arctic is covered with shrub tundra, and there is increasing evidence that snowmelt rates are substantially different between shrub tundra and poorly vegetated sites. The cause of this remains uncertain, however, and extends beyond simple differences in albedo. Results are presented in this study from a detailed field investigation at Wolf Creek Research Basin in 2004 to determine the effect of two different shrub canopy structures on both melt rates and the partitioning of melt energy. The low shrub site (LSS) was essentially an unvegetated snowfield prior to melt (mean albedo ~0.85), and shrubs only became exposed during the last few days of melt reaching a mean height of 0.31 m and mean Plant Area Index (PAI) of 0.32. Shrubs at the tall shrub site (TSS) were partially buried initially (shrub fraction, mean height and PAI of 0.2, 0.9 m and 0.41) but dominated the landscape by the end of melt (corresponding values of 0.71, 1.6 m and 0.6). Melt rates were higher at TSS up until the exposure of shrubs and bare ground at LSS, after which the rates converged. A Shrub-Snow Canopy Model (SSCM) is developed to improve snowmelt simulations for shrub canopies by parameterizing the key shrub effects on surface fluxes, including the extinction of shortwave irradiance beneath shrubs and in canopy gaps, and the enhancement of snow surface fluxes of longwave radiation and sensible heat. SSCM was run for LSS assuming no shrubs were present above the variable snow and bare ground tiles, whereas for TSS an increasing shrub fraction above each tile was prescribed from observations. Results from both sites suggest that sensible heat fluxes contributed more melt energy than net radiation, and were greater during early melt at TSS due to the warming of exposed shrubs. SWE was accurately predicted against transect measurements at TSS (rms error 4 mm), but was overestimated at LSS (rms error 13 mm) since both air temperatures and turbulent transport were underestimated

  11. Fires in the Cenozoic: a late flowering of flammable ecosystems

    OpenAIRE

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine...

  12. Effects of Plant Functional Group Loss on Soil Microbial Community and Litter Decomposition in a Steppe Vegetation.

    Science.gov (United States)

    Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan

    2017-01-01

    Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.

  13. Root systems of chaparral shrubs.

    Science.gov (United States)

    Kummerow, Jochen; Krause, David; Jow, William

    1977-06-01

    Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.

  14. Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession.

    Directory of Open Access Journals (Sweden)

    Adriano Stinca

    Full Text Available Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv. DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy. Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years, has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can

  15. On the Succession of Sarmatian Population in the East-European Steppes

    Directory of Open Access Journals (Sweden)

    Balabanova Mariya A.

    2016-06-01

    Full Text Available As V.P. Alekseev wrote, the succession of population has been peculiar for individual territories for centuries. Despite the fact that the Eastern European steppe in ancient times and the Middle Ages was characterized by frequent changes of the population due to its high dependence on the environmental conditions, the Sarmatian culture preservation was observed over a period of ceremonial standards and elements of material culture. In this paper an attempt is made to show the presence of a partial succession of the three chronological periods of Sarmatian population. To do this, the author conducted a comparative characteristic of physical types of nomads of Sarmatian steppes of the Eastern Europe. The results of the study of mass craniological material combined in the cultural and chronological groups, showed that on the whole range of time and space over the steppe habitat Sarmatian cultures fixed partial similarity in physical type. In this connection, it is assumed that the partial continuity of anthropological types of different cultural, historical and local groups is linked to: 1 partial preservation of substrate Early Sarmatian population over the 4th- 3rd centuries BC – first half of 2nd-4th centuries AD; 2 the direction and character of penetration of nomadic groups who migrated from the East into steppe space; 3 design of a single system of seasonal migrations which involves the presence of winter and summer camps, and the presence of burial mounds; 4 the inclusion of a horde of nomadic pastoral population groups moved all over the steppes, from between Volga and Ural to the Lower Don; 5 the fact that male migrants married local women.

  16. Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores

    Directory of Open Access Journals (Sweden)

    Saixiyala

    2017-05-01

    Full Text Available The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as ‘shelters’. The interaction between pre-dominated clonal herbaceous plants and encroaching shrubs remains unclear in thicketization-grassland under grazing pressure. We hypothesized that clonal herbaceous plants can be facilitated by encroached shrubs as a ‘shelter from herbivores’ and/or as an ‘increased soil resources’ under grazing pressure. To test this hypothesis, a total of 60 quadrats were chosen in a thicket-grassland in northern China that was previously dominated by Leymus chinensis and was encroached upon by the spiny leguminous plant Caragana intermedia. The soil and plant traits beneath and outside the shrub canopies were sampled, investigated and contrasted with an enclosure. The soil organic matter, soil total nitrogen and soil water content were significantly higher in the soil beneath the shrub canopies than in the soil outside the canopies. L. chinensis beneath the shrub canopies had significantly higher plant height, single shoot biomass, leaf length and width than outside the shrub canopies. There were no significantly differences between plant growth in enclosure and outside the shrub canopies. These results suggested that under grazing pressure in a grassland undergoing thicketization, the growth of the rhizomatous clonal herbaceous plant L. chinensis was facilitated by the spiny shrub C. intermedia as a ‘shelter from herbivores’ more than through ‘increased soil resources’. We propose that future studies should focus on the community- and ecosystem-level impacts of plant clonality.

  17. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming

    International Nuclear Information System (INIS)

    Lawrence, David M; Swenson, Sean C

    2011-01-01

    Deciduous shrub abundance is increasing across the Arctic in response to climatic warming. In a recent field manipulation experiment in which shrubs were removed from a plot and compared to a control plot with shrubs, Blok et al (2010 Glob. Change Biol. 16 1296–305) found that shrubs protect the ground through shading, resulting in a ∼ 9% shallower active layer thickness (ALT) under shrubs compared to grassy-tundra, which led them to argue that continued Arctic shrub expansion could mitigate future permafrost thaw. We utilize the Community Land Model (CLM4) coupled to the Community Atmosphere Model (CAM4) to evaluate this hypothesis. CLM4 simulates shallower ALT (∼− 11 cm) under shrubs, consistent with the field manipulation study. However, in an idealized pan-Arctic + 20% shrub area experiment, atmospheric heating, driven mainly by surface albedo changes related to protrusion of shrub stems above the spring snowpack, leads to soil warming and deeper ALT (∼+ 10 cm). Therefore, if climate feedbacks are considered, shrub expansion may actually increase rather than decrease permafrost vulnerability. When we account for blowing-snow redistribution from grassy-tundra to shrubs, shifts in snowpack distribution in low versus high shrub area simulations counter the climate warming impact, resulting in a grid cell mean ALT that is unchanged. These results reinforce the need to consider vegetation dynamics and blowing-snow processes in the permafrost thaw model projections.

  18. Short- and longterm impacts of Acacia longifolia invasion on belowground processes of a Mediterranean coastal dune ecosystem

    DEFF Research Database (Denmark)

    Marchante, Elizabete; Kjøller, Annelise; Struwe, Sten

    2008-01-01

    to new areas, displacing the native vegetation. These invaded ecosystems contrast with the native dune ecosystems that are typically dominated by herb and shrub communities. This study characterizes belowground changes to the native environment as a result of recent (20 y...

  19. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India.

    Science.gov (United States)

    Jhariya, Manoj Kumar

    2017-09-25

    Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha -1 and 2.79 to 4.92 m 2  ha -1 , respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha -1 , respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between

  20. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe

    Science.gov (United States)

    Díaz-Barradas, Mari Cruz; Zunzunegui, María; Collantes, Marta; Álvarez-Cansino, Leonor; García Novo, Francisco

    2014-10-01

    Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period. In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities. We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition. We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.

  1. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; Huissteden, van J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed

  2. Monitoring of radionuclides in the forest ecosystems of the Krasnoyarsk region in the 30 km area around the mining and chemical complex

    International Nuclear Information System (INIS)

    Dement'eva, D.V.; Bolsunovskij, A.Ya.

    2010-01-01

    The study addresses accumulation of radionuclides by mushrooms and berry shrubs in the forest ecosystems around the mining and chemical complex (MCC, Krasnoyarsk region, Russia). Results of determination of radionuclide levels in mushrooms and shrubs were used to calculate transfer factors. (authors)

  3. PRODUCERS’ PERCEPTION OF GEOGRAPHICAL INDICATIONS AS A PRODUCT DIVERSIFICATION TOOL FOR AGRIFOOD PRODUCTS IN SEMI-ARID REGIONS OF KENYA

    Directory of Open Access Journals (Sweden)

    Fredah Wangui Maina

    2018-04-01

    Full Text Available The study assessed producers’ awareness and perceptions of territorial-based qualities and the economic potential of two potential origin-based geographical indications in two semi-arid counties in Kenya. Protection of the origin products as geographical indications is presented as an option for ecosystem approach in managing fragile semi-arid regions while providing producers economic incentives and social inclusion; key components of green growth. Factor analysis was conducted on Likert scale perception questions administered to producers of goats (Baringo and mangoes (Makueni. The producers were aware of the uniqueness of their products and its geographical source. The resultant factors reveal the importance of public policies, institutions, market access and public sector actors as important to producers’ perception of the success of protecting their products as geographical indications. Clustering revealed producer heterogeneity in their perceptions of protecting their respective products as geographical indications. The constitution of the clusters was significantly different based on the number of years the producers had practiced farming in the region, their awareness of the uniqueness of their goats, income received from goat production and institutional factors. Enhanced collective action for both goats and mangoes in the semi-arid regions would ensure collective reputation in the product presented to the market. The producers’ perceptions emphasise geographical indications as a marketing tool rather than an environmental tool, agreeing with Principle 4 of the ecosystem approach on managing ecosystem in an economic context.

  4. Arctic plant ecophysiology and water source utilization in response to altered snow: isotopic (δ18O and δ2H) evidence for meltwater subsidies to deciduous shrubs.

    Science.gov (United States)

    Jespersen, R Gus; Leffler, A Joshua; Oberbauer, Steven F; Welker, Jeffrey M

    2018-06-28

    Warming-linked woody shrub expansion in the Arctic has critical consequences for ecosystem processes and climate feedbacks. The snow-shrub interaction model has been widely implicated in observed Arctic shrub increases, yet equivocal experimental results regarding nutrient-related components of this model have highlighted the need for a consideration of the increased meltwater predicted in expanding shrub stands. We used a 22-year snow manipulation experiment to simultaneously address the unexplored role of snow meltwater in arctic plant ecophysiology and nutrient-related components of the snow-shrub hypothesis. We coupled measurements of leaf-level gas exchange and leaf tissue chemistry (%N and δ 13 C) with an analysis of stable isotopes (δ 18 O and δ 2 H) in soil water, precipitation, and stem water. In deeper snow areas photosynthesis, conductance, and leaf N increased and δ 13 C values decreased in the deciduous shrubs, Betula nana and Salix pulchra, and the graminoid, Eriophorum vaginatum, with the strongest treatment effects observed in deciduous shrubs, consistent with predictions of the snow-shrub hypothesis. We also found that deciduous shrubs, especially S. pulchra, obtained much of their water from snow melt early in the growing season (40-50%), more than either E. vaginatum or the evergreen shrub, Rhododendron tomentosum (Ledum palustre). This result provides the basis for adding a meltwater-focused feedback loop to the snow-shrub interaction model of shrub expansion in the Arctic. Our results highlight the critical role of winter snow in the ecophysiology of Arctic plants, particularly deciduous shrubs, and underline the importance of understanding how global warming will affect the Arctic winter snowpack.

  5. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    Science.gov (United States)

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  6. Derivation of the canopy conductance from surface temperature and spectral indices for estimating evapotranspiration in semiarid vegetation

    International Nuclear Information System (INIS)

    Morillas, L.; Garcia, M.; Zarco-Tejada, P.; Ladron de Guevara, M.; Villagarcia, L.; Were, A.; Domingo, F.

    2009-01-01

    This work evaluates the possibilities for estimating stomata conductance (C) and leaf transpiration (Trf) at the ecosystem scale from radiometric indices and surface temperature. The relationships found between indices and the transpiration component of the water balance in a semiarid tussock ecosystem in SE Spain are discussed. Field data were collected from spring 2008 until winter 2009 in order to observe the annual variability of the relationships and the behaviour of spectral indices and surface temperature. (Author) 11 refs.

  7. Response of soil methane uptake to simulated nitrogen deposition and grazing management across three types of steppe in Inner Mongolia, China.

    Science.gov (United States)

    Li, Xianglan; He, Hong; Yuan, Wenping; Li, Linghao; Xu, Wenfang; Liu, Wei; Shi, Huiqiu; Hou, Longyu; Chen, Jiquan; Wang, Zhiping

    2018-01-15

    The response of soil methane (CH 4 ) uptake to increased nitrogen (N) deposition and grazing management was studied in three types of steppe (i.e., meadow steppe, typical steppe, and desert steppe) in Inner Mongolia, China. The experiment was designed with four simulated N deposition rates such as 0, 50, 100, and 200kgNha -1 , respectively, under grazed and fenced management treatments. Results showed that the investigated steppes were significant sinks for CH 4 , with an uptake flux of 1.12-3.36kgha -1 over the grass growing season and that the magnitude of CH 4 uptake significantly (Prates. The soil CH 4 uptake rates were highest in the desert steppe, moderate in the typical steppe, and lowest in the meadow steppe. Compared with grazed plots, fencing increased the CH 4 uptake by 4.7-40.2% with a mean value of 20.2% across the three different steppe types. The responses of soil CH 4 uptake to N deposition in the continental steppe varied depending on the N deposition rate, steppe type, and grazing management. A significantly positive correlation between CH 4 uptake and soil temperature was found in this study, whereas no significant relationship between soil moisture and CH 4 uptake occurred. Our results may contribute to the improvement of model parameterization for simulating biosphere-atmosphere CH 4 exchange processes and for evaluating the climate change feedback on CH 4 soil uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia.

