WorldWideScience

Sample records for semi natural grassland

  1. Decrease in Danish semi-natural grassland

    DEFF Research Database (Denmark)

    Svenningsen, Stig Roar; Levin, Gregor; Jepsen, Martin Rudbeck

    2015-01-01

    During the past century, the western hemisphere has seen a general trend of agricultural expansion on the behalf of semi-natural habitat types, such as heathlands and meadows. This has been documented in numerous studies of land use change. This trend is reflected in today?s European rural...

  2. Voluntary intake and in vivo digestibility of forages from semi-natural grasslands in dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Valk, H.; Struik, P.C.

    2003-01-01

    To study in vivo digestibility of forages from semi-natural grasslands two experiments were carried out. In the first experiment lactating dairy cows were offered three different silage-based diets. Silage originated from intensively managed grassland (IM), extensively managed species-poor grassland

  3. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  4. Fate of semi-natural grassland in England between 1960 and 2013: A test of national conservation policy

    Directory of Open Access Journals (Sweden)

    Lucy E. Ridding

    2015-07-01

    Full Text Available It is well documented that significant losses in semi-natural grassland occurred across Europe during the second half of the twentieth century. However, comparatively few studies have investigated and quantified the fate of large numbers of individual grassland areas. This is important for understanding the causes of decline, and consequently establishing new policies to conserve and restore lost habitats. This study addresses this problem; GIS was used to compare historic survey data collected between 1960 and 1981 with two contemporary spatial datasets of habitats in England. The datasets included the Priority Habitats Inventory 2013 and the Land Cover Map 2007 and this was undertaken for different types of semi-natural grassland across England. Considerable decreases occurred across the different grassland types, with a loss of 47% of studied semi-natural grasslands sites in England over 32–53 years. Of this, the majority of grassland was lost to conversion to agriculturally-improved grassland or arable cultivation, 45% and 43% respectively. Changes to woodland and urban areas were also evident, but on a much smaller scale. Sites receiving statutory protection as a Site of Special Scientific Interest were found to have retained more grassland (91%, compared with non-protected sites (27%, thus highlighting the effectiveness of this aspect of current conservation policy in England, and the need for this to continue in the future.

  5. The relationships between biodiversity and ecosystem services and the effects of grazing cessation in semi-natural grasslands

    Directory of Open Access Journals (Sweden)

    S. Wehn

    2018-04-01

    Full Text Available Land use change can affect biodiversity, and this has an impact on ecosystem services (ESs, but the relationships between biodiversity and ESs are complex and poorly understood. Biodiversity is declining due to the abandonment of extensively grazed semi-natural grasslands.We therefore aim to explore relationships between biodiversity and ESs provided by extensively managed semi-natural grasslands. Focusing on vascular plant species richness, as well as the ESs fodder quantity, quality, and stability, allergy control, climate regulation, nutrient cycling, pollination, and aesthetic appreciation, we carried out botanical field surveys of 28 paired extensively grazed and abandoned semi-natural grassland plots, with four subplots of 4 m2 in each plot. The management of the semi-natural grasslands is and has been at low intensity. We calculated the influence of abandonment on the ES indicators, measured the correlation between the biodiversity measure of vascular plant species richness and ES indicators, and finally determined how the relationships between plant species richness and the ES indicators were affected by the cessation of the extensive management.ES indicators are often, but not always, positively correlated with species richness. Cessation of extensive grazing has both negative and positive effects on ES indicators but the relationships between species richness and ES indicators are often different in extensively managed and abandoned semi-natural grasslands. The relationships between species richness and ES indicators are less pronounced in the extensively managed semi-natural grassland than for the abandoned. One possible reason for this outcome is high functional redundancy in the extensively managed semi-natural grasslands.

  6. Stomatal conductance of semi-natural Mediterranean grasslands: Implications for the development of ozone critical levels

    International Nuclear Information System (INIS)

    Alonso, R.; Bermejo, V.; Sanz, J.; Valls, B.; Elvira, S.; Gimeno, B.S.

    2007-01-01

    Intra-genus and intra-specific variation and the influence of nitrogen enrichment on net assimilation and stomatal conductance of some annual Trifolium species of Mediterranean dehesa grasslands were assessed under experimental conditions. Also gas exchange rates were compared between some Leguminosae and Poaceae species growing in the field in a dehesa ecosystem in central Spain. The results showed that the previously reported different O 3 sensitivity of some Trifolium species growing in pots does not seem to be related to different maximum g s values. In addition, no clear differences on gas exchange rates could be attributed to Leguminosae and Poaceae families growing in the field, with intra-genus variation being more important than differences found between families. Further studies are needed to increase the database for developing a flux-based approach for setting O 3 critical levels for semi-natural Mediterranean species. - The stomatal conductance model incorporated within the EMEP DO 3 SE deposition module needs to be re-parameterised for Mediterranean semi-natural vegetation

  7. Biological transport of radiocaesium in a semi-natural grassland ecosystem: Pt.1

    International Nuclear Information System (INIS)

    Rudge, S.A.; Johnson, M.S.; Leah, R.T.

    1993-01-01

    An unused area of the British Nuclear Fuels plc low level disposal site at Drigg in Cumbria, together with a control site in Cheshire, have been used to investigate the behaviour of 137 Cs in semi-natural grasslands over the period 1985-1988. Both sites showed significant inputs of 137 Cs and 134 Cs from the Chernobyl incident in 1986, estimated at up to 7330 Bq/m 2 at Drigg and less than 230 Bq/m 2 in Cheshire. Surface soil horizons showed the highest levels of 137 Cs and 134 Cs. During the study period, the dominant contribution to radiocaesium in soil and vegetation was from Chernobyl. Significant inter-specific variation in caesium concentrations of grasses was observed with an exponential decrease from June 1986 through to the summer of 1987, followed by secondary peak in autumn 1987. Samples collected in the spring of 1988 showed 137 Cs concentrations approaching pre-Chernobyl levels. Marked inter-specific and temporal differences in concentrations of radio-caesium were recorded for invertebrate populations. Radioactivity levels in herbivorous invertebrates were approximately proportional to levels in their diets with concentration decreasing form the 1986 summer peak recorded after the input of Chernobyl radioactivity to the low levels observed during the summer of 1987. Herbivorous and predatory invertebrates showed similar concentrations of 137 Cs but both groups were lower in radiocaesium than detritivorous species. (Author)

  8. CLASSIFICATION OF SEMI-NATURAL GRASSLANDS IN NORTH-EASTERN BULGARIA

    Directory of Open Access Journals (Sweden)

    IVA APOSTOLOVA

    2006-01-01

    Full Text Available This study presents the syntaxonomic diversity of the semi-natural grasslands in NorthEastern Bulgaria following the principles of the Ziirich-Montpellier School. A total number of 172 releves, collected during 2002-2004, is used. TWINSPAN clustering is applied for determination vegetation types. The diagnostic species groups for the associations and subassociations are created by Cocktail method using the phi-coefficient with values above 0.3 within the JUICE software. As a result class Fesluco-Brometea is established with the alliances Festucion valesiacae, Pimpinello-Thymion and Chrysopogoni-Danthonion. The originally described Botriochloetum ischaemi Pop 1977 association is considered as typical on the subassociation level and a part of our releves are referred to it. Following the nomenclature rules we determined the subassotiation typicum. One new subassociation named Thymefosum pannonici of more xerophytic character, as compared to typical one, and well represented by differential species is established. The geographical distribution of Agropyro-Thymetum zygoidi and Agrostideto-Chrysopogonetum grylli associations is extended to the territory of Bulgaria. Class Molinio-Arrhenalherefea is represented by Cynosurion alliance and Festuco-Agrostidetum association is established by its probably most eastern area of distribution.

  9. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    López-i-Gelats, F.; Rivera-Ferre, M.G.; Madruga-Andreu, C.; Bartolomé-Filella, J.

    2015-07-01

    Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence. (Author)

  10. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    International Nuclear Information System (INIS)

    López-i-Gelats, F.; Rivera-Ferre, M.G.; Madruga-Andreu, C.; Bartolomé-Filella, J.

    2015-01-01

    Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence. (Author)

  11. Is multifunctionality the future of mountain pastoralism? Lessons from the management of semi-natural grasslands in the Pyrenees

    Directory of Open Access Journals (Sweden)

    Feliu López-i-Gelats

    2015-12-01

    Full Text Available Land abandonment is pervasive in mountainous Europe. In the present situation of price-cost squeeze on pastoral households and general shift in the role of farming, the development of farming abandonment risk regions is generally associated with adoption of new multifunctional rural development strategies, such as farm tourism, which in the end entail less time being devoted to farming practices. We explored the effects of such developmental scheme on the preservation of semi-natural grasslands, in particular, and on the sustainability of mountain pastoralism, in general. While the effects on the preservation of semi-natural grasslands of full abandonment have been extensively explored, this is not the case of partial abandonment. Results showed that the adoption of simplified and low-cost management regimes, associated with partial abandonment and the increased adoption of part-time farming, immerses semi-natural grasslands in processes of secondary succession that undermine both their conservation and pastoral functions. This points the need for caution when endorsing multifunctional developmental schemes in farming abandonment risk regions, particularly when those imply less labor being devoted to pastoral practices. In conclusion, we stress that in farming abandonment risk regions it is possible to guarantee both viable pastoralism and diversified rural economy. However, it is necessary to implement developmental strategies that are centered on stimulating synergies between pastoralism and other economic activities, rather than promoting activities that depend on additional farmers’ polyvalence.

