WorldWideScience

Sample records for semi implict euler-maruyama scheme

  1. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method; Diferentes semillas para solucionar las ecuaciones de la cinetica puntual estocastica empleando el metodo de Euler-Maruyama

    Energy Technology Data Exchange (ETDEWEB)

    Suescun D, D.; Oviedo T, M., E-mail: daniel.suescun@usco.edu.co [Universidad Surcolombiana, Av. Pastrana Borrero - Carrera 1, Neiva, Huila (Colombia)

    2017-09-15

    In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and

  2. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method

    International Nuclear Information System (INIS)

    Suescun D, D.; Oviedo T, M.

    2017-09-01

    In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and

  3. A Convergence Result for the Euler-Maruyama Method for a Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef

    2014-01-01

    The Euler-Maruyama method is applied to a simple stochastic differential equation (SDE) with discontinuous drift. Convergence aspects are investigated in the case, where the Euler-Maruyama method is simulated in dyadic points. A strong rate of convergence is presented for the numerical simulations...

  4. An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring

    Science.gov (United States)

    Buratynski, E. K.; Caughey, D. A.

    1984-01-01

    An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.

  5. A survey of Strong Convergent Schemes for the Simulation of ...

    African Journals Online (AJOL)

    We considered strong convergent stochastic schemes for the simulation of stochastic differential equations. The stochastic Taylor's expansion, which is the main tool used for the derivation of strong convergent schemes; the Euler Maruyama, Milstein scheme, stochastic multistep schemes, Implicit and Explicit schemes were ...

  6. Construction of a Mean Square Error Adaptive Euler–Maruyama Method With Applications in Multilevel Monte Carlo

    KAUST Repository

    Hoel, Hakon

    2016-06-13

    A formal mean square error expansion (MSE) is derived for Euler-Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler-Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approximations of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC algorithm is shown to outperform the uniform time-stepping MLMC algorithm by orders of magnitude, producing output whose error with high probability is bounded by TOL > 0 at the near-optimal MLMC cost rate б(TOL log(TOL)) that is achieved when the cost of sample generation is б(1).

  7. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    Science.gov (United States)

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  8. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-10-01

    Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  9. Conservative numerical schemes for Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, L. [Universidad Complutense, Madrid (Spain). Dept. de Matematica Aplicada; Jimenez, S. [Universidad Alfonso X El Sabio, Madrid (Spain). Dept. de Matematica Aplicada

    1999-05-01

    As a preliminary step to study magnetic field lines, the authors seek numerical schemes that reproduce at discrete level the significant feature of the continuous model, based on an underling Lagrangian structure. The resulting scheme give discrete counterparts of the variation law for the energy as well of as the Euler-Lagrange equations and their symmetries.

  10. Closure relations for the multi-species Euler system. Construction and study of relaxation schemes for the multi-species and multi-components Euler systems; Relations de fermeture pour le systeme des equations d'Euler multi-especes. Construction et etude de schemas de relaxation en multi-especes et en multi-constituants

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, St. [CEA Saclay, Dir. de l' Energie Nucleaire DEN/SFNME/LMPE, Lab. de Modelisation Physique et de l' Enrichissement, 91 - Gif sur Yvette (France); Rency, N. [Paris-11 Univ., CNRS UMR 8628, 91 - Orsay (France)

    2001-07-01

    After having recalled the formal convergence of the semi-classical multi-species Boltzmann equations toward the multi-species Euler system (i.e. mixture of gases having the same velocity), we generalize to this system the closure relations proposed by B. Despres and by F. Lagoutiere for the multi-components Euler system (i.e. mixture of non miscible fluids having the same velocity). Then, we extend the energy relaxation schemes proposed by F. Coquel and by B. Perthame for the numerical resolution of the mono-species Euler system to the multi-species isothermal Euler system and to the multi-components isobar-isothermal Euler system. This allows to obtain a class of entropic schemes under a CFL criteria. In the multi-components case, this class of entropic schemes is perhaps a way for the treatment of interface problems and, then, for the treatment of the numerical mixture area by using a Lagrange + projection scheme. Nevertheless, we have to find a good projection stage in the multi-components case. At last, in the last chapter, we discuss, through the study of a dynamical system, about a system proposed by R. Abgrall and by R. Saurel for the numerical resolution of the multi-components Euler system.

  11. Self-adjusting entropy-stable scheme for compressible Euler equations

    Institute of Scientific and Technical Information of China (English)

    程晓晗; 聂玉峰; 封建湖; LuoXiao-Yu; 蔡力

    2015-01-01

    In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, based on entropy variables, is employed to make the numerical diffusion term added around discontinuities automatically. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy.

  12. Self-adjusting entropy-stable scheme for compressible Euler equations

    International Nuclear Information System (INIS)

    Cheng Xiao-Han; Nie Yu-Feng; Cai Li; Feng Jian-Hu; Luo Xiao-Yu

    2015-01-01

    In this work, a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations. The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator. The entropy has to be preserved in smooth solutions and be dissipated at shocks. To achieve this, a switch function, which is based on entropy variables, is employed to make the numerical diffusion term be automatically added around discontinuities. The resulting scheme is still entropy-stable. A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented. From these numerical results, we observe a remarkable gain in accuracy. (paper)

  13. Solution of Euler unsteady equations using a second order numerical scheme

    International Nuclear Information System (INIS)

    Devos, J.P.

    1992-08-01

    In thermal power plants, the steam circuits experience incidents due to the noise and vibration induced by trans-sonic flow. In these configurations, the compressible fluid can be considered the perfect ideal. Euler equations therefore constitute a good model. However, processing of the discontinuities induced by the shockwaves are a particular problem. We give a bibliographical synthesis of the work done on this subject. The research by Roe and Harten leads to TVD (Total Variation Decreasing) type schemes. These second order schemes generate no oscillation and converge towards physically acceptable weak solutions. (author). 12 refs

  14. IMPROVED ENTROPY-ULTRA-BEE SCHEME FOR THE EULER SYSTEM OF GAS DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Rongsan Chen; Dekang Mao

    2017-01-01

    The Entropy-Ultra-Bee scheme was developed for the linear advection equation and extended to the Euler system of gas dynamics in [13].It was expected that the technology be applied only to the second characteristic field of the system and the computation in the other two nonlinear fields be implemented by the Godunov scheme.However,the numerical experiments in [13] showed that the scheme,though having improved the wave resolution in the second field,produced numerical oscillations in the other two nonlinear fields.Sophisticated entropy increaser was designed to suppress the spurious oscillations by increasing the entropy when there are waves in the two nonlinear fields presented.However,the scheme is then not efficient neither robust with problem-related parameters.The purpose of this paper is to fix this problem.To this end,we first study a 3 × 3 linear system and apply the technology precisely to its second characteristic field while maintaining the computation in the other two fields be implemented by the Godunov scheme.We then follow the discussion for the linear system to apply the Entropy-Ultra-Bee technology to the second characteristic field of the Euler system in a linearlized field-byfield fashion to develop a modified Entropy-Ultra-Bee scheme for the system.Meanwhile a remark is given to explain the problem of the previous Entropy-Ultra-Bee scheme in [13].A reference solution is constructed for computing the numerical entropy,which maintains the feature of the density and flats the velocity and pressure to constants.The numerical entropy is then computed as the entropy cell-average of the reference solution.Several limitations are adopted in the construction of the reference solution to further stabilize the scheme.Designed in such a way,the modified Entropy-Ultra-Bee scheme has a unified form with no problem-related parameters.Numerical experiments show that all the spurious oscillations in smooth regions are gone and the results are better than that

  15. A novel numerical flux for the 3D Euler equations with general equation of state

    KAUST Repository

    Toro, Eleuterio F.

    2015-09-30

    Here we extend the flux vector splitting approach recently proposed in (E F Toro and M E Vázquez-Cendón. Flux splitting schemes for the Euler equations. Computers and Fluids. Vol. 70, Pages 1-12, 2012). The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.

  16. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...

  17. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    Science.gov (United States)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  18. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    Science.gov (United States)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  19. Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes

    Science.gov (United States)

    Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan

    2018-04-01

    We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.

  20. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements

    Science.gov (United States)

    Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.

    2018-03-01

    We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.

  1. Space-Time Transformation in Flux-form Semi-Lagrangian Schemes

    Directory of Open Access Journals (Sweden)

    Peter C. Chu Chenwu Fan

    2010-01-01

    Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.

  2. Positivity-preserving CE/SE schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes

    KAUST Repository

    Shen, Hua

    2018-05-28

    We construct positivity-preserving space–time conservation element and solution element (CE/SE) schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes consisting of triangular and rectangular elements. The schemes use an a posteriori limiter to prevent negative densities and pressures based on the premise of preserving optimal accuracy. The limiter enforces a constraint for spatial derivatives and does not change the conservative property of CE/SE schemes. Several numerical examples suggest that the proposed schemes preserve accuracy for smooth flows and strictly preserve positivity of densities and pressures for the problems involving near vacuum and very strong discontinuities.

  3. Convergence Analysis of Semi-Implicit Euler Methods for Solving Stochastic Age-Dependent Capital System with Variable Delays and Random Jump Magnitudes

    Directory of Open Access Journals (Sweden)

    Qinghui Du

    2014-01-01

    Full Text Available We consider semi-implicit Euler methods for stochastic age-dependent capital system with variable delays and random jump magnitudes, and investigate the convergence of the numerical approximation. It is proved that the numerical approximate solutions converge to the analytical solutions in the mean-square sense under given conditions.

  4. Euler-Poincare reduction for discrete field theories

    International Nuclear Information System (INIS)

    Vankerschaver, Joris

    2007-01-01

    In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed

  5. Semi-quantum Secure Direct Communication Scheme Based on Bell States

    Science.gov (United States)

    Xie, Chen; Li, Lvzhou; Situ, Haozhen; He, Jianhao

    2018-06-01

    Recently, the idea of semi-quantumness has been often used in designing quantum cryptographic schemes, which allows some of the participants of a quantum cryptographic scheme to remain classical. One of the reasons why this idea is popular is that it allows a quantum information processing task to be accomplished by using quantum resources as few as possible. In this paper, we extend the idea to quantum secure direct communication(QSDC) by proposing a semi-quantum secure direct communication scheme. In the scheme, the message sender, Alice, encodes each bit into a Bell state |φ+> = 1/{√2}(|00> +|11> ) or |{Ψ }+> = 1/{√ 2}(|01> +|10> ), and the message receiver, Bob, who is classical in the sense that he can either let the qubit he received reflect undisturbed, or measure the qubit in the computational basis |0>, |1> and then resend it in the state he found. Moreover, the security analysis of our scheme is also given.

  6. High Order Semi-Lagrangian Advection Scheme

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  7. An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section.

  8. Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests

    NARCIS (Netherlands)

    Tóth, G.; Keppens, R.; Bochev, Mikhail A.

    1998-01-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing

  9. Numerical schemes for explosion hazards

    International Nuclear Information System (INIS)

    Therme, Nicolas

    2015-01-01

    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called

  10. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    OpenAIRE

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-01-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller–Pearce–White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which res...

  11. Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states

    Science.gov (United States)

    Gao, Gan; Wang, Yue; Wang, Dong

    2018-03-01

    In the paper [Mod. Phys. Lett. B 31 (2017) 1750150], Yin et al. proposed a semi-quantum secret sharing scheme by using Bell states. We find that the proposed scheme cannot finish the quantum secret sharing task. In addition, we also find that the proposed scheme has a security loophole, that is, it will not be detected that the dishonest participant, Charlie attacks on the quantum channel.

  12. Entropy viscosity method applied to Euler equations

    International Nuclear Information System (INIS)

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-01-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  13. A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling

    International Nuclear Information System (INIS)

    Hwang, Moonkyu; Jeong, Jaejoon

    2007-07-01

    The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme

  14. Euler as Physicist

    CERN Document Server

    Suisky, Dieter

    2008-01-01

    "Euler as Physicist" analyzes the exceptional role of Leonhard Euler (1707 - 1783) in the history of science and emphasizes especially his fundamental contributions to physics. Although Euler is famous as the leading mathematician of the 18th century, his contributions to physics are as important for their innovative methods and solutions. Several books are devoted to Euler as mathematician, but none to Euler as physicist, like in this book. Euler’s contributions to mechanics are rooted in his life-long plan presented in two volume treatise programmatically entitled "Mechanics or the science of motion analytically demonstrated". Published in 1736, Euler’s treatise indicates the turn over from the traditional geometric representation of mechanics to a new approach. In writing Mechanics Euler did the first step to put the plan and his completion into practice through 1760. It is of particular interest to study how Euler made immediate use of his mathematics for mechanics and coordinated his progress in math...

  15. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    Science.gov (United States)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function

  16. Algorithm for Financial Derivatives Evaluation in a Generalized Multi-Heston Model

    Directory of Open Access Journals (Sweden)

    Dan Negura

    2013-02-01

    Full Text Available In this paper we show how could a financial derivative be estimated based on an assumed Multi-Heston model support.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model

  17. Implicit flux-split schemes for the Euler equations

    Science.gov (United States)

    Thomas, J. L.; Walters, R. W.; Van Leer, B.

    1985-01-01

    Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.

  18. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    Science.gov (United States)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-10-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

  19. Analysis of stability for stochastic delay integro-differential equations.

    Science.gov (United States)

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  20. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    Science.gov (United States)

    Höök, L. J.; Johnson, T.; Hellsten, T.

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.

  1. A conservative scheme for 2D and 3D adaptive semi-Lagrangian advection

    OpenAIRE

    Behrens, Jörn; Mentrup, Lars

    2005-01-01

    This article describes a 2D and 3D adaptive and mass conservingsemi-Lagrangian advection scheme for atmospheric transport problems. Fromthe integral form of the conservation law we derive a semi-Lagrangian schemebased on conservation of mass along trajectories. The mapping of mass fromthe old (adaptively refined and possibly different) grid to the upstream controlvolume is performed by a mass packet based scheme, essentially consistingof a sub-grid discretization. We validate the new adaptive...

  2. Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions

    Science.gov (United States)

    Ricketson, Lee

    2013-10-01

    We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.

  3. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  4. About Multi-Heston SDE Discretization

    Directory of Open Access Journals (Sweden)

    Tiberiu Socaciu

    2013-07-01

    Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.

  5. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo

    2013-04-10

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  6. Optimized Explicit Runge--Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems

    KAUST Repository

    Parsani, Matteo; Ketcheson, David I.; Deconinck, W.

    2013-01-01

    Explicit Runge--Kutta schemes with large stable step sizes are developed for integration of high-order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge--Kutta schemes available in the literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.

  7. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    International Nuclear Information System (INIS)

    Höök, L J; Johnson, T; Hellsten, T

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)

  8. Numerical Tribute to Achievement of Euler

    Science.gov (United States)

    Figueroa-Navarro, Carlos; Molinar-Tabares, Martín Eduardo; Castro-Arce, Lamberto; Campos-García, Julio Cesar

    2014-03-01

    This work aims to make a tribute to one of the world's brightest personalities as it was the mathematical physicist Leonhard Euler (1707-1783). Some results where the influence of Euler persists with the novelty of applying numerical analysis using Matlab are here exposed. A first analysis was done with the series that defines Euler numbers and polynomials of Frobenius-Euler; another result is the characterization of the functions that carry to Euler-Macheroni constant. In hydrodynamics is also feasible to evaluate graphically the relationship between dimensions in diameter and the exit angle of the height of Euler for turbomachines. In differential equations of Cauchy-Euler solutions for the cases of distinct real roots and complex roots are generated. Furthermore we report the generation of the Fourier series and the Fourier transform calculated by using Direct Commands of Matlab. In variational calculus it is possible to obtain plots from a problem of the Euler Lagrange equations. Finally, the Euler function is analyzed. Our purpose is to present a tribute to this giant of science also it could be an excuse to study his legacy by utilizing modern computational techniques.

  9. An Efficient Semi-fragile Watermarking Scheme for Tamper Localization and Recovery

    Science.gov (United States)

    Hou, Xiang; Yang, Hui; Min, Lianquan

    2018-03-01

    To solve the problem that remote sensing images are vulnerable to be tampered, a semi-fragile watermarking scheme was proposed. Binary random matrix was used as the authentication watermark, which was embedded by quantizing the maximum absolute value of directional sub-bands coefficients. The average gray level of every non-overlapping 4×4 block was adopted as the recovery watermark, which was embedded in the least significant bit. Watermarking detection could be done directly without resorting to the original images. Experimental results showed our method was robust against rational distortions to a certain extent. At the same time, it was fragile to malicious manipulation, and realized accurate localization and approximate recovery of the tampered regions. Therefore, this scheme can protect the security of remote sensing image effectively.

  10. Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients

    CERN Document Server

    Hutzenthaler, Martin

    2015-01-01

    Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation method

  11. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  12. Euler systems (AM-147)

    CERN Document Server

    Rubin, Karl

    2014-01-01

    One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic G

  13. Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows

    NARCIS (Netherlands)

    Koren, B.; Hackbusch, W.; Trottenberg, U.

    1991-01-01

    Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,

  14. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    Science.gov (United States)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  15. Investigation of source location determination from Magsat magnetic anomalies: The Euler method approach

    Science.gov (United States)

    Ravat, Dhananjay

    1996-01-01

    The applicability of the Euler method of source location determination was investigated on several model situations pertinent to satellite-data scale situations as well as Magsat data of Europe. Our investigations enabled us to understand the end-member cases for which the Euler method will work with the present satellite magnetic data and also the cases for which the assumptions implicit in the Euler method will not be met by the present satellite magnetic data. These results have been presented in one invited lecture at the Indo-US workshop on Geomagnetism in Studies of the Earth's Interior in August 1994 in Pune, India, and at one presentation at the 21st General Assembly of the IUGG in July 1995 in Boulder, CO. A new method, called Anomaly Attenuation Rate (AAR) Method (based on the Euler method), was developed during this study. This method is scale-independent and is appropriate to locate centroids of semi-compact three dimensional sources of gravity and magnetic anomalies. The method was presented during 1996 Spring AGU meeting and a manuscript describing this method is being prepared for its submission to a high-ranking journal. The grant has resulted in 3 papers and presentations at national and international meetings and one manuscript of a paper (to be submitted shortly to a reputable journal).

  16. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    Science.gov (United States)

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  17. Semi-passive, Chemical Oxidation Schemes for the Long-term Treatment of Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Schwartz

    2005-12-13

    This research involves a combined experimental and modeling study that builds on our previous DOE-sponsored work in investigating how KMnO{sub 4} can be better used with in situ remediation of groundwater contaminated by chlorinated ethylenes (e.g., PCE, TCE, DCE). This study aims to provide scientific basis for developing a new long-term, semi-passive ISCO scheme that uses controlled release KMnO{sub 4} as a reactive barrier component. Specific objectives of the study are (1) to construct controlled release KMnO{sub 4} as a new reactive barrier component that could deliver permanganate at a controlled rate over long time periods of years, (2) to quantitatively describe release mechanisms associated with the controlled release KMnO{sub 4}, (3) to demonstrate efficacy of the new remediation scheme using proof-of-concept experiments, and (4) to design advanced forms of controlled release systems through numerical optimization. The new scheme operates in a long-term, semi-passive manner to control spreading of a dissolved contaminant plume with periodic replacement of the controlled release KMnO{sub 4} installed in the subsurface. As a first step in developing this remedial concept, we manufactured various prototype controlled release KMnO{sub 4} forms. Then we demonstrated using column experiments that the controlled release KMnO{sub 4} could deliver small amount of permanganate into flowing water at controlled rates over long time periods of years. An analytical model was also used to estimate the diffusivities and durations of the controlled release KMnO{sub 4}. Finally, proof-of-concept flow-tank experiments were performed to demonstrate the efficacy of the controlled release KMnO{sub 4} scheme in controlling dissolved TCE plume in a long-term, semi-passive manner. Another important thrust of our research effort involved numerical optimization of controlled release systems. This study used a numerical model that is capable of describing release patterns of active

  18. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    Science.gov (United States)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  19. A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands.

    Science.gov (United States)

    Batzias, A F; Siontorou, C G

    2008-10-30

    This work introduces a semi-natural wetland biomonitoring framework for heavy metal concentrations based on a robust dynamic integration between biological assemblages and relevant biosensors. The cooperative/synergistic scheme developed minimizes uncertainty and monitoring costs and increases reliability of pollution control and abatement. Attention is given to establishing a fully functioning and reliable network approach for monitoring inflows and achieving dose-response relations and calibration of biomonitoring species. The biomonitoring network initially consists of both, biosensors and species, as a validation phase in each wetland of the surveillance area; once the species monitoring efficiency is verified by the biosensors, the biosensor network moves to the next wetland and so on, following a circular pattern until all area wetlands have a fully functional natural monitoring scheme. By means of species recalibration with periodic revisiting of the biosensors, the scheme progressively reaches a quasi steady-state (including seasonality), thus ensuring reliability and robustness. This framework, currently pilot-tested in Voiotia, Greece, for assessing chromium levels, has been built to cover short-, medium- and long-term monitoring requirements. The results gathered so far, support the employment of the proposed scheme in heavy metal monitoring, and, further, arise the need for volunteer involvement to achieve long-term viability.

  20. Development of Non-staggered, semi-implicit ICE numerical scheme for a two-fluid, three-field model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Yoon, H. Y.; Bae, S. W

    2007-11-15

    A pilot code for one-dimensional, transient, two-fluid, three-field model has been developed. In this code, the semi-implicit ICE numerical scheme has been adapted to a 'non-staggered' grid. Using several conceptual problems, the numerical scheme has been verified. The results of the verifications are summarized below: - It was confirmed that the basic pilot code can simulate various flow conditions (such as single-phase liquid flow, two-phase mixture flow, and single-phase vapor flow) and transitions of the flow conditions. A mist flow was not simulated, but it seems that the basic pilot code can simulate mist flow conditions. - The mass and energy conservation was confirmed for single-phase liquid and single-phase vapor flows. - It was confirmed that the inlet pressure and velocity boundary conditions work properly. - It was confirmed that, for single- and two-phase flows, the velocity and temperature of non-existing phase are calculated as intended. The non-staggered, semi-implicit ICE numerical scheme, which has been developed in this study, will be a starting point of a new code development that adopts an unstructured finite volume method.

  1. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson

  2. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  3. On Euler's problem

    International Nuclear Information System (INIS)

    Egorov, Yurii V

    2013-01-01

    We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.

  4. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  5. Pressure correction schemes for compressible flows

    International Nuclear Information System (INIS)

    Kheriji, W.

    2011-01-01

    This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)

  6. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    Science.gov (United States)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  7. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  8. Equivariant analogues of the Euler characteristic and Macdonald type equations

    Science.gov (United States)

    Gusein-Zade, S. M.

    2017-02-01

    One of the simplest and, at the same time, most important invariants of a topological space is the Euler characteristic. A generalization of the notion of the Euler characteristic to the equivariant setting, that is, to spaces with an action of a group (say, finite) is far from unique. An equivariant analogue of the Euler characteristic can be defined as an element of the ring of representations of the group or as an element of the Burnside ring of the group. From physics came the notion of the orbifold Euler characteristic, and this was generalized to orbifold Euler characteristics of higher orders. The main property of the Euler characteristic (defined in terms of the cohomology with compact support) is its additivity. On some classes of spaces there are additive invariants other than the Euler characteristic, and they can be regarded as generalized Euler characteristics. For example, the class of a variety in the Grothendieck ring of complex quasi-projective varieties is a universal additive invariant on the class of complex quasi-projective varieties. Generalized analogues of the Euler characteristic can also be defined in the equivariant setting. There is a simple formula — the Macdonald equation — for the generating series of the Euler characteristics of the symmetric powers of a space: it is equal to the series (1-t)-1=1+t+t^2+\\cdots independent of the space, raised to a power equal to the Euler characteristic of the space itself. Equations of a similar kind for other invariants (`equivariant and generalized Euler characteristics') are called Macdonald type equations. This survey discusses different versions of the Euler characteristic in the equivariant setting and describes some of their properties and Macdonald type equations. Bibliography: 59 titles.

  9. Some New Components of the Moduli Scheme MP3(2; -1; 2; 0 of Stable Coherent Torsion Free Sheaves of Rank 2 on P3

    Directory of Open Access Journals (Sweden)

    M. A. Zavodchikov

    2012-01-01

    Full Text Available In this paper we consider Giseker-Maruyama moduli scheme M := MP3(2;¡1; 2; 0 of stable coherent torsion free sheaves of rank 2 with Chern classes c1 = -1, c2 = 2, c3 = 0 on 3-dimensional projective space P3. We will de¯ne two sets of sheaves M1 and M2 in M and we will prove that closures of M1 and M2 in M are irreducible components of dimensions 15 and 19, accordingly.