    Science.gov (United States)

    Dulamsuren, Choimaa; Hauck, Markus; Bader, Martin; Osokhjargal, Dalaikhuu; Oyungerel, Shagjjav; Nyambayar, Suran; Runge, Michael; Leuschner, Christoph

    2009-01-01

    Shoot water relations were studied in Siberian larch (Larix sibirica Ledeb.) trees growing at the borderline between taiga and steppe in northern Mongolia. Larix sibirica is the main tree species in these forests covering 80% of Mongolia's forested area. Minimum shoot water potentials (Psi(m)) close to the point of zero turgor (Psi(0)) repeatedly recorded throughout the growing season suggest that the water relations in L. sibirica were often critical. The Psi(m) varied in close relation to the atmospheric vapor pressure deficit, whereas Psi(0) was correlated with monthly precipitation. Young larch trees growing at the forest line to the steppe were more susceptible to drought than mature trees at the same sites. Furthermore, isolated trees growing on the steppe exhibited lower Psi(m) and recovered to a lower degree from drought overnight than the trees at the forest line. Indications of drought stress in L. sibirica were obtained in two study areas in Mongolia's forest-steppe ecotone: one in the mountain taiga of the western Khentey in northernmost Mongolia, the other in the forest-steppe at the southern distribution limit of L. sibirica on Mt. Bogd Uul, southern Khentey. Larix sibirica growing in riverine taiga with contact to the groundwater table was better water-supplied than the larch trees growing at the forest line to the steppe. Larch trees from the interior of light taiga forests on north-facing slopes, however, exhibited more critical water relations than the trees at the forest line. Frequent drought stress in mature trees and even more in young larch trees at the forest-steppe borderline suggests that L. sibirica does not have the potential to encroach on the steppe under the present climate, except in a sequence of exceptionally moist and cool years. A regression of the present borderline between forest and steppe is likely to occur, as average temperatures are increasing everywhere and precipitation is decreasing regionally in Mongolia's taiga forest

  9. Livestock forage and mineral relations on a shrub-steppe rangeland in northwestern United States of America

    International Nuclear Information System (INIS)

    Uresk, D.W.; Rickard, W.H.

    1976-01-01

    The study area is the Arid Lands Ecology (ALE) Reserve, a portion of the United States Energy Research and Development Administration's Hanford Reservation located in the semi-arid region of south-central Washington. Small experimental pastures were subjected to four consecutive years of moderate spring grazing by yearling steers. These pastures are unique in that they represent grazing stresses imposed upon previously ungrazed (by livestock) plant communities. These communities had been protected from grazing by livestock for more than 30 years under ERDA management. Bluebunch wheatgrass (Agropyron spicatum), the dominant species, was the major forage plant in the diet of the steers during the 1974 grazing season, followed by Cusick's bluegrass (Poa cusickii), Thurber's needlegrass (Stipa thurberiania) and hawksbeard (Crepis atrabarba). These four species made up approximately 93% of the total diet. The forage intake ranged from 9.9 kg/head daily to 10.9 kg/head daily during the grazing season. During this period, these steers gained a total of 21.6 kg/ha live weight. Fifteen kg of forage consumed produces 1 kg of live steer for a 6.7% conversion. The conversion rate for crude protein was 12.7%, 83.3% for phosphorus and 25.6% for calcium. (author)

  10. Impact of decade-long warming, nutrient addition and shading on emission and carbon isotopic composition of CO2 from two subarctic dwarf shrub heaths

    DEFF Research Database (Denmark)

    Ravn, Nynne R.; Ambus, Per Lennart; Michelsen, Anders

    2017-01-01

    This study investigated ecosystem respiration, soil respiration and carbon isotopic composition in CO2 emitted from two subarctic shrub heaths with contrasting moisture regimes. The reported measurements were conducted 22 years (mesic heath) and 12 years (wet heath) upon initiation of in situ...... the growing season. However, there was a tendency across growing season towards an increased δ13C source value after 22 years of warming in the mesic shrub heath, and the effect was statistically significant in June, indicating increased decomposition of 13C enriched material. Hence, although more of the old...

  11. Assessment of Ecosystem Services in a Semi-arid Agriculture-dominant Area: Framework and Case Study

    Science.gov (United States)

    Dhungel, R.; Chen, Y.; Maltos, R.; Sivakumaran, K.; Aguilar, A.; Harmon, T. C.

    2015-12-01

    California's Central Valley (CV) water crisis has increased in severity due to a prolonged drought. The drought is directly contributing to the overexploitation of groundwater, along with deficiency in agricultural, recreational and aesthetic water services. The population of the CV, home to about 6.5 million people, is projected to be 12 million by 2040. Balancing water demand between municipal use, agricultural supply, and other ecosystem services, will be challenging for this region in perpetuity. In the heart of CV lies the San Joaquin River (SJR) where Friant Dam is the main low-elevation reservoir regulating water release. The Friant Dam's reservoir fulfills agricultural, municipal and industrial water needs through the Friant-Kern and Madera canals, as well as through the mainstem SJR. The SJR restoration project (SJRRP) is a recent development that is imposing additional demands on water releases in order to restore sustainable aquatic habitat for Chinook salmon and other species on the mainstem below the Friant Dam. The Chinook require adequate flow to moderate river temperature, particularly during hot summer and fall months. Temperatures on CV rivers exhibit strong diurnal and seasonal patterns, and can rise to harmful levels when flows are inadequate. In this study, we developed a framework that allows for assessing the effectiveness and implied costs of ecosystem services provided by a restored SJR in a semi-arid agriculture-dominant area. This is done by explicitly linking economics-based farmers' model with a reduced-form hydrological model that is loosely coupled to a physical-based stream-temperature model, specifically CE-QUAL-W2. The farmers' model is based on positive mathematical program approach calibrated with twenty proxy crops for year 2005. The river-hydrology is simulated by a vector autoregression model that incorporates daily flow variability. We study the mandated release policies by the SJR restoration project, along with hypothetical

  12. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Michelsen, Anders; Jonasson, Sven

    2012-01-01

    Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs...... to 37 ± 7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring....... The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after...

  13. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.

    Science.gov (United States)

    Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah

    2013-05-01

    The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.

  14. Insert Maranhao in O cial Semi-Arid Geography: A Requirement of Social Justice in the Brazilian Northeast

    Directory of Open Access Journals (Sweden)

    José de Jesus Sousa Lemos

    2016-07-01

    Full Text Available The study attempts to show that the Brazilian semi-arid region is a region too needy. Even the Interior Ministry considering that there are municipalities only in the semiarid in eight of the Northeastern States excluding Maranhão, but incorporating municipalities in the state of Minas Gerais, the study also seeks to show that at least fteen municipalities of Maranhão has semiarid features and these municipalities have some of the largest pockets of poverty in this Brazilian ecosystem. In order to achieve its objectives the study uses data collected by the State University of Maranhão, the Demographic Census of IBGE 2010 and the GDP of the municipalities published by the IBGE in 2012. They use the estimated drought indices in a previous study of the State University of Maranhão to the Maranhão municipalities supposed to possess technical characteristics of semiarid region. Social indicators are estimated suchas education exclusion, income, running water, sanitation and garbage collection to all municipalities. The results showed that the average GDP of the semi-arid districts are much smaller than that of other municipalities in the Northeast. The ratio between the highest and the lowest GDP per capita in the semiarid region is 38.4. The iliteracy rates are high in all of them. Very high is also deprivation of access to piped water, sanitation and garbage collection also. e evidence of this study allow us to conclude that, in general, municipalities with technical characteristics of semi-arid in Maranhao State has economic, social and environmental indicators worse than the average of other municipalities already recognized in the Brazilian semiarid region.

  15. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  16. Ecosystem Phenology from Eddy-covariance Measurements: Spring Photosynthesis in a Cool Temperate Bog

    Science.gov (United States)

    Lafleur, P.; Moore, T. R.; Poon, D.; Seaquist, J.

    2005-12-01

    The onset and increase of spring photosynthetic flux of carbon dioxide is an important attribute of the carbon budget of northern ecosystems and we used eddy-covariance measurements from March to May over 5 years at the Mer Bleue ombrotrophic bog to establish the important controls. The onset of ecosystem photosynthesis (day-of-year from 86 to 101) was associated with the disappearance on the snow cover and there is evidence that photosynthesis can continue after a thin new snowfall. The growth of photosynthesis during the spring period was partially associated with light (daily photosynthetically active radiation) but primarily with temperature, with the strongest correlation being observed with peat temperature at a depth of 5 and 10 cm, except in one year in which there was a long snow cover. The vegetation comprises mosses, which are able to photosynthesize very early, evergreen shrubs, which appear dependent on soil warming, and deciduous shrubs, which leaf-out only in late spring. We observed changes in shrub leaf colour from brown to green and concomitant increases in foliar nitrogen and chlorophyll concentrations during the spring in this "evergreen" system. We analyzed MODIS images for periods of overlap of tower and satellite data and found a generally strong correlation, though the infrequent satellite measurements were unable to pick out the onset and timing of rapid growth of photosynthesis in this ecosystem.

  17. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  18. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  19. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust

    International Nuclear Information System (INIS)

    Heerden, P.D.R. van; Krueger, G.H.J.; Kilbourn Louw, M.

    2007-01-01

    The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO 2 assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall. - Limestone dust deposition reduced photosynthetic capacity in the Namib Desert shrub, Zygophyllum prismatocarpum

  20. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  1. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... growth (stem apical growth, stem length, and apical growth of stem plus leaves), in some cases even with opposite responses. Thus caution should be taken when estimating the impact of the environment on shrub growth from apical growth only. Integration of our data set with the (very limited) previously...

  2. Estimating annual rainfall threshold for establishment of tree species in water-limited ecosystems using tree-ring data

    NARCIS (Netherlands)

    Lopez, B.C.; Holmgren, M.; Sabate, S.; Gracia, C.A.

    2008-01-01

    In arid and semi-arid ecosystems, water availability is discontinuous, highly variable, and characterized by discrete pulse events separated by long periods of limited resource availability. Plant recruitment in these ecosystems is also episodic and dependent on the water available during and after

  3. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  4. Regional Approach for Managing for Resilience Linking Ecosystem Services and Livelihood Strategies for Agro-Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.

    2011-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social

  5. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Directory of Open Access Journals (Sweden)

    Yizhao Chen

    Full Text Available Water-use efficiency (WUE, defined as the ratio of net primary productivity (NPP to evapotranspiration (ET, is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS, to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES. The Aridity Index (AI was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH with 0.88 gC mm-1 and the lowest was in arid sub-region (AR with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  6. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient.

    Science.gov (United States)

    Chen, Yizhao; Li, Jianlong; Ju, Weimin; Ruan, Honghua; Qin, Zhihao; Huang, Yiye; Jeelani, Nasreen; Padarian, José; Propastin, Pavel

    2017-01-01

    Water-use efficiency (WUE), defined as the ratio of net primary productivity (NPP) to evapotranspiration (ET), is an important indicator to represent the trade-off pattern between vegetation productivity and water consumption. Its dynamics under climate change are important to ecohydrology and ecosystem management, especially in the drylands. In this study, we modified and used a late version of Boreal Ecosystem Productivity Simulator (BEPS), to quantify the WUE in the typical dryland ecosystems, Temperate Eurasian Steppe (TES). The Aridity Index (AI) was used to specify the terrestrial water availability condition. The regional results showed that during the period of 1999-2008, the WUE has a clear decreasing trend in the spatial distribution from arid to humid areas. The highest annual average WUE was in dry and semi-humid sub-region (DSH) with 0.88 gC mm-1 and the lowest was in arid sub-region (AR) with 0.22 gC mm-1. A two-stage pattern of WUE was found in TES. That is, WUE would enhance with lower aridity stress, but decline under the humid environment. Over 65% of the region exhibited increasing WUE. This enhancement, however, could not indicate that the grasslands were getting better because the NPP even slightly decreased. It was mainly attributed to the reduction of ET over 70% of the region, which is closely related to the rainfall decrease. The results also suggested a similar negative spatial correlation between the WUE and the mean annual precipitation (MAP) at the driest and the most humid ends. This regional pattern reflected the different roles of water in regulating the terrestrial ecosystems under different aridity levels. This study could facilitate the understanding of the interactions between terrestrial carbon and water cycles, and thus contribute to a sustainable management of nature resources in the dryland ecosystems.

  7. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Science.gov (United States)

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  8. Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    DEFF Research Database (Denmark)

    Schumacher, Paul; Mislimshoeva, Bunafsha; Brenning, Alexander

    2016-01-01

    to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically...... red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data...

  9. The changing role of shrubs in rangeland-based livestock production systems: Can shrubs increase our forage supply?

    Science.gov (United States)

    Projected global increases in ruminant numbers and loss of native grasslands will present a number of challenges for livestock agriculture. Escalated demand for livestock products may stimulate interest in using shrubs on western rangelands. A paradigm shift is needed to change the role of shrubs in...

  10. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  11. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA on Streamflow.