  12. Leaching of biomass from semi-natural grasslands – Effects on chemical composition and ash high-temperature behaviour

    International Nuclear Information System (INIS)

    Tonn, Bettina; Thumm, Ulrich; Lewandowski, Iris; Claupein, Wilhelm

    2012-01-01

    Combustion of biodiversity-rich semi-natural grassland biomass no longer needed for forage allows nature conservation to be combined with bioenergy production. Natural leaching by rainfall during the period between biomass harvest and collection can reduce the content of elements detrimental for the combustion of grassland biomass. This study assesses the influence of biomass characteristics on leaching efficiency and the potential effects of leaching on ash melting behaviour and elemental release. Grassland biomass harvested from five sites at two harvest dates was leached at two intensities. Low-temperature ash was heated to 700, 800, 900 and 1000 °C respectively and classified into four ash fusion classes. Ash mass loss was determined as a measure of high-temperature elemental release. Weather data were used to calculate the frequency of weather conditions favourable to on-field leaching. K and Cl were leached most strongly and were reduced by 30 and 45% respectively by a leaching treatment corresponding to 30–40 mm of rain. The effects of site and harvest date on leaching efficiency were significant but small. Ash melting behaviour and elemental release between 700 and 900 °C were favourably influenced by leaching. The K/(Ca + Mg) and Si/ash ratios were related to increased ash melting. In this respect, semi-natural grassland biomass differs from other, less Ca-rich, herbaceous biofuels. Even if suitable weather conditions are not occurring frequently at the study sites, on-field leaching can offer an additional low-cost, on-farm strategy option for farmers and nature conservation agencies to improve biomass quality of nature conservation grasslands for combustion. -- Graphical abstract: Highlights: ► Combustion of biomass from biodiversity-rich nature conservation grassland. ► Leaching by rain during the field period reduces K and Cl concentrations. ► Increasing K/(Ca + Mg) and decreasing (K + Ca + Mg)/ash ratios increase ash melting. ► Leaching

  13. Elevated atmospheric CO2 in a semi-natural grassland: Root dynamics, decomposition and soil C balances

    International Nuclear Information System (INIS)

    Sindhoej, Erik

    2001-01-01

    This thesis focuses on how elevated atmospheric CO 2 affects a semi-natural grassland, with emphasis on root growth, decomposition and the subsequent long-term effects on soil C balances. Parts of a semi-natural grassland in Central Sweden were enclosed in open-top chambers and exposed to ambient and elevated levels of CO 2 (+350 μmol mol -1 ) from 1995 to 2000, while chamberless rings were used for controls. Root dynamics were observed with minirhizotrons while root biomass and production were studied with soil cores and ingrowth cores. Roots collected from ingrowth cores were incubated under controlled conditions for 160 days to measure root decomposition rates. Treatment-induced differences in microclimate, C input and root decomposability were entered into the ICBM soil C balance model for 30-year projections of soil C balances for the three treatments. Elevated CO 2 chambers had higher biomass production both above and below ground compared to ambient, however the root response increased over the years while the shoot response decreased. Plants grown under elevated CO 2 had greater water-use efficiency compared to ambient, which was shown in higher soil moisture and greater biomass production during slightly dry years. Elevated CO 2 chambers showed higher root appearance rates in spring and higher disappearance rates during autumn and winter. Roots from plants grown under elevated CO 2 decomposed more rapidly. The decreased input and the drier conditions in the ambient chambers were projected to lead to a 1.7% decrease in soil C over 30 years. Under elevated CO 2 , however, the increased input compensated for the higher root decomposability and moister soil conditions and lead only to a projected 1.3% decrease in soil C. This work shows that six years of elevated CO 2 exposure had extensive effects on this semi-natural grassland. The CO 2 response of the grassland was dependent on weather conditions and production increased most when under slight water stress

  14. Effects Of Elevated Ozone On Leaf {delta} {sup 13} C And Leaf Conductance Of Plant Species Grown In Semi-Natural Grassland With Or Without Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Volk, M. [Agroscope-FAL (Switzerland); Fuhrer, J. [Agroscope-FAL (Switzerland)

    2005-03-01

    At the Swiss prealpine site Le Mouret (754 m a.s.l. 46deg 45min N / 7deg 10min E), semi-natural grassland species were kept under ambient or elevated ozone, paired with or without additional irrigation. Two of the four investigated grassland species showed an additive increase in {sup 13}C-values under drought and elevated ozone conditions. (author)

  15. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland

    DEFF Research Database (Denmark)

    Schnoor, Tim Krone; Lekberg, Ylva; Rosendahl, Søren

    2011-01-01

    an ongoing grassland restoration experiment that contained replicated plowed and control plots. The AM fungal community in roots was determined using nested PCR and LSU rDNA primers. We identified 38 phylotypes within the Glomeromycota, of which 29 belonged to Glomus A, six to Glomus B, and three...

  16. Multi-level natural resources governance based on local community: A case study on semi-natural grassland in Tarōji, Nara, Japan

    Directory of Open Access Journals (Sweden)

    Daisaku Shimada

    2015-09-01

    Full Text Available Japan is facing a bio-diversity crisis as a result of rapid industrialisation. The Japanese Ministry of the Environment formulated a National Biodiversity Strategy based on the Convention on Biological Diversity signed at the Earth Summit in 1992. After an amendment in 2002, the National Biodiversity Strategy addressed three crises in biodiversity: over-exploitation and development that destroys habitats, underutilisation (the satoyama problem and artificially introduced factors (chemicals, alien species and so on. This paper focuses on the second problem. Secondary natural environments called satoyama have been created and maintained over the centuries by human activity. Because natural environments in Japan have been affected by human-induced disturbances for 35,000 years, many species have evolved in response to these disturbances. If the human activities cease, many of the species that have evolved to survive in managed environments become threatened. Many satoyama have been managed as commonage or common lands, called iriai in Japan. One natural resource system created by commoners is semi-natural grassland, and economic modernisation has led to abandonment of traditional management practices on these grasslands – one of the more evident changes in Japanese iriai practices. Before industrialisation, semi-natural grasslands were managed as a source of green manure, as a harvest for roofing materials (thatch and as pasture for animals. After industrialisation, however, introduction of chemical fertilizers, changes in building practices and importation of animal feeds rapidly decreased the use value of these grasslands for local residents. On the other hand, their value as public goods – as historical, cultural landscapes and places of biodiversity – which concern a much broader population than the local community – became relatively more important. The resulting problem is how to manage this resource with its new value for new

  17. Milk fatty acid composition and associated rumen lipolysis and fatty acid hydrogenation when feeding forages from intensively managed or semi-natural grasslands

    NARCIS (Netherlands)

    Lourenco, M.; Vlaeminck, B.; Bruinenberg, M.H.; Demeyer, D.; Fievez, V.

    2005-01-01

    In order to evaluate the effect of replacing intensive forage by semi-natural grassland products on rumen lipid metabolism and milk fatty acid composition, four lactating and rumen canulated Holstein cows were used in a 4×4 Latin square design. Four different diets were fed: diet 100 IM - 100%

  18. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands.

    Science.gov (United States)

    Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka

    2018-07-15

    Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a

  19. Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO2

    International Nuclear Information System (INIS)

    Marissink, Mark; Hansson, Margareta

    2002-01-01

    A semi-natural grassland in Sweden was exposed to an elevated CO 2 concentration during a six-year open-top chamber experiment. Vegetation composition was assessed twice a year using the point-intercept method. The field had been grazed previously, but when the experiment started this was replaced with a cutting regime with one cut (down to ground level) each year in early August. From the third to the sixth year of the study the harvested material was divided into legumes, non-leguminous forbs and grasses, dried and weighed. Elevated CO 2 had an effect on species composition (as analysed by Principal Component Analysis) that increased over time. It also tended to increase diversity (Shannon index) in summer, but reduce it in spring. However, the effects of the weather and/or time on species composition and diversity were much more prominent than CO 2 effects. Since the weather was largely directional over time (from dry to wet), with the exception of the fifth year, it was difficult to distinguish between weather effects and changes caused by a changed management regime. In all treatments, grasses increased over time in both mass and point-intercept measurements, whereas non-leguminous forbs decreased in mass, but not in point-intercept measurements. Legumes increased in the point-intercept measurements, but not in biomass, at elevated CO 2 , but not in the other treatments. Overall, we found that elevated CO 2 affected species composition; however, it was only one of many factors and a rather weak one

  20. Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Marissink, Mark; Hansson, Margareta [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Crop Production Science

    2002-10-01

    A semi-natural grassland in Sweden was exposed to an elevated CO{sub 2} concentration during a six-year open-top chamber experiment. Vegetation composition was assessed twice a year using the point-intercept method. The field had been grazed previously, but when the experiment started this was replaced with a cutting regime with one cut (down to ground level) each year in early August. From the third to the sixth year of the study the harvested material was divided into legumes, non-leguminous forbs and grasses, dried and weighed. Elevated CO{sub 2} had an effect on species composition (as analysed by Principal Component Analysis) that increased over time. It also tended to increase diversity (Shannon index) in summer, but reduce it in spring. However, the effects of the weather and/or time on species composition and diversity were much more prominent than CO{sub 2} effects. Since the weather was largely directional over time (from dry to wet), with the exception of the fifth year, it was difficult to distinguish between weather effects and changes caused by a changed management regime. In all treatments, grasses increased over time in both mass and point-intercept measurements, whereas non-leguminous forbs decreased in mass, but not in point-intercept measurements. Legumes increased in the point-intercept measurements, but not in biomass, at elevated CO{sub 2}, but not in the other treatments. Overall, we found that elevated CO{sub 2} affected species composition; however, it was only one of many factors and a rather weak one.