  10. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  11. Exact Jacobians of Roe-type flux difference splitting of the equations of radiation hydrodynamics (and Euler equations) for use in time-implicit higher-order Godunov schemes

    International Nuclear Information System (INIS)

    Balsara, D.S.

    1999-01-01

    In this paper we analyze some of the numerical issues that are involved in making time-implicit higher-order Godunov schemes for the equations of radiation hydrodynamics (and the Euler or Navier-Stokes equations). This is done primarily with the intent of incorporating such methods in the author's RIEMANN code. After examining the issues it is shown that the construction of a time-implicit higher-order Godunov scheme for radiation hydrodynamics would be benefited by our ability to evaluate exact Jacobians of the numerical flux that is based on Roe-type flux difference splitting. In this paper we show that this can be done analytically in a form that is suitable for efficient computational implementation. It is also shown that when multiple fluid species are used or when multiple radiation frequencies are used the computational cost in the evaluation of the exact Jacobians scales linearly with the number of fluid species or the number of radiation frequencies. Connections are made to other types of numerical fluxes, especially those based on flux difference splittings. It is shown that the evaluation of the exact Jacobian for such numerical fluxes is also benefited by the present strategy and the results given here. It is, however, pointed out that time-implicit schemes that are based on the evaluation of the exact Jacobians for flux difference splittings using the methods developed here are both computationally more efficient and numerically more stable than corresponding time-implicit schemes that are based on the evaluation of the exact or approximate Jacobians for flux vector splittings. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    Science.gov (United States)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  13. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    Science.gov (United States)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  14. Hilbert schemes of points on some classes surface singularities

    OpenAIRE

    Gyenge, Ádám

    2016-01-01

    We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in...

  15. Drawing Euler Diagrams with Circles

    OpenAIRE

    Stapleton, Gem; Zhang, Leishi; Howse, John; Rodgers, Peter

    2010-01-01

    Euler diagrams are a popular and intuitive visualization tool which are used in a wide variety of application areas, including biological and medical data analysis. As with other data visualization methods, such as graphs, bar charts, or pie charts, the automated generation of an Euler diagram from a suitable data set would be advantageous, removing the burden of manual data analysis and the subsequent task of drawing an appropriate diagram. Various methods have emerged that automatically dra...

  16. Euler and His Contribution Number Theory

    Science.gov (United States)

    Len, Amy; Scott, Paul

    2004-01-01

    Born in 1707, Leonhard Euler was the son of a Protestant minister from the vicinity of Basel, Switzerland. With the aim of pursuing a career in theology, Euler entered the University of Basel at the age of thirteen, where he was tutored in mathematics by Johann Bernoulli (of the famous Bernoulli family of mathematicians). He developed an interest…

  17. EULER - A Real Virtual Library for Mathematics

    CERN Document Server

    Jost, Michael

    2004-01-01

    The EULER project completed its work in November 2002. It forms the last part of a very successful project in the specialized but global discipline of mathematics. After a successful RTD project had created the technology, a take-up project has effectively exploited it to the point where its future is assured through a not-for-profit consortium. EULER is a European based, world class, real virtual library for mathematics with up-to-date technological solutions, well accepted by users. In particular, EULER provides a world reference and delivery service, transparent to the end user and offering full coverage of the mathematics literature world-wide, including bibliographic data, peer reviews and/or abstracts, indexing, classification and search, transparent access to library services, co-operation with commercial information providers (publishers, bookstores). The EULER services provide a gateway to the electronic catalogues and repositories of participating institutions, while the latter retain complete respo...

  18. Refinement of RAIM via Implementation of Implicit Euler Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoonhee; Kim, Han-Chul [Korea Institute of Nuclear and Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed

  19. Refinement of RAIM via Implementation of Implicit Euler Method

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Kim, Han-Chul

    2016-01-01

    The first approach is a mechanistic approach which is used in LIRIC in which more than 200 reactions are modeled in detail. This approach enables to perform the detailed analysis. However, it requires huge computation burden. The other approach is a simplified model approach which is used in the IMOD, ASTEC/IODE, and etc. Recently, KINS has developed RAIM (Radio-Active Iodine chemistry Model) based on the simplified model approach. Since the numerical analysis module in RAIM is based on the explicit Euler method, there are major issues on the stability of the module. Therefore, implementation of a stable numerical method becomes essential. In this study, RAIM is refined via implementation of implicit Euler method in which the Newton method is used to find the solutions at each time step. The refined RAIM is tested by comparing to RAIM based on the explicit Euler method. In this paper, RAIM was refined by implementing the implicit Euler method. At each time step of the method in the refined RAIM, the reaction kinetics equations are solved by the Newton method in which elements of the Jacobian matrix are expressed analytically. With the results of OECD-BIP P10T2 test, the refined RAIM was compared to RAIM with the explicit Euler method. The refined RAIM shows better agreement with the experimental data than those from the explicit Euler method. For the rapid change of pH during the experiment, the refined RAIM gives more realistic changes in the concentrations of chemical species than those from the explicit Euler method. In addition, in terms of computing time, the refined RAIM shows comparable computing time to that with explicit Euler method. These comparisons are attributed to ⁓10 times larger time step size used in the implicit Euler method, even though computation burden at each time step in the refined RAIM is much higher than that of the explicit Euler method. Compared to the experimental data, the refined RAIM still shows discrepancy, which are attributed

  20. Improving Euler computations at low Mach numbers

    NARCIS (Netherlands)

    Koren, B.; Leer, van B.; Deconinck, H.; Koren, B.

    1997-01-01

    The paper consists of two parts, both dealing with conditioning techniques for lowMach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of

  1. Improving Euler computations at low Mach numbers

    NARCIS (Netherlands)

    Koren, B.

    1996-01-01

    This paper consists of two parts, both dealing with conditioning techniques for low-Mach-number Euler-flow computations, in which a multigrid technique is applied. In the first part, for subsonic flows and upwind-discretized linearized 1-D Euler equations, the smoothing behavior of

  2. Analogues of Euler and Poisson Summation Formulae

    Indian Academy of Sciences (India)

    ... f ( n ) have been obtained in a unified manner, where (()) is a periodic complex sequence; () is the divisor function and () is a sufficiently smooth function on [, ]. We also state a generalised Abel's summation formula, generalised Euler's summation formula and Euler's summation formula in several variables.

  3. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

    OpenAIRE

    Li, Yan; Hu, Junhao

    2013-01-01

    We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

  4. Variational problems with fractional derivatives: Euler-Lagrange equations

    International Nuclear Information System (INIS)

    Atanackovic, T M; Konjik, S; Pilipovic, S

    2008-01-01

    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

  5. Convergent Difference Schemes for Hamilton-Jacobi equations

    KAUST Repository

    Duisembay, Serikbolsyn

    2018-05-07

    In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet and Neumann type boundary conditions in arbitrary two-dimensional domains. First, we introduce the notion of viscosity solutions in both continuous and discontinuous frameworks. Next, we review Barles-Souganidis approach using monotone, consistent, and stable schemes. In particular, we show that these schemes converge locally uniformly to the unique viscosity solution of the first-order Hamilton-Jacobi equations under mild assumptions. To solve the scheme numerically, we use Euler map with some initial guess. This iterative method gives the viscosity solution as a limit. Moreover, we illustrate our numerical approach in several two-dimensional examples.

  6. Development of Euler's ideas at the Moscow State Regional University

    Science.gov (United States)

    Vysikaylo, P. I.; Belyaev, V. V.

    2018-03-01

    In honor of the 250th anniversary of Euler's discovery of three libration points in Russia in 1767 in the area of two rotating gravitational attractors in 2017 an International Interdisciplinary Conference “Euler Readings MRSU 2017” was held in Moscow Region State University (MRSU). The Conference demonstrated that the Euler's ideas continue to remain relevant at the present time. This paper summarizes the main achievements on the basis of Leonard Euler's ideas presented at the Conference.

  7. Nonoscillatory shock capturing scheme using flux limited dissipation

    International Nuclear Information System (INIS)

    Jameson, A.

    1985-01-01

    A method for modifying the third order dissipative terms by the introduction of flux limiters is proposed. The first order dissipative terms can then be eliminated entirely, and in the case of a scalar conservation law the scheme is converted into a total variation diminishing scheme provided that an appropriate value is chosen for the dissipative coefficient. Particular attention is given to: (1) the treatment of the scalar conservation law; (2) the treatment of the Euler equations for inviscid compressible flow; (3) the boundary conditions; and (4) multistage time stepping and multigrid schemes. Numerical results for transonic flows suggest that a central difference scheme augmented by flux limited dissipative terms can lead to an effective nonoscillatory shock capturing method. 20 references

  8. Combinatorial Aspects of the Generalized Euler's Totient

    Directory of Open Access Journals (Sweden)

    Nittiya Pabhapote

    2010-01-01

    Full Text Available A generalized Euler's totient is defined as a Dirichlet convolution of a power function and a product of the Souriau-Hsu-Möbius function with a completely multiplicative function. Two combinatorial aspects of the generalized Euler's totient, namely, its connections to other totients and its relations with counting formulae, are investigated.

  9. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    Science.gov (United States)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  10. A semi-symmetric image encryption scheme based on the function projective synchronization of two hyperchaotic systems.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Di

    Full Text Available Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN response system and the 6th-order cellular neural network (CNN drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme.

  11. Conservation of energy for the Euler-Korteweg equations

    KAUST Repository

    Dębiec, Tomasz

    2017-12-30

    In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.

  12. Conservation of energy for the Euler-Korteweg equations

    KAUST Repository

    Dębiec, Tomasz; Gwiazda, Piotr; Świerczewska-Gwiazda, Agnieszka; Tzavaras, Athanasios

    2017-01-01

    In this article we study the principle of energy conservation for the Euler-Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler-Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.

  13. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  14. Euler deconvolution and spectral analysis of regional aeromagnetic ...

    African Journals Online (AJOL)

    Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...

  15. On Euler's problem

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, Yurii V [Institute de Mathematique de Toulouse, Toulouse (France)

    2013-04-30

    We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.

  16. Leonhard Euler and the mechanics of rigid bodies

    Science.gov (United States)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  17. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations

    International Nuclear Information System (INIS)

    Li Jiequan; Li Qibing; Xu Kun

    2011-01-01

    The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an

  18. Remarks on Heisenberg-Euler-type electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2017-05-01

    We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.

  19. Development of a Three-Dimensional Unstructured Euler Solver for High-Speed Flows

    Directory of Open Access Journals (Sweden)

    Tudorel Petronel AFILIPOAE

    2015-12-01

    Full Text Available This paper addresses the solution of the compressible Euler equations on hexahedral meshes for supersonic and hypersonic flows. Spatial discretization is accomplished by a cell-centered finite-volume formulation which employs two different upwind schemes for the computation of convective fluxes. Second-order solutions are attained through a linear state reconstruction technique that yields highly resolved flows in smooth regions while providing a sharp and clean resolution of shocks. The solution gradients required for the higher-order spatial discretization are estimated by a least-square method while Venkatakrishnan limiter is employed to preserve monotonicity and avoid oscillations in the presence of shocks. Furthermore, solutions are advanced in time by an explicit third-order Runge-Kutta scheme and convergence to steady state is accelerated using implicit residual smoothing. Flow around a circular arc in a channel and flow past a circular cylinder are studied and results are presented for various Mach numbers together with comparisons to theoretical and experimental data where possible.

  20. Dr. Euler's fabulous formula Cures many mathematical ills

    CERN Document Server

    Nahin, Paul J

    2006-01-01

    I used to think math was no fun'Cause I couldn't see how it was doneNow Euler's my heroFor I now see why zeroEquals e[pi] i+1--Paul Nahin, electrical engineer In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory. This book is the seque

  1. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    Science.gov (United States)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a

  2. Determination of regional Euler pole parameters for Eastern Austria

    Science.gov (United States)

    Umnig, Elke; Weber, Robert; Schartner, Matthias; Brueckl, Ewald

    2017-04-01

    The horizontal motion of lithospheric plates can be described as rotations around a rotation axes through the Earth's center. The two possible points where this axes intersects the surface of the Earth are called Euler poles. The rotation is expressed by the Euler parameters in terms of angular velocities together with the latitude and longitude of the Euler pole. Euler parameters were calculated from GPS data for a study area in Eastern Austria. The observation network is located along the Mur-Mürz Valley and the Vienna Basin. This zone is part of the Vienna Transfer Fault, which is the major fault system between the Eastern Alps and the Carpathians. The project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics) investigated intra plate tectonic movements within the Austrian part in order to estimate the seismic hazard. Precise site coordinate time series established from processing 5 years of GPS observations are available for the regional network spanning the years from 2010.0 to 2015.0. Station velocities with respect to the global reference frame ITRF2008 have been computed for 23 sites. The common Euler vector was estimated on base of a subset of reliable site velocities, for stations directly located within the area of interest. In a further step a geokinematic interpretation shall be carried out. Therefore site motions with respect to the Eurasian Plate are requested. To obtain this motion field different variants are conceivable. In a simple approach the mean ITRF2008 velocity of IGS site GRAZ can be adopted as Eurasian rotational velocity. An improved alternative is to calculate site-specific velocity differences between the Euler rotation and the individual site velocities. In this poster presentation the Euler parameters, the residual motion field as well as first geokinematic interpretation results are presented.

  3. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo; Gomes, Diogo A.; Tran, Hung Vinh

    2013-01-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  4. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo

    2013-11-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  5. High resolution solutions of the Euler equations for vortex flows

    International Nuclear Information System (INIS)

    Murman, E.M.; Powell, K.G.; Rizzi, A.; Tel Aviv Univ., Israel)

    1985-01-01

    Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research. 16 references

  6. Semi-Lagrangian methods in air pollution models

    Directory of Open Access Journals (Sweden)

    A. B. Hansen

    2011-06-01

    Full Text Available Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990 and Machenhauer et al. (2008 as possible. The focus in this study is on accuracy and local mass conservation.

    The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999, second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002, third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL, by Kaas (2008, and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010.

    Semi-Lagrangian (SL interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity.

    All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD, see Frohn et al. (2002, presently used at the National Environmental Research Institute (NERI in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested.

    The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged.

    The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme

  7. Stability properties of the Euler-Korteweg system with nonmonotone pressures

    KAUST Repository

    Giesselmann, Jan

    2016-12-21

    We establish a relative energy framework for the Euler-Korteweg system with non-convex energy. This allows us to prove weak-strong uniqueness and to show convergence to a Cahn-Hilliard system in the large friction limit. We also use relative energy to show that solutions of Euler-Korteweg with convex energy converge to solutions of the Euler system in the vanishing capillarity limit, as long as the latter admits sufficiently regular strong solutions.

  8. SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA MODEL BY NSFD SCHEMES

    Directory of Open Access Journals (Sweden)

    S.ZIBAEI

    2016-12-01

    Full Text Available In this paper, we introduce fractional-order into a model competitive Lotka- Volterra prey-predator system. We will discuss the stability analysis of this fractional system. The non-standard nite difference (NSFD scheme is implemented to study the dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard numerical scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate for implementing when applied to fractional-order Lotka-Volterra model.

  9. Leonhard Euler's Wave Theory of Light

    DEFF Research Database (Denmark)

    Pedersen, Kurt Møller

    2008-01-01

    is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction......Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...

  10. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws

    Science.gov (United States)

    Borges, Rafael; Carmona, Monique; Costa, Bruno; Don, Wai Sun

    2008-03-01

    In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202-228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542-567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock-density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock-vortex interaction and a Mach 4.46 Richtmyer-Meshkov Instability (RMI) modeled via the two dimensional Euler equations.

  11. Drawing Euler Diagrams with Circles: The Theory of Piercings.

    Science.gov (United States)

    Stapleton, Gem; Leishi Zhang; Howse, John; Rodgers, Peter

    2011-07-01

    Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.

  12. Euler numbers of four-dimensional rotating black holes with the Euclidean signature

    International Nuclear Information System (INIS)

    Ma Zhengze

    2003-01-01

    For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology

  13. Euler polynomials and identities for non-commutative operators

    Science.gov (United States)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  14. Construction of second-order accurate monotone and stable residual distribution schemes for steady problems

    International Nuclear Information System (INIS)

    Abgrall, Remi; Mezine, Mohamed

    2004-01-01

    After having recalled the basic concepts of residual distribution (RD) schemes, we provide a systematic construction of distribution schemes able to handle general unstructured meshes, extending the work of Sidilkover. Then, by using the concept of simple waves, we show how to generalize this technique to symmetrizable linear systems. A stability analysis is provided. We formally extend this construction to the Euler equations. Several test cases are presented to validate our approach

  15. Additivity for parametrized topological Euler characteristic and Reidemeister torsion

    OpenAIRE

    Badzioch, Bernard; Dorabiala, Wojciech

    2005-01-01

    Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.

  16. Computation of 2D compressible flows with a finite element method

    International Nuclear Information System (INIS)

    Montagne, J.L.

    1981-04-01

    When the homogeneous modelisation of the two phase flow is used the set of equations describing the flow is similar to an Euler system. Mixed finite elements are appropriate to discretize the equations. First, main properties of this kind of elements are reminded. Then, some properties of semi-implicite schemes on stability and entropy are given. Numerical tests have been performed, and the scheme gave satisfactory results

  17. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    Science.gov (United States)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  18. Euler-Lagrange Equations of Networks with Higher-Order Elements

    Directory of Open Access Journals (Sweden)

    Z. Biolek

    2017-06-01

    Full Text Available The paper suggests a generalization of the classic Euler-Lagrange equation for circuits compounded of arbitrary elements from Chua’s periodic table. Newly defined potential functions for general (α, β elements are used for the construction of generalized Lagrangians and generalized dissipative functions. Also procedures of drawing the Euler-Lagrange equations are demonstrated.

  19. On a new compactification of the moduli of vector bundles on a surface

    International Nuclear Information System (INIS)

    Timofeeva, N V

    2008-01-01

    A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface (S,H) defined over a field k=k-bar of characteristic zero is constructed. The families of locally free sheaves on the surface S are completed by locally free sheaves on surfaces that are certain modifications of S. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.

  20. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    Science.gov (United States)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  1. An experiment for determining the Euler load by direct computation

    Science.gov (United States)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  2. 3D GIS spatial operation based on extended Euler operators

    Science.gov (United States)

    Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing

    2008-10-01

    The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.

  3. Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture

    Science.gov (United States)

    Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong

    The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.

  4. Euler Polynomials and Identities for Non-Commutative Operators

    OpenAIRE

    De Angelis, V.; Vignat, C.

    2015-01-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...

  5. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    Science.gov (United States)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  6. Hilbert scheme of points on cyclic quotient singularities of type (p,1)

    OpenAIRE

    Gyenge, Ádám

    2016-01-01

    In this note we investigate the generating series of the Euler characteristics of Hilbert scheme of points on cyclic quotient singularities of type (p,1). We link the appearing combinatorics to p-fountains, a generalization of the notion of fountain of coins. We obtain a representation of the generating series as coefficient of a two variable generating series.

  7. Solution of the Euler and Navier-Stokes equations on MIMD distributed memory multiprocessors using cyclic reduction

    International Nuclear Information System (INIS)

    Curchitser, E.N.; Pelz, R.B.; Marconi, F.

    1992-01-01

    The Euler and Navier-Stokes equations are solved for the steady, two-dimensional flow over a NACA 0012 airfoil using a 1024 node nCUBE/2 multiprocessor. Second-order, upwind-discretized difference equations are solved implicitly using ADI factorization. Parallel cyclic reduction is employed to solve the block tridiagonal systems. For realistic problems, communication times are negligible compared to calculation times. The processors are tightly synchronized, and their loads are well balanced. When the flux Jacobians flux are frozen, the wall-clock time for one implicit timestep is about equal to that of a multistage explicit scheme. 10 refs

  8. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  9. On the modelling of compressible inviscid flow problems using AUSM schemes

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2007-11-01

    Full Text Available During last decades, upwind schemes have become a popular method in the field of computational fluid dynamics. Although they are only first order accurate, AUSM (Advection Upstream Splitting Method schemes proved to be well suited for modelling of compressible flows due to their robustness and ability of capturing shock discontinuities. In this paper, we review the composition of the AUSM flux-vector splitting scheme and its improved version noted AUSM+, proposed by Liou, for the solution of the Euler equations. Mach number splitting functions operating with values from adjacent cells are used to determine numerical convective fluxes and pressure splitting is used for the evaluation of numerical pressure fluxes. Both versions of the AUSM scheme are applied for solving some test problems such as one-dimensional shock tube problem and three dimensional GAMM channel. Features of the schemes are discussed in comparison with some explicit central schemes of the first order accuracy (Lax-Friedrichs and of the second order accuracy (MacCormack.

  10. Euler's pioneering equation the most beautiful theorem in mathematics

    CERN Document Server

    Wilson, Robin

    2018-01-01

    In 1988 The Mathematical Intelligencer, a quarterly mathematics journal, carried out a poll to find the most beautiful theorem in mathematics. Twenty-four theorems were listed and readers were invited to award each a 'score for beauty'. While there were many worthy competitors, the winner was 'Euler's equation'. In 2004 Physics World carried out a similar poll of 'greatest equations', and found that among physicists Euler's mathematical result came second only to Maxwell's equations. The Stanford mathematician Keith Devlin reflected the feelings of many in describing it as "like a Shakespearian sonnet that captures the very essence of love, or a painting which brings out the beauty of the human form that is far more than just skin deep, Euler's equation reaches down into the very depths of existence."

  11. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    Science.gov (United States)

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Nilakantha, Euler and 1t

    Indian Academy of Sciences (India)

    It is not hard to show that the series converges, for by com- bining pairs of terms it can be ..... not escape Euler's attention-but then few things did!) We consider the function ... the proof. In particular there is no such thing as an unrig- orous proof.

  13. Euler's fluid equations: Optimal control vs optimization

    International Nuclear Information System (INIS)

    Holm, Darryl D.

    2009-01-01

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  14. Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr

    2009-10-15

    We communicate through this work the fractional calculus of variations and its corresponding Euler-Lagrange equations in 1D constrained holonomic, non-holonomic, and semi-holonomic dissipative dynamical system. The extension of the laws obtained to the 2D space state is done. Some interesting consequences are revealed.

  15. ENTROPIES AND FLUX-SPLITTINGS FOR THE ISENTROPIC EULER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The authors establish the existence of a large class of mathematical entropies (the so-called weak entropies) associated with the Euler equations for an isentropic, compressible fluid governed by a general pressure law. A mild assumption on the behavior of the pressure law near the vacuum is solely required. The analysis is based on an asymptotic expansion of the fundamental solution (called here the entropy kernel) of a highly singular Euler-Poisson-Darboux equation. The entropy kernel is only H lder continuous and its regularity is carefully investigated. Relying on a notion introduced earlier by the authors, it is also proven that, for the Euler equations, the set of entropy flux-splittings coincides with the set of entropies-entropy fluxes. These results imply the existence of a flux-splitting consistent with all of the entropy inequalities.

  16. On the Euler Function of the Catalan Numbers

    Science.gov (United States)

    2012-02-26

    ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for

  17. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    Science.gov (United States)

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  18. A Semi-Analytical Methodology for Multiwell Productivity Index of Well-Industry-Production-Scheme in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Guangfeng Liu

    2018-04-01

    Full Text Available Recently, the well-industry-production-scheme (WIPS has attracted more and more attention to improve tight oil recovery. However, multi-well pressure interference (MWPI induced by well-industry-production-scheme (WIPS strongly challenges the traditional transient pressure analysis methods, which focus on single multi-fractured horizontal wells (SMFHWs without MWPI. Therefore, a semi-analytical methodology for multiwell productivity index (MPI was proposed to study well performance of WIPS scheme in tight reservoir. To facilitate methodology development, the conceptual models of tight formation and WIPS scheme were firstly described. Secondly, seepage models of tight reservoir and hydraulic fractures (HFs were sequentially established and then dynamically coupled. Numerical simulation was utilized to validate our model. Finally, identification of flow regimes and sensitivity analysis were conducted. Our results showed that there was good agreement between our proposed model and numerical simulation; moreover, our approach also gave promising calculation speed over numerical simulation. Some expected flow regimes were significantly distorted due to WIPS. The slope of type curves which characterize the linear or bi-linear flow regime is bigger than 0.5 or 0.25. The horizontal line which characterize radial flow regime is also bigger 0.5. The smaller the oil rate, the more severely flow regimes were distorted. Well rate mainly determines the distortion of MPI curves, while fracture length, well spacing, fracture spacing mainly determine when the distortion of the MPI curves occurs. The bigger the well rate, the more severely the MPI curves are distorted. While as the well spacing decreases, fracture length increases, fracture spacing increases, occurrence of MWPI become earlier. Stress sensitivity coefficient mainly affects the MPI at the formation pseudo-radial flow stage, almost has no influence on the occurrence of MWPI. This work gains some

  19. Constructing space difference schemes which satisfy a cell entropy inequality

    Science.gov (United States)

    Merriam, Marshal L.