    Directory of Open Access Journals (Sweden)

    Ryan R Bart

    Full Text Available Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm, with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  12. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    Science.gov (United States)

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  13. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics

    International Nuclear Information System (INIS)

    Naito, Adam T; Cairns, David M

    2011-01-01

    Shrub expansion is a global phenomenon that is gaining increased attention in the Arctic. Recent work employing the use of oblique aerial photographs suggested a consistent pattern of positive change in shrub cover across the North Slope of Alaska. The greatest amounts of change occurred in valley slopes and floodplains. We studied the association between shrub cover change and topographically derived hydrologic characteristics in five areas in northern Alaska between the 1970s and 2000s. Change in total shrub cover ranged from − 0.65% to 46.56%. Change in floodplain shrub cover ranged from 3.38% to 76.22%. Shrubs are preferentially expanding into areas of higher topographic wetness index (TWI) values where the potential for moisture accumulation or drainage is greater. In addition, we found that floodplain shrub development was strongly associated with high TWI values and a decreasing average distance between shrubs and the river bank. This suggests an interacting influence of substrate removal and stabilization as a consequence of increased vegetation cover.

  14. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  15. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space.

    Science.gov (United States)

    Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef

    2016-10-01

    Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.

  16. FUNCTIONAL ROLE OF SHRUB COMMUNITIES IN THE FORMATION OF MOSAIC ECOTONE COMMUNITIES OF COASTAL ECOSYSTEM OF NORTHWEST OF THE CASPIAN LOWLAND

    Directory of Open Access Journals (Sweden)

    M.-R. D. Magomedov

    2014-01-01

    Full Text Available Aim. Complex estimation of the ecological role of shrubs in the structure-functional relationships of arid complexes of the Northwest of the Caspian lowland. Location. Coastal ecosystems of the Northwest of the Caspian lowland.Methods. The complex of modern methods of studing soil samples for the seasonal dynamics of humidity is used, humus content ( for Tyrin ,dry salts of residue, chlorid ions (for Mour,sulfate ions of gravimetic method (arinushkina, 1971, ions of calcium and magnesium and the amount of sodium and potassium (workshop on soil science 1980,total alkali. To estimate the rate of decomposition of two methods: exposure in soil samples of filter paper and bags of hay (Wiegert and Evans, 1964; Schädler and Brandl, 2005 and atc. Soil respiration, reflecting its respiratory potential assessed in the laboratory on volumetric respirometer according to the procedure respirometry (Klekowski, 1975. Production plants was determined by standard methods of Geobotany and Ecology of Plants (Браун, 1957; Быков, 1952, 1978; Быков, Головина, 1965; Раменский, 1966, 1971 and atc. In the study or the animal population used a set of specific methods of quantitative and qualitative assessment of the number and diversity of species common to the sites (Бородин, Абатуров, Магомедов, 1981; Магомедов, Ахтаев, 1989 Чельцов-Бейбутов, Осадчая, 1960; Кудрин, 1971; Захаров, 1976; Постников, 1955; Тупикова, Емельянова,1975. Features of the use of these methods in detail in the literature(Кожанчиков,1961; Козлов, Нинбург, 1971;Фасулати, 1971; Мал-федьен, 1965; Walker, 1957. Results. Seasonal shows comparative characteristics of the dynamics of physical and chemical parameters of the soil horizons, the structure of the vegetation cover and composition of the population of

  17. A network of the steppe and forest steppe along the Prut and Lower Danube rivers during the 6th millennium BC

    Directory of Open Access Journals (Sweden)

    Agathe Reingruber

    2016-12-01

    Full Text Available The transition from a (predominantly mobile way of life relying on hunting, fishing and gathering to a (predominantly sedentary life-style based on farming and animal husbandry is considered in the western Pontic archaeological tradition almost exclusively from a southern, AegeanAnatolian perspective. Contacts between the steppe and forest steppe of the north-eastern Balkans and the north-western Pontic were seen as linear and unidirectional; ‘cultures’ were defined almost exclusively on the basis of pottery styles. Not only such traditional viewpoints, but also the political conditions of the 20th century further biased prehistoric research. However, the outer Carpathian region should not be treated as a periphery of the inner Carpathian Cris culture, but as a region of multidirectional exchange networks. Moreover, certain traditions are obviously rooted in the Mesolithic of that area.

  18. Modeling of the evolution of steppe chernozems and development of the method of pedogenetic chronology

    DEFF Research Database (Denmark)

    Lisetskii, F.N.; Stolba, Vladimir; Goleusov, P.V.

    2016-01-01

    Geoarchaeological methods were used to study chronosequences of surface soils in the steppe zone and to trace soil evolution during the Late Holocene in northwestern Crimea. It was found that the morphological and functional “maturity” of the humus horizons in steppe chernozems of the Late Holocene...

  19. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Science.gov (United States)

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  20. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP, Ecosystem Respiration (Reco and Net Ecosystem Exchange (NEE were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different

  1. Effect of sustainable land management practices on soil aggregation and stabilization of organic carbon in semiarid mediterranean ecosystems

    Science.gov (United States)

    Garcia-Franco, Noelia; Albaladejo, Juan; Almagro, María; Wiesmeier, Martin; Martínez-Mena, María

    2016-04-01

    Arid and semiarid regions represent about 47% of the total land area of the world (UNEP, 1992). At present, there is a priority interest for carbon (C) sequestration in drylands. These areas are considered as very fragile ecosystems with low organic carbon (OC) saturation, and potentially, high capacity for soil OC sequestration. In addition, the restoration of these areas is one of the major challenges for scientists, who will be able to identify and recommended the best land uses and sustainable land management (SLM) practices for soil conservation and mitigation of climate change in these environments. In this regard, in semiarid Mediterranean ecosystems there is an urgent need for the implementation of SLM practices regardless of land-use type (forest, agricultural and shrubland) to maintain acceptable levels of soil organic matter (SOM) and the physico-chemical protection of the OC. Long- and short-term effects of SLM practices on soil aggregation and SOC stabilization were studied in two land uses. The long-term experiment was conducted in a reforestation area with Pinus halepensis Mill., where two afforestation techniques were implemented 20 years ago: a) mechanical terracing with a single application of organic waste of urban soil refuse, and b) mechanical terracing without organic amendment. An adjacent shrubland was considered as the reference plot. The short-term experiment was conducted in a rain-fed almond (Prunus dulcis Mill., var. Ferragnes) orchard where two SLM practices were introduced 4 years ago: a) reduced tillage plus green manure, and b) no tillage. Reduced tillage was considered as the reference plot given that it is the habitual management practice. Four aggregate size classes were differentiated by sieving (large and small macroaggregates, microaggregates, and the silt plus clay fraction), and the microaggregates occluded within small macroaggregates (SMm) were isolated. In addition, different organic C fractions corresponding with active

  2. Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan Desert Highway Shelterbelt in China.

    Science.gov (United States)

    Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun

    2017-01-01

    Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012-2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants.

  3. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  4. Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe

    Science.gov (United States)

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r 2 = 0.92, Psoil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573

  5. Recruitment Dynamics of the Relict Palm, Jubaea chilensis: Intricate and Pervasive Effects of Invasive Herbivores and Nurse Shrubs in Central Chile.

    Science.gov (United States)

    Fleury, Marina; Marcelo, Wara; Vásquez, Rodrigo A; González, Luis Alberto; Bustamante, Ramiro O

    2015-01-01

    Shrubs can have a net positive effect on the recruitment of other species, especially relict species in dry-stressful conditions. We tested the effects of nurse shrubs and herbivory defoliation on performance (survival and growth) of nursery-grown seedlings of the largest living palm, the relict wine palm Jubaea chilensis. During an 18-month period, a total of more than 300 seedlings were exposed to of four possible scenarios produced by independently weakening the effects of nurse shrubs and browsers. The experiment followed a two-way fully factorial design. We found consistent differences in survival between protected and unprotected seedlings (27.5% and 0.7%, respectively), and herbivory had a dramatic and overwhelmingly negative effect on seedling survival. The invasive rabbit (Oryctolagus cuniculus) is clearly creating a critical bottleneck in the regeneration process and might, therefore, partially explain the general lack of natural regeneration of wine palms under natural conditions. Apparently biotic filters mediated by ecological interactions are more relevant in the early stages of recruitment than abiotic, at least in invaded sites of central Chile. Our data reveal that plant-plant facilitation relationship may be modulated by plant-animal interactions, specifically by herbivory, a common and widespread ecological interaction in arid and semi-arid environments whose role has been frequently neglected. Treatments that protect young wine palm seedlings are mandatory to enable the seedlings to attain a height at which shoots are no longer vulnerable to browsing. Such protection is an essential first step toward the conservation and reintroduction of this emblematic and threatened species.

  6. Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: characteristics of biological diversity, structure and productivity

    Directory of Open Access Journals (Sweden)

    I. M. Danilin

    2016-12-01

    Full Text Available Complex estimation of forest ecosystems dynamics based on detailing characteristics of structure, growth and productivity of the stands and describing general geographical and biological management options for preserving their biodiversity and sustaining stability are discussed in the paper by describing examples of tree stands restored on burned and logged areas in mountain regions of Siberia. On vast areas in Siberia, characterized as sub-boreal, subarid and with a strongly continental climate, forests grow on seasonally frozen soils and in many cases are surrounded by vast steppe and forest-steppe areas and uplands. Developing criteria for sustainability of mountain forest ecosystems is necessary for forest resource management and conservation. It is therefore important to obtain complex biometric characteristics on forest stands and landscapes and to thoroughly study their structure, biological diversity and productivity. Morphometric methods, Weibull simulation and allometric equations were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground stand components were also studied.

  7. Interannual variability of Net Ecosystem CO2 Exchange and its component fluxes in a subalpine Mediterranean ecosystem (SE Spain)

    Science.gov (United States)

    Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.

    2015-04-01

    Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of

  8. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-01-01

    Background and Aims Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Methods Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Key Results Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May–June. Conclusions Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world. PMID:22210848

  9. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy.

    Science.gov (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter

    2012-03-01

    Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.

  10. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    to estimate the effects of vegetation, land use patterns and water cycles. Climate change, hydrological and human uses are also leading to riparian, upland, grassland and crop vegetation changes at a variety of temporal and spatial scales, particularly in the arid and semi arid ecosystems, which are more sensitive to changes in water availability than humid ecosystems. The objectives of these studies from the last three articles were to evaluate the effect of water balance on vegetation indices in different plant communities based on relevant spatial and temporal scales. The new methodology of estimating water requirements using remote sensing data and ground calibration with flux tower data has been successfully tested at a variety sites, a sparse desert shrub environment as well as mixed riparian and cropland systems and upland vegetation in the arid and semi-arid regions. The main finding form these studies is that vegetation-index methods have to be calibrated with ground data for each new ecosystem but once calibrated they can accurately scale ET over wide areas and long time spans.

  11. Critical responses of photosynthetic efficiency in Campsis radicans ...

    African Journals Online (AJOL)

    use

    and annual accumulated temperature over 10°C is 2750°C The soil is classified as brown and cinnamon soil, with inferior development and severe water and soil erosion. The vegetation type is forest- steppe and shrub zones with little shrub species and most of woodland is open forest with low stability. Jiang-bao et al.

  12. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  13. Surface Runoff and Snowmelt Infiltration into the Soil on Plowlands in the Forest-Steppe and Steppe Zones of the East European Plain

    Science.gov (United States)

    Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.

    2018-01-01

    Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.

  14. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    Science.gov (United States)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff

  15. Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in northern China.

    Directory of Open Access Journals (Sweden)

    Yonggang Chi

    Full Text Available BACKGROUND: Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulative experiment was conducted to elevate foliar temperature (Tleaf by 2.07°C in a temperate steppe in northern China. Rd/Tleaf curves (responses of dark respiration to Tleaf, An/Tleaf curves (responses of light-saturated net CO2 assimilation rates to Tleaf, responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (Ag to Tleaf, and foliar nitrogen (N concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year and 2011 (a wet year. Significant thermal acclimation of Rd to 6-year experimental warming was found. However, An had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of Rd was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. CONCLUSIONS/SIGNIFICANCE: Warming decreased the temperature sensitivity (Q10 of the response of Rd/Ag ratio to Tleaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions.

  16. Effects of Prescribed Burning on Grazed Shortgrass Steppe

    Science.gov (United States)

    Over the past century, fire has been widely suppressed in the western Great Plains, in part due to potential negative effects on forage production for livestock. Interest in the use of prescribed fire in shortgrass steppe has increased recently due to applications for wildlife management, control of...

  17. Optimized estimation and its uncertainties of gross primary production over oasis-desert ecosystems in an arid region of China

    Science.gov (United States)

    Wang, H.; Li, X.; Xiao, J.; Ma, M.

    2017-12-01

    Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation

  18. Changing Climate and Overgrazing Are Decimating Mongolian Steppes

    KAUST Repository

    Liu, Yi Y.; Evans, Jason P.; McCabe, Matthew; de Jeu, Richard A. M.; van Dijk, Albert I. J. M.; Dolman, Albertus J.; Saizen, Izuru

    2013-01-01

    Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation. © 2013 Liu et al.

  19. Changing climate and overgrazing are decimating Mongolian steppes.

    Directory of Open Access Journals (Sweden)

    Yi Y Liu

    Full Text Available Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008 record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass, to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation.

  20. Changing Climate and Overgrazing Are Decimating Mongolian Steppes

    KAUST Repository

    Liu, Yi Y.

    2013-02-25

    Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation. © 2013 Liu et al.

  1. Possibility of Morphometrical Determining of Sex of Steppe Eagle Nestlings from Western and Eastern Populations?

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2018-03-01

    Full Text Available Sexual dimorphism among nestlings of the Steppe Eagle (Aquila nipalensis is poorly manifested. Thus, determining of sex by morphometric methods encountered many difficulties and could be completed only by the most experienced ornithologists who knows the species very well. This article presents a morphometric method for determining sex of nestlings of the Steppe Eagles from different breeding populations that belongs to different size classes. The method is based on classification formula obtained via linear discriminant analysis conducted for the data set of measurements of Steppe Eagle’s nestlings from Central Kazakhstan and Altai Republic in 2017. To control the sex determination of nestlings a molecular-genetics method was used.