  1. How do plant communities and flower visitors relate? A case study of semi-natural xerothermic grasslands

    Directory of Open Access Journals (Sweden)

    Damian Chmura

    2013-06-01

    Full Text Available The paper examines the relationships between the species composition of flower visitors and plants in the semi-natural xerothermic grasslands in southern and central Poland. Thirty 10 × 10 m permanent plots were laid out in total, mainly in nature reserves. The vegetation units studied were classified according to the Braun-Blanquet system; these were phytocoenoses of the Festuco-Brometea classes Inuletum ensifoliae, Adonido-Brachypodietum pinnati and the transitional plant community. Entomological research was performed using the Pollard method within the same plots. A particular site was visited only once and different sites were studied between April and August 2008. We applied, among others, co-correspondence-analysis Co-CA, detrended correspondence analysis (DCA and redundancy analysis (RDA to investigate the co-occurrence patterns of plants and flower visitors and their biotopic requirements. We found that the species composition of flower visitors cannot be predicted by floristic composition when the duration of the study is restricted to one day (but under similar weather conditions; however, there is a positive relationship between the species richness of insects and plants and a positive relationship between the number of plant species and the abundance of flower visitors. The Ellenberg moisture index and the cover of meadow species significantly explained the species composition of insects. The three various vegetation units and five dominant xerothermic species, i.e. Adonis vernalis, Anemone sylvestris, Inula ensifolia, Linum hirsutum and Carlina onopordifolia that were studied across time differed in the species richness of insects. Our results demonstrate that possible patterns in the species composition and the assembly rules of flower visitors are not apparent when the Pollard method is applied. Based on the data obtained using this method, the flower visiting assemblages seem not to be driven by competition and they primarily

  2. Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden

    Directory of Open Access Journals (Sweden)

    Sven G. Nilsson

    2013-11-01

    Full Text Available Currently, we are experiencing biodiversity loss on different spatial scales. One of the best studied taxonomic groups in decline is the butterflies. Here, we review evidence for such declines using five systematic studies from southern Sweden that compare old butterfly surveys with the current situation. Additionally, we provide data on butterfly and burnet moth extinctions in the region’s counties. In some local areas, half of the butterfly fauna has been lost during the last 60-100 years. In terms of extinctions, counties have lost 2-10 butterfly and burnet moth species. Land use has changed markedly with key butterfly habitats such as hay meadows disappearing at alarming rates. Grazed, mixed open woodlands have been transformed into dense coniferous forests and clear-cuts and domestic grazers have been relocated from woodlands to arable fields and semi-natural grasslands. Ley has increased rapidly and is used for bale silage repeatedly during the season. Overall, the changed and intensified land use has markedly reduced the availability of nectar resources in the landscape. Species that decline in Sweden are strongly decreasing or already extinct in other parts of Europe. Many typical grassland species that were numerous in former times have declined severely; among those Hesperia comma, Lycaena virgaureae, Lycaena hippothoe, Argynnis adippe, and Polyommatus semiargus. Also, species associated with open woodlands and wetlands such as, Colias palaeno, Boloria euphrosyne and the glade-inhabiting Leptidea sinapis have all decreased markedly. Current management practise and EU Common Agricultural Policy rules favour intensive grazing on the remaining semi-natural grasslands, with strong negative effects on butterfly diversity. Abandoned grasslands are very common in less productive areas of southern Sweden and these habitats may soon become forests. There is an urgent need for immediate action to preserve unfertilized, mown and lightly grazed

  3. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  4. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    International Nuclear Information System (INIS)

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  5. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  6. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands

    Czech Academy of Sciences Publication Activity Database

    Oja, J.; Vahtra, J.; Bahram, M.; Kohout, Petr; Kull, T.; Rannap, R.; Köljalg, U.; Tedersoo, L.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 355-367 ISSN 0940-6360 Institutional support: RVO:67985939 Keywords : mycorrhiza * orchids * fungal community composition * calcareous grassland * spatial distribution * grazing intensity Subject RIV: EF - Botanics OBOR OECD: Ecology Impact factor: 3.047, year: 2016

  7. Estimation of nitrogen balance between the atmosphere and Lake Balaton and a semi natural grassland in Hungary

    International Nuclear Information System (INIS)

    Kugler, Sz.; Horvath, L.; Machon, A.

    2008-01-01

    The paper summarises the results to determine the fluxes of different N-compounds within the atmosphere and an aquatic and a terrestrial ecosystems, in Hungary. In the exchange processes of N-compounds between atmosphere and various ecosystems the deposition dominates. The net deposition fluxes are -730, -1 270 and -1530 mg N m -2 yr -1 for water, grassland, and forest ecosystems, respectively. For water, the main source of nitrogen compounds is the wet deposition. Ammonia gas is close to the equilibrium between the water and the air. For grassland the dry flux of nitric acid and ammonia is also an important term beside the wet deposition. Dry deposition to terrestrial ecosystems is roughly two times higher than wet deposition. A total of 8-10% of the nitrates and NH x deposited to terrestrial ecosystems are re-emitted into the air in the form of nitrous oxide (N 2 O) greenhouse gas. - The paper summarises the results of works to determine the N-flux between atmosphere and terrestrial/aquatic ecosystems in Hungary

  8. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: energy yields and the fate of organic compounds.

    Science.gov (United States)

    Hensgen, Frank; Bühle, Lutz; Donnison, Iain; Heinsoo, Katrin; Wachendorf, Michael

    2014-02-01

    Twelve European habitat types were investigated to determine the influence of the IFBB technique (integrated generation of biogas and solid fuel from biomass) on the fate of organic compounds and energy yields of semi-natural grassland biomass. Concentration of organic compounds in silage and IFBB press cake (PC), mass flows within that system and methane yields of IFBB press fluids (PF) were determined. The gross energy yield of the IFBB technique was calculated in comparison to hay combustion (HC) and whole crop digestion (WCD). The IFBB treatment increased fibre and organic matter (OM) concentrations and lowered non-fibre carbohydrates and crude protein concentrations. The PF was highly digestible irrespective of habitat types, showing mean methane yields between 312.1 and 405.0 LN CH4 kg(-1) VS. Gross energy yields for the IFBB system (9.75-30.19MWh ha(-1)) were in the range of HC, outperformed WCD and were influenced by the habitat type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of elevated ozone on leaf {delta}{sup 13}C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland)]. E-mail: maya.jaeggi@psi.ch; Saurer, M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Volk, M. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland); Fuhrer, J. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, CH-8046 Zurich (Switzerland)

    2005-03-01

    Stable carbon isotope ratios ({delta}{sup 13}C) and leaf conductance (g{sub s}) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O{sub 3}) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative {delta}{sup 13}C, and the smallest response to the treatments. Irrigation caused more negative {delta}{sup 13}C, especially in H. lanatus. Irrespective of irrigation, O{sub 3} increased {delta}{sup 13}C in relationship to a decrease in g{sub s} in P. lanceolata and T. pratense. The strongest effect of O{sub 3} on {delta}{sup 13}C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O{sub 3} uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O{sub 3} uptake during dry periods when roots can reach deeper soil layers where water is not limiting. - Under natural field conditions, lack of precipitation may not protect semi-natural vegetation from O{sub 3} effects on leaf gas exchange.

  10. Effects of elevated ozone on leaf δ13C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation

    International Nuclear Information System (INIS)

    Jaeggi, M.; Saurer, M.; Volk, M.; Fuhrer, J.

    2005-01-01

    Stable carbon isotope ratios (δ 13 C) and leaf conductance (g s ) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O 3 ) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative δ 13 C, and the smallest response to the treatments. Irrigation caused more negative δ 13 C, especially in H. lanatus. Irrespective of irrigation, O 3 increased δ 13 C in relationship to a decrease in g s in P. lanceolata and T. pratense. The strongest effect of O 3 on δ 13 C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O 3 uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O 3 uptake during dry periods when roots can reach deeper soil layers where water is not limiting. - Under natural field conditions, lack of precipitation may not protect semi-natural vegetation from O 3 effects on leaf gas exchange

  11. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  12. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    Science.gov (United States)

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.