    1989-01-01

    A numerical methodology for solving convection problems is presented, using finite difference schemes which satisfy the second law of thermodynamics on a cell-by-cell basis in addition to the usual conservation laws. It is shown that satisfaction of a cell entropy inequality is sufficient, in some cases, to guarantee nonlinear stability. Some details are given for several one-dimensional problems, including the quasi-one-dimensional Euler equations applied to flow in a nozzle.

  20. Bernoulli and Euler Numbers

    Directory of Open Access Journals (Sweden)

    Dae San Kim

    2012-01-01

    Full Text Available We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials from the orthogonality of Hermite polynomials. Let Pn={p(x∈ℚ[x]∣deg p(x≤n} be the (n+1-dimensional vector space over ℚ. Then we show that {H0(x,H1(x,…,Hn(x} is a good basis for the space Pn for our purpose of arithmetical and combinatorial applications.

  1. Extrapolating an Euler class

    NARCIS (Netherlands)

    Van der Kallen, Wilberd|info:eu-repo/dai/nl/117156108

    2015-01-01

    Let R be a noetherian ring of dimension d and let n be an integer so that n≤d≤2n-3. Let (a1,..., an+1) be a unimodular row so that the ideal J=(a1,..., an) has height n. Jean Fasel has associated to this row an element [(J, ωJ)] in the Euler

  2. Free vibration of thin axisymmetric structures by a semi-analytical finite element scheme and isoparametric solid elements

    International Nuclear Information System (INIS)

    Akeju, T.A.I.; Kelly, D.W.; Zienkiewicz, O.C.; Kanaka Raju, K.

    1981-01-01

    The eigenvalue equations governing the free vibration of axisymmetric solids are derived by means of a semi-analytical finite element scheme. In particular we investigated the use of an 8-node solid element in structures which exhibit a 'shell-like' behaviour. Bathe-Wilson subspace iteration algorithm is employed for the solution of the equations. The element is shown to give good results for beam and shell vibration problems. It is also utilised to solve a complex solid in the form of an internal component of a modern jet engine. This particular application is of considerable practical importance as the dynamics of such components form a dominant design constraint. (orig./HP)

  3. An efficient iteration strategy for the solution of the Euler equations

    Science.gov (United States)

    Walters, R. W.; Dwoyer, D. L.

    1985-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two-dimensions is described. The basic algorithm has the property that convergence to the steady-state is quadratic for fully supersonic flows and linear otherwise. This is in contrast to the block ADI methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented here is easily enhanced to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, thus yielding a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing both oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  4. 有理Runge-Kutta法を用いたSemi-Lagrangian海洋モデルの開発

    OpenAIRE

    上原, 克人; Uehara, Katsuto

    1997-01-01

    A new Semi-Lagrangian scheme using Rational Runge-Kutta method (RKSL scheme)is developed for reduced-gravity ocean model. It is superior to Semi-Implicit/Semi-Lagrangian (SISL) scheme in handling lateral boundaries, whereas it can take longer time-step than usual external Eulerian schemes. To evaluate this new scheme, experiments simulating the mid-depth circulation of the Mediterranean outflow region in the eastern North Atlantic were made by using the RKSL scheme, the SISL scheme, and cente...

  5. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    Science.gov (United States)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  6. Euler-Poincare Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2005-01-01

    |If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....

  7. Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations

    International Nuclear Information System (INIS)

    Yuen, Manwai

    2011-01-01

    In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.

  8. Three dimensional steady subsonic Euler flows in bounded nozzles

    Science.gov (United States)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  9. Fractional Euler Limits and Their Applications

    OpenAIRE

    MacNamara, Shev; Henry, Bruce I; McLean, William

    2016-01-01

    Generalisations of the classical Euler formula to the setting of fractional calculus are discussed. Compound interest and fractional compound interest serve as motivation. Connections to fractional master equations are highlighted. An application to the Schlogl reactions with Mittag-Leffler waiting times is described.

  10. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  11. The pricing of European options on two underlying assets with delays

    Science.gov (United States)

    Lin, Lisha; Li, Yaqiong; Wu, Jing

    2018-04-01

    In the paper, the pricing of European options on two underlying assets with delays is discussed. By using the approach of equivalent martingale measure transformation, the market is proved to be complete. With exchange option as a particular example, we obtain the explicit pricing formula in a subinterval of option period. The robust Euler-Maruyama method is combined with the Monte Carlo simulation to compute exchange option prices within the whole option period. Numerical experiments indicate that there is an increasing possibility of the difference between the delayed and Black-Scholes option prices with the increase of delay.

  12. Stability analysis of the Backward Euler time discretization for the pin-resolved transport transient reactor calculation

    International Nuclear Information System (INIS)

    Zhu, Ang; Xu, Yunlin; Downar, Thomas

    2016-01-01

    Three-dimensional, full core transport modeling with pin-resolved detail for reactor dynamic simulation is important for some multi-physics reactor applications. However, it can be computationally intensive due to the difficulty in maintaining accuracy while minimizing the number of time steps. A recently proposed Transient Multi-Level (TML) methodology overcomes this difficulty by use multi-level transient solvers to capture the physical phenomenal in different time domains and thus maximize the numerical accuracy and computational efficiency. One major problem with the TML method is the negative flux/precursor number density generated using large time steps for the MOC solver, which is due to the Backward Euler discretization scheme. In this paper, the stability issue of Backward Euler discretization is first investigated using the Point Kinetics Equations (PKEs), and the predicted maximum allowed time step for SPERT test 60 case is shown to be less than 10 ms. To overcome this difficulty, linear and exponential transformations are investigated using the PKEs. The linear transformation is shown to increase the maximum time step by a factor of 2, and the exponential transformation is shown to increase the maximum time step by a factor of 5, as well as provide unconditionally stability above a specified threshold. The two sets of transformations are then applied to TML scheme in the MPACT code, and the numerical results presented show good agreement for standard, linear transformed, and exponential transformed maximum time step between the PKEs model and the MPACT whole core transport solution for three different cases, including a pin cell case, a 3D SPERT assembly case and a row of assemblies (“striped assembly case”) from the SPERT model. Finally, the successful whole transient execution of the stripe assembly case shows the ability of the exponential transformation method to use 10 ms and 20 ms time steps, which all failed using the standard method.

  13. Leonhard Euler's Wave Theory of Light

    DEFF Research Database (Denmark)

    Pedersen, Kurt Møller

    2008-01-01

    Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...... of achromatic lenses, the explanation of colors of thin plates and of the opaque bodies as proof of his theory. When it came to the fundamental issues, the correctness of his dispersion law and the prediction of frequencies of light he was not at all successful. His wave theory degenerated, and it was not until...... is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction...

  14. PISCES 3DELK - a coupled Euler/Lagrange program for computing dynamic fluid-structure interactions in three dimensions

    International Nuclear Information System (INIS)

    Chu, H.Y.; Cowler, M.S.; Hancock, H.

    1983-01-01

    This paper describes the main features of PISCES 3DELK, a computer code that is used to solve complex three-dimensional fluid-structure interaction problems in reactor safety. These features include: an Eulerian finite difference scheme for calculating fluid flow and large distortions of solid media; a Langrange finite element scheme for calculating the response of thin structures; coupling of the Euler and Langrange schemes at fluid-structure interfaces. The code has been well validated and applied to a number of reactor safety analyses including blowdown in reactor primary vessels and components, and loadings on the secondary containment caused by a breach in the primary containment. Details of two analyses are presented in this paper. The first analysis is of blowdown in a pressurized water reactor caused by a cold leg break (the HDR experiment). Results of the PISCES 3DELK calculation are compared with results obtained by the K-FIX code. Agreement between the two calculations is good. The second analysis is of the depressurization caused by a feedwater pipe break in a steam generator of the CANDU reactor. Calculations have been performed which show that flexibility of internal components in the heat exchanger mitigate structural loadings. (orig.)

  15. Intra- and interobserver reliability of glenoid fracture classifications by Ideberg, Euler and AO.

    Science.gov (United States)

    Gilbert, F; Eden, L; Meffert, R; Konietschke, F; Lotz, J; Bauer, L; Staab, W

    2018-03-27

    Representing 3%-5% of shoulder girdle injuries scapula fractures are rare. Furthermore, approximately 1% of scapula fractures are intraarticularfractures of the glenoid fossa. Because of uncertain fracture morphology and limited experience, the treatment of glenoid fossa fractures is difficult. The glenoid fracture classification by Ideberg (1984) and Euler (1996) is still commonly used in literature. In 2013 a new glenoid fracture classification was introduced by the AO. The purpose of this study was to examine the new AO classification in clinical practice in comparison with the classifications by Ideberg and Euler. In total CT images of 84 patients with glenoid fossa fractures from 2005 to 2018 were included. Parasagittal, paracoronary and axial reconstructions were examined according to the classifications of Ideberg, Euler and the AO by 3 investigators (orthopedic surgeon, radiologist, student of medicine) at three individual time settings. Inter- and intraobserver reliability of the three classification systems were ascertained by computing Inter- and Intraclass (ICCs) correlation coefficients using Spearman's rank correlation coefficient, 95%-confidence intervals as well as F-tests for correlation coefficients. Inter- and intraobserver reliability for the AO classification showed a perspicuous coherence (R = 0.74 and R = 0.79). Low to moderate intraobserver reliability for Ideberg (R = 0.46) and Euler classification (R = 0.41) was found. Furthermore, data show a low Interobserver reliability for both Ideberg and Euler classification (R reliability using AO is significantly higher than those using Ideberg and Euler (p reliable grading of glenoid fossa fractures with high inter- and intraobserver reliability in 84 patients using CT images. It should possibly be applied in order to enable a valid, reliable and consistent academic description of glenoid fossa fractures. The established classifications by Euler and Ideberg are not capable of

  16. The matrix Euler-Fermat theorem

    International Nuclear Information System (INIS)

    Arnol'd, Vladimir I

    2004-01-01

    We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard-Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem

  17. A New Euler's Formula for DNA Polyhedra

    Science.gov (United States)

    Hu, Guang; Qiu, Wen-Yuan; Ceulemans, Arnout

    2011-01-01

    DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into Seifert surfaces, which removes all knots. The numbers of components , of crossings , and of Seifert circles are related by a simple and elegant formula: . This formula connects the topological aspects of the DNA cage to the Euler characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to describe polyhedral links. Our study demonstrates that, the new Euler's formula provides a theoretical framework for the stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize and design novel cages with higher genus. PMID:22022596

  18. Euler-Poincare Reduction of Externall Forced Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  19. Euler-Poincaré Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  20. Exploitation of ISAR Imagery in Euler Parameter Space

    National Research Council Canada - National Science Library

    Baird, Christopher; Kersey, W. T; Giles, R; Nixon, W. E

    2005-01-01

    .... The Euler parameters have potential value in target classification but have historically met with limited success due to ambiguities that arise in decomposition as well as the parameters' sensitivity...

  1. Difference Discrete Variational Principle,EULER-Lagrange Cohomology and Symplectic, Multisymplectic Structures

    OpenAIRE

    Guo, H. Y.; Li, Y. Q.; Wu, K.; Wang, S. K.

    2001-01-01

    We study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncomutative differential geometry. By virtue of this variational principle, we get the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory. We also explore the difference discrete versions for the Euler...

  2. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  3. Non linear Euler-Poisson system. Part 1: global existence of low entropy solutions

    International Nuclear Information System (INIS)

    Cordier, S.

    1995-05-01

    In this work a 1-D model of electrons and ions plasma is considered. Electrons are supposed to be in Maxwell-Boltzmann thermodynamic equilibrium while ions are described with an isothermal flow model of charged particles submitted to a self-consistent electric field. A collision term between neutral particles and ions simulates the presence of neutral particles. This work demonstrates the existence of low entropy solutions for this simple model with arbitrary initial conditions. Most of the paper is devoted to the demonstration of this theorem and follows the successive steps: construction of a numerical scheme, recall of the classical properties of Riemann problem solutions using Glimm method, uniform estimations for the whole variation norm, and finally, convergence of the constructed solutions towards a low entropy solution for the non-linear Euler/Poisson system. Domains of application for this type of model are listed in the conclusion. (J.S.). 18 refs

  4. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  5. Semi-intelligent trigger-generation scheme for Cherenkov light imaging cameras

    International Nuclear Information System (INIS)

    Bhat, C.L.; Tickoo, A.K.; Koul, R.; Kaul, I.K.

    1994-01-01

    We propose here an improved trigger-generation scheme for TeV gamma-ray imaging telescopes. Based on a memory-based Majority Coincidence Circuit, this scheme involves deriving two-or three-pixel nearest-neighbour coincidences as against the conventional approach of generating prompt coincidences using any two photomultiplier detector pixels of an imaging-camera. As such, the new method can discriminate better against shot-noise-generated triggers and, to a significant extent, also against cosmic-ray and local-muon-generated background events, without compromising on the telescope response to events of γ-ray origin. An optional feature of the proposed scheme is that a suitably scaled-up value of the chance-trigger rate can be independently derived, thereby making it possible to use this parameter reliably for keeping a log of the ''health'' of the experimental system. (orig.)

  6. Semi-intelligent trigger-generation scheme for Cherenkov light imaging cameras

    Science.gov (United States)

    Bhat, C. L.; Tickoo, A. K.; Koul, R.; Kaul, I. K.

    1994-02-01

    We propose here an improved trigger-generation scheme for TeV gamma-ray imaging telescopes. Based on a memory-based Majority Coincidence Circuit, this scheme involves deriving two- or three-pixel nearest-neighbour coincidences as against the conventional approach of generating prompt coincidences using any two photomultiplier detector pixels of an imaging-camera. As such, the new method can discriminate better against shot-noise-generated triggers and, to a significant extent, also against cosmic-ray and local-muon-generated background events, without compromising on the telescope response to events of γ-ray origin. An optional feature of the proposed scheme is that a suitably scaled-up value of the chance-trigger rate can be independently derived, thereby making it possible to use this parameter reliably for keeping a log of the ``health'' of the experimental system.

  7. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    Science.gov (United States)

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  8. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    Directory of Open Access Journals (Sweden)

    Luana Micallef

    Full Text Available Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  9. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang

    2017-07-01

    Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi

  10. Euler's fluid equations: Optimal control vs optimization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2009-11-23

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  11. Discretization vs. Rounding Error in Euler's Method

    Science.gov (United States)

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  12. Euler Polynomials, Fourier Series and Zeta Numbers

    DEFF Research Database (Denmark)

    Scheufens, Ernst E

    2012-01-01

    Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....

  13. Euler-Poincaré Reduction of Externally Forced Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  14. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    Science.gov (United States)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  15. Mass deformed world-sheet action of semi local vortices

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunguo [School of Space Science and Physics, Shandong University at Weihai,264209 Weihai (China); Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,264209 Weihai (China)

    2014-02-10

    The mass deformed effective world-sheet theory of semi local vortices was constructed via the field theoretical method. By Euler-Lagrangian equations, the Ansatze for both the gauge field and the adjoint scalar were solved, this ensures that zero modes of vortices are minimal excitations of the system. Up to the 1/g{sup 2} order, all profiles are solved. The mass deformed effective action was obtained by integrating out the transverse plane of the vortex string. The effective theory interpolates between the local vortex and the lump. Respecting certain normalization conditions, the effective theory shows a Seiberg-like duality, which agrees with the result of the Kähler quotient construction.

  16. Cavitation Modeling in Euler and Navier-Stokes Codes

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  17. Robust second-order scheme for multi-phase flow computations

    Science.gov (United States)

    Shahbazi, Khosro

    2017-06-01

    A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.

  18. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    Science.gov (United States)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  19. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  20. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  1. Measure-valued solutions to the complete Euler system revisited

    Science.gov (United States)

    Březina, Jan; Feireisl, Eduard

    2018-06-01

    We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.

  2. Weyl-Euler-Lagrange Equations of Motion on Flat Manifold

    Directory of Open Access Journals (Sweden)

    Zeki Kasap

    2015-01-01

    Full Text Available This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.

  3. Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems

    International Nuclear Information System (INIS)

    Abgrall, Remi; Mezine, Mohamed

    2003-01-01

    The aim of this paper is to construct upwind residual distribution schemes for the time accurate solution of hyperbolic conservation laws. To do so, we evaluate a space-time fluctuation based on a space-time approximation of the solution and develop new residual distribution schemes which are extensions of classical steady upwind residual distribution schemes. This method has been applied to the solution of scalar advection equation and to the solution of the compressible Euler equations both in two space dimensions. The first version of the scheme is shown to be, at least in its first order version, unconditionally energy stable and possibly conditionally monotonicity preserving. Using an idea of Csik et al. [Space-time residual distribution schemes for hyperbolic conservation laws, 15th AIAA Computational Fluid Dynamics Conference, Anahein, CA, USA, AIAA 2001-2617, June 2001], we modify the formulation to end up with a scheme that is unconditionally energy stable and unconditionally monotonicity preserving. Several numerical examples are shown to demonstrate the stability and accuracy of the method

  4. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Smruti J., E-mail: fizix.smriti@gmail.com; Vinodkumar, P. C. [P. G. Department of Physics, Sardar Patel University, VallabhVidyanagar - 388120, Gujarat (India)

    2016-05-06

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J{sup P} values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  5. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    International Nuclear Information System (INIS)

    Patel, Smruti J.; Vinodkumar, P. C.

    2016-01-01

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J"P values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  6. Positivity-preserving CE/SE schemes for solving the compressible Euler and Navier–Stokes equations on hybrid unstructured meshes

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2018-01-01

    . The schemes use an a posteriori limiter to prevent negative densities and pressures based on the premise of preserving optimal accuracy. The limiter enforces a constraint for spatial derivatives and does not change the conservative property of CE/SE schemes

  7. Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations

    International Nuclear Information System (INIS)

    Shin, Young Jae; Yun, Jong Hak; Seong, Kyeong Youn; Kim, Jae Ho; Kang, Sung Hwang

    2006-01-01

    A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Paster nak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated

  8. A novel numerical flux for the 3D Euler equations with general equation of state

    KAUST Repository

    Toro, Eleuterio F.; Castro, Cristó bal E.; Bok Jik, Lee

    2015-01-01

    Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both

  9. Quantum election scheme based on anonymous quantum key distribution

    International Nuclear Information System (INIS)

    Zhou Rui-Rui; Yang Li

    2012-01-01

    An unconditionally secure authority-certified anonymous quantum key distribution scheme using conjugate coding is presented, based on which we construct a quantum election scheme without the help of an entanglement state. We show that this election scheme ensures the completeness, soundness, privacy, eligibility, unreusability, fairness, and verifiability of a large-scale election in which the administrator and counter are semi-honest. This election scheme can work even if there exist loss and errors in quantum channels. In addition, any irregularity in this scheme is sensible. (general)

  10. An efficient entire chaos-based scheme for deniable authentication

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Wong, K.W.

    2005-01-01

    By using a chaotic encryption-hash parallel algorithm and the semi-group property of Chebyshev chaotic map, we propose a secure and efficient scheme for the deniable authentication. The scheme is efficient, practicable and reliable, with high potential to be adopted for e-commerce

  11. An efficient entire chaos-based scheme for deniable authentication

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Di [College of Computer Science and Engineering, Chongqing University, Chongqing, 400044 (China) and College of Mechanical Engineering, Chongqing University, Chongqing, 400044 (China)]. E-mail: xiaodi_cqu@hotmail.com; Liao Xiaofeng [College of Computer Science and Engineering, Chongqing University, Chongqing, 400044 (China); Wong, K.W. [Department of Computer Engineering and Information Technology, City University of Hong Kong, Hong Kong (China)

    2005-02-01

    By using a chaotic encryption-hash parallel algorithm and the semi-group property of Chebyshev chaotic map, we propose a secure and efficient scheme for the deniable authentication. The scheme is efficient, practicable and reliable, with high potential to be adopted for e-commerce.

  12. A qualitative semi-classical treatment of an isolated semi-polar quantum dot

    International Nuclear Information System (INIS)

    Young, Toby D

    2011-01-01

    To qualitatively determine the behaviour of micro-macro properties of a quantum dot grown in a non-polar direction, we propose a simple semi-classical model based on well established ideas. We take into account the following empirical phenomena: (i) The displacement and induced strain at heterojunctions; (ii) The electrostatic potential arising from piezoelectric and spontaneous polarisation; and (iii) The localisation of excitons (particle-hole pairs) arising from quantum confinement. After some algebraic manipulation used to cast the formalism into an arbitrarily rotated frame, a numerical model is developed for the case of a semi-polar wurtzite GaN quantum dot buried in a wurtzite AlN matrix. This scheme is found to provide a satisfying qualitative description of an isolated semi-polar quantum dot in a way that is accessible to further physical interpretation and quantification.

  13. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows

    International Nuclear Information System (INIS)

    Popov, Pavel P.; Pope, Stephen B.

    2014-01-01

    This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes

  14. Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft

    Directory of Open Access Journals (Sweden)

    Yuma Fukushima

    2015-01-01

    Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.

  15. A Mathematical Model of Profit-Loss Sharing Scheme of Small Investment for Traditional Market Traders using The Semi-Fuzzy Logic Approach

    Directory of Open Access Journals (Sweden)

    Novriana Sumarti

    2017-02-01

    Full Text Available A mathematical model of micro-finance investment using profit-loss sharing scheme are made and implemented to simulated data. Here profits from the venture will be shared in a portion between the investor and the entity running the business. The scheme can be classified as Musharaka type of investment in Sharia economy. The proposed model is theoretically implemented with data from small-scale traders at a local traditional market who have small turnover. They are common target of usurers who lend money with high interest rate and penalties. If the traders are in unfortunate conditions, they are potentially in poorer condition than before committing themselves to the usurer. In the conventional practices of the profit sharing scheme, the investor will get a fixed portion of the trader’s income, which is applied for all kind of small-scale traders. If the traders are diligent and hard worker and have very high turnover, then the investor will gain much more profit whether the contributed capital is small or large. In this paper, the scheme is implemented using Semi-Fuzzy Logic Approach so that the profit-loss sharing scheme can achieve its intended goal, which is to make a profitable investment not only for the investor but also for traders. The approach is not fully using Fuzzy Logic because some variables are still in crisp numbers and the optimization problem is regular in the form of crisp numbers. Based on the existing data, the results show that the optimal profit share is depended on the income of the traders. The higher the income coming from the venture, the lesser the profit share for the investor which is reasonable with the fixed initial contributed capital.

  16. Euler angles for G2

    International Nuclear Information System (INIS)

    Cacciatori, Sergio L.; Cerchiai, Bianca L.; Della Vedova, Alberto; Ortenzi, Giovanni; Scotti, Antonio

    2005-01-01

    We provide a simple coordinatization for the group G 2 , which is analogous to the Euler coordinatization for SU(2). We show how to obtain the general element of the group in a form emphasizing the structure of the fibration of G 2 with fiber SO(4) and base H, the variety of quaternionic subalgebras of octonions. In particular this allows us to obtain a simple expression for the Haar measure on G 2 . Moreover, as a by-product it yields a concrete realization and an Einstein metric for H

  17. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    Science.gov (United States)

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  18. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    Science.gov (United States)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  19. Positivity-preserving dual time stepping schemes for gas dynamics

    Science.gov (United States)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  20. On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

    International Nuclear Information System (INIS)

    Timofeeva, Nadezhda V

    2011-01-01

    A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface (S,L) is constructed. We work over the field k=k-bar of characteristic zero. Families of locally free sheaves on the surface S are completed with locally free sheaves on schemes which are modifications of S. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs 'polarized scheme-vector bundle' with moduli space of such type. Bibliography: 16 titles.

  1. Equivalence between the Energy Stable Flux Reconstruction and Filtered Discontinuous Galerkin Schemes

    Science.gov (United States)

    Zwanenburg, Philip; Nadarajah, Siva

    2016-02-01

    The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.

  2. An unconditionally stable, positivity-preserving splitting scheme for nonlinear Black-Scholes equation with transaction costs.

    Science.gov (United States)

    Guo, Jianqiang; Wang, Wansheng

    2014-01-01

    This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable.

  3. Large-scale computations in fluid mechanics; Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, University of California, La Jolla, CA, June 27-July 8, 1983. Parts 1 and 2

    International Nuclear Information System (INIS)

    Engquist, B.E.; Osher, S.; Somerville, R.C.J.