  2. Principal factors of soil spatial heterogeneity and ecosystem services at the Central Chernozemic Region of Russia

    Science.gov (United States)

    Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    The essential spatial heterogeneity is mutual feature for most natural and man-changed soils at the Central Chernozemic Region of Russia which is not only one of the biggest «food baskets» in RF but very important regulator of ecosystem principal services at the European territory of Russia. The original spatial heterogeneity of dominated here forest-steppe and steppe Chernozems and the other soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and more than 1000-year history of human impacts. The carried out long-term researches of representative natural, rural and urban landscapes in Kursk, Orel, Tambov and Voronezh oblasts give us the regional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. The validation and ranging of the limiting factors of ESCP regulation and development, ecosystem principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional and local GIS, soil spatial patterns mapping, traditional regression kriging, correlation tree models. The outcomes of statistical modeling show the essential amplification of erosion, dehumification and CO2 emission, acidification and alkalization, disaggregation and overcompaction processes due to violation of agroecologically sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the famous Russian Chernozems begin to lose not only their unique natural features of (around 1 m of humus horizon, 4-6% of Corg and favorable agrophysical features), but traditional soil cover patterns, ecosystem services and agroecological functions. Key-site monitoring

  3. Effects of rainfall on bird reproduction in a semi-arid Neotropical region

    Directory of Open Access Journals (Sweden)

    Liana Monique Paiva Cavalcanti

    Full Text Available ABSTRACT In semi-arid ecosystems, birds commonly use rainfall as a reliable environmental cue to adjust the timing and strength of their reproductive activity. Here we evaluate this hypothesis for a community of birds in the Caatinga (the semi-arid region of northeastern Brazil, using brood patch information and nest abundance. Sampling occurred every 14 days between September 2012 and August 2013 (brood patch, and every three or four days during the reproductive period (nests. Abundance of brood patches and nests were correlated, and all brood patches were recorded between March and July (4.5 to 5.0 months. We recorded three peaks of brood patch abundance: the first 28 days after the first rains, the second 14 days after the second rainfall peak, and the third synchronously with the third rainy period. These results indicate that intra-annual variation in local rainfall has the potential to account for variations in the timing and intensity of reproduction in the studied birds.

  4. Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe

    Science.gov (United States)

    Unterländer, Martina; Palstra, Friso; Lazaridis, Iosif; Pilipenko, Aleksandr; Hofmanová, Zuzana; Groß, Melanie; Sell, Christian; Blöcher, Jens; Kirsanow, Karola; Rohland, Nadin; Rieger, Benjamin; Kaiser, Elke; Schier, Wolfram; Pozdniakov, Dimitri; Khokhlov, Aleksandr; Georges, Myriam; Wilde, Sandra; Powell, Adam; Heyer, Evelyne; Currat, Mathias; Reich, David; Samashev, Zainolla; Parzinger, Hermann; Molodin, Vyacheslav I.; Burger, Joachim

    2017-03-01

    During the 1st millennium before the Common Era (BCE), nomadic tribes associated with the Iron Age Scythian culture spread over the Eurasian Steppe, covering a territory of more than 3,500 km in breadth. To understand the demographic processes behind the spread of the Scythian culture, we analysed genomic data from eight individuals and a mitochondrial dataset of 96 individuals originating in eastern and western parts of the Eurasian Steppe. Genomic inference reveals that Scythians in the east and the west of the steppe zone can best be described as a mixture of Yamnaya-related ancestry and an East Asian component. Demographic modelling suggests independent origins for eastern and western groups with ongoing gene-flow between them, plausibly explaining the striking uniformity of their material culture. We also find evidence that significant gene-flow from east to west Eurasia must have occurred early during the Iron Age.

  5. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  6. Natural forest expansion on reclaimed coal mines in Northern Spain: the role of native shrubs as suitable microsites.

    Science.gov (United States)

    Alday, Josu G; Zaldívar, Pilar; Torroba-Balmori, Paloma; Fernández-Santos, Belén; Martínez-Ruiz, Carolina

    2016-07-01

    The characterization of suitable microsites for tree seedling establishment and growth is one of the most important tasks to achieve the restoration of native forest using natural processes in disturbed sites. For that, we assessed the natural Quercus petraea forest expansion in a 20-year-old reclaimed open-cast mine under sub-Mediterranean climate in northern Spain, monitoring seedling survival, growth, and recruitment during 5 years in three contrasting environments (undisturbed forest, mine edge, and mine center). Seedling density and proportion of dead branches decreased greatly from undisturbed forest towards the center of the mine. There was a positive effect of shrubs on Q. petraea seedling establishment in both mine environments, which increase as the environment undergoes more stress (from the mine edge to the center of the mine), and it was produced by different shrub structural features in each mine environment. Seedling survival reduction through time in three environments did not lead to a density reduction because there was a yearly recruitment of new seedlings. Seedling survival, annual growth, and height through time were greater in mine sites than in the undisturbed forest. The successful colonization patterns and positive neighbor effect of shrubs on natural seedlings establishment found in this study during the first years support the use of shrubs as ecosystem engineers to increase heterogeneity in micro-environmental conditions on reclaimed mine sites, which improves late-successional Quercus species establishment.

  7. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    Science.gov (United States)

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  8. From Scientific Speculation to Effective Adaptive Management: A case study of the role of social marketing in promoting novel restoration strategies for degraded dry lands

    Directory of Open Access Journals (Sweden)

    Frances Westley

    2010-09-01

    Full Text Available This article focuses on the role of social marketing, in particular the analysis of the motivations and capabilities of stakeholder groups, in encouraging acceptance of an innovative experimental approach to semiarid shrub land restoration in Chile. Controlled scientific experiments involving herbivory control during El Niño events have proved promising, but have not yet been introduced into ecosystem management approaches. Social marketing, as a lens for focusing on and understanding stakeholders' motivations, provides a valuable framework in which strategies may be developed for diffusing promising scientific experiments into regional management contexts.

  9. Water Resources Response to Climate and Land-Cover Changes in a Semi-Arid Watershed, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Joonghyeok Heo

    2015-01-01

    Full Text Available This research evaluates a climate-land cover-water resources interconnected system in a semi-arid watershed with minimal human impact from 1970 - 2009. We found _ increase in temperature and 10.9% decrease in precipitation. The temperature exhibited a lower increase trend and precipitation showed a similar decrease trend compared to previous studies. The dominant land-cover change trend was grass and forest conversion into bush/shrub and developed land and crop land into barren and grass land. These alterations indicate that changes in temperature and precipitation in the study area may be linked to changes in land cover, although human intervention is recognized as the major land-cover change contributor for the short term. These alterations also suggest that decreasing human activity in the study area leads to developed land and crop land conversion into barren and grass land. Hydrological responses to climate and land-cover changes for surface runoff, groundwater discharge, soil water content and evapotranspiration decreased by 10.2, 10.0, 4.1, and 10.5%, respectively. Hydrological parameters generally follow similar trends to that of precipitation in semi-arid watersheds with minimal human development. Soil water content is sensitive to land-cover change and offset relatively by the changes in precipitation.

  10. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.

    Science.gov (United States)

    Primack, Richard B; Laube, Julia; Gallinat, Amanda S; Menzel, Annette

    2015-11-01

    Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions. The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species. This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to

  11. Steppe bison paleobiology through the scope of stable isotopes and zooarchaeology

    Science.gov (United States)

    Julien, Marie-Anne; Dorothée, Drucker; Hervé, Bocherens; Ariane, Burke; Marylène, Patou-Mathis; Alexandra, Krotova

    2010-05-01

    Bison are one of the most abundant and widely distributed species of large mammal during the Late Pleistocene. In the southern steppes of Eastern Europe, steppe bison (Bison priscus) is ubiquitous in zooarchaeological assemblages, particularly during the Upper Palaeolithic when a model of economic "specialization" is proposed. Specialization, in this context, implies the deliberate selection of a preferred species, which becomes the key food resource. The applicability of a specialised hunting model for the Upper Palaeolithic of Europe has recently been challenged, however (Grayson & Delpech 2002). In this research, therefore we re-examine bison acquisition strategies during the Upper Palaeolithic in the Ukrainian steppes in the light of biogeochemical and zooarchaeological data. The acquisition strategies used to procure a prey species are directly related to its social and spatial behaviour. A synthesis of ethological information for contemporary bison (Julien 2009) demonstrates the behavioural diversity of this taxa, linked mainly to local environmental variability, climatic conditions and population density. It is therefore necessary to propose a paleoethological model for the steppe bison before attempting to identify the acquisition strategies used by prehistoric hunters. In this research, we reconstruct the behaviour of the steppe bison using a combination of zooarchaeological tools, stable isotope analysis (intra-tooth isotope variation of carbon, oxygen and strontium ratios) and traditional paleobiological approaches. The advantages of using a combined approach are demonstrated through the examination of a case study: the site of Amvrosievka (Ukraine). Amvrosievka is a complex of Epigravettian sites composed of a camp and kill site, where more than 500 bison are represented (Krotova & Belan 1993). Twenty-five permanent lower teeth (M3) representing twenty-five individual bison were selected from the kill and camp site for isotopic analysis. Intra- and

  12. Sharp-tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation

  13. On the issue of taxonomical status of steppe viper (Vipera renardi in Right-bank Ukraine

    Directory of Open Access Journals (Sweden)

    A. L. Baybuz

    2011-07-01

    Full Text Available Data on morphologic variability of the steppe viper in the Kirovograd region (Right-bank Ukraine are given firstly. Tentative estimation of the similaritylevel of the local population and the populations from the Left-bank Ukraine and the Crimea was carried out using methods of the multivariate statistics. Morphological data in line with the results of mitochondrial DNA analysis show that the population in the Kirovograd region belongs to widespread Eurasian species Vipera renardiand morphologically most close to the original populations of the lowland Crimea, Sivash and Forest-Steppe of the Left-bank Ukraine. This could indicate the complicated history of the Right-bank Ukraine colonization by the steppe viper and possible influence of environmental conditions on the vipers’ morphology

  14. Meta-STEPP: subpopulation treatment effect pattern plot for individual patient data meta-analysis.

    Science.gov (United States)

    Wang, Xin Victoria; Cole, Bernard; Bonetti, Marco; Gelber, Richard D

    2016-09-20

    We have developed a method, called Meta-STEPP (subpopulation treatment effect pattern plot for meta-analysis), to explore treatment effect heterogeneity across covariate values in the meta-analysis setting for time-to-event data when the covariate of interest is continuous. Meta-STEPP forms overlapping subpopulations from individual patient data containing similar numbers of events with increasing covariate values, estimates subpopulation treatment effects using standard fixed-effects meta-analysis methodology, displays the estimated subpopulation treatment effect as a function of the covariate values, and provides a statistical test to detect possibly complex treatment-covariate interactions. Simulation studies show that this test has adequate type-I error rate recovery as well as power when reasonable window sizes are chosen. When applied to eight breast cancer trials, Meta-STEPP suggests that chemotherapy is less effective for tumors with high estrogen receptor expression compared with those with low expression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    Science.gov (United States)

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  16. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  17. Ecohydrological responses of a model semiarid system to precipitation pulses after a global change type dry-down depend on growth-form, event size, and time since establishment

    Science.gov (United States)

    Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.

    2012-12-01

    Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4o

  18. Assessment and prediction of the invasiveness of some alien plants in conditions of climate change in the steppe Dnieper region

    Directory of Open Access Journals (Sweden)

    Y. V. Lykholat

    2017-02-01

    Full Text Available The flora of the steppe Dnieper region is characterized by an abundance of naturalized alien species, some of which colonised over the last decade. Climate change, associated primarily with increasing temperature, became clearly manifested in this period. We tested the hypothesis that there is an association between climate change and the initiation of invasiveness of some alien plant species in the steppe Dnieper region. For this purpose, comparative studies of the distribution boundaries of naturalized alien trees, shrubs and herbaceous plants were conducted. Along the research route numerous 5–10-year-old broadleaf linden trees (Tilia platyphyllos Scop. were found in the man-made plantation communities of Dnipro city in areas with moist soil; seeded undergrowth was located at a significant distance from the adult linden plants. Numerous groups of young 7–10-year-old plants of the smoke trees (Cotinus coggygria Scop., which had a seed origin, were found in the shelterbelt and urban recreational plantations. Young 10–12-year-old virginal and generative plants of the black cherry (Padus serotina Ehrh. were found in large numbers in both the semi-natural and artificial plant communities at great distances from the adult trees. The alien plant species common hackberry (Celtis occidentalis L. showed the ability to form fairly sparse seminal seedlings, which was presented by the plants at the age of 4–7 years in both the natural and urban plant communities. The perennial herbaceous plant common milkweed (Asclepias syriaca L. was found in the course of the research in ruderal habitats, urban plant communities, and also in the agrocoenoses. The common milkweed reached its greatest abundance in fields of winter crops, where the spread of this species was accompanied by a sharp decrease in the number of other species of segetal plants. Our study results confirm that the extension of the distribution boundaries of alien species over the last

  19. Dating simple flakes: Early Bronze Age flake production technology on the Middle Euphrates Steppe, Syria

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nishiaki

    2014-03-01

    Full Text Available Aceramic flint scatters, comprising very crude cores or flakes and no formalised tools, are frequently found on the Middle Euphrates steppe of northern Syria. Previous studies suggest that many of them are residues of short-term activities by the nomads or shepherds of the Early Bronze Age. In order to verify this interpretation, a more precise chronological framework needs to be established for the Early Bronze Age lithic industry. This paper analyses stratified flake assemblages of the Early Bronze Age at Tell Ghanem al-Ali, a securely radiocarbon-dated settlement on the Middle Euphrates, and examines which occupation level yields assemblages most similar to those of the steppe. Results demonstrate that the lithic industry of this period underwent significant diachronic changes in terms of core reduction technology. Based on the chronological framework developed at Tell Ghanem al-Ali, the steppe assemblages in question can be assigned to different phases of the Early Bronze Age. This finding will help identify processes at the beginning of the extensive exploitation of the steppe, which is regarded as one of the most important socioeconomic changes that occurred among Early Bronze Age communities of the Middle Euphrates.