  13. BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition

    Directory of Open Access Journals (Sweden)

    H. J. Wang

    2012-04-01

    Full Text Available Biogenic volatile organic compounds (BVOCs profoundly affect atmospheric chemistry and ecosystem functioning. BVOCs emission and their responses to global change are still unclear in grasslands, which cover one quarter of the Earth's land surface and are currently undergoing the largest changes. Over two growing seasons, we conducted a field experiment in a semi-arid grassland (Inner Mongolia, China to examine the emission and the responses of BVOCs emissions to warming and nitrogen deposition. The natural emission rate (NER of monoterpene (dominant BVOCs here is 107 ± 16 μg m−2 h−1 in drought 2007, and 266 ± 53 μg m−2 h−1 in wet 2008, respectively. Warming decreased the standard emission factor (SEF by 24% in 2007, while it increased by 43% in 2008. The exacerbated soil moisture loss caused by warming in dry season might be responsible for the decrease of SEF in 2007. A possible threshold of soil moisture (8.2% (v/v, which controls the direction of warming effects on monoterpene emission, existed in the semiarid grassland. Nitrogen deposition decreased the coverage of Artemisia frigida and hence reduced the NER by 24% across the two growing seasons. These results suggest that the grasslands dominated by the extended Artemisia frigida are an important source for BVOCs, while the responses of their emissions to global changes are more uncertain since they depend on multifactorial in-situ conditions.

  14. Vegetation monitoring on semi-arid grasslands unglazed by domestic livestock

    Science.gov (United States)

    Linda Kennedy; Dan Robinett

    2013-01-01

    The Research Ranch is an 8000-acre sanctuary and research facility in the semi-arid grasslands of southeastern Arizona, USA. Cattle were removed from the property in 1968 to provide a reference area by which various land uses, such as grazing and exurbanization, could be evaluated. Vegetation transects were established in 2000 and 2003 on several ecological sites in...

  15. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  16. Hyperspectral classification of grassland species: towards a UAS application for semi-automatic field surveys

    Science.gov (United States)

    Lopatin, Javier; Fassnacht, Fabian E.; Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Grasslands are one of the ecosystems that have been strongly intervened during the past decades due to anthropogenic impacts, affecting their structural and functional composition. To monitor the spatial and/or temporal changes of these environments, a reliable field survey is first needed. As quality relevés are usually expensive and time consuming, the amount of information available is usually poor or not well spatially distributed at the regional scale. In the present study, we investigate the possibility of a semi-automated method used for repeated surveys of monitoring sites. We analyze the applicability of very high spatial resolution hyperspectral data to classify grassland species at the level of individuals. The AISA+ imaging spectrometer mounted on a scaffold was applied to scan 1 m2 grassland plots and assess the impact of four sources of variation on the predicted species cover: (1) the spatial resolution of the scans, (2) the species number and structural diversity, (3) the species cover, and (4) the species functional types (bryophytes, forbs and graminoids). We found that the spatial resolution and the diversity level (mainly structural diversity) were the most important source of variation for the proposed approach. A spatial resolution below 1 cm produced relatively high model performances, while predictions with pixel sizes over that threshold produced non adequate results. Areas with low interspecies overlap reached classification median values of 0.8 (kappa). On the contrary, results were not satisfactory in plots with frequent interspecies overlap in multiple layers. By means of a bootstrapping procedure, we found that areas with shadows and mixed pixels introduce uncertainties into the classification. We conclude that the application of very high resolution hyperspectral remote sensing as a robust alternative or supplement to field surveys is possible for environments with low structural heterogeneity. This study presents the first try of a

  17. Post-Fire Evapotranspiration and Net Ecosystem Exchange over A Semi-Arid Grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2015-12-01

    The seasonal and interannual variability of evapotranspiration (E) and net ecosystem exchange (NEE) following a fire disturbance over a semi -arid grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA, and their relationships to environmental variables were examined using continuous measurements of water vapour and CO2 fluxes made from first week of June 2002 to 2009 using the eddy covariance technique. The research ranch was established in 1969 as an ecological research preserve and it is now one of the largest ungrazed, privately managed grassland sites in Arizona. A wild fire occurred in April - May 2002, and burned all the standing vegetation and litter on in research ranch (~38,000 acres) including 500 acres of grassland. The mean annual temperature and precipitation (P) at this site were ~16 deg C and ~370 mm, respectively. More than 60% of the annual P was received during the North American monsoon period (July-September) with the lowest annual P in the drought years of 2004 and 2009. Drastic changes in albedo, vegetation growth and evapotranspiration occurred following the onset of the monsoon season in July. The ecosystem was mostly a carbon sink during monsoon period. Daily total evapotranspiration during July-August increased from 2 mm d-1 in 2002 to >3 mm d-1 in 2007. The mean annual E over the site was during 2003 -2009 was 352 ±75 mm. With the onset of monsoon the ecosystem turned to carbon sink in 2002, with daily total net ecosystem exchange (NEE) varying up to ~vegetation index, longest monsoon growing season and the highest annual and July-September P. The interannual variations in annual E and NEE were mostly controlled by annual P, July-September NDVI and growing season length during 2002-2009.

  18. Experimental control of Spanish broom (Spartium junceum invading natural grasslands

    Directory of Open Access Journals (Sweden)

    Cristina Sanhueza

    2012-12-01

    Full Text Available A group of legumes generically known as brooms are among the most successful shrubs invading grasslands in South America and otherregions. These species share a set of biological features that enhance their invasiveness, such as abundant and long-lasting seed banks,aggressive root systems and rapid growth, combined with their ability for re-sprouting after cutting or burning and for avoiding herbivores.They grow in dense stands that exclude native vegetation and are able to change ecological processes, increasing fire frequency and intensity,and fixing atmospheric nitrogen. The Spanish broom (Spartium junceum is a shrub native form the Mediterranean that was introduced intothe Argentine Pampas grasslands where it spreads over remnants of pristine ecosystems, threatening their biodiversity. This paper reports theresults obtained after an adaptive management strategy aimed at controlling this species in a nature reserve, and compares the efficiency ofdifferent mechanical and chemical control techniques in terms of the number of plants killed and the effects on surrounding vegetation andon the recruitment of broom seedlings. Control was implemented in two phases, the first included three treatments: i cut at the base of theplant, ii cut followed by the immediate application of Togar (Picloram 3% + Triclopyr 6%, at a 5% dilution in diesel oil on top of the cut stump, and iii foliar spraying with Togar. The follow-up treatments, implemented one year later, consisted of spraying the re-sprouts with Togar (5% in diesel oil or Glyphosate 36% (2% in water. The best option in terms of controlling Spanish broom was spraying the resprouts with Togar which gave 100% mortality of the treated plants, compared with values of 40% - 100% re-sprouting for the other optionstested. None of the methods was associated with an increase in seedling recruitment, nor with significant changes in the vegetation in the immediate vicinity of the controlled brooms.

  19. Spider fauna of semi-dry grasslands on a military training base in Northwest Germany (Münster

    Directory of Open Access Journals (Sweden)

    Buchholz, Sascha

    2008-07-01

    Full Text Available The spider fauna of semi-dry grasslands on the military training area of Dorbaum near Münster (North Rhine-Westphalia was investigated. From 2002 to 2003 a total of 11,194 mature spiders from 141 species and 20 families was caught by pitfall trapping and hand sampling. Among them are 18 species listed in the Red Data Book of North Rhine-Westphalia, four species are rare or previously rarely recorded. Most of the spiders are habitat generalists that extend their occurrence into all types of habitats, while the number of species which are stenotopic to sand habitats is noticeably low (n = 13. The spider data were analysed with Principal Component Analysis (PCA. It is possible to distinguish spider communities of neighbouring forested habitats from species groups of open habitats, but there is no uniform spider community which is characteristic for semi-dry grassland.

  20. Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland

    Science.gov (United States)

    Muthukumar, T.; Udaiyan, K.

    2002-10-01

    Vesicular-arbuscular mycorrhizal (VAM) colonization and spore numbers in the rhizosphere of Cyperus iria L. and C. rotundus L., growing in a semi-arid tropical grassland, was studied during the 1993 and 1994 monsoons. In addition, climatic and chemical properties of the soils were determined in order to investigate their influence on mycorrhizal variables. VAM fungal association in the sedges was confirmed by plant- and root-trap culture techniques. The soil nutrients exhibited seasonal variations, but were highly variable between years. Intercellular hyphae and vesicles with occasional intraradical spores characterized mycorrhizal association in sedges. Dark septate fungi also colonized roots of sedges. Temporal variations in mycorrhizal colonization and spore numbers occurred, indicating seasonality. However, the patterns of mycorrhizal colonization and spore numbers were different during both the years. The VAM fungal structures observed were intercellular hyphae and vesicles. Changes in the proportion of root length with VAM structures, total colonization levels and spore numbers were related to climatic and edaphic factors. However, the intensity of influence of climatic and soil factors on VAM tended to vary with sedge species.