    1985-01-01

    Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere

  4. Large-scale computations in fluid mechanics; Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, University of California, La Jolla, CA, June 27-July 8, 1983. Parts 1 & 2

    Science.gov (United States)

    Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)

    1985-01-01

    Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.

  5. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael

    2011-04-01

    Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.

  6. An improved front tracking method for the Euler equations

    NARCIS (Netherlands)

    Witteveen, J.A.S.; Koren, B.; Bakker, P.G.

    2007-01-01

    An improved front tracking method for hyperbolic conservation laws is presented. The improved method accurately resolves discontinuities as well as continuous phenomena. The method is based on an improved front interaction model for a physically more accurate modeling of the Euler equations, as

  7. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R

    Directory of Open Access Journals (Sweden)

    Boutros Paul C

    2011-01-01

    Full Text Available Abstract Background Visualization of orthogonal (disjoint or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. Results The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. Conclusions The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  8. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R.

    Science.gov (United States)

    Chen, Hanbo; Boutros, Paul C

    2011-01-26

    Visualization of orthogonal (disjoint) or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  9. Canonical form of Euler-Lagrange equations and gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2003-06-13

    The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.

  10. The splitting in potential Crank-Nicolson scheme with discrete transparent boundary conditions for the Schroedinger equation on a semi-infinite strip

    International Nuclear Information System (INIS)

    Ducomet, Bernard; Zlotnik, Alexander; Zlotnik, Ilya

    2014-01-01

    We consider an initial-boundary value problem for a generalized 2D time-dependent Schroedinger equation (with variable coefficients) on a semi-infinite strip. For the Crank-Nicolson-type finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the Strang-type splitting with respect to the potential is applied. For the resulting method, the unconditional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using FFT is developed now to implement the method with the discrete TBC for general potential. Numerical results on the tunnel effect for rectangular barriers are included together with the detailed practical error analysis confirming nice properties of the method. (authors)

  11. New form of the Euler-Bernoulli rod equation applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2008-01-01

    Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .

  12. Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension

    International Nuclear Information System (INIS)

    Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.

    1997-01-01

    The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs

  13. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  14. Using Euler buckling springs for vibration isolation

    CERN Document Server

    Winterflood, J; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.

  15. Using Euler buckling springs for vibration isolation

    International Nuclear Information System (INIS)

    Winterflood, J; Barber, T; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance

  16. On the Local Type I Conditions for the 3D Euler Equations

    Science.gov (United States)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  17. Symmetries of the Euler compressible flow equations for general equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-15

    The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.

  18. Multi-dimensional Fuzzy Euler Approximation

    Directory of Open Access Journals (Sweden)

    Yangyang Hao

    2017-05-01

    Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.

  19. Euler y la Conjetura de Fermat sobre Números Triangulares

    Directory of Open Access Journals (Sweden)

    José Manuel Sánchez Muñoz

    2011-04-01

    Full Text Available Este artículo describe la historia de como Euler demostró la existencia de infinitos números triangulares bicuadráticos, desde su correspondencia con su amigo Christian Goldbach hasta la publicación de sus resultados en la Academia de San Petesburgo.

  20. Multipliers for the Absolute Euler Summability of Fourier Series

    Indian Academy of Sciences (India)

    In this paper, the author has investigated necessary and sufficient conditions for the absolute Euler summability of the Fourier series with multipliers. These conditions are weaker than those obtained earlier by some workers. It is further shown that the multipliers are best possible in certain sense.

  1. Efficient light scattering through thin semi-transparent objects

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    This paper concerns real-time rendering of thin semi-transparent objects. An object in this category could be a piece of cloth, eg. a curtain. Semi-transparent objects are visualized most correctly using volume rendering techniques. In general such techniques are, however, intractable for real-ti...... in this new area gives far better results than what is obtainable with a traditional real-time rendering scheme using a constant factor for alpha blending....

  2. Multiplicative noise removal through fractional order tv-based model and fast numerical schemes for its approximation

    Science.gov (United States)

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad

    2017-07-01

    This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.

  3. Contact discontinuities in multi-dimensional isentropic Euler equations

    Czech Academy of Sciences Publication Activity Database

    Březina, J.; Chiodaroli, E.; Kreml, Ondřej

    2018-01-01

    Roč. 2018 (2018), č. článku 94. ISSN 1072-6691 R&D Projects: GA ČR(CZ) GJ17-01694Y Institutional support: RVO:67985840 Keywords : isentropic Euler equations * non-uniqueness * Riemann problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/94/abstr.html

  4. High speed corner and gap-seal computations using an LU-SGS scheme

    Science.gov (United States)

    Coirier, William J.

    1989-01-01

    The hybrid Lower-Upper Symmetric Gauss-Seidel (LU-SGS) algorithm was added to a widely used series of 2D/3D Euler/Navier-Stokes solvers and was demonstrated for a particular class of high-speed flows. A limited study was conducted to compare the hybrid LU-SGS for approximate Newton iteration and diagonalized Beam-Warming (DBW) schemes on a work and convergence history basis. The hybrid LU-SGS algorithm is more efficient and easier to implement than the DBW scheme originally present in the code for the cases considered. The code was validated for the hypersonic flow through two mutually perpendicular flat plates and then used to investigate the flow field in and around a simplified scramjet module gap seal configuration. Due to the similarities, the gap seal flow was compared to hypersonic corner flow at the same freestream conditions and Reynolds number.

  5. Dynamic behaviour of non-uniform Bernoulli-Euler beams subjected ...

    African Journals Online (AJOL)

    This paper investigates the dynamics behaviour of non-uniform Bernoulli-Euler beams subjected to concentrated loads ravelling at variable velocities. The solution technique is based on the Generalized Galerkin Method and the use of the generating function of the Bessel function type. The results show that, for all the ...

  6. The symplectic structure of Euler-Lagrange superequations and Batalin-Vilkoviski formalism

    CERN Document Server

    Monterde, J

    2003-01-01

    We study the graded Euler-Lagrange equations from the viewpoint of graded Poincare-Cartan forms. An application to a certain class of solutions of the Batalin-Vilkoviski master equation is also given.

  7. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

    Directory of Open Access Journals (Sweden)

    Pengcheng HAN

    2017-12-01

    Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

  8. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  9. Newton's Laws, Euler's Laws and the Speed of Light

    Science.gov (United States)

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  10. A Short Proof of Euler's Inequality R ≥ 2r Theorem. Let ∆ ABC be an ...

    Indian Academy of Sciences (India)

    IAS Admin

    A Short Proof of Euler's Inequality R ≥ 2r. Theorem. Let ∆ ABC be an arbitrary triangle with circumradius R and inradius r. Then R ≥ 2r with equality holding if and only if ∆ABC is equilateral. This was first published by Euler in 1765. Since then several proofs have followed, some geometric and some algebraic. We will use ...

  11. Parallel computation of Euler and Navier-Stokes flows

    International Nuclear Information System (INIS)

    Swisshelm, J.M.; Johnson, G.M.; Kumar, S.P.

    1986-01-01

    A multigrid technique useful for accelerating the convergence of Euler and Navier-Stokes flow computations has been restructured to improve its performance on both SIMD and MIMD computers. The new algorithm allows both the construction of longer coarse-grid vectors and the multitasking of entire grids. Computational results are presented for the CDC Cyber 205, Cray X-MP, and Denelcor HEP I. 15 references

  12. Stability properties of the Euler-Korteweg system with nonmonotone pressures

    KAUST Repository

    Giesselmann, Jan; Tzavaras, Athanasios

    2016-01-01

    We establish a relative energy framework for the Euler-Korteweg system with non-convex energy. This allows us to prove weak-strong uniqueness and to show convergence to a Cahn-Hilliard system in the large friction limit. We also use relative energy

  13. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred; Douglas, Craig C.; Haase, Gundolf; Horvá th, Zoltá n

    2010-01-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one

  14. A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations

    International Nuclear Information System (INIS)

    Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier

    2007-01-01

    A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures

  15. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    Science.gov (United States)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  16. Classical mechanics on the GL(n, R) group and Euler-Calogero-Sutherland model

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Mladenov, D.M.

    2002-01-01

    Relations between free motion on the GL + (n, R) group manifold and the dynamics of an n-particle system with spin degrees of freedom on a line interacting with a pairwise 1/sinh 2 x 'potential' (Euler-Calogero-Sutherland model) are discussed within a Hamiltonian reduction. Two kinds of reductions of the degrees of freedom are considered: that which is due to continuous invariance and that which is due to discrete symmetry. It is shown that, upon projecting onto the corresponding invariant manifolds, the resulting Hamiltonian system represents the Euler-Calogero-Sutherland model in both cases

  17. Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan

    Science.gov (United States)

    Savage, J. C.

    2018-02-01

    I have used Euler-vector clustering to assign 469 GEONET stations in southwest Japan to k clusters (k = 2, 3,..., 9) so that, for any k, the velocities of stations within each cluster are most consistent with rigid-block motion on a sphere. That is, I attempt to explain the raw (i.e., uncorrected for strain accumulation), 1996-2006 velocities of those 469 Global Positioning System stations by rigid motion of k clusters on the surface of a spherical Earth. Because block geometry is maintained as strain accumulates, Euler-vector clustering may better approximate the block geometry than the values of the associated Euler vectors. The microplate solution for each k is constructed by merging contiguous clusters that have closely similar Euler vectors. The best solution consists of three microplates arranged along the Nankaido Trough-Ryukyu Trench between the Amurian and Philippine Sea Plates. One of these microplates, the South Kyushu Microplate (an extension of the Ryukyu forearc into the southeast corner of Kyushu), had previously been identified from paleomagnetic rotations. Relative to ITRF2000 the three microplates rotate at different rates about neighboring poles located close to the northwest corner of Shikoku. The microplate model is identical to that proposed in the block model of Wallace et al. (2009, https://doi.org/10.1130/G2522A.1) except in southernmost Kyushu. On Shikoku and Honshu, but not Kyushu, the microplate model is consistent with that proposed in the block models of Nishimura and Hashimoto (2006, https://doi.org/10.1016/j.tecto.2006.04.017) and Loveless and Meade (2010, https://doi.org/10.1029/2008JB006248) without the low-slip-rate boundaries proposed in the latter.

  18. An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.

  19. Regularity and energy conservation for the compressible Euler equations

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.; Wiedemann, E.

    2017-01-01

    Roč. 223, č. 3 (2017), s. 1375-1395 ISSN 0003-9527 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.392, year: 2016 http://link.springer.com/article/10.1007%2Fs00205-016-1060-5

  20. Weak solutions for Euler systems with non-local interactions

    Czech Academy of Sciences Publication Activity Database

    Carrillo, J. A.; Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.

    2017-01-01

    Roč. 95, č. 3 (2017), s. 705-724 ISSN 0024-6107 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * dissipative solutions * Newtonian interaction Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.895, year: 2016 http://onlinelibrary.wiley.com/doi/10.1112/jlms.12027/abstract

  1. A non-linear multigrid method for the steady Euler equations

    NARCIS (Netherlands)

    Hemker, P.W.; Koren, B.; Dervieux, A.; Leer, van B.; Periaux, J.; Rizzi, A.

    1989-01-01

    Higher-order accurate Euler-flow solutions are presented for some airfoil test cases. Second-order accurate solutions are computed by an Iterative Defect Correction process. For two test cases even higher accuracy is obtained by the additional use of a ~xtrapolation technique. Finite volume

  2. Euler-Lagrange modeling of the hydrodynamics of dense multiphase flows

    NARCIS (Netherlands)

    Padding, J.T.; Deen, N.G.; Peters, E. A. J. F.; Kuipers, J. A. M.

    2015-01-01

    The large-scale hydrodynamic behavior of relatively dense dispersed multiphase flows, such as encountered in fluidized beds, bubbly flows, and liquid sprays, can be predicted efficiently by use of Euler-Lagrange models. In these models, grid-averaged equations for the continuous-phase flow field are

  3. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael; Gré tarsson, Jó n Tó mas; Fedkiw, Ronald

    2011-01-01

    of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving

  4. Upwind differencing scheme for the equations of ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Brio, M.; Wu, C.C.

    1988-01-01

    Recently, upwind differencing schemes have become very popular for solving hyperbolic partial differential equations, especially when discontinuities exist in the solutions. Among many upwind schemes successfully applied to the problems in gas dynamics, Roe's method stands out for its relative simplicity and clarity of the underlying physical model. In this paper, an upwind differencing scheme of Roe-type for the MHD equations is constructed. In each computational cell, the problem is first linearized around some averaged state which preserves the flux differences. Then the solution is advanced in time by computing the wave contributions to the flux at the cell interfaces. One crucial task of the linearization procedure is the construction of a Roe matrix. For the special case γ = 2, a Roe matrix in the form of a mean value Jacobian is found, and for the general case, a simple averaging procedure is introduced. All other necessary ingredients of the construction, which include eigenvalues, and a complete set of right eigenvectors of the Roe matrix and decomposition coefficients are presented. As a numerical example, we chose a coplanar MHD Riemann problem. The problem is solved by the newly constructed second-order upwind scheme as well as by the Lax-Friedrichs, the Lax-Wendroff, and the flux-corrected transport schemes. The results demonstrate several advantages of the upwind scheme. In this paper, we also show that the MHD equations are nonconvex. This is a contrast to the general belief that the fast and slow waves are like sound waves in the Euler equations. As a consequence, the wave structure becomes more complicated; for example, compound waves consisting of a shock and attached to it a rarefaction wave of the same family can exist in MHD. copyright 1988 Academic Press, Inc

  5. Leonhardi Euleri Opera omnia: Editing the works and correspondence of Leonhard Euler

    Directory of Open Access Journals (Sweden)

    Andreas KLEINERT

    2015-12-01

    Full Text Available The paper gives an overview on the history and present state of the edition of the complete works of Leonhard Euler (1707–1783. After several failed initiatives in the 19th century, the project began in 1907 with the edition of Euler’s printed works. The works were divided into three series: I. Mathematics (29 volumes; II. Mechanics and Astronomy (31 volumes; and III. Physics and Miscellaneous (12 volumes. After several ups and downs due to two World Wars and economic problems, the publication of the printed works with a total of 72 volumes is nearly finished. Only two volumes on perturbation theory in astronomy are still missing. The publication of series IV (manuscripts and correspondence started in 1967 as a joint project of the Swiss and the Soviet academies of sciences. The manuscript edition was postponed, and the project focussed on Euler’s correspondence which contains approximately 3000 letters, 1000 of them written by Euler. The correspondents include famous mathematicians of the 18th century like d’Alembert, Clairaut and the Bernoullis, but also many less-known people with whom Euler corresponded on a great variety of subjects. A major problem is to find and to finance appropriate editors who are able to read French, Latin, and the old German handwriting, and who are acquainted with history, culture and science of the 18th century. During the last 50 years, the editors gathered copies or scans of most of the preserved Euler’s letters. The original letters addressed to Euler were made available to the editorial group in Switzerland by the Russian Academy of Sciences before World War I, and before their restitution in 1947 the editors made fairly good photographs that are now an important part of the material basis of the edition. Each volume of the letter series (VIA contains Euler’s correspondence with one or more of his contemporaries, presented in a chronological order. Up to the present day, four volumes of the

  6. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.

    Science.gov (United States)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei

    2017-04-01

    Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.

  7. Three-Dimensional Crane Modelling and Control Using Euler-Lagrange State-Space Approach and Anti-Swing Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Aksjonov Andrei

    2015-12-01

    Full Text Available The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.

  8. Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Desa, M.; Shailaja, B.

    are close to each other. A possible solution to these problems is prposed by simultaneously estimating the source location, depth and structural index assuming nonlinear background. The Euler equation is solved in a nonlinear fashion using the optimization...

  9. An addendum to the Heisenberg-Euler effective action beyond one loop

    Energy Technology Data Exchange (ETDEWEB)

    Gies, Holger; Karbstein, Felix [Helmholtz-Institut Jena,Fröbelstieg 3, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Abbe Center of Photonics,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2017-03-21

    We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.

  10. Flow fields in the supersonic through-flow fan. Comparison of the solutions of the linear potential theory and the numerical solution of the Euler equations; Choonsoku tsukaryu fan nai no nagareba. Senkei potential rironkai to Euler hoteishiki no suchikai no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, N; Nanba, M; Tashiro, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-03-27

    Comparison study between solutions of a linear potential theory and numerical solution of Euler equations was made for flow in a supersonic through-flow fan. In numerical fluid dynamic technique, Euler equations are solved by finite difference method under the assumption of air and perfect gas fluid, and neglected viscosity and thermal conductivity of fluid. As a result, in a linear potential theory, expansion wave was regarded as equipotential discontinuous surface, while in Euler numerical solution, it was regarded as finite pressure gradient where a wave front fans out toward downstream. The latter reflection point of shock wave on a wing existed upstream as compared with the former reflection point. The shock wave angle was dominated by Euler equations, and different from the Mach line of a linear potential theory in both angle and discontinuous quantities in front and behind. Both calculated solutions well agreed with each other until the first reflection point of the Mach line, however, thereafter the difference between them increased toward downstream. 5 refs., 5 figs., 1 tab.

  11. Chaotic dynamics of flexible Euler-Bernoulli beams

    Energy Technology Data Exchange (ETDEWEB)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

  12. Measure-valued solutions to the complete Euler system revisited

    Czech Academy of Sciences Publication Activity Database

    Březina, J.; Feireisl, Eduard

    2018-01-01

    Roč. 69, č. 3 (2018), č. článku 57. ISSN 0044-2275 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * measure-valued solution * vanishing dissipation limit Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.687, year: 2016 https://link.springer.com/article/10.1007/s00033-018-0951-8

  13. Uniqueness of rarefaction waves in multidimensional compressible Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej

    2015-01-01

    Roč. 12, č. 3 (2015), s. 489-499 ISSN 0219-8916 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler system * uniqueness * rarefaction wave * Riemann problem Subject RIV: BA - General Mathematics Impact factor: 0.556, year: 2015 http://www.worldscientific.com/doi/abs/10.1142/S0219891615500149

  14. Wind power development field test project at Maruyama-machi. Close survey on wind conditions; Maruyamamachi ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A survey was made on wind conditions in Maruyama-machi, Awa-gun, Chiba prefecture, on the assumption that a wind power generation system was installed therein. The survey period was one year from Oct., 1998 to Sept., 1999. The observations were carried out on the average wind velocity, average wind direction, standard deviation of velocity, and the maximum instantaneous wind velocity. With a fixed point observation at 20 m above ground, and with the minimum observation time unit of 10 minutes, an average value during the 10 minutes was determined as the measurement of each category. However, the maximum instantaneous wind velocity was determined on the measurement with the minimum observation time unit of 2 seconds. The average annual wind velocity was 3.5 m/s, the maximum wind velocity during the period was 27 m/s, and the wind axis was WSW-ENE, with the total occurrence rate of the wind direction 44.1%. The intensity of turbulence was 0.23 at a wind velocity of 2.0 m/s or above and was 0.22 at 4.0 m/s or above. An estimated annual operation rate of a windmill was 40-60% using the rated value of a 150 kW, 300 kW and 750 kW class windmills. (NEDO)

  15. A counterexample of the Euler condition: the Appell–Hamel dynamical system on a horizontally moving plate

    International Nuclear Information System (INIS)

    Shan-Shan, Xu; Shu-Min, Li; Jamal, Berakdar

    2009-01-01

    As a counterexample of the Euler condition for nonholonomic constraint problems [H. C. Shen, Acta Phys. Sin. 54, 2468 (2005)], we investigate the Apell–Hamel dynamical system on a horizontally moving plate. The inconsistency of the results with Newton mechanics suggests that the Euler condition is not a universal model for nonlinear nonholonomic systems. This is attributed to the fact that the virtual displacements so obtained are not normal to the constraint forces. (general)

  16. Discovering Euler Circuits and Paths through a Culturally Relevant Lesson

    Science.gov (United States)

    Robichaux, Rebecca R.; Rodrigue, Paulette R.

    2006-01-01

    This article describes a middle school discrete mathematics lesson that uses the context of catching crawfish to provide students with a hands-on experience related to Euler circuits and paths. The lesson promotes mathematical communication through the use of cooperative learning as well as connections between mathematics and the real world…

  17. Maximal dissipation and well-posedness for the compressible Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2014-01-01

    Roč. 16, č. 3 (2014), s. 447-461 ISSN 1422-6928 EU Projects: European Commission(XE) 320078 - MATHEF Keywords : maximal dissipation * compressible Euler system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.186, year: 2014 http://link.springer.com/article/10.1007/s00021-014-0163-8

  18. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    Science.gov (United States)

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  19. The semi-Lagrangian method on curvilinear grids

    Directory of Open Access Journals (Sweden)

    Hamiaz Adnane

    2016-09-01

    Full Text Available We study the semi-Lagrangian method on curvilinear grids. The classical backward semi-Lagrangian method [1] preserves constant states but is not mass conservative. Natural reconstruction of the field permits nevertheless to have at least first order in time conservation of mass, even if the spatial error is large. Interpolation is performed with classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction order of the derivatives. High odd order reconstruction of the derivatives is shown to be a good ersatz of cubic splines which do not behave very well as time step tends to zero. A conservative semi-Lagrangian scheme along the lines of [2] is then described; here conservation of mass is automatically satisfied and constant states are shown to be preserved up to first order in time.

  20. Swimming holonomy principles, exemplified with a Euler fluid in two dimensions

    International Nuclear Information System (INIS)

    Hannay, J H

    2012-01-01

    The idealized problem of swimming—the self-propulsion phenomenon whereby a cyclic change of shape of a ‘swimmer’ produces a net movement—is well studied for the case of a very viscous incompressible liquid. The opposite limit of zero viscosity, the ideal or ‘Euler’ fluid, has also received some attention. There remain to be articulated and explored some points of principle, set here in the context of the Euler fluid in two dimensions, though partly common to both limits and to both two and three dimensions. (i) Perhaps surprisingly, both limits are purely geometric effects, ‘holonomies’, not dependent on any timings or rates, but only on the sequence of shapes adopted by the swimmer. (ii) A principle fully determining swimming in a Euler fluid is simply stated: the fluid moves at every moment so as to minimize the sum of its and the swimmer's kinetic energy. (iii) Euler swimming would be solvable explicitly were it not for the standard impasse of potential theory: to find the boundary normal derivative of a function obeying Laplace's equation given its value around the boundary (or vice versa). As usual more analytical progress is possible in two dimensions (by complexifying) than three, but full tractability still requires the extreme of slight, rapid swimming strokes, and a simple example is given. In both limits, for a non-symmetrical swimming stroke, a rotation or orientation holonomy accompanies the translational one—the swimmer has turned somewhat as well as translated. The whole holonomy is non-Abelian (the order of the shape sequence matters), but (iv) for two dimensions the rotation part is Abelian. A benefit (albeit cosmetic) is that the one-stroke displacement and turning can be written down as a complex line integral. (v) Another benefit is that while Stokes's theorem (in shape space) is normally sacrificed in non-Abelian holonomies, a partial recovery of the theorem is possible in two-dimensional swimming. To illustrate this last

  1. Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system

    Science.gov (United States)

    Liu, Cunming; Peng, Yue-Jun

    2017-06-01

    We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.

  2. On the motion of incompressible inhomogeneous Euler-Korteweg fluids

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Feireisl, Eduard; Málek, J.; Shvydkoy, R.

    2010-01-01

    Roč. 3, č. 3 (2010), s. 497-515 ISSN 1937-1632 R&D Projects: GA MŠk LC06052; GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Korteweg fluid * inhomogeneous Euler fluid * Korteweg stress * local-in-time well-posedness * smooth solution Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5226

  3. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    OpenAIRE

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-01-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak ...

  4. Godunov-type schemes for hydrodynamic and magnetohydrodynamic modeling

    International Nuclear Information System (INIS)

    Vides-Higueros, Jeaniffer

    2014-01-01

    The main objective of this thesis concerns the study, design and numerical implementation of finite volume schemes based on the so-Called Godunov-Type solvers for hyperbolic systems of nonlinear conservation laws, with special attention given to the Euler equations and ideal MHD equations. First, we derive a simple and genuinely two-Dimensional Riemann solver for general conservation laws that can be regarded as an actual 2D generalization of the HLL approach, relying heavily on the consistency with the integral formulation and on the proper use of Rankine-Hugoniot relations to yield expressions that are simple enough to be applied in the structured and unstructured contexts. Then, a comparison between two methods aiming to numerically maintain the divergence constraint of the magnetic field for the ideal MHD equations is performed and we show how the 2D Riemann solver can be employed to obtain robust divergence-Free simulations. Next, we derive a relaxation scheme that incorporates gravity source terms derived from a potential into the hydrodynamic equations, an important problem in astrophysics, and finally, we review the design of finite volume approximations in curvilinear coordinates, providing a fresher view on an alternative discretization approach. Throughout this thesis, numerous numerical results are shown. (author) [fr

  5. Evaluating of air flow movements and thermal comfort in a model room with Euler equation: Two dimensional study

    Energy Technology Data Exchange (ETDEWEB)

    Chafi, Fatima Zohra; Halle, Stephane [Mechanical engineering department, Ecole de technologie superieure, Quebec university, 1100 rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3 (Canada)

    2011-02-15

    This paper presents the results of a study that consists of estimating the temperature distribution and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and heating are compared with the predictions of a Navier-Stokes model, as well as with experimental results. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is capable of properly estimating the temperature distribution, the air movement and the comfort indices in the room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 30% compared to the Navier-Stokes modeling. (author)

  6. Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system

    International Nuclear Information System (INIS)

    Wang, C.