  20. A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China

    Science.gov (United States)

    Zhenmin Zheng; Bojie Fu; Haitang Hu; Ge Sun

    2014-01-01

    Ecosystem services are increasingly recognized as the foundations of a well-functioning society. Large-scale ecological restoration projects have been implemented around China with the goal of restoring and sustaining ecosystem services, especially in vulnerable semi-arid regions where soil and water resources are most stressed due to historic human activities. The...

  1. Determining the resilience of carbon dynamics in semi-arid biomes of the Southwestern US to severe drought and altered rainfall patterns

    Science.gov (United States)

    Litvak, M. E.; Krofcheck, D. J.; Hilton, T. W.; Fox, A. M.; Osuna, J. L.

    2011-12-01

    Water is critically important for biotic processes in semi-arid ecosystems and 2011 is developing as one of the most severe drought years on record for many parts of the Southwestern US. To quantify the impact of this severe drought on regional carbon and energy balance, we need a more detailed understanding of how water limitation alters ecosystem processes across a range of semi-arid biomes. We quantified the impact of severe drought and changes in both the quantity and distribution of precipitation on ecosystem biotic structure and function across the range of biomes represented in the NM elevation gradient network (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine forest and subalpine mixed conifer forest). We compared how daily, seasonal and annual carbon and energy balance and their components in each of these biomes respond to changes in rainfall patterns using continuous measurements of carbon, water and energy exchange and associated measurements in each of these biomes during a 5 year period (2006-2011) that included a severe drought, and large variability in both winter precipitation and the timing and intensity of the monsoon. To understand the underlying mechanisms, we used time series of radiation absorbed by vegetation, surface albedo, soil moisture storage, phenology, gross primary productivity (GPP), ecosystem respiration (Re), and WorldView-2 images acquired pre- and post-monsoon in each of these biomes. In all of the biomes except the desert grassland site, the strength and timing of both winter and monsoon precipitation are important controls over carbon and energy dynamics in this region, though we see site-specific sensitivities across the elevation gradient. Over the past 5 years, carbon dynamics in the desert grassland site appears to be decoupled from winter precipitation. In addition, carbon dynamics in disturbed grassland and pinon-juniper ecosystems were more sensitive to severe drought than

  2. Investigating the biophysical controls on mass and energy cycling in Southwestern US ecosystems using the New Mexico Elevation Gradient of flux towers.

    Science.gov (United States)

    Krofcheck, D. J.; Morillas, L.; Litvak, M. E.

    2014-12-01

    Drylands and semi-arid ecosystems cover over 45% of the global landmass. These biomes have been shown to be extremely sensitive to changes in climate, specifically decreases in precipitation and increases in air temperature. Therefore, inter-annual variability in climate has the potential to dramatically impact the carbon budget at regional and global scales. In the Southwestern US, we are in a unique position to investigate these relationships by leveraging eight years of data from the New Mexico Elevation Gradient (NMEG), eight flux towers that span six representative biomes across the semi-arid Southwest. From C4 desert grasslands to subalpine mixed conifer forests, the NMEG flux towers use identical instrumentsand processing, and afford a unique opportunity to explore patterns in biome-specific ecosystem processes and climate sensitivity. Over the last eight years the gradient has experienced climatic variability that span from wet years to an episodic megadrought. Here we report the effects of this extreme inter-annual variability in climate on the ability of semi-arid ecosystems to cycle and store energy and carbon. We also investigated biome-specific patterns of ecosystem light and water use efficiency during a series of wet and dry years, and how these vary in response to air temperature, vapor pressure deficit, evaporative fraction, and precipitation. Our initial results suggest that significant drought reduced the maximum ecosystem assimilation of carbon most at the C4 grasslands, creosote shrublands, juniper savannas, and ponderosa pine forests, with 60%, 50%, 35%, and 50% reduction respectively, relative to a wet year. Ecosystem light use efficiency tends to show the highest maximum values at the low elevation sites as a function of water availability, with the highest annual values consistently at the middle elevation and ponderosa pine sites. Water use efficiency was strongly biome dependent with the middle elevation sites showing the highest

  3. Phenotypic variability of plant leaves of Acer genus, introduced into steppe zone of Ukraine

    Directory of Open Access Journals (Sweden)

    I. O. Zaitseva

    2014-10-01

    Full Text Available This paper deals with studying of the patterns of ecological adaptation of wood species of Acer L. genus during their introduction into steppe zone of Ukraine. Hydrothermal conditions of the growing season in steppe zone of Ukraine are particularly unfavorable for tree and shrubbery plantings, comprising both native and introduced species. In the course of plants’ introduction, adaptive changes occur; such changes represent the spectrum of phenotypic implementation of the definite genotype under the influence of new environmental conditions. Stress environment of the region of introduction leads to occurrence of a great variety of phenotypic forms, as the different variants of genotype implementation. Studying of phenotypic variability gives an opportunity to determine the capacity to adaptation of introduced species and ways of adaptive reactions in new conditions of living. Therefore, objective of the work consists in studying of the processes of differentiation of morphological characters in species of Acer genus introduced in the regions of steppe zone with varying intensity of hydrothermal factors. Studies were carried out in the central and south-eastern steppe regions, as well as in the south of steppe zone in the coastal and continental areas. Subjects of research were 9 species of maples, differing by their botanic and geographic origin and by the degree of drought resistance in the steppe zone of Ukraine. Patterns of variability of morphostructural characters of leaves were determined by the indicator of specific weight of leaves which was calculated as a ratio of weight of dry laminas to their area (mg/cm2. Following the results of study, it was found that adaptation of maples to xerothermic factors of the environment is connected with changing of the ratio of groups of character variation and their contribution into total sample. Direct relationship is established between the probability density of expression (phenotypic

  4. tree and shrub species integration in the crop-livestock farming ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    cash for investment in the required activities, easy land certification and market opportunity for tree and shrub products. The tree and shrub .... for its consistency, logical flow, coding and length were amended. .... TABLE 2. List of shrub species identified in the watershed of highlands of central Ethiopia. Scientific name.

  5. [Team Care for Patient Safety, TeamSTEPPS to Improve Nontechnical Skills and Teamwork--Actions to Become an HRO].

    Science.gov (United States)

    Kaito, Ken

    2015-07-01

    It is important to develop safer medical systems and follow manuals of medical procedures for patient safety. However, these approaches do not always result in satisfactory results because of many human factors. It is known that defects of nontechnical skills are more important than those of technical skills regarding medical accidents and incidents. So, it is necessary to improve personal nontechnical skills and compensate for each other's defects based on a team approach. For such purposes, we have implemented TeamSTEPPS to enhance performance and patient safety in our hospital. TeamSTEPPS (team strategies and tools to enhance performance and patient safety) is a useful method to improve the nontechnical skills of each member and the team. In TeamSTEPPS, leadership to share mental models among the team, continuous monitoring and awareness for team activities, mutual support for workload and knowledge, and approaches to complete communication are summarized to enhance teamwork and patient safety. Other than improving nontechnical skills and teamwork, TeamSTEPPS is also very important as a High Reliability Organization (HRO). TeamSTEPPS is worth implementing in every hospital to decrease medical errors and improve patient outcomes and satisfaction.

  6. NPP Grassland: Pampa De Leman, Argentina, 1980-1982, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two ASCII files (.txt format). One file contains monthly productivity data measured on an arid dwarf-shrub steppe in northern Patagonia,...

  7. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  8. δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona

    Science.gov (United States)

    Biggs, Thomas H.; Quade, Jay; Webb, Robert H.

    2002-01-01

    Over the past century, C3 woody plants and trees have increased in abundance in many semiarid ecosystems, displacing native C4 grasses. Livestock grazing, climatic fluctuations, and fire suppression are several reasons proposed for this shift. Soil carbon isotopic signatures are an ideal technique to evaluate carbon turnover rates in such ecosystems. On the gunnery ranges of Fort Huachuca in southeastern Arizona, study sites were established on homogeneous granitic alluvium to investigate the effects of fire frequency on δ13C values in surface soil organic matter (SOM). These ranges have had no livestock grazing for 50 years and a well-documented history of fires. Prosopis velutina Woot. (mesquite) trees have altered SOM δ13C pools by the concentration of plant nutrients and the addition of isotopically light litter. These soil carbon changes do not extend beyond canopy margins. Elevated total organic carbon (TOC), plant nutrient (N and P) concentrations, and depleted SOM δ13C values are associated with C3Prosopis on an unburned plot, which enables recognition of former Prosopis-occupied sites on plots with recent fire histories. Elevated nutrient concentrations associated with former Prosopis are retained in SOM for many decades. Surface SOM δ13C values indicate the estimated minimum turnover time of C4-derived carbon beneath large mature Prosopis is about 100–300 years. In contrast, complete turnover of original C3 carbon to C4 carbon under grasslands is estimated to take a minimum of 150–500 years. Our study confirms that C4 grass cover has declined over the past 100 years, although isolated C3 trees or shrubs were not uncommon on the historic C4-dominated grasslands. We find evidence in surface soil layers for a modern C3 plant expansion reflected in the substantial shift of SOM δ13C values from C4 grasses to C3 shrublands.

  9. Dynamic contents of energy and organic nutrient in steppe growths of the Mohelenská Serpentine Steppe National Nature Reserve

    Directory of Open Access Journals (Sweden)

    Pavel Veselý

    2006-01-01

    Full Text Available The aim of the study was to determine the dynamics in the content of organic nutrients, ash and energy in dry matter of growths within the Mohelenská Serpentine Steppe National Nature Reserve (NPR, and to document their initial nutritive value before the intended grazing. Plant samples in 1995 and 1996 during the growing season in 14-days intervals from the area of 3 × 1 m2. Amounts of dry matter, fibre, nitrogen substances, fat and ashes were determined in growths according to the ANONYM (2001. Nitrogen-free extract substances (BNLV were determined by final calculating; BE, ME, NEL, NEV, PDIN and PDIE were calculated using the regression equations (VESELÝ and ZEMAN, 1995, 1997. Combining ratio (SP was calculated according to the relation: SP = PDIN (g/NEL (MJ. The dynamics of the contents of dry matter, organic nutrients, ashes and energy were assessed in the growth during the vegetation period and the dynamics was compared with standardized requirements of sheep (no pregnant ewe. Regression and correlation relations for nutrition value of the growths during vegetation period were calculated by use of mathematical-statistical analysis. Only statistically significantly (P<0.05 different parameters form the zero are presented in the paper. The content of dry matter in the growths culminated in summer months (places D8, E13, B17 and it was accompanied by depression in autumn months. After the highest content of crude protein, PDIN and PDIE recorded in spring months summer depression (August followed, this depression was partly balanced by autumn growth of vegetation. The content of ash in steppe growths increased during evaluated period. Similar tendency was registered for fat. Also the contents of fibre and BNLV linearly increased. The contents of nitrogen nutrients and energy corresponded with standardized requirements for sheep during whole vegetation period. Conversely the content of fibre highly exceeded the requirement except in spring

  10. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean

    Science.gov (United States)

    Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng

    2016-01-01

    A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.

  11. Flux frequency analysis of seasonally dry ecosystem fluxes in two unique biomes of Sonora Mexico

    Science.gov (United States)

    Verduzco, V. S.; Yepez, E. A.; Robles-Morua, A.; Garatuza, J.; Rodriguez, J. C.; Watts, C.

    2013-05-01

    Complex dynamics from the interactions of ecosystems processes makes difficult to model the behavior of ecosystems fluxes of carbon and water in response to the variation of environmental and biological drivers. Although process oriented ecosystem models are critical tools for studying land-atmosphere fluxes, its validity depends on the appropriate parameterization of equations describing temporal and spatial changes of model state variables and their interactions. This constraint often leads to discrepancies between model simulations and observed data that reduce models reliability especially in arid and semiarid ecosystems. In the semiarid north western Mexico, ecosystem processes are fundamentally controlled by the seasonality of water and the intermittence of rain pulses which are conditions that require calibration of specific fitting functions to describe the response of ecosystem variables (i.e. NEE, GPP, ET, respiration) to these wetting and drying periods. The goal is to find functions that describe the magnitude of ecosystem fluxes during individual rain pulses and the seasonality of the ecosystem. Relaying on five years of eddy covariance flux data of a tropical dry forest and a subtropical shrubland we present a flux frequency analysis that describe the variation of net ecosystem exchange (NEE) of CO2 to highlight the relevance of pulse driven dynamics controlling this flux. Preliminary results of flux frequency analysis of NEE indicate that these ecosystems are strongly controlled by the frequency distribution of rain. Also, the output of fitting functions for NEE, GPP, ET and respiration using semi-empirical functions applied at specific rain pulses compared with season-long statistically generated simulations do not agree. Seasonality and the intrinsic nature of individual pulses have different effects on ecosystem flux responses. This suggests that relationships between the nature of seasonality and individual pulses can help improve the

  12. Carbon sequestration capacity in a semiarid ecosystem: A carbon balance approach

    International Nuclear Information System (INIS)

    Almagro, M.; Lopez, J.; Boix-Fayos, C.; Albaladejo, J.; Martinez-Mena, M.