  1. Soil Bacterial and Fungal Community Structure Across a Range of Unimproved and Semi-Improved Upland Grasslands

    OpenAIRE

    Kennedy, Nabla; Edwards, Suzanne; Clipson, Nicholas

    2005-01-01

    Changes in soil microbial community structure due to improvement are often attributed to concurrent shifts in floristic community composition. The bacterial and fungal communities of unimproved and semi-improved (as determined by floristic classification) grassland soils were studied at five upland sites on similar geological substrata using both broad-scale (microbial activity and fungal biomass) and molecular [terminal restriction fragment length polymorphism (TRFLP)...

  2. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  3. Generalist dispersers promote germination of an alien fleshy-fruited tree invading natural grasslands.

    Directory of Open Access Journals (Sweden)

    Martín Raúl Amodeo

    Full Text Available Plants with animal-dispersed fruits seem to overcome the barriers that limit their spread into new habitats more easily than other invasive plants and, at the same time, they pose special difficulties for containment, control or eradication. The effects of animals on plant propagules can be very diverse, with positive, neutral or negative consequences for germination and recruitment. Moreover, the environmental conditions where the seeds are deposited and where the post-dispersal processes take place can be crucial for their fate. Prunus mahaleb is a fleshy-fruited tree invading natural grasslands in the Argentine Pampas. In this study, we analyzed the importance of pulp removal, endocarp scarification and the effects of vectors on its germination response, by means of germination experiments both in the laboratory and under semi-natural conditions. Our laboratory results demonstrated that endocarp scarification enhances germination and suggests that vestiges of pulp on the stones have inhibitory effects. Frugivores exert a variety of effects on germination responses and this variation can be explained by their differing influence on pulp removal and endocarp scarification. Most frugivores produced a positive effect on germination under laboratory conditions, in comparison to intact fruits and hand-peeled stones. We observed different degrees of pulp removal from the surface of the stones by the dispersers which was directly correlated to the germination response. On the other hand, all the treatments showed high germination responses under semi-natural conditions suggesting that post-dispersal processes, like seed burial, and the exposure to natural conditions might exert a positive effect on germination response, attenuating the plant's dependence on the dispersers' gut treatment. Our results highlight the need to consider the whole seed dispersal process and the value of combining laboratory and field tests.

  4. Horse Welfare and Natural Values on Semi-Natural and Extensive Pastures in Finland: Synergies and Trade-Offs

    Directory of Open Access Journals (Sweden)

    Markku Saastamoinen

    2017-10-01

    Full Text Available In several regions in Europe, the horse is becoming a common grazer on semi-natural and cultivated grasslands, though the pasturing benefits for animals and biodiversity alike are not universally appreciated. The composition of ground vegetation on pastures determines the value of both the forage for grazing animals as well as the biodiversity values for species associated with the pastoral ecosystems. We studied three pastures, each representing one of the management types in southern Finland (latitudes 60–61: semi-natural, permanent and cultivated grassland. All have been grazed exclusively by horses for several decades. We aimed to evaluate feeding values and horses’ welfare, on the one hand, and impacts of horses on biodiversity in boreal conditions, on the other. Though there were differences among the pastures, the nutritional value of the vegetation in all three pastures met the energy and protein needs of most horse categories through the whole grazing season. Some mineral concentrations were low compared to the requirements, and supplementation of Cu, Zn and Na is needed to balance the mineral intake. Only minor injuries or health problems were observed. All metrics of biological values, as well as number of species eaten by horses, were particularly high in a semi-natural pasture compared to other pasture types. The highest ratio of species cover preferred by horses to the total cover was found in the permanent pasture, while at the regularly re-seeded pasture, there was a particularly high cover of species, indicating low biodiversity values on grassland. There was, therefore, a trade-off between the quantity of forage and biological values in pastures, but not in quality. The results provide clear indication both for the suitability of the studied pasture types to horses and for grazing of horses for biodiversity management. In each pasture type, specific management is needed to simultaneously achieve objectives of adequate

  5. Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China.

    Directory of Open Access Journals (Sweden)

    Yajun Hu

    Full Text Available Arbuscular mycorrhizal (AM fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT, soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.

  6. Variability of soil CO2 efflux in a semi-arid grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2017-12-01

    Soil surface CO2 efflux or soil respiration (RS) is one of the most important components of the global carbon cycle. So it is critical to evaluate the response of soil respiration to environmental conditions to predict how future climate and land cover changes influence the ecosystem carbon balance. Continuous half-hourly measurements of RS were made between the end of March to December 2015 in a semi-arid temperate grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA. This first time measurements of Rs over this site using an automated soil chamber were used to investigate the seasonal and diurnal variation of Rs and its relationship to environmental variables. The mean annual air temperature and precipitation at this site were 16 deg C and 370 mm with more than 60% of the annual precipitation was received during the North American monsoon period (July-September). Following the onset of the monsoon, drastic changes in vegetation growth occured turning the ecosystem to a carbon sink by August. Temporal variability in Rs was closely related to the changes in near surface soil temperature at 2 cm (Ts) and soil water content at 5 cm (θ). Half -hourly Rs varied from nearly 0.1 μmol m-2 s-1 in the winter months to a maximum of 5 μmol m-2 s-1 in the peak growing season in August. During the dry pre-monsoon period (May -June), Rs was relatively low ( 0.0.08 m3 m-3, RS was positively correlated to soil temperature at the 2 cm depth following an exponential relationship. Below this value of θ, RS was largely decoupled from TS dropping to less than half of their maximum values during wet soil conditions. Analysis of daily mean nighttime Rs for the year showed that for periods with θ below the threshold, the sensitivity of RS to temperature were substantially reduced resulting in a Q10 significantly < 2, thereby confirming that RS was less affected by soil temperature under low soil water conditions at this

  7. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland

    Directory of Open Access Journals (Sweden)

    Yating He

    2017-01-01

    Full Text Available Grazing and cultivation are two important management practices worldwide that can cause significant soil organic carbon (SOC losses. However, it remains elusive how soil microbes have responded to soil carbon changes under these two practices. Based on a four-decade long field experiment, this study investigated the effects of grazing and cultivation on SOC stocks and microbial properties in the semi-arid grasslands of China. We hypothesize that grazing and cultivation would deplete SOC and depress microbial activities under both practices. However, our hypotheses were only partially supported. As compared with the adjacent indigenous grasslands, SOC and microbial biomass carbon (MBC were decreased by 20% or more under grazing and cultivation, which is consistent with the reduction of fungi abundance by 40% and 71%, respectively. The abundance of bacteria and actinomycetes was decreased under grazing but increased under cultivation, which likely enhanced microbial diversity in cultivation. Invertase activity decreased under the two treatments, while urease activity increased under grazing. These results suggest that nitrogen fertilizer input during cultivation may preferentially favor bacterial growth, in spite of SOC loss, due to rapid decomposition, while overgrazing may deteriorate the nitrogen supply to belowground microbes, thus stimulating the microbial production of nitrogen acquisition enzymes. This decade-long study demonstrated differential soil microbial responses under grazing and cultivation and has important applications for better management practices in the grassland ecosystem.

  8. Complementing endozoochorous seed dispersal patterns by donkeys and goats in a semi-natural island ecosystem.

    Science.gov (United States)

    Treitler, Julia Tabea; Drissen, Tim; Stadtmann, Robin; Zerbe, Stefan; Mantilla-Contreras, Jasmin

    2017-12-19

    Endozoochory is, in grazing systems, a substantial vector for seed dispersal. It can play an important role in vegetation dynamics, especially in colonization processes through seed input on the vegetation and on the soil seed bank. We investigated the endozoochorous seed input of donkeys and goats on a semi-natural island ecosystem in the Mediterranean. Through germination experiments, we assessed the viable seed content of the dung of these grazing animals to estimate their suitability and efficiency for seed dispersal of the vegetation types of the island. We show different dispersal patterns of donkeys and goats. Goats disperse a high number of diaspores from shrubs while donkeys disperse more diaspores of grasses. In addition, goats disperse plants of greater growth height and donkeys plants of shorter height. These dispersal patterns are in accordance with the vegetation types of which donkeys and goats disperse indicator species. Both, donkeys and goats, feed on and disperse species of the vegetation types, open grassland and temporarily wet grassland. In addition, goats feed on and disperse diagnostic species of the semi-open maquis and preforest formations. Overall, our results show that donkeys and goats are complementing each other in their endozoochorous seed dispersal potential. This emphasizes the importance of both grazing animals for the vegetation dynamics of the semi-natural island ecosystem. Therefore, the adaption of the goat management to a traditional land management based on directed transhumance might maintain and enrich vegetation types.

  9. Using the theory of planned behavior to identify key beliefs underlying Brazilian cattle farmers' intention to use improved natural grassland

    NARCIS (Netherlands)

    Rossi Borges, Joao; Tauer, Loren Willian; Oude Lansink, Alfons

    2016-01-01

    In biome Pampa, Brazil, cattle farmers have managed the natural grasslands using practices that result in overgrazing, low productivity and low farm income. In addition, farmers in the region converted natural grasslands from beef production to more profitable activities, such as cash crops. This

  10. Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland.