    1992-01-01

    The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories

  7. Analysis of A Uniform Bernoulli – Euler Beam on Winkler Foundation ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-09

    Mar 9, 2018 ... method to analyze Winkler foundation subjected to a harmonic moving load on a uniform Bernoulli – Euler Beam. MATLAB software was used to implement the Newmark time integration method to ... A lot of engineering structures under moving loads .... Because numerical procedure produce stability issue,.

  8. Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials

    Science.gov (United States)

    Behera, Laxmi; Chakraverty, S.

    2014-03-01

    Vibration analysis of nonlocal nanobeams based on Euler-Bernoulli and Timoshenko beam theories is considered. Nonlocal nanobeams are important in the bending, buckling and vibration analyses of beam-like elements in microelectromechanical or nanoelectromechanical devices. Expressions for free vibration of Euler-Bernoulli and Timoshenko nanobeams are established within the framework of Eringen's nonlocal elasticity theory. The problem has been solved previously using finite element method, Chebyshev polynomials in Rayleigh-Ritz method and using other numerical methods. In this study, numerical results for free vibration of nanobeams have been presented using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. To validate the present analysis, a comparison study is carried out with the results of the existing literature. The proposed method is also validated by convergence studies. Frequency parameters are found for different scaling effect parameters and boundary conditions. The study highlights that small scale effects considerably influence the free vibration of nanobeams. Nonlocal frequency parameters of nanobeams are smaller when compared to the corresponding local ones. Deflection shapes of nonlocal clamped Euler-Bernoulli nanobeams are also incorporated for different scaling effect parameters, which are affected by the small scale effect. Obtained numerical solutions provide a better representation of the vibration behavior of short and stubby micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant.

  9. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper

    2015-01-07

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.

  10. Security and efficiency data sharing scheme for cloud storage

    International Nuclear Information System (INIS)

    Han, Ke; Li, Qingbo; Deng, Zhongliang

    2016-01-01

    With the adoption and diffusion of data sharing paradigm in cloud storage, there have been increasing demands and concerns for shared data security. Ciphertext Policy Attribute-Based Encryption (CP-ABE) is becoming a promising cryptographic solution to the security problem of shared data in cloud storage. However due to key escrow, backward security and inefficiency problems, existing CP-ABE schemes cannot be directly applied to cloud storage system. In this paper, an effective and secure access control scheme for shared data is proposed to solve those problems. The proposed scheme refines the security of existing CP-ABE based schemes. Specifically, key escrow and conclusion problem are addressed by dividing key generation center into several distributed semi-trusted parts. Moreover, secrecy revocation algorithm is proposed to address not only back secrecy but efficient problem in existing CP-ABE based scheme. Furthermore, security and performance analyses indicate that the proposed scheme is both secure and efficient for cloud storage.

  11. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    Science.gov (United States)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  12. Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle

    Science.gov (United States)

    Tsuge, Naoki

    2013-08-01

    We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.

  13. Semi-active control for vibration mitigation of structural systems incorporating uncertainties

    International Nuclear Information System (INIS)

    Miah, Mohammad S; Chatzi, Eleni N; Weber, Felix

    2015-01-01

    This study introduces a novel semi-active control scheme, where the linear-quadratic regulator (LQR) is combined with an unscented Kalman filter (UKF) observer, for the real-time mitigation of structural vibration. Due to a number of factors, such as environmental effects and ageing processes, the controlled system may be characterized by uncertainties. The UKF, which comprises a nonlinear observer, is employed herein for devising an adaptive semi-active control scheme capable of tackling such a challenge. This is achieved through the real-time realization of joint state and parameter estimation during the structural control process via the proposed LQR-UKF approach. The behavior of the introduced scheme is exemplified through two numerical applications. The efficacy of the devised methodology is firstly compared against the standard LQR-KF approach in a linear benchmark application where the system model is assumed known a priori, and secondly, the method is validated on a joint state and parameter estimation problem where the system model is assumed uncertain, formulated as nonlinear, and updated in real-time. (paper)

  14. Smooth values of the iterates of the Euler's Phi function

    OpenAIRE

    Lamzouri, Youness

    2005-01-01

    Let $\\phi(n)$ be the Euler-phi function, define $\\phi_0(n) = n$ and $\\phi_{k+1}(n)=\\phi(\\phi_{k}(n))$ for all $k\\geq 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which $\\phi_k(n)$ is $y$-smooth, conditionally on a weak form of the Elliott-Halberstam conjecture.

  15. Integration with respect to the Euler characteristic and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, Sabir M [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2010-09-16

    The notion of integration with respect to the Euler characteristic and its generalizations are discussed: integration over the infinite-dimensional spaces of arcs and functions, motivic integration. The author describes applications of these notions to the computation of monodromy zeta functions, Poincare series of multi-index filtrations, generating series of classes of certain moduli spaces, and so on. Bibliography: 70 titles.

  16. Further Generalization of Golden Mean in Relation to Euler Divine Equation

    OpenAIRE

    Rakocevic, Miloje M.

    2006-01-01

    In the paper a new generalization of the Golden mean, as a further generalization in relation to Stakhov (1989) and to Spinadel (1999), is presented. Also it is first observed that the Euler divine equation represents a possible generalization of Golden mean. In this second version the Section 6 is added.

  17. The importance of Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov

    Science.gov (United States)

    Sharkov, N. A.; Sharkova, O. A.

    2018-05-01

    The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.

  18. Viscous Regularization of the Euler Equations and Entropy Principles

    KAUST Repository

    Guermond, Jean-Luc

    2014-03-11

    This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.

  19. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  20. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system

  1. Seakeeping with the semi-Lagrangian particle finite element method

    Science.gov (United States)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  2. Fluid-structure coupling in Lagrange-Lagrange and Euler-Lagrange descriptions

    International Nuclear Information System (INIS)

    Jones, A.V.

    1981-01-01

    Fluid-structure interaction problems are very common in the reactor safety field, examples being containment loading in LMFBR systems and the downcomer problem in LWRs. This article reviews the principal finite difference methodes employed for their solution. After a survey of the chief representations of the equations of motion of the fluid and structure and of their coupling, the Lagrange-Lagrange and Euler-Lagrange representations are examined in detail. The practical necessity of treating the structure in Lagrangian coordinates and the respective merits of the Lagrangian and Eulerian representations for the fluid are explained, both for coupling between continua and for coupling between a fluid and a thin shell. Detailed analyses of the stability and numerical dissipation of the Lagrange-Lagrange and Euler-Lagrange coupling techniques in a very simple one-dimensional problem are provided to supply indicators as to stability and dissipation in more complex multidimensional situations and to bring out the theoretical complexity of seemingly simple coupling algorithms. The article then presents some practical examples of coupled problems in which calculations can be compared with experiment, and concludes with a section on future trends in the field of fluid-structure coupling

  3. Analysis of central and upwind compact schemes

    International Nuclear Information System (INIS)

    Sengupta, T.K.; Ganeriwal, G.; De, S.

    2003-01-01

    Central and upwind compact schemes for spatial discretization have been analyzed with respect to accuracy in spectral space, numerical stability and dispersion relation preservation. A von Neumann matrix spectral analysis is developed here to analyze spatial discretization schemes for any explicit and implicit schemes to investigate the full domain simultaneously. This allows one to evaluate various boundary closures and their effects on the domain interior. The same method can be used for stability analysis performed for the semi-discrete initial boundary value problems (IBVP). This analysis tells one about the stability for every resolved length scale. Some well-known compact schemes that were found to be G-K-S and time stable are shown here to be unstable for selective length scales by this analysis. This is attributed to boundary closure and we suggest special boundary treatment to remove this shortcoming. To demonstrate the asymptotic stability of the resultant schemes, numerical solution of the wave equation is compared with analytical solution. Furthermore, some of these schemes are used to solve two-dimensional Navier-Stokes equation and a computational acoustic problem to check their ability to solve problems for long time. It is found that those schemes, that were found unstable for the wave equation, are unsuitable for solving incompressible Navier-Stokes equation. In contrast, the proposed compact schemes with improved boundary closure and an explicit higher-order upwind scheme produced correct results. The numerical solution for the acoustic problem is compared with the exact solution and the quality of the match shows that the used compact scheme has the requisite DRP property

  4. A scheme of hidden-structure attribute-based encryption with multiple authorities

    Science.gov (United States)

    Ling, J.; Weng, A. X.

    2018-05-01

    In the most of the CP-ABE schemes with hidden access structure, both all the user attributes and the key generation are managed by only one authority. The key generation efficiency will decrease as the number of user increases, and the data will encounter security issues as the only authority is attacked. We proposed a scheme of hidden-structure attribute-based encryption with multiple authorities, which introduces multiple semi-trusted attribute authorities, avoiding the threat even though one or more authorities are attacked. We also realized user revocation by managing a revocation list. Based on DBDH assumption, we proved that our scheme is of IND-CMA security. The analysis shows that our scheme improves the key generation efficiency.

  5. The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems.

    Science.gov (United States)

    Kalinina, Elizabeth A

    2013-08-01

    The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Generalizations of Steffensen’s inequality via some Euler-type identities

    Directory of Open Access Journals (Sweden)

    Pečarić Josip

    2016-08-01

    Full Text Available Using Euler-type identities some new generalizations of Steffensen’s inequality for n–convex functions are obtained. Moreover, the Ostrowski-type inequalities related to obtained generalizations are given. Furthermore, using inequalities for the Čebyšev functional in terms of the first derivative some new bounds for the remainder in identities related to generalizations of Steffensen’s inequality are proven.

  7. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  8. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Science.gov (United States)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  9. A model for cell migration in non-isotropic fibrin networks with an application to pancreatic tumor islets.

    Science.gov (United States)

    Chen, Jiao; Weihs, Daphne; Vermolen, Fred J

    2018-04-01

    Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.

  10. Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions

    NARCIS (Netherlands)

    Koren, B.; Leer, van B.

    1995-01-01

    For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in

  11. Next to leading order semi-inclusive spin asymmetries

    International Nuclear Information System (INIS)

    Florian, D. de; Epele, L.N.; Fanchiotti, H.; Garcia C, C.A.; Sassot, R.

    1996-04-01

    We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order (NLO) QCD corrections and contributions coming from the target fragmentation region. These corrections have been estimated using NLO fragmentation functions, parton distributions and also a model for spin dependent fracture functions which is proposed here. We have found that NLO corrections are small but non-negligible in a scheme where gluons are polarised and that our estimate for target fragmentation effects, which is in agreement with the available semi-inclusive data, does not modify significantly charged asymmetries but is non-negligible for the so called difference asymmetries. (author). 18 refs., 7 figs

  12. On the Approximation of Generalized Lipschitz Function by Euler Means of Conjugate Series of Fourier Series

    Science.gov (United States)

    Kushwaha, Jitendra Kumar

    2013-01-01

    Approximation theory is a very important field which has various applications in pure and applied mathematics. The present study deals with a new theorem on the approximation of functions of Lipschitz class by using Euler's mean of conjugate series of Fourier series. In this paper, the degree of approximation by using Euler's means of conjugate of functions belonging to Lip (ξ(t), p) class has been obtained. Lipα and Lip (α, p) classes are the particular cases of Lip (ξ(t), p) class. The main result of this paper generalizes some well-known results in this direction. PMID:24379744

  13. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  14. A further note on the force discrepancy for wing theory in Euler flow

    Indian Academy of Sciences (India)

    The Euler equations use the assumption that the fluid does not impart any resistance ... viscosity, the kinetic energy associated with these flow fields is now bounded, ..... Combining all the results together from Appendices B, C and D we get.

  15. Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles

    OpenAIRE

    Chen, Chao; Xie, Chunjing

    2013-01-01

    In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...

  16. A-free rigidity and applications to the compressible Euler system

    Czech Academy of Sciences Publication Activity Database

    Chiodaroli, E.; Feireisl, Eduard; Kreml, Ondřej; Wiedemann, E.

    2017-01-01

    Roč. 196, č. 4 (2017), s. 1557-1572 ISSN 0373-3114 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : A-free condition * compressible Euler equations * measure-valued solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.864, year: 2016 https://link.springer.com/article/10.1007%2Fs10231-016-0629-9

  17. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    Science.gov (United States)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  18. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    Science.gov (United States)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-10-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.

  19. Parallel implementations of 2D explicit Euler solvers

    International Nuclear Information System (INIS)

    Giraud, L.; Manzini, G.

    1996-01-01

    In this work we present a subdomain partitioning strategy applied to an explicit high-resolution Euler solver. We describe the design of a portable parallel multi-domain code suitable for parallel environments. We present several implementations on a representative range of MlMD computers that include shared memory multiprocessors, distributed virtual shared memory computers, as well as networks of workstations. Computational results are given to illustrate the efficiency, the scalability, and the limitations of the different approaches. We discuss also the effect of the communication protocol on the optimal domain partitioning strategy for the distributed memory computers

  20. Calculation of the level density parameter using semi-classical approach

    International Nuclear Information System (INIS)

    Canbula, B.; Babacan, H.

    2011-01-01

    The level density parameters (level density parameter a and energy shift δ) for back-shifted Fermi gas model have been determined for 1136 nuclei for which complete level scheme is available. Level density parameter is calculated by using the semi-classical single particle level density, which can be obtained analytically through spherical harmonic oscillator potential. This method also enables us to analyze the Coulomb potential's effect on the level density parameter. The dependence of this parameter on energy has been also investigated. Another parameter, δ, is determined by fitting of the experimental level scheme and the average resonance spacings for 289 nuclei. Only level scheme is used for optimization procedure for remaining 847 nuclei. Level densities for some nuclei have been calculated by using these parameter values. Obtained results have been compared with the experimental level scheme and the resonance spacing data.

  1. Perturbational blowup solutions to the compressible Euler equations with damping.

    Science.gov (United States)

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  2. General solutions of second-order linear difference equations of Euler type

    Directory of Open Access Journals (Sweden)

    Akane Hongyo

    2017-01-01

    Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.

  3. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  4. Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions

    NARCIS (Netherlands)

    J.L. López; N.M. Temme (Nico)

    1998-01-01

    textabstractBernoulli and Euler polynomials are considered for large values of the order. Convergent expansions are obtained for $B_n(nz+1/2)$ and $E_n(nz+1/2)$ in powers of $n^{-1$, with coefficients being rational functions of $z$ and hyperbolic functions of argument $1/2z$. These expansions are

  5. Well/ill posedness for the Euler-Korteweg-Poisson system and related problems

    Czech Academy of Sciences Publication Activity Database

    Donatelli, D.; Feireisl, Eduard; Marcati, P.

    2015-01-01

    Roč. 40, č. 7 (2015), s. 1314-1335 ISSN 0360-5302 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : convex integration * Euler-Korteweg system * quantum hydrodynamics Subject RIV: BA - General Mathematics Impact factor: 1.444, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/03605302.2014.972517

  6. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  7. Security problems with a chaos-based deniable authentication scheme

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo

    2005-01-01

    Recently, a new scheme was proposed for deniable authentication. Its main originality lied on applying a chaos-based encryption-hash parallel algorithm and the semi-group property of the Chebyshev chaotic map. Although original and practicable, its insecurity and inefficiency are shown in this paper, thus rendering it inadequate for adoption in e-commerce

  8. Security problems with a chaos-based deniable authentication scheme

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gonzalo [Instituto de Fisica Aplicada, Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain)] e-mail: gonzalo@iec.csic.es

    2005-10-01

    Recently, a new scheme was proposed for deniable authentication. Its main originality lied on applying a chaos-based encryption-hash parallel algorithm and the semi-group property of the Chebyshev chaotic map. Although original and practicable, its insecurity and inefficiency are shown in this paper, thus rendering it inadequate for adoption in e-commerce.

  9. A simple extension of Roe's scheme for real gases

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo

    2017-01-15

    The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared with an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.

  10. Numerical study on the convergence to steady state solutions of a new class of high order WENO schemes

    Science.gov (United States)

    Zhu, Jun; Shu, Chi-Wang

    2017-11-01

    A new class of high order weighted essentially non-oscillatory (WENO) schemes (Zhu and Qiu, 2016, [50]) is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes (Jiang and Shu, 1996, [23]) might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in Jiang and Shu (1996) [23] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.

  11. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  12. Euler: programa didáctico de elementos finitos

    Directory of Open Access Journals (Sweden)

    Dorian Luis Linero Segrera

    2000-07-01

    Full Text Available Este artículo muestra las características del programa Euler como herramienta para el aprendizaje del método de los elementos finitos, con énfasis en el análisis estructural. Euler puede resolver entre otros los siguientes problemas: análisis matricial estático de armaduras y pórticos planos, análisis de estabilidad, evaluación de frecuencias y modos de vibración en pórticos planos, deformaciones en vigas y en elementos sometidos a fuerza axial y otros problemas controlados por la ecuación diferencial de campo unidimensional indicada en este artículo. Además, se pueden solucionar problemas de torsión en secciones no circulares, flujo potencial, transferencia de calor y otros problemas controlados por la ecuación diferencial de campo bidimensional mostrada en este documento. También es posible resolver problemas de elasticidad bidimensional en condición plana de esfuerzos y en condición plana de deformaciones. Al operar el programa, el usuario debe escribir una de las instrucciones necesarias para obtener las cantidades de interés. Las instrucciones disponibles se clasifican así: edición de matrices, operaciones matriciales básicas, solución de sistemas de ecuaciones simultáneas, ensamblaje de matrices y vectores, numeración de grados de libertad, valores y vectores propios. Existen también instrucciones para la creación de matrices elementales como: funciones de forma, matriz gradiente, matriz de rigidez, vector de términos independientes, contribución interelemental, matriz de transformación y matriz de constantes elásticas.

  13. Observable algebras for the rational and trigonometric Euler-Calogero-Moser Models

    International Nuclear Information System (INIS)

    Avan, J.; Billey, E.

    1995-01-01

    We construct polynomial Poisson algebras of observables for the classical Euler-Calogero-Moser (ECM) models. Their structure connects them to flavour-indexed non-linear W ∞ algebras, albeit with qualitative differences. The conserved Hamiltonians and symmetry algebras derived in a previous work are subsets of these algebra. We define their linear, N →∞ limits, realizing W ∞ type algebras coupled to current algebras. ((orig.))

  14. Stochastic Optimal Prediction with Application to Averaged Euler Equations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chorin, Alexandre J. [Univ. of California, Berkeley, CA (United States); Crutchfield, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-24

    Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.

  15. The Euler anomaly and scale factors in Liouville/Toda CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Aswin [Theory Group, Department of Physics, University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX 78712-1197 (United States)

    2014-04-22

    The role played by the Euler anomaly in the dictionary relating sphere partition functions of four dimensional theories of class S and two dimensional non rational CFTs is clarified. On the two dimensional side, this involves a careful treatment of scale factors in Liouville/Toda correlators. Using ideas from tinkertoy constructions for Gaiotto duality, a framework is proposed for evaluating these scale factors. The representation theory of Weyl groups plays a critical role in this framework.

  16. Particular solutions of generalized Euler-Poisson-Darboux equation

    Directory of Open Access Journals (Sweden)

    Rakhila B. Seilkhanova

    2015-01-01

    Full Text Available In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\\frac{2\\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\\frac{2\\alpha }{x}{{u}_{x}}+\\frac{2\\beta }{y}{{u}_y},\\quad x>0,\\;y>0,\\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\\to 0$, where ${{r}^2}={{( x-{{x}_0}}^2}+{{( y-{{y}_0}}^2}-{{( t-{{t}_0}}^2}$.

  17. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  18. Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes

    International Nuclear Information System (INIS)

    Thuburn, J.; Woollings, T.J.

    2005-01-01

    Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes

  19. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of

  20. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

    Science.gov (United States)

    Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

    2018-04-01

    We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

  1. Study of vortex breakdown of F-106B by Euler code

    Science.gov (United States)

    Pao, Jenn Louh

    1990-01-01

    The 'Three-dimensional Euler Aerodynamic Method' (TEAM) is presently applied to the F-106B at subsonic speed, in order to examine the relationship between off- and on-surface flow features at angles-of-attack sufficiently great for the occurrence of vortex breakdown. Although TEAM's flow separation is triggered by numerical dissipation, the general trend of vortex-breakdown effect on computed lift characteristics is similar to extant wind tunnel results.

  2. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    Science.gov (United States)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  3. NEWTON'S SECOND LAW OF MOTION, F=MA; EULER'S OR NEWTON'S?

    OpenAIRE

    Ajay Sharma

    2017-01-01

    Objective: F =ma is taught as Newton’s second law of motion all over the world. But it was given by Euler in 1775, forty-eight years after the death of Newton. It is debated here with scientific logic. Methods/Statistical analysis: The discussion partially deals with history of science so various aspects are quoted from original references. Newton did not give any equation in the Principia for second, third laws motion and law of gravitation. Conceptually, in Newton’s time, neither accele...

  4. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst

    2015-01-01

    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  5. Stability of the isentropic Riemann solutions of the full multidimensional Euler system

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Vasseur, A.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 2416-2425 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * isentropic solutions * Riemann problem * rarefaction wave Subject RIV: BA - General Mathematics Impact factor: 1.486, year: 2015 http://epubs.siam.org/doi/abs/10.1137/140999827

  6. Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro da Cruz

    2013-01-01

    This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)

  7. Semi-continuous and multigroup models in extended kinetic theory

    International Nuclear Information System (INIS)

    Koller, W.

    2000-01-01

    The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)

  8. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  9. Numerical solution of Euler's equation by perturbed functionals

    Science.gov (United States)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  10. A Discrete Numerical Scheme of Modified Leslie-Gower With Harvesting Model

    Directory of Open Access Journals (Sweden)

    Riski Nur Istiqomah Dinnullah

    2018-05-01

    Full Text Available Recently, exploitation of biological resources and the harvesting of two populations or more are widely practiced, such as fishery or foresty. The simplest way to describe the interaction of two species is by using predator prey model, that is one species feeds on another. The Leslie-Gower predator prey model has been studied in many works. In this paper, we use Euler method to discretisize the modified Leslie-Gower with harvesting model. The model consists of two simultanious predator prey equations. We show numerically that this discrete numerical scheme model is dynamically consistent with its continuous model only for relatively small step-size. By using computer simulation software, we show that equlibrium points can be stable, saddles, and unstable. It is shown that the numerical simulations not only illustrate the results, but also show the rich dynamics behaviors of the discrete system.

  11. A Research on a Certain Family of Numbers and Polynomials Related to Stirling Numbers, Central Factorial Numbers, and Euler Numbers

    Directory of Open Access Journals (Sweden)

    J. Y. Kang

    2013-01-01

    Full Text Available Recently, many mathematicians have studied different kinds of the Euler, Bernoulli, and Genocchi numbers and polynomials. In this paper, we give another definition of polynomials Ũn(x. We observe an interesting phenomenon of “scattering” of the zeros of the polynomials Ũn(x in complex plane. We find out some identities and properties related to polynomials Ũn(x. Finally, we also derive interesting relations between polynomials Ũn(x, Stirling numbers, central factorial numbers, and Euler numbers.

  12. A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2013-01-01

    A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)

  13. A high-order method for the integration of the Galerkin semi-discretized nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Vargas, L.

    1988-01-01

    The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval

  14. A rigorous justification of the Euler and Navier-Stokes equations with geometric effects

    Czech Academy of Sciences Publication Activity Database

    Bella, P.; Feireisl, Eduard; Lewicka, M.; Novotný, A.

    2016-01-01

    Roč. 48, č. 6 (2016), s. 3907-3930 ISSN 0036-1410 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : isentropic Navier-Stokes system * isentropic Euler system * inviscid limit Subject RIV: BA - General Mathematics Impact factor: 1.648, year: 2016 http://epubs.siam.org/doi/10.1137/15M1048963

  15. Some results on the well-posedness of Euler-Voigt and Navier-Stokes-Voigt models

    OpenAIRE

    Berselli, Luigi C.; Bisconti, Luca

    2010-01-01

    We consider the Euler-Voigt equations and the Navier-Stokes-Voigt equations, which are obtained by an inviscid alpha-regularization from the corresponding equations. The main result we show is the structural stability of the system in term of the variations of both viscosity of regularization parameters.