    2009-01-01

    Here, we used two C balance approaches to estimate total below ground C allocation (TBCA) in three representative land uses in a Mediterranean ecosystem (late-successional forest, abandoned agricultural field, rainfed olive grove). Our objectives were: 1) to asses the response of TBCA and its components to changes in land use; 2) to evaluate how soil water erosion and changes in C stored in roots, soil and litter layer altered our estimates of TBCA; 3) to determine annual net ecosystem productivity, and examine C allocation patterns at each land use. (Author) 4 refs.

  13. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    Science.gov (United States)

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  14. Importance of Triticosecale Wittmack ex A.Camus varieties in the formation of species diversity of agro-ecosystems

    Directory of Open Access Journals (Sweden)

    В. В. Москалець

    2015-12-01

    Full Text Available Purpose. To find out the ecological importance of winter triticale varieties in the formation of species diversity of agro-ecosystems. Methods. Field, laboratoryones and mathematical and statistical analysis. Results. The authors studied ecological importance of winter triticale varieties of forest-steppe and Polissia ecotopes as determinants of agrobiocenosis in the structural and functional organization of species diversity. It was found that less favourable ecological niche for pests-phytophags is such winter triticale varieties and lines as ‘Slavetne’, ‘AD 256’, ‘Chaian’, ‘DAU 5’, for epiphytoparasites – ‘Vivate Nosivske’, ‘Pshenychne’, ‘Slavetne polipshene’, ‘Slavetne’, ‘Yaguar’, respectively. It is determined that varieties and lines of winter triticale such as ‘AD 256’, ‘Vivate Nosivske’, ‘Pshenychne’, ‘Slavetne polipshene’, ‘Slavetne’ show high biological ability to compete with synanthropic vegetation and form distinct associations of segetal plants. Conclusions. It was found that agrophytocenoses of the studied varieties of winter triticale under the conditions of forest-steppe, Polissia-forest-steppe and Polissia ecotops determined in movements structural and functional organization of species diversity of agroecosystems.

  15. The Influence of an Invasive Shrub, Buddleja Davidii on a Native Shrub, Griselinia Littoralis Transplanted into a New Zealand Floodplain Chronosequence

    Science.gov (United States)

    Griselinia littoralis, a native New Zealand shrub, was planted into a chronosequence (0 to 8 yrs since flooding) dominated by the non-indigenous shrub, Buddleja davidii in three New Zealand floodplains to determine to what extent facilitation and competitive inhibition may influe...

  16. Vegetation Responses to Prescribed Burning of Grazed Shortgrass Steppe

    Science.gov (United States)

    Over the past century, fire has been widely suppressed in the western Great Plains, in part due to potential negative effects on forage production for livestock. More recently, interest in the use of prescribed fire in shortgrass steppe has increased due to potential applications for wildlife manage...

  17. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  18. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  19. Biological recovery the steppe of Hammada scoparia after enclosure in the region of Naama (Algeria

    Directory of Open Access Journals (Sweden)

    Boucherit Hafidha

    2017-03-01

    Full Text Available This work was being carried out in the steppe of remth (Hammada scoparia in Oranian part of the Saharan Atlas (Tiout - south of Naama. The H. scoparia of Saharan group occupies the foothills south of the Saharan Atlas and glazes and hamadas of the northern part of the Sahara where it seems to find its optimum development. The objective of the study is the floristic and ecological characterisation of the steppe vegetation groups of H. scoparia after 4 years of enclosure grazing (Eg. For the past three decades, steppe of H. scoparia were completely overwhelmed, both in their structure and their operation by increasing the herd and the continued use of natural pastures using animal load significantly higher than the production potential of course, which is reflected by the reduction of their capacity for natural regeneration.

  20. Stability measures in arid ecosystems

    Science.gov (United States)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  1. Prosopis laevigata and Mimosa biuncifera (Leguminosae, jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystem

    Directory of Open Access Journals (Sweden)

    Rosalva García-Sánchez

    2012-03-01

    Full Text Available Prosopis laevigata and Mimosa biuncifera are frequently found in arid and semiarid shrublands, but scarce information is available about their influence on plant community structure and soil fertility. We compared plant community structure, diversity and soil nutrients of three semiarid shrubland sites located in Mezquital Valley, Mexico. These sites differ in their dominant species: Site 1 (Bingu P. laevigata, Site 2 (González M. biuncifera, and Site 3 (Rincón with the presence of both legumes. The results showed that the plant community with P. laevigata and M. biuncifera (Site 3 had more cover, taller plants and higher plant diversity than sites with only one legume (Site 1 and Site 2. Soil organic matter (SOM, soil organic carbon (SOC, total nitrogen (TN, phosphorus-Olsen (P and C mineralization were higher in the soil under the canopy of both legumes than in bare soil. In contrast, soil cation concentrations were lower under the canopy of P. laevigata, but not for M. biuncifera. In addition, the density of arbuscular mycorrhizal fungi spores was higher within the soil under the canopy of M. biuncifera than in the soil under the canopy of P. laevigata. Thus, resource islands (RI created by P. laevigata increased the amounts of SOC, TN and P when compared with the RI of M. biuncifera. This study provided evidences about the importance of species identity in order to expand the niche availability for the establishment of other plants, and highlights that P. laevigata and M. biuncifera jointly influencing plant colonization within semiarid ecosystemsProsopis laevigata y Mimosa biuncifera coexisten en los matorrales semiáridos; sin embargo, se desconoce su influencia sobre la diversidad de la comunidad vegetal y el suelo. Este estudio evaluó el efecto de P. laevigata y M. biuncifera sobre la estructura, diversidad vegetal y nutrimentos del suelo, en tres matorrales del Valle del Mezquital, México. Los sitios difieren en la especie dominante

  2. Soil cover patterns and dynamics impact on GHG fluxes in RF native and man-changed ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Nesterova, Olga

    2017-04-01

    The increased soil spatial-temporal variability is mutual feature for most mature natural and particularly man-changed terrestrial ecosystems in Central and Far-East regions of Russia with soil cover strongly pronounced bioclimatic zoning and landscape-geomorphologic differentiation. Soil cover patterns (SCP) detailed morphogenetic analysis and typification is useful tool for soil forming and degradation processes quantitative evaluation, land ecological state and functional quality quantitative assessment. Quantitative analysis and functional-ecological interpretation of representative SCP spatial variability is especially important for environmentally friendly and demand-driven land-use planning and decision making. The carried out 33-years region- and local-scale researches of the wide zonal-provincial set of representative ecosystems and SCP with different types and history of land-use (forest, meadow-steppe, agricultural and recreational ones) give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. Succession process-based analysis of modern evolution of man-changed and natural soils and ESCP essentially increases accuracy of quantitative assessments of dominant soil forming and degradation processes rate and potential, their influence on land and soil cover quality and ecosystem services. Their results allow developing the regional and landscape adapted versions of automated land evaluation systems and land-use DSS. The validation and ranging of the limiting factors of ESCP regulation and develop¬ment, ecosystem principal services (with especial attention on greenhouse gases emissions, soil carbon dynamics and sequestration potential, biodiversity and productivity, hydrological regimes and geomorphologic stabilization), land functional qualities and agroecological state have been done for dominating and

  3. A resource-based modelling framework to assess habitat suitability for steppe birds in semiarid Mediterranean agricultural systems.

    Directory of Open Access Journals (Sweden)

    Laura Cardador

    Full Text Available European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species' key resource requirements (diet, foraging habitat and nesting site, and examine whether it can be used to link land-use and local species' distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species' occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models.

  4. Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Illeris, Lotte; Christensen, TR; Mastepanov, M

    2004-01-01

    Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated...

  5. Monitoring the variations of evapotranspiration due to land use/cover change in a semiarid shrubland

    Science.gov (United States)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo

    2017-02-01

    Evapotranspiration (ET) is an important process in the hydrological cycle, and vegetation change is a primary factor that affects ET. In this study, we analyzed the annual and inter-annual characteristics of ET using continuous observation data from eddy covariance (EC) measurement over 4 years (1 July 2011 to 30 June 2015) in a semiarid shrubland of Mu Us Sandy Land, China. The Normalized Difference Vegetation Index (NDVI) was demonstrated as the predominant factor that influences the seasonal variations in ET. Additionally, during the land degradation and vegetation rehabilitation processes, ET and normalized ET both increased due to the integrated effects of the changes in vegetation type, topography, and soil surface characteristics. This study could improve our understanding of the effects of land use/cover change on ET in the fragile ecosystem of semiarid regions and provide a scientific reference for the sustainable management of regional land and water resources.

  6. Shrubs of the Field Irradiator - Gamma area in eastern Manitoba

    International Nuclear Information System (INIS)

    Dugle, J.R.; Mayoh, K.R.; Barclay, P.J.

    1979-11-01

    Detailed descriptions and line drawings are given of over 100 shrub taxa (including semi-woody shrubs and vines) which are common in Manitoba; most of them are found within the Field Irradiator - Gamma (FIG) area or its immediate surroundings. Ecological and morphological notes are included along with a few general remarks on the effects of exposure to long-term gamma radiation. Keys are given for certain genera, small family groups or other critical species groups. This document is intended to facilitate identification of shrubs for experimental purposes in the FIG projects, and it should also be useful to those who are generally interested in the shrubs of Manitoba. (auth)

  7. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    Directory of Open Access Journals (Sweden)

    Yuguo Liu

    Full Text Available Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG, thorn shrubbery (TS, forest - shrub transition (FS and secondary forest (F. The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  8. Moa (Aves : Dinornithiformes) nesting material from rockshelters in the semi-arid interior of South Island, New Zealand

    International Nuclear Information System (INIS)

    Wood, J.R.

    2008-01-01

    The first descriptions of plant remains from the nests of extinct moa (Aves: Dinornithiformes) are presented. The samples of desiccated nesting material were collected during excavation of Holocene sediments within five rockshelters in semi-arid regions of southern South Island, New Zealand, between 1964 and 2006. The nesting materials were attributed to moa on the basis of associated moa coprolites, feathers and eggshell fragments. The nesting material includes short, clipped twigs from a range of locally available tree, shrub and liane species. These twig clippings show a size distribution similar to those recorded from moa gizzard content samples. Other nesting material from the sites includes longer twigs and fragments of bark. The plant materials suggest general similarities between the nests of moa and those of the extant Australasian ratites, emu (Dromaius novaehollandiae) and cassowary (Casuarius spp.). (author). 37 refs., 7 figs., 1 tab

  9. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  10. Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China

    Directory of Open Access Journals (Sweden)

    K. Schneider

    2007-05-01

    Full Text Available This study evaluates the performance of four evapotranspiration methods (Priestley-Taylor, Penman-Monteith, Hargreaves and Makkink of differing complexity in a semi-arid environment in north China. The results are compared to observed water vapour fluxes derived from eddy flux measurements. The analysis became necessary after discharge simulations using an automatically calibrated version of the Soil and Water Assessment Tool (SWAT failed to reproduce runoff measurements. Although the study area receives most of the annual rainfall during the vegetation period, high temperatures can cause water scarcity. We investigate which evapotranspiration method is most suitable for this environment and whether the model performance of SWAT can be improved with the most adequate evapotranspiration method.

    The evapotranspiration models were tested in two consecutive years with different rainfall amounts. In general, the simple Hargreaves and Makkink equations outmatch the more complex Priestley-Taylor and Penman-Monteith methods, although their performance depended on water availability. Effects on the quality of SWAT runoff simulations, however, remained minor. Although evapotranspiration is an important process in the hydrology of this steppe environment, our analysis indicates that other driving factors still need to be identified to improve SWAT simulations.

  11. HYGROTOPE AND TROPHOTOPE OF THE STEPPE PRIDNIPROVIE BIOGEOCEONOSIS AS DETERMINANTS OF THE EARTHWORMS (LUMBRICIDAE COMMUNITIES β-DIVERSITY

    Directory of Open Access Journals (Sweden)

    A. V. Zhukov

    2016-08-01

    Full Text Available The role of the hygrotope and trophotope of the steppe Pridniprovie biogeoceonosis has been discussed in present article as being determinants of the β-diversity of earthworms (Lumbricidae communities. Material has been colected to the period 1997-2015. 180 sample polygons have been studied which located in various types of biogeoceonosis. Biogeoceonotic characteristic of the sample polygons have been made on the basis of professor A.L. Belgard forest typology of a steppe zone of Ukraine. Earthworm communities of the steppe Pridniprovie have been established to be presented by 16 species. Hygrotopes, trophotopes and bitope ceonosis features have been shown to be able to explain 72.4 % of a communities’ abundance variation and 73.7 of their % α-diversity by means of second order model. Earthworm communities’ abundance reache their maximum values at a combination of conditions of humidity from hygromesophilous to hygrophilous and conditions of edaphotope trophicity from Dc (linden oakwood to Dn (elm-ashen oakwood and alder forests. The maximum diversity of earthworm communities has been stated to be characteristic for a combination of mesohygrophilous conditions and a trophicity mode Dc, that there corresponds to forest type a linden oakwood with aegopodium. The coenomorphic structure of the biogeocoenosis is statistically significant predictors of both abundance and α-diversity of earthworm communities. Earthworm communities of marsh monocoenosis, meadow-steppe amphicoenosis and steppe monocoenosis have been found as being characterised by minimum abundance and diversity. Moderate level abundance and diversity are characteristic for meadow-forest amphicoenosis, forest pseudomonocoenosis with elements of transformation to steppe and forest-steppe amphicoenosis. High levels of these indexes are typical for forest monocoenosis. Given other conditions of humidity and edaphotope trophicity being equal in forest monocoenosis abundance and

  12. A leadership challenge: staff nurse perceptions after an organizational TeamSTEPPS initiative.

    Science.gov (United States)

    Castner, Jessica; Foltz-Ramos, Kelly; Schwartz, Diane G; Ceravolo, Diane J

    2012-10-01

    The purpose of this study was to measure RNs' perceptions of teamwork skills and behaviors in their work environment during a multiphase multisite nursing organizational teamwork development initiative. Teamwork is essential for patient safety in healthcare organizations and nursing teams. Organizational development supporting effective teamwork should include a just culture, engaged leadership, and teamwork training. A cross-sectional survey study of bedside RNs was conducted in one 5-hospital healthcare system after a TeamSTEPPS teamwork training initiative. TeamSTEPPS teamwork training related to improved RN perceptions of leadership. Initiatives to align the perspectives and teamwork efforts of leaders and bedside nurses are indicated and should involve charge nurses in the design.