    Science.gov (United States)

    Wang, Hongjun; Wang, Xinming; Zhang, Yanli; Mu, Yujing; Han, Xingguo

    2016-01-15

    Biogenic volatile organic compounds (BVOCs) emitted from plants have substantial effects on atmospheric chemistry/physics and feedbacks on ecosystem function. The on-going climate change and anthropogenic disturbance have been confirmed to cause the evident degradation of grassland with shift of plant community, and hence BVOCs emissions were suspected to be altered due to the different BOVCs emission potentials of different species. In this study, we investigated BVOCs concentration above ground surface during growing season in a degraded semi-arid grassland (41°2' N-45°6' N, 113°5'-117°8') in Inner Mongolia. The observed monoterpenes' concentrations varied from 0.10 to 215.78 μg m(-3) (34.88 ± 9.73 μg m(-3) in average) across 41 sites. Compared to non-degraded grassland, concentrations of monoterpenes were about 180 times higher at the sites dominated by subshrub--Artemisia frigida, a preponderant species under drought stress and over-grazing. The biomass of A. frigida explained 51.39% of the variation of monoterpenes' concentrations. α-pinene, β-pinene and γ-terpinene dominated in the 10 determined monoterpenes, accounting for 37.72 ± 2.98%, 14.65 ± 2.55% and 10.50 ± 2.37% of the total monoterpenes concentration, respectively. Low isoprene concentrations (≤ 3.25 μg m(-3)) were found and sedge biomass contributed about 51.76% to their spatial variation. α-pinene and isoprene emissions at noon were as high as 515.53 ± 88.34 μg m(-2)h(-1) and 7606.19 ± 1073.94 μg m(-2) h(-1) in A. frigida- and sedge-dominated areas where their biomass were 236.90 g m(-2) and 72.37 g m(-2), respectively. Our results suggested that the expansion of A. frigida and sedge caused by over-grazing and climatic stresses may increase local ambient BVOCs concentration in grassland. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The radioecological significance of semi-natural ecosystems

    International Nuclear Information System (INIS)

    Howard, B.J.; Howard, D.C.

    1997-01-01

    The transfer of radiocaesium to many food products either produced in or harvested from semi-natural ecosystems is high compared with intensive agricultural areas. Radiocaesium contamination levels in semi-natural foods are highly variable and difficult to predict. Spatial analysis may help to explain some of the variability and give improved estimates of the total output of radiocaesium in food products produced or harvested from semi-natural ecosystems. Consumption of foodstuffs from semi-natural ecosystems can contribute significantly to radiocaesium ingestion by humans. The long effective half-lives that occur for some semi-natural products lead to an increase with time in their importance compared with agricultural products. In determining the importance of semi-natural food products, the diet needs to be considered for both the average population and for special groups who utilize these environments to a greater extent than normal. Effective countermeasures have been developed to reduce radiocaesium levels in some semi-natural products. (author)

  12. Semi-arid grassland bird responses to patch-burn grazing and drought

    Science.gov (United States)

    Skagen, Susan K.; Augustine, David J.; Derner, Justin D.

    2018-01-01

    As grassland birds of central North America experience steep population declines with changes in land use, management of remaining tracts becomes increasingly important for population viability. The integrated use of fire and grazing may enhance vegetation heterogeneity and diversity in breeding birds, but the subsequent effects on reproduction are unknown. We examined the influence of patch-burn grazing management in shortgrass steppe in eastern Colorado on habitat use and reproductive success of 3 grassland bird species, horned lark (Eremophila alpestris), lark bunting (Calamospiza melanocorys), and McCown’s longspur (Rhynchophanes mccownii), at several spatial scales during 2011 and 2012. Although no simple direct relationship to patch-burn grazing treatment existed, habitat selection depended on precipitation- and management-induced vegetation conditions and spatial scale. All species selected taller-than-expected vegetation at the nest site, whereas at the territory scale, horned larks and McCown’s longspurs selected areas with low vegetation height and sparse cover of tall plants (taller than the dominant shortgrasses). Buntings nested primarily in unburned grassland under average rainfall. Larks and longspurs shifted activity from patch burns during average precipitation (2011) to unburned pastures during drought (2012). Daily survival rate (DSR) of nests varied with time in season, species, weather, and vegetation structure. Daily survival rate of McCown’s longspur nests did not vary with foliar cover of relatively tall vegetation at the nest under average precipitation but declined with increasing cover during drought. At the 200-m scale, increasing cover of shortgrasses, rather than taller plant species, improved DSR of larks and longspurs. These birds experience tradeoffs in the selection of habitat at different spatial scales: tall structure at nests may reduce visual detection by predators and provide protection from sun, wind, and rain, yet

  13. Does species diversity limit productivity in natural grassland communities?

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Smith, Melinda D.; Seabloom, Eric; Andelman, Sandy J.; Meche, Gayna; Weiher, Evan; Allain, Larry K.; Jutila, Heli; Sankaran, Mahesh; Knops, Johannes; Ritchie, Mark; Willig, Michael R.

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where

  14. The use of Polarimetric EMISAR for the Mapping and Characterization of the Semi-Natural Environment

    DEFF Research Database (Denmark)

    Sørensen, Stefán Meulengracht

    Methods for segmentation and restoration of SAR data using Markov Random Fields (MRF) have been studied extensively by many researchers over the last two decades. What is of special interest is not only methods for segmentation and classification of SAR data for land cover labeling applications......-natural environments under study are very small, it is crucial for this investigation that the restoration methods are capable of restoring fine structures as well as preserving homogeneous areas. The restorations are carried out in a signal adaptive mode using MRF in a Bayesian framework. Different a priori models...... on statistics derived from the ratio images is presented together with comparative analyses of restorations using ICM and SA. The relation between the restored polarimetric SAR data and in situ data collected at two semi-natural wetland and grassland areas is investigated using multivariate techniques...

  15. NDVI and meteorological data as indicators of the Pampa biome natural grasslands growth

    Directory of Open Access Journals (Sweden)

    Denise Cybis Fontana

    2018-04-01

    Full Text Available ABSTRACT The present study aimed to characterize the dynamics of NDVI and meteorological conditions, relating both to the annual dynamics of biomass accumulation in natural pastures of the Pampa biome as a way of subsidizing growth modeling. Forage accumulation rate data from a long-term experiment, NDVI data from the MODIS images, and meteorological data measured at the surface were used. We verify that the agrometeorological element associated to the accumulation of forage in the natural grasslands is different according to the season, which is typical of the subtropical climate. Winter is the critical season for livestock production due to the lower forage accumulation rate and lower values of NDVI, conditioned by the decrease of solar radiation and air temperature. In the summer, the limiting factor to forage accumulation is the hydric condition. It was also verified that the variability in the growth of grasslands can be associated with the ENSO phenomenon, being the El Niño favorable and the La Niña unfavorable, especially in the spring-summer period. Considering the verified associations, spectral indices combined with agrometeorological elements are recommended to the adjustment of models of forage accumulation in the Pampa biome natural grasslands.

  16. The role of psychological factors in the adoption of improved natural grassland by Brazilian cattle farmers in Biome Pampa

    NARCIS (Netherlands)

    Rossi Borges, J.A.

    2015-01-01

    The objective of the research was to explore factors determining cattle farmers' intention to adopt improved natural grassland in Brazil. The research was carried out in the state of Rio Grande do Sul, in the south of Brazil.

  17. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  18. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  19. Using natural range of variation to set decision thresholds: a case study for great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.

    2014-01-01

    Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which

  20. Thermoregulation under semi-natural conditions in speckled ...

    African Journals Online (AJOL)

    We recorded body temperature (Tb) in speckled mousebirds (Colius striatus) under semi-natural conditions in outdoor aviaries, and examined interactions between behavioural and metabolic thermoregulation by experimentally manipulating food availability and communal roosting behaviour. When food was available ad ...

  1. Temporal profiles of vegetation indices for characterizing grazing intensity on natural grasslands in Pampa biome

    Directory of Open Access Journals (Sweden)

    Amanda Heemann Junges

    2016-08-01

    Full Text Available ABSTRACT The Pampa biome is an important ecosystem in Brazil that is highly relevant to livestock production. The objective of this study was to analyze the potential use of vegetation indices to discriminate grazing intensities on natural grasslands in the Pampa biome. Moderate Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI images from Jan to Dec, 2000 to 2013 series, were analyzed for natural grassland experimental units managed under high (forage allowance of 5 ± 2 % live weight – LW, moderate (13 ± 5 % LW and low grazing intensity (19 ± 7 % LW. Regardless of intensity, the temporal profiles showed lower NDVI and EVI during winter, increased values in spring because of summer species regrowth, slightly decreased values in summer, especially in years when there is a water deficit, and increased values in the fall associated with the beginning of winter forage development. The average temporal profiles of moderate grazing intensity exhibited greater vegetation index values compared with low and high grazing intensities. The temporal profiles of less vegetation index were associated with lower green biomass accumulation caused by the negative impact of stocking rates on the leaf area index under high grazing intensity and a floristic composition with a predominance of tussocks under low grazing intensity. Vegetation indices can be used for distinguishing moderate grazing intensity from low and high intensities. The average EVI values can discriminate moderate grazing intensity during any season, and the NDVI values can discriminate moderate grazing intensity during spring and winter.