  16. De la representación de sistemas Euler - Lagrange a la Hamiltoniana generalizada

    Directory of Open Access Journals (Sweden)

    L. H. Rodríguez - Alfaro

    2015-01-01

    Full Text Available La representación Hamiltoniana generalizada de sistemas brinda una estructura que puede ser utilizada con ventaja en muchas áreas, entre las cuales se puede mencionar el diseño de observadores y el diagnóstico de fallas basado en modelos. Muchos de los trabajos en estos te mas tienen como punto de partida al sistema en forma Hamiltoniana generalizada y, en general, se omite la explicación de cómo llegar a esta representación, por ejemplo, a partir de un modelo no lineal basado en las ecuaciones de Euler - Lagrange. En este tra bajo se presenta un análisis detallado de cómo es que se obtiene la representación Hamiltoniana generalizada de un sistema a partir de las n ecuaciones diferenciales de segundo orden obtenidas con el formalismo Euler - Lagrange. Con la finalidad de mostrar e n lo particular, después del caso general, cómo se obtiene la representación Hamiltoniana generalizada, se presentan algunos casos de estudio.

  17. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Waltz, J.; Canfield, T.R.; Morgan, N.R.; Risinger, L.D.; Wohlbier, J.G.

    2014-01-01

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies

  18. VennDiagramWeb: a web application for the generation of highly customizable Venn and Euler diagrams.

    Science.gov (United States)

    Lam, Felix; Lalansingh, Christopher M; Babaran, Holly E; Wang, Zhiyuan; Prokopec, Stephenie D; Fox, Natalie S; Boutros, Paul C

    2016-10-03

    Visualization of data generated by high-throughput, high-dimensionality experiments is rapidly becoming a rate-limiting step in computational biology. There is an ongoing need to quickly develop high-quality visualizations that can be easily customized or incorporated into automated pipelines. This often requires an interface for manual plot modification, rapid cycles of tweaking visualization parameters, and the generation of graphics code. To facilitate this process for the generation of highly-customizable, high-resolution Venn and Euler diagrams, we introduce VennDiagramWeb: a web application for the widely used VennDiagram R package. VennDiagramWeb is hosted at http://venndiagram.res.oicr.on.ca/ . VennDiagramWeb allows real-time modification of Venn and Euler diagrams, with parameter setting through a web interface and immediate visualization of results. It allows customization of essentially all aspects of figures, but also supports integration into computational pipelines via download of R code. Users can upload data and download figures in a range of formats, and there is exhaustive support documentation. VennDiagramWeb allows the easy creation of Venn and Euler diagrams for computational biologists, and indeed many other fields. Its ability to support real-time graphics changes that are linked to downloadable code that can be integrated into automated pipelines will greatly facilitate the improved visualization of complex datasets. For application support please contact Paul.Boutros@oicr.on.ca.

  19. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  20. Semi-analytical solution to arbitrarily shaped beam scattering

    Science.gov (United States)

    Wang, Wenjie; Zhang, Huayong; Sun, Yufa

    2017-07-01

    Based on the field expansions in terms of appropriate spherical vector wave functions and the method of moments scheme, an exact semi-analytical solution to the scattering of an arbitrarily shaped beam is given. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are presented to a spheroid and a circular cylinder of finite length, and the scattering properties are analyzed concisely.

  1. Gaining qualitative insight into the subjective experiences of adherers to an exercise referral scheme: A thematic analysis.

    Science.gov (United States)

    Eynon, Michael John; O'Donnell, Christopher; Williams, Lynn

    2016-07-01

    Nine adults who had completed an exercise referral scheme participated in a semi-structured interview to uncover the key psychological factors associated with adherence to the scheme. Through thematic analysis, an exercise identity emerged to be a major factor associated with adherence to the scheme, which was formed of a number of underpinning constructs including changes in self-esteem, changes in self-efficacy and changes in self-regulatory strategies. Also, an additional theme of transitions in motivation to exercise was identified, showing participants' motivation to alter from extrinsic to intrinsic reasons to exercise during the scheme.

  2. On the stability of solutions, compacted to eleven dimensions, with the Euler invariants

    International Nuclear Information System (INIS)

    Fabris, J.C.

    1991-01-01

    The Supergravity Lagrangian at eleven dimensions has been modified by the inclusion of Euler invariants. Compact solutions have been obtained where the space-time is the Minkowski one, preserving, the internal space as a seven-sphere. The stability study of this configuration allows the restriction of the acceptable values for the coupling constants present in this model. (A.C.A.S.)

  3. A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Owkes, Mark, E-mail: mark.owkes@montana.edu [Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717 (United States); Desjardins, Olivier [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2017-03-01

    In this work, we present a computational methodology for convection and advection that handles discontinuities with second order accuracy and maintains conservation to machine precision. This method can transport a variety of discontinuous quantities and is used in the context of an incompressible gas–liquid flow to transport the phase interface, momentum, and scalars. The proposed method provides a modification to the three-dimensional, unsplit, second-order semi-Lagrangian flux method of Owkes & Desjardins (JCP, 2014). The modification adds a refined grid that provides consistent fluxes of mass and momentum defined on a staggered grid and discrete conservation of mass and momentum, even for flows with large density ratios. Additionally, the refined grid doubles the resolution of the interface without significantly increasing the computational cost over previous non-conservative schemes. This is possible due to a novel partitioning of the semi-Lagrangian fluxes into a small number of simplices. The proposed scheme is tested using canonical verification tests, rising bubbles, and an atomizing liquid jet.

  4. A Brief Historical Introduction to Euler's Formula for Polyhedra, Topology, Graph Theory and Networks

    Science.gov (United States)

    Debnath, Lokenath

    2010-01-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…

  5. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    Science.gov (United States)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  6. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    NARCIS (Netherlands)

    Pesch, L.; van der Vegt, Jacobus J.W.

    2008-01-01

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The

  7. N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1991-11-01

    Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs

  8. Large Scale Simulations of the Euler Equations on GPU Clusters

    KAUST Repository

    Liebmann, Manfred

    2010-08-01

    The paper investigates the scalability of a parallel Euler solver, using the Vijayasundaram method, on a GPU cluster with 32 Nvidia Geforce GTX 295 boards. The aim of this research is to enable large scale fluid dynamics simulations with up to one billion elements. We investigate communication protocols for the GPU cluster to compensate for the slow Gigabit Ethernet network between the GPU compute nodes and to maintain overall efficiency. A diesel engine intake-port and a nozzle, meshed in different resolutions, give good real world examples for the scalability tests on the GPU cluster. © 2010 IEEE.

  9. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    Science.gov (United States)

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    Science.gov (United States)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  11. Third Order Reconstruction of the KP Scheme for Model of River Tinnelva

    Directory of Open Access Journals (Sweden)

    Susantha Dissanayake

    2017-01-01

    Full Text Available The Saint-Venant equation/Shallow Water Equation is used to simulate flow of river, flow of liquid in an open channel, tsunami etc. The Kurganov-Petrova (KP scheme which was developed based on the local speed of discontinuity propagation, can be used to solve hyperbolic type partial differential equations (PDEs, hence can be used to solve the Saint-Venant equation. The KP scheme is semi discrete: PDEs are discretized in the spatial domain, resulting in a set of Ordinary Differential Equations (ODEs. In this study, the common 2nd order KP scheme is extended into 3rd order scheme while following the Weighted Essentially Non-Oscillatory (WENO and Central WENO (CWENO reconstruction steps. Both the 2nd order and 3rd order schemes have been used in simulation in order to check the suitability of the KP schemes to solve hyperbolic type PDEs. The simulation results indicated that the 3rd order KP scheme shows some better stability compared to the 2nd order scheme. Computational time for the 3rd order KP scheme for variable step-length ode solvers in MATLAB is less compared to the computational time of the 2nd order KP scheme. In addition, it was confirmed that the order of the time integrators essentially should be lower compared to the order of the spatial discretization. However, for computation of abrupt step changes, the 2nd order KP scheme shows a more accurate solution.

  12. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    Science.gov (United States)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/2Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when s>5/2.

  13. Understanding the types of fraud in claims to South African medical schemes.

    Science.gov (United States)

    Legotlo, T G; Mutezo, A

    2018-03-28

    Medical schemes play a significant role in funding private healthcare in South Africa (SA). However, the sector is negatively affected by the high rate of fraudulent claims. To identify the types of fraudulent activities committed in SA medical scheme claims. A cross-sectional qualitative study was conducted, adopting a case study strategy. A sample of 15 employees was purposively selected from a single medical scheme administration company in SA. Semi-structured interviews were conducted to collect data from study participants. A thematic analysis of the data was done using ATLAS.ti software (ATLAS.ti Scientific Software Development, Germany). The study population comprised the 17 companies that administer medical schemes in SA. Data were collected from 15 study participants, who were selected from the medical scheme administrator chosen as a case study. The study found that medical schemes were defrauded in numerous ways. The perpetrators of this type of fraud include healthcare service providers, medical scheme members, employees, brokers and syndicates. Medical schemes are mostly defrauded by the submission of false claims by service providers and syndicates. Fraud committed by medical scheme members encompasses the sharing of medical scheme benefits with non-members (card farming) and non-disclosure of pre-existing conditions at the application stage. The study concluded that perpetrators of fraud have found several ways of defrauding SA medical schemes regarding claims. Understanding and identifying the types of fraud events facing medical schemes is the initial step towards establishing methods to mitigate this risk. Future studies should examine strategies to manage fraudulent medical scheme claims.

  14. Interpretation of high resolution airborne magnetic data (HRAMD of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    Directory of Open Access Journals (Sweden)

    Olurin Oluwaseun Tolutope

    2017-12-01

    Full Text Available Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30′–8°00′N and longitudes 4°30′–5°00′E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243 to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA. The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from –77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly and magnetic low intensities (low-amplitude magnetic anomaly in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from −500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  15. Generalization of two-phase model with topology microstructure of mixture to Lagrange-Euler methodology

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Alexei A Leonov

    2005-01-01

    Full text of publication follows: One of the mathematical models (hyperbolic type) for describing evolution of compressible two-phase mixtures was offered in [1] to deal with the following applications: interfaces between compressible materials; shock waves in multiphase mixtures; evolution of homogeneous two-phase flows; cavitation in liquids. The basic difficulties of this model was connected to discretization of the non-conservative equation terms. As result, the class of problems concerned with passage of shock waves through fields with a discontinuing profile of a volume fraction was not described by means of this model. A class of schemes that are able to converge to the correct solution of such problems was received in [2] due to a deeper analysis of two-phase model. The technique offered in [2] was implemented on a Eulerian grid via the Godunov scheme. In present paper the additional analysis of two-phase model in view of microstructure of an mixture topology is carried out in Lagrange mass coordinates. As result, the equations averaged over the set of all possible realizations for two-phase mixture are received. The numerical solution is carried out with use of PPM method [3] in two steps: at first - the equations averaged over mass variable are solved; on the second - the solution, found on the previous step, is re-mapped to a fixed Eulerian grid. Such approach allows to expand the proposed technique on two-dimensional (three-dimensional) case, as in the Lagrange variables the Euler equations system is split on two (three) identical subsystems, each of which describes evolution of considered medium in the given direction. The accuracy and robustness of the described procedure are demonstrated on a sequence of the numerical problems. References: (1). R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multi-fluid and multiphase flows, J. Comput. Phys. 150 (1999) 425-467; (2). R. Saurel, R. Abgrall, Discrete equations for physical and

  16. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    Science.gov (United States)

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  17. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Directory of Open Access Journals (Sweden)

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  18. Performance prediction and flow-field analysis of rotors in hover using a coupled Euler/boundary layer method; Previsions des performances et de l`ecoulement pour des rotors en vol stationnaire par une methode couplee Euler/couche limite

    Energy Technology Data Exchange (ETDEWEB)

    Beaumier, P. [ONERA, 92 - Chatillon (France); Castellin, C.; Arnaud, G. [Eurocopter France, 13 - Marignane (France)

    1998-12-31

    The performance prediction of helicopter in hover is of key importance for manufacturers because hover is a design configuration for the definition of a rotor-craft. A lot of efforts have been made for more than 10 years all over the world in order to develop and validate numerical methods based on CFD. An Euler method (WAVES) developed by ONERA and coupled with a boundary layer code (MI3DI) is presented, validated and applied to compute the total performance of rotors with different tip shapes. A new boundary condition for the Euler code has been tested and enables better calculation by eliminating `numerical` recirculation. The code has demonstrated its ability to rank two rotors with different planforms in good agreement with experiment. Under industrial requirements new grid strategies have been studied and should allow to reduce CPU time consumption. It is shown that WAVES/MI3DI can be efficiently used in the aerodynamic design process of a new rotor. (authors) 7 refs.

  19. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min; Wang, Xiao-Ping

    2012-01-01

    [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under

  20. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    Science.gov (United States)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  1. Improved initial guess with semi-subpixel level accuracy in digital image correlation by feature-based method

    Science.gov (United States)

    Zhang, Yunlu; Yan, Lei; Liou, Frank

    2018-05-01

    The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.

  2. Acciones equivalentes y solución en desplazamientos interpolada en la viga de Bernouilli-Euler

    OpenAIRE

    Romero, J. L.; Ortega, M. A.

    1998-01-01

    Se propone un método para el cálculo de la viga de Bernoulli-Euler que permite optimizar los resultados obtenidos mediante los elementos finitos hermíticos tradicionales. La principal ventaja es que puede aproximar con gran bondad los desplazamientos y esfuerzos en el interior de los elementos, incluso para elementos de gran tamaño.

  3. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method

    KAUST Repository

    Bourantas, Georgios

    2013-12-01

    A meshless point collocation method is proposed for the numerical solution of the steady state, incompressible Navier-Stokes (NS) equations in their primitive u-v-p formulation. The flow equations are solved in their strong form using either a collocated or a semi-staggered "grid" configuration. The developed numerical scheme approximates the unknown field functions using the Moving Least Squares approximation. A velocity, along with a pressure correction scheme is applied in the context of the meshless point collocation method. The proposed meshless point collocation (MPC) scheme has the following characteristics: (i) it is a truly meshless method, (ii) there is no need for pressure boundary conditions since no pressure constitutive equation is solved, (iii) it incorporates simplicity and accuracy, (iv) results can be obtained using collocated or semi-staggered "grids", (v) there is no need for the usage of a curvilinear system of coordinates and (vi) it can solve steady and unsteady flows. The lid-driven cavity flow problem, for Reynolds numbers up to 5000, has been considered, by using both staggered and collocated grid configurations. Following, the Backward-Facing Step (BFS) flow problem was considered for Reynolds numbers up to 800 using a staggered grid. As a final example, the case of a laminar flow in a two-dimensional tube with an obstacle was examined. © 2013 Elsevier Ltd.

  4. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    Science.gov (United States)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  5. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  6. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Iterative methods for compressible Navier-Stokes and Euler equations

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.P.; Forsyth, P.A.

    1996-12-31

    This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.

  8. Application of the MacCormack scheme to overland flow routing for high-spatial resolution distributed hydrological model

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Liang, Xu; Xu, Yi; Hernández, Felipe; Li, Lianxia

    2018-03-01

    Although process-based distributed hydrological models (PDHMs) are evolving rapidly over the last few decades, their extensive applications are still challenged by the computational expenses. This study attempted, for the first time, to apply the numerically efficient MacCormack algorithm to overland flow routing in a representative high-spatial resolution PDHM, i.e., the distributed hydrology-soil-vegetation model (DHSVM), in order to improve its computational efficiency. The analytical verification indicates that both the semi and full versions of the MacCormack schemes exhibit robust numerical stability and are more computationally efficient than the conventional explicit linear scheme. The full-version outperforms the semi-version in terms of simulation accuracy when a same time step is adopted. The semi-MacCormack scheme was implemented into DHSVM (version 3.1.2) to solve the kinematic wave equations for overland flow routing. The performance and practicality of the enhanced DHSVM-MacCormack model was assessed by performing two groups of modeling experiments in the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The experiments show that DHSVM-MacCormack can considerably improve the computational efficiency without compromising the simulation accuracy of the original DHSVM model. More specifically, with the same computational environment and model settings, the computational time required by DHSVM-MacCormack can be reduced to several dozen minutes for a simulation period of three months (in contrast with one day and a half by the original DHSVM model) without noticeable sacrifice of the accuracy. The MacCormack scheme proves to be applicable to overland flow routing in DHSVM, which implies that it can be coupled into other PHDMs for watershed routing to either significantly improve their computational efficiency or to make the kinematic wave routing for high resolution modeling computational feasible.

  9. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V.A.; Rozanov, E.V. [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M.E.; Andronova, N.G. [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1997-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  10. Hybrid advection scheme for 3-dimensional atmospheric models. Testing and application for a study of NO{sub x} transport

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, V A; Rozanov, E V [Main Geophysical Observatory, St.Petersburg (Russian Federation); Schlesinger, M E; Andronova, N G [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Atmospheric Sciences

    1998-12-31

    The problems of ozone depletion, climate change and atmospheric pollution strongly depend on the processes of production, destruction and transport of chemical species. A hybrid transport scheme was developed, consisting of the semi-Lagrangian scheme for horizontal advection and the Prather scheme for vertical transport, which have been used for the Atmospheric Chemical Transport model to calculate the distributions of different chemical species. The performance of the new hybrid scheme has been evaluated in comparison with other transport schemes on the basis of specially designed tests. The seasonal cycle of the distribution of N{sub 2}O simulated by the model, as well as the dispersion of NO{sub x} exhausted from subsonic aircraft, are in a good agreement with published data. (author) 8 refs.

  11. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min

    2012-02-01

    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  12. Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model

    International Nuclear Information System (INIS)

    Peng Mingshu

    2004-01-01

    A discrete model with a simple cubic nonlinearity term is treated in the study the rich dynamics of a prototype delayed dynamical system under Euler discretization. The effect of breaking the symmetry of the system is to create a wide complex operating conditions which would not otherwise be seen. These include multiple steady states, complex periodic oscillations, chaos by period doubling bifurcations

  13. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  14. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV

    2008-01-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  15. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    Science.gov (United States)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  16. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

    Science.gov (United States)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

    2017-11-01

    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  17. Nonlinear Correction to the Euler Buckling Formula for Compressed Cylinders with Guided-Guided End Conditions

    KAUST Repository

    De Pascalis, Riccardo

    2010-07-22

    Euler\\'s celebrated buckling formula gives the critical load N for the buckling of a slender cylindrical column with radius B and length L as N/(π3B2)=(E/4)(B/L)2 where E is Young\\'s modulus. Its derivation relies on the assumptions that linear elasticity applies to this problem, and that the slenderness (B/L) is an infinitesimal quantity. Here we ask the following question: What is the first non-linear correction in the right hand-side of this equation when terms up to (B/L)4 are kept? To answer this question, we specialize the exact solution of incremental non-linear elasticity for the homogeneous compression of a thick compressible cylinder with lubricated ends to the theory of third-order elasticity. In particular, we highlight the way second- and third-order constants-including Poisson\\'s ratio-all appear in the coefficient of (B/L)4. © 2010 Springer Science+Business Media B.V.

  18. A Semi-Preemptive Garbage Collector for Solid State Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghee [ORNL; Kim, Youngjae [ORNL; Shipman, Galen M [ORNL; Oral, H Sarp [ORNL; Wang, Feiyi [ORNL; Kim, Jongman [Georgia Institute of Technology

    2011-01-01

    NAND flash memory is a preferred storage media for various platforms ranging from embedded systems to enterprise-scale systems. Flash devices do not have any mechanical moving parts and provide low-latency access. They also require less power compared to rotating media. Unlike hard disks, flash devices use out-of-update operations and they require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governed by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semi-preemptive GC scheme that can preempt on-going GC processing and service pending I/O requests in the queue. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-preemptive GC sheme with realistic workloads demonstrate both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-preemptive GC scheme.

  19. Advanced mechanics from Euler's determinism to Arnold's chaos

    CERN Document Server

    Rajeev, S G

    2013-01-01

    Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrodinger equation, hydrogen atom) it is time to go back and relearn classical mechanics in greater depth. It is the intent of this book to take you through the ancient (the original meaning of "classical") parts of the subject quickly: the ideas started by Euler and ending roughly with Poincare. We then take up the developments of twentieth century physics that have largely to do with chaos and discrete time evolution (the basis of numerical solutions).

  20. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Oz, Yaron

    2008-01-01

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them

  1. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    Science.gov (United States)

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  2. Relaxation approximations to second-order traffic flow models by high-resolution schemes

    International Nuclear Information System (INIS)

    Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.

    2015-01-01

    A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers

  3. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  4. Euler and Navier endash Stokes limits of the Uehling endash Uhlenbeck quantum kinetic equations

    International Nuclear Information System (INIS)

    Arlotti, L.; Lachowicz, M.

    1997-01-01

    The Uehling endash Uhlenbeck evolution equations for gases of identical quantum particles either fermions or bosons, in the case in which the collision kernel does not depend on the distribution function, are considered. The existence of solutions and their asymptotic relations with solutions of the hydrodynamic equations both at the level of the Euler system and at the level of the Navier endash Stokes system are proved. copyright 1997 American Institute of Physics

  5. Semi-Semantic Annotation: A guideline for the URDU.KON-TB treebank POS annotation

    Directory of Open Access Journals (Sweden)

    Qaiser ABBAS

    2016-12-01

    Full Text Available This work elaborates the semi-semantic part of speech annotation guidelines for the URDU.KON-TB treebank: an annotated corpus. A hierarchical annotation scheme was designed to label the part of speech and then applied on the corpus. This raw corpus was collected from the Urdu Wikipedia and the Jang newspaper and then annotated with the proposed semi-semantic part of speech labels. The corpus contains text of local & international news, social stories, sports, culture, finance, religion, traveling, etc. This exercise finally contributed a part of speech annotation to the URDU.KON-TB treebank. Twenty-two main part of speech categories are divided into subcategories, which conclude the morphological, and semantical information encoded in it. This article reports the annotation guidelines in major; however, it also briefs the development of the URDU.KON-TB treebank, which includes the raw corpus collection, designing & employment of annotation scheme and finally, its statistical evaluation and results. The guidelines presented as follows, will be useful for linguistic community to annotate the sentences not only for the national language Urdu but for the other indigenous languages like Punjab, Sindhi, Pashto, etc., as well.

  6. Upwind MacCormack Euler solver with non-equilibrium chemistry

    Science.gov (United States)

    Sherer, Scott E.; Scott, James N.

    1993-01-01

    A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.

  7. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    International Nuclear Information System (INIS)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendruecker, E.; Besse, N.; Bertrand, P.

    2006-01-01

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations

  8. Auction dynamics: A volume constrained MBO scheme

    Science.gov (United States)

    Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim

    2018-02-01

    We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.