  13. Geochemical Weathering Increases Lead Bioaccessibility in Semi-Arid Mine Tailings

    Science.gov (United States)

    Hayes, Sarah M.; Webb, Sam M.; Bargar, John R.; O'Day, Peggy A.; Maier, Raina M.; Chorover, Jon

    2012-01-01

    Mine tailings can host elevated concentrations of toxic metal(loid)s that represent a significant hazard to surrounding communities and ecosystems. Eolian transport, capable of translocating small (micrometer-sized) particles, can be the dominant mechanism of toxic metal dispersion in arid or semi-arid landscapes. Human exposure to metals can then occur via direct inhalation or ingestion of particulates. The fact that measured doses of total lead (Pb) in geomedia correlate poorly with blood Pb levels highlights a need to better resolve the precise distribution of molecularly-speciated metal-bearing phases in the complex particle mixtures. Species distribution controls bioaccessibility, thereby directly impacting health risk. This study seeks to correlate Pb-containing particle size and mineral composition with lability and bioaccessibility in mine tailings subjected to weathering in a semi-arid environment. We employed X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF), coupled with sequential chemical extractions, to study Pb speciation in tailings from the semi-arid Arizona Klondyke State Superfund Site. Representative samples ranging in pH from 2.6 to 5.4 were selected for in-depth study of Pb solid-phase speciation. The principle lead-bearing phase was plumbojarosite (PbFe6(SO4)4(OH)12), but anglesite (PbSO4) and iron oxide-sorbed Pb were also observed. Anglesite, the most bioavailable mineral species of lead identified in this study, was enriched in surficial tailings samples, where Pb concentrations in the clay size fraction were 2–3 times higher by mass relative to bulk. A mobile and bioaccessible Pb phase accumulates in surficial tailings, with a corresponding increase in risk of human exposure to atmospheric particles. PMID:22553941

  14. KIRGHIZ STEPPE IN THE TRAVEL NOTES AND ESSAYS OF M. M. PRISHVIN: IMAGOLOGY AND POETICS

    Directory of Open Access Journals (Sweden)

    Elena A. Khudenko

    2017-06-01

    Full Text Available The article investigates the cross-cutting images and themes related to topography of the Kirghiz steppe (now North-Eastern Kazakhstan in the works of M. M. Prishvin. Three early Prishvin’s texts — a Siberian diary “A Journey from Pavlodar to Karkaralinsk”, essays “Adam and Eve” and “A Black Arab” became an empirical base for it. The marginality of Prishvin’s texts in which the itinerant writer crosses the border between Europe and Asia as well as the border of consciousness, dwelling simultaneously in the space of its own and in the others’ space, permitted to reconstruct the landscape consciousness of the Kirghiz and Russian emigrees. The methodological feature of the study of these works along with the study of the poetics of the steppe images, the Kazakh, local legends and nomadic subjects, was a description of their imagological component induced by socio-historical, political and ethnic processes of the early twentieth century, the writer talks about in his books. So, the overall strategy of the narrative, moving from a documentary and essay principle to the poetic saturation by images is formed in his diaries. The essay “Adam and Eve” considers the issue of Russian immigrants, demonstrates the incompatibility between sedentary and nomadic life as two types of national behavior. A twofold image of the steppe — a foodless and saline steppe, and a rich and populated one — sets the parameters of social behavior of the rich and the poor in his essay “A Black Arab”. Basing on its materials the distinctive marks of the steppe as the Paradise are explored. Thus, the Asiatic world is seen by Prishvin through the principle of the landscape consciousness, which allowed reconstructing the features of the national image on the whole.

  15. Changes in epiphyte communities as the shrub, Acer circinatum, develops and ages

    Science.gov (United States)

    Ruchty, A.M.; Rosso, A.L.

    2001-01-01

    The Pacific Northwest tall shrub Acer circinatum (vine maple) can host diverse and abundant epiphyte communities. A chronosequence approach revealed that these communities gradually shift in composition as the shrub progresses through its life cycle. Different epiphytic life forms occupy different spatial and temporal niches on shrub stems. These life forms generally shift upwards along the shrub stem as the stem ages and develops, in accordance with the similar gradient hypothesis. We postulate the following sequence of events. An initial wave of colonization occurs as new substrate is laid down. Over time, superior competitors gradually engulf and overgrow competitively inferior primary colonizers. Concurrently, shrub stem microclimate changes as shrub stems grow, age, and layer, causing the processes of competition and colonization to shift in favor of different epiphytic life forms during different life stages of the shrub stem. We define four separate shrub stem life stages: life classes 1a??4 describe, respectively, young upright a??whipsa??; vigorous, upright, mature stems; declining stems beginning to bend towards the forest floor; and horizontal, decadent stems. As space on the shrub stem is filled through growth and colonization, interspecific competition intensifies. Successful competitors persist and spread, while poor competitors are increasingly restricted to the stem tips, where interspecific competition is less intense. In these forests, Usnea, green-algal foliose lichens, and moss tufts excel as the primary colonizers and become common on the outer portions of shrub stems over time, as long as the overstory is not too dense. Moss mats are also good primary colonizers, but excel as secondary colonizers, often coming to dominate decadent shrub stems. Although all life forms can be primary colonizers, the remaining forms (cyanolichens, liverworts, and Antitrichia curtipendula) are effective secondary colonizers. Liverworts are also effective

  16. 75 FR 66779 - Ruby Lake National Wildlife Refuge, Elko and White Pine Counties, NV; Comprehensive Conservation...

    Science.gov (United States)

    2010-10-29

    ... emanating from the base of the Ruby Mountains provide life-sustaining water to the 39,926-acre refuge. The marsh is surrounded by 22,926 acres of meadows, grasslands, alkali playa, and shrub-steppe uplands...

  17. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Science.gov (United States)

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  18. Spatial analysis of root hemiparasitic shrubs and their hosts

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Bruce, David; Weinstein, Philip

    2017-01-01

    to as spatial signatures of the root hemiparasites. In order to search for such spatial signatures, we investigated a population of a predominant Acacia species in Australia co-occurring with established root hemiparasitic shrubs, using intensity estimates of the Acacia and dead shrubs to be indicators...... of parasite populations. We find evidence that the root hemiparasitic shrubs, like herbaceous root hemiparasites, prefer growing at distances from neighbouring plants that fulfil resource requirements both below-ground and above-ground. Assuming that root hemiparasites are limited by their hosts, we present...

  19. Carbon storage estimation of main forestry ecosystems in Northwest Yunnan Province using remote sensing data

    Science.gov (United States)

    Wang, Jinliang; Wang, Xiaohua; Yue, Cairong; Xu, Tian-shu; Cheng, Pengfei

    2014-05-01

    Estimating regional forest organic carbon pool has became a hot issue in the study of forest ecosystem carbon cycle. The forest ecosystem in Shangri-La County, Northwest Yunnan Province, are well preserved, and the area of Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis amounts to 80% of the total arboreal forest area in Shangri-La County. Based on the field measurements, remote sensing data and GIS analysis, three models were established for carbon storage estimation. The remote sensing information model with the highest accuracy were used to calculate the carbon storages of the four main forest ecosystems. The results showed: (1) the total carbon storage of the four forest ecosystems in Shangri-La is 302.984 TgC, in which tree layer, shrub layer, herb layer, litter layer, soil layer are 60.196TgC, 5.433TgC, 1.080TgC, 3.582TgC and 232.692TgC, accounting for 19.87%, 1.79%, 0.36%, 1.18%, 76.80% of the total carbon storage respectively. (2)The order of the carbon storage from high to low is soil layer, tree layer, shrub layer, litter layer and herb layer respectively for the four main forest ecosystems. (3)The total average carbon density of the four main forest ecosystems is 403.480 t/hm2, and the carbon densities of the Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis are 576.889 t/hm2, 326.947 t/hm2, 279.993 t/hm2 and 255.792 t/hm2 respectively.

  20. Comparative wood anatomy of some shrubs native to the Northern Rocky Mountains

    Science.gov (United States)

    Arlene Dale

    1968-01-01

    This paper describes some xylem characteristics of the more important shrub species of the Northern Rockies and presents a key for identifying shrub-wood specimens by microscopic characters. The paper contains photomicrographs of 55 shrub woods.

  1. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  2. The effect of polyethylene glycol on intake of Mediterranean shrubs by sheep and goats.

    Science.gov (United States)

    Rogosic, J; Pfister, J A; Provenza, F D; Pavlicevic, J

    2008-12-01

    Poor nutritional quality and increased content of secondary compounds can reduce consumption of Mediterranean shrubs by herbivores. In 2 sequential trials, we examined the effect of polyethylene glycol (PEG) and number of shrub species offered on daily intake of Mediterranean shrubs by 12 sheep and 12 goats. The PEG (25 g) was fed to experimental animals with barley. In trial 1 (6 shrubs), goats ate more (P = 0.0008) daily total shrub biomass than did sheep (60.7 vs. 45.9 +/- 2.6 g/kg of BW). There was a trend (P = 0.08) toward a positive PEG effect on total shrub intake, with PEG-supplemented animals consuming more total shrubs than controls (56.7 vs. 50.0 +/- 2.6 g/kg of BW). Trial 2 (using 3 shrubs) was a continuation of trial 1, except that animals were given less barley and treatment animals were given more PEG (50 g). Both sheep and goats showed a numerical decrease in total shrub intake from trial 1 to trial 2. Sheep receiving PEG ate more (P = 0.002) total shrubs than did controls, but no PEG effect was found for goats. Thus, PEG had a greater influence on sheep than goats when only 3 shrubs were offered, a result that may be related to the fact that fewer shrubs with complementary secondary compounds were offered and that goats appear to have a greater ability to consume and detoxify secondary compounds from Mediterranean shrubs. Overall, as the number and diversity of shrubs offered increased, supplemental PEG had less effect on increasing intake for both goats and sheep.

  3. Facilitation and interference of seedling establishment by a native legume before and after wildfire.

    Science.gov (United States)

    Goergen, Erin; Chambers, Jeanne C

    2012-01-01

    In semi-arid ecosystems, heterogeneous resources can lead to variable seedling recruitment. Existing vegetation can influence seedling establishment by modifying the resource and physical environment. We asked how a native legume, Lupinus argenteus, modifies microenvironments in unburned and burned sagebrush steppe, and if L. argenteus presence facilitates seedling establishment of native species and the non-native annual grass, Bromus tectorum. Field treatments examined mechanisms by which L. argenteus likely influences establishment: (1) live L. argenteus; (2) dead L. argenteus; (3) no L. argenteus; (4) no L. argenteus with L. argenteus litter; (5) no L. argenteus with inert litter; and (6) mock L. argenteus. Response variables included soil nitrogen, moisture, temperature, solar radiation, and seedling establishment of the natives Elymus multisetus and Eriogonum umbellatum, and non-native B. tectorum. In both unburned and burned communities, there was higher spring soil moisture, increased shade and reduced maximum temperatures under L. argenteus canopies. Adult L. argenteus resulted in greater amounts of soil nitrogen (N) only in burned sagebrush steppe, but L. argenteus litter increased soil N under both unburned and burned conditions. Although L. argenteus negatively affected emergence and survival of B. tectorum overall, its presence increased B. tectorum biomass and reproduction in unburned plots. However, L. argenteus had positive facilitative effects on size and survival of E. multisetus in both unburned and burned plots. Our study indicates that L. argenteus can facilitate seedling establishment in semi-arid systems, but net effects depend on the species examined, traits measured, and level of abiotic stress.

  4. Ecohydrology and tipping points in semiarid australian rangelands

    Science.gov (United States)

    Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.

    2017-12-01

    Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed

  5. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Patterson, Courtney M.; Classen, Aimee Taylor

    2016-01-01

    shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned...... by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth...... in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence of the nonnative L. sinense relative to this native herbaceous community, and could provide an explanation of why native species...

  6. Humid to arid to subhumid vegetation shift on Pilliga Sandstone, Ulungra Springs, New South Wales

    Science.gov (United States)

    Dodson, J. R.; Wright, R. V. S.

    1989-09-01

    The Pilliga Sandstone region of the northwest slope of New South Wales has a natural vegetation cover of sclerophyllous relatively closed to open forests with a largely heathy understorey, and a warm, subhumid and continental climate. Pollen analysis of spring-fed deposits gives a vegetation history extending from at least 30,000 yr B.P. to the late Holocene. Tree pollen became scarce after about 25,000 yr B.P. and an assemblage dominated by Chenopodiaceae, Liguliflorae, Tubuliflorae, and probably Poaceae developed. No similar assemblage is known from present pollen rain studies carried out in Australia. However, it clearly represents a treeless open shrub-steppe formation and therefore an arid or semiarid environment. The site thus provides evidence of an eastward late Pleistocene extension of the arid zone in Australia, and is the first full-glacial vegetation record between 20° and 35° latitude in Australia. The present vegetation cover did not become reestablished until the beginning of the Holocene, which raises questions about the form in which Pilliga Sandstone vegetation survived full-glacial conditions.