  2. The influence of boundary features on grassland-edge communities of Alta Murgia

    OpenAIRE

    Cassano, Stefania; Alignier, Audrey; Forte, Luigi; Labadessa, Rocco; Mairota, Paola

    2016-01-01

    Many studies suggest the importance of boundary features on plant community dynamics. Our aim was to investigate the influence of boundary features on edge plant assemblages in semi-natural dry grasslands. For this purpose we selected 16 grassland edges in the central portion of the Natura 2000 site Murgia Alta, in southeastern Italy. These sites were selected according to a combination of boundary features, i.e. the adjoining land use type (road or cereal crop), slope (grassland tilted towar...

  3. Seed longevity of Eragrostis plana Nees buried in natural grassland soil

    Directory of Open Access Journals (Sweden)

    Renato Borges de Medeiros

    2014-11-01

    Full Text Available The objective of this research was to evaluate the seed longevity of Eragrostis plana Nees buried at different soil depths, in a natural-grassland area in the Pampa biome (46 m altitude, 30º05´S and 51º40´W of Rio Grande do Sul State, Brazil. The experimental design was a split-plot type in complete blocks with two factors: seeds buried at five different depth levels (soil surface and 2.5, 5, 10 and 20 cm and seven exhumation dates. The blocks were allocated in natural grassland grazed by cattle, allocated in a 12-m-long transection. Fifty-four permeable nylon bags filled with 100 seeds in each division, with five vertical divisions, were buried in each row. Seven exhumation dates were used: the first on October 14, 2003 and the last on January 14, 2006. The percentage of viable seeds of E. plana, collected at seven exhumation times and set at different depths in the soil horizon, were described by simple negative exponential equations. Based on the model, the percentage of viable seeds collected at the five depths, (soil surface and 2.5, 5, 10, and 20 cm, after 2.5 years of burial, were 0.1, 0.5, 1.0, 7.4 and 22.1%, respectively. Increase in depth is directly associated with physical and physiological seed integrity of E. plana. Negative simple exponential equations can be used to predict seed longevity of E. plana buried in nylon bags. This invader species accumulates soil seed-bank of high longevity.

  4. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Exposures from consumption of agricultural and semi-natural products

    International Nuclear Information System (INIS)

    Strand, P.; Skuterud, L.; Balonov, M.; Travnikova, I.; Hove, K.; Howard, B.; Prister, B.S.; Ratnikov, A.

    1996-01-01

    The importance of food from different production systems to the internal dose from radiocesium, was investigated in selected study sites in Ukraine and Russia. Food products from semi-natural ecosystems are major contributors to the individual internal dose to rural population in areas affected by the Chernobyl accident. At the selected study sites it is estimated in 1995 that foods from private farms and forests contribute on average 35% to 60%, to the individual internal dose, variation relating to soil types and implemented countermeasures. The importance of food products from private farms and particularly forest products increases with time since Cs concentration in some of the natural food products have longer ecological half life than food products from agricultural systems. A significant relationship was observed between consumption of mushrooms and whole body content of radiocesium in rural people. The contribution to the collective dose of food products produced in the semi-natural ecosystems is less than the contribution to the individual internal dose for the local rural population

  6. Fertilization and oversowing on natural grassland: effects on pasture characteristics and yearling steers performance

    Directory of Open Access Journals (Sweden)

    Eduardo Tonet Ferreira

    2011-09-01

    Full Text Available The objective of this study was to evaluate the vegetal and animal production of a natural pasture on a Mollisol soil in the region of Campanha, in RS. The experimental design consisted of complete randomized blocks with three replicates, which enables the comparison between natural unfertilized pastures with fertilized pastures and pastures fertilized and overseeded with Lolium multiflorum, Lotus corniculatus cv. São Gabriel and Trifolium repens cv. Lucero (NPO. Data were submitted to the analyses of variance considering seasons of the year as time repeated measurements. Aberddeen Angus calves of about nine months of age were used in continuous stocking with variable stocking rate in order to maintain forage offer at 13% of live weight. Data were collected between July 7th (2007 and May 3rd (2008, totaling 302 days. Fertilized and oversown pastures showed higher green forage mass mainly in the spring, as result of higher dry matter (DM accumulation rate. Average daily live-weight gain for fertilized pasture (0.581 kg/day was higher than for natural pasture (0.473 kg/day. Higher live-weight gains were obtained in the fall (0.869 kg/day. Stocking rate showed interaction with the seasons of the year, with higher stocking rates obtained in oversown pasture (701 kg of LW/ha and fertilized pasture (667 kg of LW/ha during the spring. Live-weight gain per hectare from natural pasture (224 kg LW/ha was lower than on fertilized (310 kg LW/ha and over-sown pasture (287 kg LW/ha. Forage mass, dry matter content, forage allowance and pasture height explained 61% of the average live weight gain. Despite the good performance of native grasslands in this region in its natural condition, the utilization of different inputs as fertilization and oversowing of winter cultivated species promoted positive differences in forage production and its distribution along the year and in animal yield.

  7. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    Science.gov (United States)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  8. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    Science.gov (United States)

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  9. Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany

    NARCIS (Netherlands)

    Chytry, M.; Hejcman, M.; Hennekens, S.M.; Schellberg, J.

    2009-01-01

    Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)? Location: Eifel Mountains, West Germany. Methods: The Rengen Grassland Experiment

  10. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Yi Shuhua; Zhou Zhaoye; Ren Shilong; Xu Ming; Qin Yu; Chen Shengyun; Ye Baisheng

    2011-01-01

    Permafrost on the Qinghai–Tibetan Plateau (QTP) has degraded over the last few decades. Its ecological effects have attracted great concern. Previous studies focused mostly at plot scale, and hypothesized that degradation of permafrost would cause lowering of the water table and drying of shallow soil and then degradation of alpine grassland. However, none has been done to test the hypothesis at basin scale. In this study, for the first time, we investigated the relationships between land surface temperature (LST) and fractional vegetation cover (FVC) in different types of permafrost zone to infer the limiting condition (water or energy) of grassland growth on the source region of Shule River Basin, which is located in the north-eastern edge of the QTP. LST was obtained from MODIS Aqua products at 1 km resolution, while FVC was upscaled from quadrat (50 cm) to the same resolution as LST, using 30 m resolution NDVI data of the Chinese HJ satellite. FVC at quadrat scale was estimated by analyzing pictures taken with a multi-spectral camera. Results showed that (1) retrieval of FVC at quadrat scale using a multi-spectral camera was both more accurate and more efficient than conventional methods and (2) the limiting factor of vegetation growth transitioned from energy in the extreme stable permafrost zone to water in the seasonal frost zone. Our study suggested that alpine grassland would respond differently to permafrost degradation in different types of permafrost zone. Future studies should consider overall effects of permafrost degradation, and avoid the shortcomings of existing studies, which focus too much on the adverse effects.

  11. Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability

    DEFF Research Database (Denmark)

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa

    2015-01-01

    he Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ......), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable...

  12. N-P Fertilization Inhibits Growth of Root Hemiparasite Pedicularis kansuensis in Natural Grassland

    Science.gov (United States)

    Liu, Yanyan; Taxipulati, Teyibai; Gong, Yanming; Sui, Xiaolin; Wang, Xuezhao; Parent, Serge-Étienne; Hu, Yukun; Guan, Kaiyun; Li, Airong

    2017-01-01

    Fertilization has been shown to affect interactions between root hemiparasitic plants and their host plants, alleviating damage to the hosts by parasitism. However, as a majority of studies were conducted in pot cultivation, the influence of fertilizer application on root hemiparasites and the surrounding plant community in field conditions as well as relevant mechanisms remain unclear. We manipulated soil nutrient resources in a semi-arid subalpine grassland in the Tianshan Mountains, northwestern China, to explore the links between fertilization and plant community composition, productivity, survival, and growth of a weedy root hemiparasite (Pedicularis kansuensis). Nitrogen (at a low rate, LN, 30 kg N ha-1 year-1 as urea; or at a high rate, HN, 90 kg N ha-1 year-1 as urea) and phosphorus [100 kg ha-1 year-1 as Ca(H2PO4)2⋅H2O] were added during two growing seasons. Patterns of foliar nutrient balances were described with isometric log ratios for the different plant functional groups receiving these fertilization regimes. Fertilization with LN, HN, and P reduced above-ground biomass of P. kansuensis, with above-ground biomass in the fertilization treatments, respectively, 12, 1, and 39% of the value found in the unfertilized control. Up to three times more above-ground biomass was produced in graminoids receiving fertilizers, whereas forb above-ground biomass was virtually unchanged by the fertilization regimes and forb species richness was reduced by 52% in the HN treatment. Fertilization altered foliar nutrient balances, and distinct patterns emerged for each plant functional group. Foliar [C | P,N] balance in the plant community was negatively correlated with above-ground biomass (P = 0.03). The inhibited competitiveness of P. kansuensis, which showed a much higher [C | P,N] balance, could be attributed to reduced C assimilation rather than mineral nutrient acquisition, as shown by significant increase in foliar N and P concentrations but little increase in C

  13. Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands

    Czech Academy of Sciences Publication Activity Database

    Vandewalle, M.; Pursche, O.; de Bello, Francesco; Reitalu, T.; Prentice, H. C.; Lavorel, S.; Johansson, L. J.; Sykes, M. T.