  9. Stability analysis of the Euler discretization for SIR epidemic model

    International Nuclear Information System (INIS)

    Suryanto, Agus

    2014-01-01

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaos phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart

  10. Elastic crack-tip stress field in a semi-strip

    Directory of Open Access Journals (Sweden)

    Victor Reut

    2018-04-01

    Full Text Available In this article the plain elasticity problem for a semi-strip with a transverse crack is investigated in the different cases of the boundary conditions at the semi-strips end. Unlike many works dedicated to this subject, the fixed singularities in the singular integral equation�s kernel are considered. The integral transformations� method is applied by the generalized scheme to reduce the initial problem to a one-dimensional problem. The one-dimensional problem is formulated as the vector boundary value problem which is solved with the help of matrix differential calculations and Green�s matrix apparatus. The solution of the problem is reduced to the solving of the system of three singular integral equations. Depending on the conditions given on the short edge of the semi-strip, the constructed singular integral equation can have one, or two fixed singularities. A special method is applied to solve this equation in regard of the singularities existence. Hence the system of the singular integral equations (SSIE is solved with the help of the generalized method. The stress intensity factors (SIF are investigated for different lengths of crack. The novelty of this work is in the application of new approach allowing the consideration of the fixed singularities in the problem about a transverse crack in the elastic semi-strip. The comparison of the numerical results� accuracy during the usage of the different approaches to the solving of SSIE is worked out

  11. An adaptive Petrov-Galerkin formulation for solving the compressible Euler and Navier-Stokes

    International Nuclear Information System (INIS)

    Almeida, Regina Celia Cerqueira de

    1993-01-01

    A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author)

  12. Hitting emissions targets with (statistical) confidence in multi-instrument Emissions Trading Schemes

    International Nuclear Information System (INIS)

    Shipworth, David

    2003-12-01

    A means of assessing, monitoring and controlling aggregate emissions from multi-instrument Emissions Trading Schemes is proposed. The approach allows contributions from different instruments with different forms of emissions targets to be integrated. Where Emissions Trading Schemes are helping to meet specific national targets, the approach allows the entry requirements of new participants to be calculated and set at a level that will achieve these targets. The approach is multi-levelled, and may be extended downwards to support pooling of participants within instruments, or upwards to embed Emissions Trading Schemes within a wider suite of policies and measures with hard and soft targets. Aggregate emissions from each instrument are treated stochastically. Emissions from the scheme as a whole are then the joint probability distribution formed by integrating the emissions from its instruments. Because a Bayesian approach is adopted, qualitative and semi-qualitative data from expert opinion can be used where quantitative data is not currently available, or is incomplete. This approach helps government retain sufficient control over emissions trading scheme targets to allow them to meet their emissions reduction obligations, while minimising the need for retrospectively adjusting existing participants' conditions of entry. This maintains participant confidence, while providing the necessary policy levers for good governance

  13. Contribution of promoting the green residence assessment scheme to energy saving

    International Nuclear Information System (INIS)

    Huang, Zhiyu; Yuan, Hongping; Shen, Liyin

    2012-01-01

    Green residence development has been one of the important strategies for promoting sustainable urban development. Governments throughout the world have been encouraging property developers to deliver green properties. In line with this development, governments have been implementing various assessment programs to certify green residential buildings with the aim of contributing to sustainable urban development. With reference to the Chinese construction practice, this paper examines the effectiveness of the green residence assessment scheme toward its defined aim through investigating the contents and procedures of the green residence assessment scheme by referring to the practices of Chongqing city in western China. Based on the results of five case studies and five semi-structured interviews, this study reveals the significant contribution from implementing the green residence assessment scheme particularly to energy saving in residential buildings. Further, the green residence assessment scheme promotes the application of green building materials and green construction technologies in the entire process of delivering and operating residential buildings. The findings provide valuable references for further investigating alternative methods to achieve better energy saving in developing residential buildings. - Highlights: ► Energy saving in residence development is important for sustainable urban development. ► Green residence assessment scheme contributes significantly to energy saving in residences. ► Green residence assessment promotes application of environmentally friendly building materials and technologies

  14. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  15. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  16. Evaluation of the entropy consistent euler flux on 1D and 2D test problems

    Science.gov (United States)

    Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad

    2012-06-01

    Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.

  17. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  18. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    Science.gov (United States)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  19. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  20. Direct and semi-direct approaches to lepton mixing with a massless neutrino

    International Nuclear Information System (INIS)

    King, Stephen F.; Ludl, Patrick Otto

    2016-01-01

    We discuss the possibility of enforcing a massless Majorana neutrino in the direct and semi-direct approaches to lepton mixing, in which the PMNS matrix is partly predicted by subgroups of a discrete family symmetry, extending previous group searches up to order 1535. We find a phenomenologically viable scheme for the semi-direct approach based on Q(648) which contains Δ(27) and the quaternion group as subgroups. This leads to novel predictions for the first column of the PMNS matrix corresponding to a normal neutrino mass hierarchy with m_1=0, and sum rules for the mixing angles and phase which are characterised by the solar angle being on the low side θ_1_2∼31"∘ and the Dirac (oscillation) CP phase δ being either about ±45"∘ or ±π.

  1. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania

    NARCIS (Netherlands)

    Asten, van P.J.A.; Barbi'ro, L.; Wopereis, M.C.S.; Maeght, J.L.; Zee, van der S.E.A.T.M.

    2003-01-01

    Salt-related soil degradation due to irrigation activities is considered a major threat to the sustainability of rice cropping under semi-arid conditions in West Africa. Rice productivity problems related to soil salinity, alkalinity and topographic position were observed in an irrigated rice scheme

  2. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations

    Science.gov (United States)

    Loseille, A.; Dervieux, A.; Alauzet, F.

    2010-04-01

    This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

  3. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    Science.gov (United States)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  4. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system

    Science.gov (United States)

    Chen, Shuxing; Li, Dening

    2014-09-01

    We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.

  5. A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics

    Directory of Open Access Journals (Sweden)

    E. Kaas

    2013-11-01

    Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.

  6. Numerical methods for limit problems in two-phase flow models

    International Nuclear Information System (INIS)

    Cordier, F.

    2011-01-01

    Numerical difficulties are encountered during the simulation of two-phase flows. Two issues are studied in this thesis: the simulation of phase transitions on one hand, and the simulation of both compressible and incompressible flows in the other hand. Un asymptotic study has shown that the loss of hyperbolicity of the bi fluid model was responsible for the difficulties encountered by the Roe scheme during the simulation of phase transitions. Robust and accurate polynomial schemes have thus been developed. To tackle the occasional lack of positivity of the solution, a numerical treatment based on adaptive diffusion was proposed and allowed to simulate with accuracy the test-cases of a boiling channel with creation of vapor and a tee-junction with separation of the phases. In a second part, an all-speed scheme for compressible and incompressible flows have been proposed. This pressure-based semi-implicit asymptotic preserving scheme is conservative, solves an elliptic equation on the pressure, and has been designed for general equations of state. The scheme was first developed for the full Euler equations and then extended to the Navier-Stokes equations. The good behaviour of the scheme in both compressible and incompressible regimes have been investigated. An extension of the scheme to the two-phase mixture model was implemented and demonstrated the ability of the scheme to simulate two-phase flows with phase change and a water-steam equation of state. (author) [fr

  7. Meeting stroke survivors' perceived needs: a qualitative study of a community-based exercise and education scheme.

    Science.gov (United States)

    Reed, Mary; Harrington, Rachel; Duggan, Aine; Wood, Victorine A

    2010-01-01

    A qualitative study using a phenomenological approach, to explore stroke survivors' needs and their perceptions of whether a community stroke scheme met these needs. Semi-structured in-depth interviews of 12 stroke survivors, purposively selected from participants attending a new community stroke scheme. Interpretative phenomenological analysis of interviews by two researchers independently. Participants attending the community stroke scheme sought to reconstruct their lives in the aftermath of their stroke. To enable this they needed internal resources of confidence and sense of purpose to 'create their social self', and external resources of 'responsive services' and an 'informal support network', to provide direction and encouragement. Participants felt the community stroke scheme met some of these needs through exercise, goal setting and peer group interaction, which included social support and knowledge acquisition. Stroke survivors need a variety of internal and external resources so that they can rebuild their lives positively post stroke. A stroke-specific community scheme, based on exercise, life-centred goal setting, peer support and knowledge acquisition, is an external resource that can help with meeting some of the stroke survivor's needs.

  8. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system

    CERN Document Server

    Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O

    2003-01-01

    The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.

  9. Sampling microcanonical measures of the 2D Euler equations through Creutz’s algorithm: a phase transition from disorder to order when energy is increased

    International Nuclear Information System (INIS)

    Potters, Max; Vaillant, Timothee; Bouchet, Freddy

    2013-01-01

    The 2D Euler equations are basic examples of fluid models for which a microcanonical measure can be constructed from first principles. This measure is defined through finite-dimensional approximations and a limiting procedure. Creutz’s algorithm is a microcanonical generalization of the Metropolis–Hastings algorithm (to sample Gibbs measures, in the canonical ensemble). We prove that Creutz’s algorithm can sample finite-dimensional approximations of the 2D Euler microcanonical measures (incorporating fixed energy and other invariants). This is essential as microcanonical and canonical measures are known to be inequivalent at some values of energy and vorticity distribution. Creutz’s algorithm is used to check predictions from the mean-field statistical mechanics theory of the 2D Euler equations (the Robert–Sommeria–Miller theory). We find full agreement with theory. Three different ways to compute the temperature give consistent results. Using Creutz’s algorithm, a first-order phase transition never observed previously and a situation of statistical ensemble inequivalence are found and studied. Strikingly, and in contrast to the usual statistical mechanics interpretations, this phase transition appears from a disordered phase to an ordered phase (with fewer symmetries) when the energy is increased. We explain this paradox. (paper)

  10. Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2

    International Nuclear Information System (INIS)

    Hassaine, Mokhtar; Olea, Rodrigo; Troncoso, Ricardo

    2004-01-01

    A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form

  11. Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2

    Energy Technology Data Exchange (ETDEWEB)

    Hassaine, Mokhtar [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)]. E-mail: hassaine@blackhole.cecs.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Troncoso, Ricardo [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2004-10-07

    A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form.

  12. EPPRD: An Efficient Privacy-Preserving Power Requirement and Distribution Aggregation Scheme for a Smart Grid.

    Science.gov (United States)

    Zhang, Lei; Zhang, Jing

    2017-08-07

    A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users' private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes.

  13. An adaptive Petrov-Galerkin formulation for solving the compressible Euler and Navier-Stokes; Uma formulacao de Petrov-Galerkin para a resolucao das equacoes de Euler e Navier-Stokes compressivel usando tecnicas adaptativas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Regina Celia Cerqueira de

    1993-12-31

    A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) 63 refs., 40 figs.

  14. An adaptive Petrov-Galerkin formulation for solving the compressible Euler and Navier-Stokes; Uma formulacao de Petrov-Galerkin para a resolucao das equacoes de Euler e Navier-Stokes compressivel usando tecnicas adaptativas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Regina Celia Cerqueira de

    1994-12-31

    A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) 63 refs., 40 figs.

  15. Dynamic modelling and control of a rotating Euler-Bernoulli beam

    Science.gov (United States)

    Yang, J. B.; Jiang, L. J.; Chen, D. CH.

    2004-07-01

    Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

  16. Explicit time marching methods for the time-dependent Euler computations

    International Nuclear Information System (INIS)

    Tai, C.H.; Chiang, D.C.; Su, Y.P.

    1997-01-01

    Four explicit type time marching methods, including one proposed by the authors, are examined. The TVD conditions of this method are analyzed with the linear conservation law as the model equation. Performance of these methods when applied to the Euler equations are numerically tested. Seven examples are tested, the main concern is the performance of the methods when discontinuities with different strengths are encountered. When the discontinuity is getting stronger, spurious oscillation shows up for three existing methods, while the method proposed by the authors always gives the results with satisfaction. The effect of the limiter is also investigated. To put these methods in the same basis for the comparison the same spatial discretization is used. Roe's solver is used to evaluate the fluxes at the cell interface; spatially second-order accuracy is achieved by the MUSCL reconstruction. 19 refs., 8 figs

  17. Kinetic mesh-free method for flutter prediction in turbomachines

    Indian Academy of Sciences (India)

    Mesh-free kinetic upwind scheme; unsteady flows; modified CIR splitting ... scheme for solving the inviscid compressible Euler equations of gas ..... typically carried out for about five cycles in which the periodic behaviour of the flow is captured.

  18. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  19. Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow

    Science.gov (United States)

    Cyranka, Jacek; Mucha, Piotr B.; Titi, Edriss S.; Zgliczyński, Piotr

    2018-04-01

    The paper studies the issue of stability of solutions to the forced Navier-Stokes and damped Euler systems in periodic boxes. It is shown that for large, but fixed, Grashoff (Reynolds) number the turbulent behavior of all Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in periodic box, is suppressed, when viewed in the right frame of reference, by large enough average flow of the initial data; a phenomenon that is similar in spirit to the Landau damping. Specifically, we consider an initial data which have large enough spatial average, then by means of the Galilean transformation, and thanks to the periodic boundary conditions, the large time independent forcing term changes into a highly oscillatory force; which then allows us to employ some averaging principles to establish our result. Moreover, we also show that under the action of fast oscillatory-in-time external forces all two-dimensional regular solutions of the Navier-Stokes and the damped Euler equations converge to a unique time-periodic solution.

  20. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  1. Performance Evaluation and Optimal Management of Distance-Based Registration Using a Semi-Markov Process

    Directory of Open Access Journals (Sweden)

    Jae Joon Suh

    2017-01-01

    Full Text Available We consider the distance-based registration (DBR which is a kind of dynamic location registration scheme in a mobile communication network. In the DBR, the location of a mobile station (MS is updated when it enters a base station more than or equal to a specified distance away from the base station where the location registration for the MS was done last. In this study, we first investigate the existing performance-evaluation methods on the DBR with implicit registration (DBIR presented to improve the performance of the DBR and point out some problems of the evaluation methods. We propose a new performance-evaluation method for the DBIR scheme using a semi-Markov process (SMP which can resolve the controversial issues of the existing methods. The numerical results obtained with the proposed SMP model are compared with those from previous models. It is shown that the SMP model should be considered to get an accurate performance of the DBIR scheme.

  2. Robust video watermarking via optimization algorithm for quantization of pseudo-random semi-global statistics

    Science.gov (United States)

    Kucukgoz, Mehmet; Harmanci, Oztan; Mihcak, Mehmet K.; Venkatesan, Ramarathnam

    2005-03-01

    In this paper, we propose a novel semi-blind video watermarking scheme, where we use pseudo-random robust semi-global features of video in the three dimensional wavelet transform domain. We design the watermark sequence via solving an optimization problem, such that the features of the mark-embedded video are the quantized versions of the features of the original video. The exact realizations of the algorithmic parameters are chosen pseudo-randomly via a secure pseudo-random number generator, whose seed is the secret key, that is known (resp. unknown) by the embedder and the receiver (resp. by the public). We experimentally show the robustness of our algorithm against several attacks, such as conventional signal processing modifications and adversarial estimation attacks.

  3. Performance analyses and improvements for the IEEE 802.15.4 CSMA/CA scheme with heterogeneous buffered conditions.

    Science.gov (United States)

    Zhu, Jianping; Tao, Zhengsu; Lv, Chunfeng

    2012-01-01

    Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes-OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme)-are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results.

  4. A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2013-09-01

    Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

  5. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  6. Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    International Nuclear Information System (INIS)

    Konopelchenko, B; Alonso, L MartInez; Medina, E

    2010-01-01

    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock-type singularities are presented.

  7. Monte Carlo Euler approximations of HJM term structure financial models

    KAUST Repository

    Björk, Tomas

    2012-11-22

    We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.

  8. Monte Carlo Euler approximations of HJM term structure financial models

    KAUST Repository

    Bjö rk, Tomas; Szepessy, Anders; Tempone, Raul; Zouraris, Georgios E.

    2012-01-01

    We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify different error contributions arising from time and maturity discretization as well as the classical statistical error due to finite sampling. Explicit formulas for efficient computation of sharp error approximation are included. Due to the structure of the HJM models considered here, the computational effort devoted to the error estimates is low compared to the work to compute Monte Carlo solutions to the HJM model. Numerical examples with known exact solution are included in order to show the behavior of the estimates. © 2012 Springer Science+Business Media Dordrecht.

  9. Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization

    Science.gov (United States)

    MacArt, Jonathan F.; Mueller, Michael E.

    2016-12-01

    Two formally second-order accurate, semi-implicit, iterative methods for the solution of scalar transport-reaction equations are developed for Direct Numerical Simulation (DNS) of low Mach number turbulent reacting flows. The first is a monolithic scheme based on a linearly implicit midpoint method utilizing an approximately factorized exact Jacobian of the transport and reaction operators. The second is an operator splitting scheme based on the Strang splitting approach. The accuracy properties of these schemes, as well as their stability, cost, and the effect of chemical mechanism size on relative performance, are assessed in two one-dimensional test configurations comprising an unsteady premixed flame and an unsteady nonpremixed ignition, which have substantially different Damköhler numbers and relative stiffness of transport to chemistry. All schemes demonstrate their formal order of accuracy in the fully-coupled convergence tests. Compared to a (non-)factorized scheme with a diagonal approximation to the chemical Jacobian, the monolithic, factorized scheme using the exact chemical Jacobian is shown to be both more stable and more economical. This is due to an improved convergence rate of the iterative procedure, and the difference between the two schemes in convergence rate grows as the time step increases. The stability properties of the Strang splitting scheme are demonstrated to outpace those of Lie splitting and monolithic schemes in simulations at high Damköhler number; however, in this regime, the monolithic scheme using the approximately factorized exact Jacobian is found to be the most economical at practical CFL numbers. The performance of the schemes is further evaluated in a simulation of a three-dimensional, spatially evolving, turbulent nonpremixed planar jet flame.

  10. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    International Nuclear Information System (INIS)

    Yee, H.C.; Shinn, J.L.

    1986-12-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated

  11. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    International Nuclear Information System (INIS)

    Yee, H.C.; Shinn, J.L.

    1987-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated. 46 references

  12. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre

    2008-01-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  13. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

    Science.gov (United States)

    2012-09-03

    27] introduced a new smoothness indicator, which removed the slight post- shock oscillations and improved the convergence . A Newton- iteration method... Gauss - Seidel algorithm for steady Euler equation on unstructured grids, Numer. Math. Theor. Meth. Appl., Vol. 1, pp. 92–112, (2008). [14] G.-S. Jiang...was adopted to solve the steady two dimensional Euler equations [10, 11, 13]. The matrix-free Squared Preconditioning is applied to a Newton iteration

  14. Observation Likelihood Model Design and Failure Recovery Scheme toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2011-01-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  15. Observation Likelihood Model Design and Failure Recovery Scheme Toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2010-12-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  16. Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows

    International Nuclear Information System (INIS)

    Ueckermann, M.P.; Lermusiaux, P.F.J.; Sapsis, T.P.

    2013-01-01

    The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier–Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.

  17. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  18. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Science.gov (United States)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER

  19. Semi-definite Programming: methods and algorithms for energy management

    International Nuclear Information System (INIS)

    Gorge, Agnes

    2013-01-01

    The present thesis aims at exploring the potentialities of a powerful optimization technique, namely Semi-definite Programming, for addressing some difficult problems of energy management. We pursue two main objectives. The first one consists of using SDP to provide tight relaxations of combinatorial and quadratic problems. A first relaxation, called 'standard' can be derived in a generic way but it is generally desirable to reinforce them, by means of tailor-made tools or in a systematic fashion. These two approaches are implemented on different models of the Nuclear Outages Scheduling Problem, a famous combinatorial problem. We conclude this topic by experimenting the Lasserre's hierarchy on this problem, leading to a sequence of semi-definite relaxations whose optimal values tends to the optimal value of the initial problem. The second objective deals with the use of SDP for the treatment of uncertainty. We investigate an original approach called 'distributionally robust optimization', that can be seen as a compromise between stochastic and robust optimization and admits approximations under the form of a SDP. We compare the benefits of this method w.r.t classical approaches on a demand/supply equilibrium problem. Finally, we propose a scheme for deriving SDP relaxations of MISOCP and we report promising computational results indicating that the semi-definite relaxation improves significantly the continuous relaxation, while requiring a reasonable computational effort. SDP therefore proves to be a promising optimization method that offers great opportunities for innovation in energy management. (author)

  20. Semi-Supervised Classification for Fault Diagnosis in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ma, Jian Ping; Jiang, Jin

    2014-01-01

    Pattern classification methods have become important tools for fault diagnosis in industrial systems. However, it is normally difficult to obtain reliable labeled data to train a supervised pattern classification model for applications in a nuclear power plant (NPP). However, unlabeled data easily become available through increased deployment of supervisory, control, and data acquisition (SCADA) systems. In this paper, a fault diagnosis scheme based on semi-supervised classification (SSC) method is developed with specific applications for NPP. In this scheme, newly measured plant data are treated as unlabeled data. They are integrated with selected labeled data to train a SSC model which is then used to estimate labels of the new data. Compared to exclusive supervised approaches, the proposed scheme requires significantly less number of labeled data to train a classifier. Furthermore, it is shown that higher degree of uncertainties in the labeled data can be tolerated. The developed scheme has been validated using the data generated from a desktop NPP simulator and also from a physical NPP simulator using a graph-based SSC algorithm. Two case studies have been used in the validation process. In the first case study, three faults have been simulated on the desktop simulator. These faults have all been classified successfully with only four labeled data points per fault case. In the second case, six types of fault are simulated on the physical NPP simulator. All faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis

  1. Error estimates for the finite volume discretization for the porous medium equation

    NARCIS (Netherlands)

    Pop, I.S.; Sepúlveda, M.; Radu, F.A.; Vera Villagrán, O.P.

    2010-01-01

    We analyze the convergence of a numerical scheme for a class of degenerate parabolic problems modelling reactions in porous media, and involving a nonlinear, possibly vanishing diffusion. The scheme involves the Kirchhoff transformation of the regularized nonlinearity, as well as an Euler implicit

  2. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.

    2017-06-03

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  3. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le

    2017-01-01

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  4. Evaluation of a pilot peer observation of teaching scheme for chair-side tutors at Glasgow University Dental School.

    Science.gov (United States)

    Cairns, A M; Bissell, V; Bovill, C

    2013-06-01

    To introduce and examine a pilot peer observation of teaching (POT) scheme within the Department of Paediatric Dentistry at Glasgow Dental School and its associated outreach centres. All tutors teaching paediatric dentistry were invited to be involved in evaluation of the POT scheme. Participants were randomly paired with a peer, who then observed their teaching and provided constructive feedback. For those consenting to be involved in the evaluation of the scheme, semi-structured, one-to-one interviews were carried out by the principal investigator. POT was found by all participants to be a beneficial process, reassuring those of their teaching styles and giving them ideas to adapt their teaching. POT is an effective method for engaging chair-side tutors in the reflection and development of their teaching practice via observations and scholarly discussion.

  5. The Application of Euler-Lagrange Method of Optimization for Electromechanical Motion Control

    Directory of Open Access Journals (Sweden)

    Cristian VASILACHE

    2000-12-01

    Full Text Available Industrial and non-industrial processes such as production plans, robots, pumps, compressors, home applications, transportation of people and goods etc., require some kinds of motion control. The main functions of electromechanical drives are to adjust these processes by controlling the torque, speed or position. The objective of this paper is to perform the control of motion while minimizing power losses, that is ∫Ri2dt, in process conversion of electrical energy to mechanical energy. The optimal control laws for our problem is find using the Euler - Lagrange principle. We consider three types of controlled drives: torque, speed and position. Each of them has different control laws. By implementation of these controls with Borland C++ and Matlab environment, substantial energy savings are obtained.

  6. A spectral element-FCT method for the compressible Euler equations

    International Nuclear Information System (INIS)

    Giannakouros, J.; Karniadakis, G.E.

    1994-01-01

    A new algorithm based on spectral element discretizations and flux-corrected transport concepts is developed for the solution of the Euler equations of inviscid compressible fluid flow. A conservative formulation is proposed based on one- and two-dimensional cell-averaging and reconstruction procedures, which employ a staggered mesh of Gauss-Chebyshev and Gauss-Lobatto-Chebyshev collocation points. Particular emphasis is placed on the construction of robust boundary and interfacial conditions in one- and two-dimensions. It is demonstrated through shock-tube problems and two-dimensional simulations that the proposed algorithm leads to stable, non-oscillatory solutions of high accuracy. Of particular importance is the fact that dispersion errors are minimal, as show through experiments. From the operational point of view, casting the method in a spectral element formulation provides flexibility in the discretization, since a variable number of macro-elements or collocation points per element can be employed to accomodate both accuracy and geometric requirements

  7. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    International Nuclear Information System (INIS)

    Hao, Feng; Mattsson, Ann E.; Armiento, Rickard

    2014-01-01

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry

  8. Entrapment and Enmeshment Schemes Used by Sex Traffickers.

    Science.gov (United States)

    Reid, Joan A

    2016-09-01

    Emerging research suggests that sex traffickers/pimps control the majority of trafficked girls in the United States. The youthfulness of these victims and their lack of psychosocial maturity severely diminish their ability to detect exploitative motives or withstand manipulation of traffickers. A review of 43 cases of sexually exploited girls involving non-relative traffickers and 10 semi-structured interviews with social service providers revealed numerous scripts and schemes used by sex traffickers to entrap and entangle victims including boyfriend/lover scripts, ruses involving debt bondage, friendship or faux-family scripts, threats of forced abortion or to take away children, and coerced co-offending. These findings inform potential prevention efforts and highlight the need for multi-systemic, victim-centered approaches to intervention. © The Author(s) 2014.

  9. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    Science.gov (United States)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0Math J 45(3):863-916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479-541, 1999), and Gie (Commun Math Sci 12(2):383-400, 2014).

  10. Multi-cell vortices observed in fine-mesh solutions to the incompressible Euler equations

    International Nuclear Information System (INIS)

    Rizzi, A.