  7. Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo Curá, Neuquén Province, southwest Argentina

    Science.gov (United States)

    Hofreiter, Michael; Betancourt, Julio L.; Sbriller, Alicia Pelliza; Markgraf, Vera; McDonald, H. Gregory

    2003-01-01

    Advancements in ancient DNA analyses now permit comparative molecular and morphological studies of extinct animal dung commonly preserved in caves of semiarid regions. These new techniques are showcased using a unique dung deposit preserved in a late glacial vizcacha (Lagidium sp.) midden from a limestone cave in southwestern Argentina (38.5° S). Phylogenetic analyses of the mitochondrial DNA show that the dung originated from a small ground sloth species not yet represented by skeletal material in the region, and not closely related to any of the four previously sequenced extinct and extant sloth species. Analyses of pollen and plant cuticles, as well as analyses of the chloroplast DNA, show that the Cuchillo Curá ground sloth browsed on many of the same herb, grass, and shrub genera common at the site today, and that its habitat was treeless Patagonian scrub-steppe. We envision a day when molecular analyses are used routinely to supplement morphological identifications and possibly to provide a time-lapse view of molecular diversification.

  8. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ecophysiology at SPRUCE: Impacts of whole ecosystem warming and elevated CO2 on leaf-level photosynthesis and respiration of two ericaceous shrubs in a boreal peatland

    Science.gov (United States)

    Ward, E. J.; Dusenge, M. E.; Warren, J.; Murphy, B. K.; Way, D.; King, A. W.; McLennan, D.; Montgomery, R.; Stefanski, A.; Reich, P. B.; Cruz Aguilar, M.; Wullschleger, S.; Bermudez Villanueva, R.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is a large-scale, long-term experiment investigating the effects of warming and elevated CO2 on an ombrotrophic bog in Minnesota, USA. SPRUCE uses 10 large (12.8-m diameter) enclosures to increase air and soil temperatures to a range of targets (+0 °C, +2.25 °C, +4.5 °C, +6.75 °C, +9 °C) under both ambient and elevated (+500 ppm) CO2 concentrations. Whole-ecosystem-warming treatments began in August 2015 and elevated CO2 treatments began in June 2016. This talk will address the photosynthetic and respiratory responses of vascular plants to the treatments as measured with a variety of in-situ and ex-situ measurements conducted throughout the 2016 and 2017 growing seasons. We will focus on the responses of two dominant ericaceous shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata), which account for more 80% of the understory biomass of this open-canopy forest. Such physiological changes are not only leading indicators of changes in plant growth and community structure, but are crucial to understanding carbon cycling of raised bogs and representing boreal peatlands in global dynamic vegetation models. Pre-treatment data collected at this site indicate that the physiologically active season typically begins in late May and extends into the fall until freezing nighttime temperatures are consistently reached, typically in October. Post-treatment measurements made during seasonal transitions indicate a longer active physiological season in warmer treatments. Results from 2016 measurements show some degree of thermal acclimation of photosynthesis in R. groenlandicum and of respiration in both species in the early growing season, but not late season. Late season measurements show a down-regulation of photosynthesis in both shrub species grown under elevated CO2. Taken as a whole, these results indicate complex interactions between phenological changes and treatment effects on

  10. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Zhiqing Jia

    Full Text Available In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE, plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation.Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0-30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0-50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0-50 cm and 0-60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations.The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE.

  11. Different Water Use Strategies of Juvenile and Adult Caragana intermedia Plantations in the Gonghe Basin, Tibet Plateau

    Science.gov (United States)

    Jia, Zhiqing; Zhu, Yajuan; Liu, Liying

    2012-01-01

    Background In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation. Methodology/Principal Findings Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations. Conclusions The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE. PMID:23029303

  12. Shrub expansion in SW Greenland under modest regional warming

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan; Meilby, Henrik; Kollmann, Johannes

    2013-01-01

    Shrub expansion has been observed widely in tundra areas across the Arctic. This phenomenon has been partially attributed to increasing temperatures over the past century. However, relationships among shrub expansion, grazing, and human disturbance have been studied little. SW Greenland...... is a subarctic to low-arctic region with a long and complex land-use history and only modest temperature increases over the past 50 years (0.2 °C decade-1), but changes in shrub cover have not previously been studied in this region. We compiled historical photographs of vegetation in SW Greenland (1898......–1974) and repeated the photos in 2010 and 2011. Sixty-four photo pairs were cropped into 133 smaller units and classified by aspect, substrate stability, muskoxen grazing, and human disturbance. The photo material was evaluated by 22 experts with respect to changes in shrub cover, revealing a general increase across...

  13. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  14. The value of small habitat islands for the conservation of genetic variability in a steppe grass species

    Science.gov (United States)

    Wódkiewicz, Maciej; Dembicz, Iwona; Moysiyenko, Ivan I.

    2016-10-01

    The habitat loss and fragmentation due to agricultural land-conversion affected the steppe throughout its range. In Ukraine, 95% of steppe was destroyed in the last two centuries. Remaining populations are confined to few refuges, like nature reserves, loess ravines, and kurgans (small burial mounds), the latter being often subject to destruction by archeological excavations. Stipa capillata L. is a typical grass species of Eurasian steppes and extrazonal dry grasslands, that was previously used as a model species in studies on steppe ecology. The aim of our research was to assess genetic diversity of S. capillata populations within different types of steppe refuges (loess ravines, biosphere reserve, kurgan) and to evaluate the value of the latter group for the preservation of genetic diversity in the study species. We assessed genetic diversity of 266 individuals from 15 populations (nine from kurgans, three from loess ravines and three from Askania-Nova Biosphere Reserve) with eight Universal Rice Primers (URPs). Studied populations showed high intra-population variability (I: 0.262-0.419, PPB: 52.08-82.64%). Populations from kurgans showed higher genetic differentiation (ΦST = 0.247) than those from loess ravines (ΦST = 0.120) and the biosphere reserve (ΦST = 0.142). Although the diversity metrics were to a small extent lower for populations from kurgans than from larger refugia we conclude that all studied populations of the species still preserve high genetic variability and are valuable for protection. To what extent this pattern holds true under continuous fragmentation in the future must be carefully monitored.

  15. Shrubs of California's chaparral, timberland, and wood land: area, ownership, and stand characteristics.

    Science.gov (United States)

    Charles L. Boisinger

    1988-01-01

    A statewide inventory of shrubs in chaparral and on timberland and woodland in California is presented, and the relevance of shrubs to resource management is discussed. Shrub types (excluding coastal sage and Great Basin and desert shrubs) cover about 10 million acres, 73 percent of which is chaparral. Chamise is the most widespread type in chaparral (51 percent of...

  16. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration.

    Science.gov (United States)

    Rinella, Matthew J; Hammond, Darcy H; Bryant, Ana-Elisa M; Kozar, Brian J

    2015-06-01

    Drylands comprise 40% of Earth's land mass and are critical to food security, carbon sequestration, and threatened and endangered wildlife. Exotic weed invasions, overgrazing, energy extraction, and other factors have degraded many drylands, and this has placed an increased emphasis on dryland restoration. The increased restoration focus has generated a wealth of experience, innovations and empirical data, yet the goal of restoring diverse, native, dryland plant assemblages composed of grasses, forbs, and shrubs has generally proven beyond reach. Of particular concern are shrubs, which often fail to establish or establish at trivially low densities. We used data from two Great Plains, USA coal mines to explore factors regulating shrub establishment. Our predictor data related to weather and restoration (e.g., seed rates, rock cover) variables, and our response data described shrub abundances on fields of the mines. We found that seeded non-shrubs, especially grasses, formed an important competitive barrier to shrub establishment: With every one standard deviation increase in non-shrub seed rate, the probability shrubs were present decreased ~0.1 and shrub cover decreased ~35%. Since new fields were seeded almost every year for > 20 years, the data also provided a unique opportunity to explore effects of stochastic drivers (i.e., precipitation, year effects). With every one standard deviation increase in precipitation the first growing season following seeding, the probability shrubs were present decreased ~0.07 and shrub cover decreased ~47%. High precipitation appeared to harm shrubs by increasing grass growth/competition. Also, weak evidence suggested shrub establishment was better in rockier fields where grass abundance/competition was lower. Multiple lines of evidence suggest reducing grass seed rates below levels typically used in Great Plains restoration would benefit shrubs without substantially impacting grass stand development over the long term. We used

  17. Mucorales from the semiarid of Pernambuco, Brazil.

    Science.gov (United States)

    de Azevedo Santiago, André Luiz Cabral Monteiro; Dos Santos, Paulo Jorge Parreira; Maia, Leonor Costa

    2013-01-01

    Nineteen taxa of Mucorales, belonging to Absidia, Apophysomyces, Cunninghamella, Fennellomyces, Lichtheimia, Mucor, Mycotypha, Rhizopus and Syncephalastrum were isolated from 36 composite soil samples in three semiarid areas in the State of Pernambuco (Triunfo, Cabrobó and Belém de São Francisco), Northeast Brazil, which are characterized by Caatinga vegetation. Triunfo is preserved, whereas Cabroró and Belém de São Francisco are experiencing low and severe desertification processes, respectively. Mucorales were isolated in Petri dishes in triplicate from 5 mg samples of soil placed on the surface of wheat germ agar plus chloramphenicol and Cercobin [Dimethyl 4,49-(103 phenylene) bis (3-thioallophanate)] medium. The plates were left on a bench at room temperature (28 ± 2 °C) for 72 h of alternating dark and light periods. Absidia cylindrospora presented the highest amount of CFU/g of soil, followed by L. hyalospora, C. phaeospora and C. echinulata var. echinulata. The latter, and R. microsporus var. microsporus, presented the highest frequencies of occurrence. Soils from Triunfo showed higher diversity of Mucorales than the samples from the other areas, although without differing statistically in relation to species richness. The communities of Mucorales from the degraded areas were more similar, while that from the preserved area was quite different. Most of the identified specimens have been commonly isolated from soil in other Brazilian regions, which indicates that they are not endemic of the semiarid. Eleven taxa are registered for the first time in this ecosystem, while F. heterothallicus is reported for the first time in Brazil.

  18. Mucorales from the semiarid of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    André Luiz Cabral Monteiro de Azevedo Santiago

    2013-01-01

    Full Text Available Nineteen taxa of Mucorales, belonging to Absidi, Apophysomyces, Cunninghamella, Fennellomyces, Lichtheimi, Mucor, Mycotypha, Rhizopus and Syncephalastrum were isolated from 36 composite soil samples in three semiarid areas in the State of Pernambuco (Triunfo, Cabrobó and Belém de São Francisco, Northeast Brazil, which are characterized by Caatinga vegetation. Triunfo is preserved, whereas Cabroró and Belém de São Francisco are experiencing low and severe desertification processes, respectively. Mucorales were isolated in Petri dishes in triplicate from 5 mg samples of soil placed on the surface of wheat germ agar plus chloramphenicol and Cercobin [Dimethyl 4,49-(103 phenylene bis (3-thioallophanate] medium. The plates were left on a bench at room temperature (28 ± 2 ºC for 72 h of alternating dark and light periods. Absidia cylindrospora presented the highest amount of CFU/g of soil, followed by L. hyalospor, C. phaeospora and C. echinulata var. echinulata. The latter, and R. microsporus var. microsporus, presented the highest frequencies of occurrence. Soils from Triunfo showed higher diversity of Mucorales than the samples from the other areas, although without differing statistically in relation to species richness. The communities of Mucorales from the degraded areas were more similar, while that from the preserved area was quite different. Most of the identified specimens have been commonly isolated from soil in other Brazilian regions, which indicates that they are not endemic of the semiarid. Eleven taxa are registered for the first time in this ecosystem, while F. heterothallicus is reported for the first time in Brazil.

  19. [Recent fauna of ground-nesting birds in Transvolga steppes and its dynamics in the 20th century].

    Science.gov (United States)

    Oparin, M L

    2008-01-01

    It is shown that the structure of the ground-nesting bird fauna in Transvolga steppes has changed during the 20th century. The complex of lark species characteristic of true and dry steppe has disappeared because of climate change and impact of economic activity (the establishment of windbreak and roadside forest strips), which has provided for a sharp increase in the abundance of corvid birds.

  20. Characterization of a sagebrush (Artemisia tridentata ssp. wyomingensis) die-off on the Handford Site

    International Nuclear Information System (INIS)

    Cardenas, A.; Lewinsohn, J.; Auger, C.; Downs, J.L.; Cadwell, L.L.; Burrows, R.

    1997-09-01

    The Hanford Site contains one of the few remaining contiguous areas of shrub-steppe habitat left in Washington State. This habitat is home to many native plant and wildlife species, some of which are threatened with extinction or are unique to the Site. The importance of the Hanford Site increases as other lands surrounding the Site are developed, and these native species and habitats are lost. Stands of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) on the Site are a particularly important component of shrub-steppe habitat, because a number of wildlife require big sagebrush for food and cover. Since 1993, researchers and field biologists have made anecdotal observations of dying and declining sagebrush in stands of shrubs near the 100 Areas. This study was initiated to delineate and document the general boundary where sagebrush stands appear to be declining. We mapped the areal extent of the die-off using a global positioning system and found that the central portion of the die-off encompasses 280 hectares. Shrub stand defoliation was estimated to be near or greater than 80% in this area. The remainder of the die-off area exhibits varying mixtures of completely defoliated, partially defoliated, and healthy-looking stands. Declining sagebrush stands comprise a total of 1776 hectares