    1986-01-01

    Results are presented for a three dimensional flow, containing a vortex sheet shed from a delta wing. The numerical solution indicates that the shearing caused by the trailing edge of the wing set up a torsional wave on the vortex core and produces a structure with multiple cells of vorticity. Although observed in coarse grid solutions too, this effect becomes better resolved with mesh refinement to 614 000 grid volumes. In comparison with a potential solution in which the vortex sheet is fitted as a discontinuity, the results are analyzed for the position of the vortex features captured in the Euler flow field, the accuracy of the pressure field, and for the diffusion of the vortex sheets

  11. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    López-i-Gelats, F.; Rivera-Ferre, M.G.; Madruga-Andreu, C.; Bartolomé-Filella, J.

    2015-07-01

    Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence. (Author)

  12. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    International Nuclear Information System (INIS)

    López-i-Gelats, F.; Rivera-Ferre, M.G.; Madruga-Andreu, C.; Bartolomé-Filella, J.

    2015-01-01

    Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence. (Author)

  13. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    Directory of Open Access Journals (Sweden)

    Feliu López-i-Gelats

    2015-12-01

    Full Text Available Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence.

  14. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussiê S., E-mail: jussie.soares@ifpi.edu.br [Instituto Federal do Piauí (IFPI), Valença, PI (Brazil); Maciel, Edisson Sávio de Góes, E-mail: edissonsavio@yahoo.com.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Lira, Carlos A.B.O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Sousa, Pedro A.S.; Neto, Raimundo N.C., E-mail: augusto.96pedro@gmail.com, E-mail: r.correia17@hotmail.com [Instituto Federal do Piauí (IFPI), Teresina, PI (Brazil)

    2017-07-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D{sub E}ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  15. A fully discrete energy stable scheme for a phase filed moving contact line model with variable densities and viscosities

    KAUST Repository

    Zhu, Guangpu

    2018-01-26

    In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.

  16. Semi-Markov processes

    CERN Document Server

    Grabski

    2014-01-01

    Semi-Markov Processes: Applications in System Reliability and Maintenance is a modern view of discrete state space and continuous time semi-Markov processes and their applications in reliability and maintenance. The book explains how to construct semi-Markov models and discusses the different reliability parameters and characteristics that can be obtained from those models. The book is a useful resource for mathematicians, engineering practitioners, and PhD and MSc students who want to understand the basic concepts and results of semi-Markov process theory. Clearly defines the properties and

  17. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  18. A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available For current computational intelligence techniques, a major challenge is how to learn new concepts in changing environment. Traditional learning schemes could not adequately address this problem due to a lack of dynamic data selection mechanism. In this paper, inspired by human learning process, a novel classification algorithm based on incremental semi-supervised support vector machine (SVM is proposed. Through the analysis of prediction confidence of samples and data distribution in a changing environment, a "soft-start" approach, a data selection mechanism and a data cleaning mechanism are designed, which complete the construction of our incremental semi-supervised learning system. Noticeably, with the ingenious design procedure of our proposed algorithm, the computation complexity is reduced effectively. In addition, for the possible appearance of some new labeled samples in the learning process, a detailed analysis is also carried out. The results show that our algorithm does not rely on the model of sample distribution, has an extremely low rate of introducing wrong semi-labeled samples and can effectively make use of the unlabeled samples to enrich the knowledge system of classifier and improve the accuracy rate. Moreover, our method also has outstanding generalization performance and the ability to overcome the concept drift in a changing environment.

  19. A Gas-Kinetic Scheme for Turbulent Flow

    Science.gov (United States)

    2014-09-19

    is dΞ = dv1dv2dv3 dξ and: ψ = [ 1 v1 v2 v3 1 2 ( ui 2 + ξ2 )]T . (2) The numerical fluxes F related to a unit interface length normal to direction n... Rockets , 44(6):1232–1240. [Mandal and Deshpande, 1994] Mandal, J. and Desh- pande, S. (1994). Kinetic flux vector splitting for Euler equations. Comput

  20. A high-order doubly asymptotic open boundary for scalar waves in semi-infinite layered systems

    International Nuclear Information System (INIS)

    Prempramote, S; Song, Ch; Birk, C

    2010-01-01

    Wave propagation in semi-infinite layered systems is of interest in earthquake engineering, acoustics, electromagnetism, etc. The numerical modelling of this problem is particularly challenging as evanescent waves exist below the cut-off frequency. Most of the high-order transmitting boundaries are unable to model the evanescent waves. As a result, spurious reflection occurs at late time. In this paper, a high-order doubly asymptotic open boundary is developed for scalar waves propagating in semi-infinite layered systems. It is derived from the equation of dynamic stiffness matrix obtained in the scaled boundary finite-element method in the frequency domain. A continued-fraction solution of the dynamic stiffness matrix is determined recursively by satisfying the scaled boundary finite-element equation at both high- and low-frequency limits. In the time domain, the continued-fraction solution permits the force-displacement relationship to be formulated as a system of first-order ordinary differential equations. Standard time-step schemes in structural dynamics can be directly applied to evaluate the response history. Examples of a semi-infinite homogeneous layer and a semi-infinite two-layered system are investigated herein. The displacement results obtained from the open boundary converge rapidly as the order of continued fractions increases. Accurate results are obtained at early time and late time.

  1. Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Shahba

    2011-01-01

    Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.

  2. [Occlusal schemes of complete dentures--a review of the literature].

    Science.gov (United States)

    Tarazi, E; Ticotsky-Zadok, N

    2007-01-01

    movements). Linear occlusion scheme occludes cuspless teeth with anatomic teeth that have been modified (bladed teeth) in order to achieve linear occlusal contacts. Linear contacts are the pin-point contacts of the tips of the cusps of the bladed teeth against cuspless teeth that create a plane. The specific design of positioning upper modified teeth on the upper denture and non anatomic teeth on the lower one is called lingualized occlusion. It is characterized by contacts of only the lingual (palatinal, to be more accurate) cusps of the upper teeth with the lower teeth. The lingualized occlusal scheme provides better aesthetics than the monoplane occlusion scheme, and better stability (in the case of resorbed residual ridges) than bilateral occlusion scheme of anatomic teeth. The results of studies that compared different occlusal schemes may well be summarized as inconclusive. However, it does seem that patients preferred anatomic or semi-anatomic (modified) teeth, and that chewing efficiency with anatomic and modified teeth was better than with non anatomic teeth. Similar results were found in studies of occlusal schemes of implant-supported lower dentures opposed by complete upper dentures. There isn't one occlusal scheme that fits all patients in need of complete dentures, in fact, in many cases more than one occlusal scheme might be adequate. Selection of an occlusal scheme for a patient should include correlation of the characteristics of the patient with those of the various occlusal schemes. The characteristics of the patient include: height and width of the residual ridge, aesthetic demands of the patient, skeletal relations (class I/II/III), neuromuscular control, and tendency for para-functional activity. The multiple characteristics of the occlusal schemes were reviewed in this article. Considering all of those factors in relation to a specific patient, the dentist should be able to decide on the most suitable occlusal scheme for the case.

  3. A semi-analytical treatment of xenon oscillations

    International Nuclear Information System (INIS)

    Zarei, M.; Minuchehr, A.; Ghaderi, R.

    2017-01-01

    Highlights: • A two-group two region kinetic core model is developed employing the eigenvalues separation index. • Poison dynamics are investigated within an adiabatic approach. • The overall nonlinear reactor model is recast into a linear time varying framework incorporating the matrix exponential numerical scheme. • The largest Lyapunov exponent is employed to analytically verify model stability. - Abstract: A novel approach is developed to investigate xenon oscillations within a two-group two-region coupled core reactor model incorporating thermal feedback and poison effects. Group-wise neutronic coupling coefficients between the core regions are calculated applying the associated fundamental and first mode eigenvalue separation values. The resultant nonlinear state space representation of the core behavior is quite suitable for evaluation of reactivity induced power transients such as load following operation. The model however comprises a multi-physics coupling of sub-systems with extremely distant relaxation times whose stiffness treatment inquire costly multistep implicit numerical methods. An adiabatic treatment of the sluggish poison dynamics is therefore proposed as a way out. The approach helps further investigate the nonlinear system within a linear time varying (LTV) framework whereby a semi-analytical framework is established. This scheme incorporates a matrix exponential analytical solution of the perturbed system as a quite efficient tool to study load following operation and control purposes. Poison dynamics are updated within larger intervals which exclude the need for specific numerical schemes of stiff systems. Simulation results of the axial offset conducted on a VVER-1000 reactor at the beginning (BOC) and the end of cycle (EOC) display quite acceptable results compared with available benchmarks. The LTV reactor model is further investigated within a stability analysis of the associated time varying systems at these two stages

  4. Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations

    Science.gov (United States)

    Chiodaroli, Elisabetta; Kreml, Ondřej

    2018-04-01

    We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.

  5. Computerized breast cancer analysis system using three stage semi-supervised learning method.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2016-10-01

    A large number of labeled medical image data is usually a requirement to train a well-performed computer-aided detection (CAD) system. But the process of data labeling is time consuming, and potential ethical and logistical problems may also present complications. As a result, incorporating unlabeled data into CAD system can be a feasible way to combat these obstacles. In this study we developed a three stage semi-supervised learning (SSL) scheme that combines a small amount of labeled data and larger amount of unlabeled data. The scheme was modified on our existing CAD system using the following three stages: data weighing, feature selection, and newly proposed dividing co-training data labeling algorithm. Global density asymmetry features were incorporated to the feature pool to reduce the false positive rate. Area under the curve (AUC) and accuracy were computed using 10 fold cross validation method to evaluate the performance of our CAD system. The image dataset includes mammograms from 400 women who underwent routine screening examinations, and each pair contains either two cranio-caudal (CC) or two mediolateral-oblique (MLO) view mammograms from the right and the left breasts. From these mammograms 512 regions were extracted and used in this study, and among them 90 regions were treated as labeled while the rest were treated as unlabeled. Using our proposed scheme, the highest AUC observed in our research was 0.841, which included the 90 labeled data and all the unlabeled data. It was 7.4% higher than using labeled data only. With the increasing amount of labeled data, AUC difference between using mixed data and using labeled data only reached its peak when the amount of labeled data was around 60. This study demonstrated that our proposed three stage semi-supervised learning can improve the CAD performance by incorporating unlabeled data. Using unlabeled data is promising in computerized cancer research and may have a significant impact for future CAD system

  6. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  7. Assimilation scheme of the Mediterranean Forecasting System: operational implementation

    Directory of Open Access Journals (Sweden)

    E. Demirov

    Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements.

    Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction

  8. Assimilation scheme of the Mediterranean Forecasting System: operational implementation

    Directory of Open Access Journals (Sweden)

    E. Demirov

    2003-01-01

    Full Text Available This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP. The assimilation scheme, System for Ocean Forecast and Analysis (SOFA, is a reduced order Optimal Interpolation (OI scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF. The data assimilated are Sea Level Anomaly (SLA and temperature profiles from Expandable Bathy Termographs (XBT. The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT. The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS between the model forecast and the analysis (the forecast RMS is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction

  9. Computational Fluid Dynamics Conference, 8th, Honolulu, HI, June 9-11, 1987, Technical Papers

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The present conference on CFD methods considers upwind schemes for the solution of the Navier-Stokes (N-S) equations, separated flow simulations using the vortex method on a hypercube, a hybrid expert system for complex CFD problems, three-dimensional hypersonic flow simulations with an implicit upwind N-S method, conservation cells for finite volume calculations, three-dimensional mesh generation, and an extended grid-embedding scheme for viscous flows. Attention is also given to unsteady incompressible flow algorithms based on artificial compressibility, difference schemes for the three-dimensional Euler equations, combustor flow computations in general coordinates, a multigrid Euler method for fighter configurations, a prediction method for supersonic/hypersonic inviscid flow, adaptive methods for high Mach number reacting flow, low Mach number compressible flow solutions in constricted ducts, and the evaluation of flow topology for numerical data

  10. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.

    Science.gov (United States)

    Sun, Wenqing; Tseng, Tzu-Liang Bill; Zhang, Jianying; Qian, Wei

    2017-04-01

    In this study we developed a graph based semi-supervised learning (SSL) scheme using deep convolutional neural network (CNN) for breast cancer diagnosis. CNN usually needs a large amount of labeled data for training and fine tuning the parameters, and our proposed scheme only requires a small portion of labeled data in training set. Four modules were included in the diagnosis system: data weighing, feature selection, dividing co-training data labeling, and CNN. 3158 region of interests (ROIs) with each containing a mass extracted from 1874 pairs of mammogram images were used for this study. Among them 100 ROIs were treated as labeled data while the rest were treated as unlabeled. The area under the curve (AUC) observed in our study was 0.8818, and the accuracy of CNN is 0.8243 using the mixed labeled and unlabeled data. Copyright © 2016. Published by Elsevier Ltd.

  11. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST scheme

    Directory of Open Access Journals (Sweden)

    Madslien Elisabeth H

    2012-10-01

    Full Text Available Abstract Background Bacillus licheniformis has for many years been used in the industrial production of enzymes, antibiotics and detergents. However, as a producer of dormant heat-resistant endospores B. licheniformis might contaminate semi-preserved foods. The aim of this study was to establish a robust and novel genotyping scheme for B. licheniformis in order to reveal the evolutionary history of 53 strains of this species. Furthermore, the genotyping scheme was also investigated for its use to detect food-contaminating strains. Results A multi-locus sequence typing (MLST scheme, based on the sequence of six house-keeping genes (adk, ccpA, recF, rpoB, spo0A and sucC of 53 B. licheniformis strains from different sources was established. The result of the MLST analysis supported previous findings of two different subgroups (lineages within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Food isolates were widely dispersed in the MLST tree and could not be distinguished from the other strains. However, the food contaminating strain B. licheniformis NVH1032, represented by a unique sequence type (ST8, was distantly related to all other strains. Conclusions In this study, a novel and robust genotyping scheme for B. licheniformis was established, separating the species into two subgroups. This scheme could be used for further studies of evolution and population genetics in B. licheniformis.

  12. Two-dimensional semi-analytic nodal method for multigroup pin power reconstruction

    International Nuclear Information System (INIS)

    Seung Gyou, Baek; Han Gyu, Joo; Un Chul, Lee

    2007-01-01

    A pin power reconstruction method applicable to multigroup problems involving square fuel assemblies is presented. The method is based on a two-dimensional semi-analytic nodal solution which consists of eight exponential terms and 13 polynomial terms. The 13 polynomial terms represent the particular solution obtained under the condition of a 2-dimensional 13 term source expansion. In order to achieve better approximation of the source distribution, the least square fitting method is employed. The 8 exponential terms represent a part of the analytically obtained homogeneous solution and the 8 coefficients are determined by imposing constraints on the 4 surface average currents and 4 corner point fluxes. The surface average currents determined from a transverse-integrated nodal solution are used directly whereas the corner point fluxes are determined during the course of the reconstruction by employing an iterative scheme that would realize the corner point balance condition. The outgoing current based corner point flux determination scheme is newly introduced. The accuracy of the proposed method is demonstrated with the L336C5 benchmark problem. (authors)

  13. Performance Analyses and Improvements for the IEEE 802.15.4 CSMA/CA Scheme with Heterogeneous Buffered Conditions

    Directory of Open Access Journals (Sweden)

    Chunfeng Lv

    2012-04-01

    Full Text Available Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes—OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme—are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results.

  14. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    OpenAIRE

    Dias, Clenilda F; Carvalho-Santos, Vagson L

    2012-01-01

    The Euler-Lagrange equations (EL) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of EL to study one-dimensional motions under the action of a constant force. From using the definition of partial derivative, we have proposed two operators, here called \\textit{mean delta operators}, which may be used to solve the EL in a simplest way. We have applied this simplification to solve three simple mechanical problems under th...

  15. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

    Directory of Open Access Journals (Sweden)

    R. Naz

    2015-01-01

    Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

  16. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    Science.gov (United States)

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  17. Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions

    International Nuclear Information System (INIS)

    Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J.

    1993-01-01

    A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author)

  18. B(E2)s of high-spin isomers in generalized seniority scheme

    International Nuclear Information System (INIS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar

    2015-01-01

    In this paper, we focus on the isomers that arise due to the seniority selection rules and the role played by generalized seniority when multi-j configurations are involved. In particular, we concentrate on explaining the B(E2) values in the semi-magic isomeric chains by using a simple approach. In this paper, we study the B(E2) variation of these isomers by using the generalized seniority scheme, applicable to many-j degenerate orbits. We show that the isomers known to arise mainly from the high-j intruder orbitals, do require the configuration mixing as an essential requirement

  19. Exact analysis of Packet Reversed Packet Combining Scheme and Modified Packet Combining Scheme; and a combined scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-07-01

    Packet combining scheme is a well defined simple error correction scheme for the detection and correction of errors at the receiver. Although it permits a higher throughput when compared to other basic ARQ protocols, packet combining (PC) scheme fails to correct errors when errors occur in the same bit locations of copies. In a previous work, a scheme known as Packet Reversed Packet Combining (PRPC) Scheme that will correct errors which occur at the same bit location of erroneous copies, was studied however PRPC does not handle a situation where a packet has more than 1 error bit. The Modified Packet Combining (MPC) Scheme that can correct double or higher bit errors was studied elsewhere. Both PRPC and MPC schemes are believed to offer higher throughput in previous studies, however neither adequate investigation nor exact analysis was done to substantiate this claim of higher throughput. In this work, an exact analysis of both PRPC and MPC is carried out and the results reported. A combined protocol (PRPC and MPC) is proposed and the analysis shows that it is capable of offering even higher throughput and better error correction capability at high bit error rate (BER) and larger packet size. (author)

  20. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  1. Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves

    Science.gov (United States)

    Vanel, Florence O.; Baysal, Oktay

    1995-01-01

    Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.

  2. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  3. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  4. Measurements of the interaction cross-sections for 14Be and 14,15B as projectiles with a new scheme at RIBLL

    International Nuclear Information System (INIS)

    Ozawa, A.; Cai, Y.Z.; Chen, Z.Q.; Chiba, M.; Fang, D.Q.; Guo, Z.G.; Izumikawa, T.; Li, J.X.; Mao, R.S.; Ohnishi, T.; Shen, W.Q.; Suda, T.; Sun, Z.Y.; Suzuki, T.; Tanihata, I.; Tian, W.D.; Wang, J.S.; Wang, M.; Wei, Y.B.; Xiao, G.Q.; Xiao, Z.G.; Yamaguchi, T.; Yamaguchi, Y.; Yoshida, A.; Zhan, W.L.; Zhang, H.Y.; Zheng, T.; Zhong, C.

    2006-01-01

    We have measured the interaction cross-sections (σ I ) for light neutron-rich nuclei ( 14 Be, 14,15 B) at ∼50A MeV at the Radioactive Ion Beam Line in Lanzhou (RIBLL) in IMP with a new scheme. In this scheme, a carbon reaction target was installed at the intermediate focusing point at RIBLL. This scheme allowed us to identify particles before and after the reaction target unambiguously. However, this scheme might suffer a large loss of transmission efficiency in the second half of RIBLL. We checked this effect by changing the emittance of the RI beams. The results showed that a correction of the transmission efficiency is needed to deduce σ I . We performed a Monte Carlo type simulation and tried to deduce σ I for the above nuclei. Finally, we obtained reasonable σ I although their error bars were fairly large. The results were compared with calculations by an energy-dependent semi-empirical formula

  5. A family of high-order gas-kinetic schemes and its comparison with Riemann solver based high-order methods

    Science.gov (United States)

    Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun

    2018-03-01

    Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a

  6. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  7. Implementation of an Euler/Navier-Stokes finite element algorithm on the Connection Machine

    International Nuclear Information System (INIS)

    Shapiro, R.A.

    1991-01-01

    Massively parallel computers such as the Connection Machine (CM-2) have the potential to reduce significantly the computational cost for large problems of interest to the aerospace community. This paper examines the applicability of the CM-2 to an explicit, time-marching finite element solution method for the Euler and Navier-Stokes equations. The CM-2 architecture and the CM FORTRAN language are introduced. The paper points out some of the pitfalls involved in putting this code on the CM-2, with emphasis on interprocessor communications issues. The use of the FastGraph communication compiler and grid renumbering to reduce communication costs is discussed. Performance comparisons which indicate the approximate equivalence of a uniprocessor Cray and 1/8 of a CM-2 (8192 processors) for some typical problems are presented. 8 refs

  8. The Euler equation with habits and measurement errors: Estimates on Russian micro data

    Directory of Open Access Journals (Sweden)

    Khvostova Irina

    2016-01-01

    Full Text Available This paper presents estimates of the consumption Euler equation for Russia. The estimation is based on micro-level panel data and accounts for the heterogeneity of agents’ preferences and measurement errors. The presence of multiplicative habits is checked using the Lagrange multiplier (LM test in a generalized method of moments (GMM framework. We obtain estimates of the elasticity of intertemporal substitution and of the subjective discount factor, which are consistent with the theoretical model and can be used for the calibration and the Bayesian estimation of dynamic stochastic general equilibrium (DSGE models for the Russian economy. We also show that the effects of habit formation are not significant. The hypotheses of multiplicative habits (external, internal, and both external and internal are not supported by the data.

  9. Untitled

    Indian Academy of Sciences (India)

    Phys. 39: 347-363. Rogers S E, Kwak D, Kiris C 1991 Upwinding differencing scheme for the time-accurate ... Rosenfeld M, Kwak D, Vinokur M 1991 A fractional step solution method for the unsteady incompressible ... Tamura Y, Fujii K 1991 A multi-dimensional upwind scheme for the Euler equations on structured grid.

  10. Treatment of radioactive liquid wastes on semi-permeable membranes

    International Nuclear Information System (INIS)

    Antonescu, M.; Deleanu, N.; Nechifor, G.

    1997-01-01

    At present, among the currently world-wide applied separation processes, those using membranes are thought to be most advanced due to their advantages: high efficiency, cost-effectiveness in application, universality of the utilized equipment, operation in non-destructive and non-polluting conditions. The most significant results of the treatment experiments are: - a reduction of more than 70% in the chemical oxygen consumption for the solution simulating the POD waste; - the solution simulating the secondary waste from decontamination by POD procedure, appear to be the best (with retentions of 88.5%, 76.5% and 65.7% for strontium, cobalt and manganese, respectively). Important reduction of costs and efficient technological schemes can be obtained by combining the semi-permeable membrane separation techniques with other efficient currently used procedures of separation, concentration and purification, adequate for given situations

  11. A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    Directory of Open Access Journals (Sweden)

    Alexander Efremov

    2014-01-01

    Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

  12. Generalized Stabilities of Euler-Lagrange-Jensen (a,b-Sextic Functional Equations in Quasi-β-Normed Spaces

    Directory of Open Access Journals (Sweden)

    John Michael Rassias

    2017-07-01

    Full Text Available The aim of this paper is to investigate generalized Ulam-Hyers stabilities of the following Euler-Lagrange-Jensen-$(a,b$-sextic functional equation $$ f(ax+by+f(bx+ay+(a-b^6\\left[f\\left(\\frac{ax-by}{a-b}\\right+f\\left(\\frac{bx-ay}{b-a}\\right\\right]\\\\ = 64(ab^2\\left(a^2+b^2\\right\\left[f\\left(\\frac{x+y}{2}\\right+f\\left(\\frac{x-y}{2}\\right\\right]\\\\ +2\\left(a^2-b^2\\right\\left(a^4-b^4\\right[f(x+f(y] $$ where $a\

  13. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisymplectic Structures I: Difference Discrete Variational Principle

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun

    2002-01-01

    In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.

  14. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  15. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  16. On a nu-continuous famaly of strong solutions to the Euler or Navier-Stokes equations with the Navier-type boundary condition

    Czech Academy of Sciences Publication Activity Database

    Bellout, H.; Neustupa, Jiří; Penel, P.

    2010-01-01

    Roč. 27, č. 4 (2010), s. 1353-1373 ISSN 1078-0947 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z10190503 Keywords : Euler equations * Navier-Stokes equations * zero viscosity limit Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5028

  17. Strong-stability-preserving additive linear multistep methods

    KAUST Repository

    Hadjimichael, Yiannis; Ketcheson, David I.

    2018-01-01

    The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal perturbed

  18. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  19. Generalized Euler transformation for summing strongly divergent Rayleigh-Schroedinger perturbation series: the Zeeman effect

    International Nuclear Information System (INIS)

    Silverman, J.N.

    1983-01-01

    A generalized Euler transformation (GET) is introduced which provides a powerful alternative method of accurately summing strongly divergent Rayleigh-Schroedinger (RS) perturbation series when other summability methods fail or are difficult to apply. The GET is simple to implement and, unlike a number of other summation procedures, requires no a priori knowledge of the analytic properties of the function underlying the RS series. Application of the GET to the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide range of field strengths up to the most intense fields of 10 14 G. The GET results are compared with those obtained by other summing methods

  20. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    Science.gov (United States)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.