    2014-01-01

    Roč. 25, č. 3 (2014), s. 750-759 ISSN 1100-9233 Institutional support: RVO:67985939 Keywords : biodiversity loss * grazing management * landscape history Subject RIV: EH - Ecology, Behaviour Impact factor: 3.709, year: 2014

  14. Soil ecology and ecosystem services of dairy and semi-natural grasslands on peat

    NARCIS (Netherlands)

    Deru, Joachim G.C.; Bloem, Jaap; Goede, de Ron; Keidel, Harm; Kloen, Henk; Rutgers, Michiel; Akker, van den Jan; Brussaard, Lijbert; Eekeren, van Nick

    2018-01-01

    Peat wetlands are of major importance for ecosystem services such as carbon storage, water regulation and maintenance of biodiversity. However, peat drainage for farming leads to CO2 emission, soil subsidence and biodiversity losses. In the peat areas in the Netherlands, solutions are sought in

  15. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    International Nuclear Information System (INIS)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J.

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig

  16. Spectral identification of plant communities for mapping of semi-natural grasslands

    DEFF Research Database (Denmark)

    Jacobsen, Anne; Nielsen, Allan Aasbjerg; Ejrnæs, Rasmus

    2000-01-01

    identification of plant communities was based on a hierarchical approach relating the test sites to i) management (Ma) and ii) flora (Fl) using spectral consistency and separability as the main criteria. Evaluation of spectral consistency was based on unsupervised clustering of test sites of Ma classes 1 to 7...... as a measure of plant community heterogeneity within management classes. The spectral analysis as well as the maximum likelihood classification indicated that the source of spectral variation within management classes might be related to vegetation composition....

  17. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J. [University of Saskatchewan, Dept. of Soil Science, Saskatoon, SK (Canada)

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig.

  18. Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland

    Directory of Open Access Journals (Sweden)

    R. B. Jana

    2016-09-01

    Full Text Available Interactions between soil moisture and terrestrial evaporation affect water cycle behaviour and responses between the land surface and the atmosphere across scales. With strong heterogeneities at the land surface, the inherent spatial variability in soil moisture makes its representation via point-scale measurements challenging, resulting in scale mismatch when compared to coarser-resolution satellite-based soil moisture or evaporation estimates. The Cosmic Ray Neutron Probe (CRNP was developed to address such issues in the measurement and representation of soil moisture at intermediate scales. Here, we present a study to assess the utility of CRNP soil moisture observations in validating model evaporation estimates. The CRNP soil moisture product from a pasture in the semi-arid central west region of New South Wales, Australia, was compared to evaporation derived from three distinct approaches, including the Priestley–Taylor (PT-JPL, Penman–Monteith (PM-Mu, and Surface Energy Balance System (SEBS models, driven by forcing data from local meteorological station data and remote sensing retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor. Pearson's correlations, quantile–quantile (Q–Q plots, and analysis of variance (ANOVA were used to qualitatively and quantitatively evaluate the temporal distributions of soil moisture and evaporation over the study site. The relationships were examined against nearly 2 years of observation data, as well as for different seasons and for defined periods of analysis. Results highlight that while direct correlations of raw data were not particularly instructive, the Q–Q plots and ANOVA illustrate that the root-zone soil moisture represented by the CRNP measurements and the modelled evaporation estimates reflect similar distributions under most meteorological conditions. The PT-JPL and PM-Mu model estimates performed contrary to expectation when high soil moisture and cold

  19. Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland

    KAUST Repository

    Jana, Raghavendra B.

    2016-09-30

    Interactions between soil moisture and terrestrial evaporation affect water cycle behaviour and responses between the land surface and the atmosphere across scales. With strong heterogeneities at the land surface, the inherent spatial variability in soil moisture makes its representation via point-scale measurements challenging, resulting in scale mismatch when compared to coarser-resolution satellite based soil moisture or evaporation estimates. The Cosmic Ray Neutron Probe (CRNP) was developed to address such issues in the measurement and representation of soil moisture at intermediate scales. Here, we present a study to assess the utility of CRNP soil moisture observations in validating model evaporation estimates. The CRNP soil moisture product from a pasture in the semi-arid central west region of New South Wales, Australia, was compared to evaporation derived from three distinct approaches, including the Priestley–Taylor (PT-JPL), Penman–Monteith (PM-Mu), and Surface Energy Balance System (SEBS) models, driven by forcing data from local meteorological station data and remote sensing retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Pearson’s correlations, quantile–quantile (Q–Q) plots, and analysis of variance (ANOVA) were used to qualitatively and quantitatively evaluate the temporal distributions of soil moisture and evaporation over the study site. The relationships were examined against nearly 2 years of observation data, as well as for different seasons and for defined periods of analysis. Results highlight that while direct correlations of raw data were not particularly instructive, the Q–Q plots and ANOVA illustrate that the root-zone soil moisture represented by the CRNP measurements and the modelled evaporation estimates reflect similar distributions under most meteorological conditions. The PT-JPL and PM-Mu model estimates performed contrary to expectation when high soil moisture and cold temperatures were

  20. The Effect of Vegetation on Soil Water Infiltration and Retention Capacity by Improving Soil Physiochemical Property in Semi-arid Grassland

    Science.gov (United States)

    A, Y.; Wang, G.

    2017-12-01

    Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, pwater content not only by soil organic matter content but also the other influential factors, such as the root

  1. Effects of Small-scale Vegetation-related Roughness on Overland Flow and Infiltration in Semi-arid Grassland and Shrublands

    Science.gov (United States)

    Bedford, D.

    2012-12-01

    We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates

  2. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Fensholt, Rasmus; Huber, S.

    2015-01-01

    strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights...... between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties...

  3. On the ecology of the cursorial spider Odo bruchi (Araneae: Zoridae in a grassland natural reserve from central Argentina

    Directory of Open Access Journals (Sweden)

    Gabriel Pompozzi

    2014-03-01

    Full Text Available The “Ernesto Tornquist” Provincial Park (ETPP is located inside the Ventania system (Argentina and was created to protect one of the last relicts of pampean grasslands. Even though many studies have looked at the vertebrate faunal diversity, biology, and conservation in this Park, few studies have been dedicated to arthropods. Among these, spiders have been used as ecological indicators to evaluate nature conservation status, nevertheless, basic information on their distribution and ecology is necessary for their use as indicator taxa in this region. Thus the goal of this study was to present the phenology and demography of the spider Odo bruchi, a cursorial spider present in the ETPP. For this, spiders were sampled bimonthly using pitfall traps between September 2009-2010 (first year, and March 2011-2012 (second year. A total of 10 traps were placed every 10m along a transect of 100m parallel to the longest axis of a grassland slope with native vegetation. Traps were filled with 1 500mL of ethylene glycol, that were examined and refilled every 60 day period. We collected a total of 799 specimens in two years. Juveniles were the most abundant reaching 47.8% of the total, while males corresponded to 27.8% and females 24.4%. We found significant differences in the mean abundance of O. bruchi: the abundance during spring-summer (Nov-Dec-Jan-Feb was significantly higher than the other periods of the two years period. Moreover, we found an even abundance distribution throughout the year in the entire study. This work represents one of the first contributions to the ecology of this spider family in the area. Also, our results comprise relevant information to encourage future studies on this spider species as a bio-indicator of the conservation status of pampean grasslands.

  4. Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China.

    Directory of Open Access Journals (Sweden)

    Shengwei Zhang

    Full Text Available Spatiotemporal variations in net primary productivity (NPP reflect the dynamics of water and carbon in the biosphere, and are often closely related to temperature and precipitation. We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA to estimate NPP of semiarid grassland in northern China counties between 2001 and 2013. Model estimates were strongly linearly correlated with observed values from different counties (slope = 0.76 (p < 0.001, intercept = 34.7 (p < 0.01, R2 = 0.67, RMSE = 35 g C·m-2·year-1, bias = -0.11 g C·m-2·year-1. We also quantified inter-annual changes in NPP over the 13-year study period. NPP varied between 141 and 313 g C·m-2·year-1, with a mean of 240 g C·m-2·year-1. NPP increased from west to east each year, and mean precipitation in each county was significantly positively correlated with NPP-annually, and in summer and autumn. Mean precipitation was positively related to NPP in spring, but not significantly so. Annual and summer temperatures were mostly negatively correlated with NPP, but temperature was positively correlated with spring and autumn NPP. Spatial correlation and partial correlation analyses at the pixel scale confirmed precipitation is a major driver of NPP. Temperature was negatively correlated with NPP in 99% of the regions at the annual scale, but after removing the effect of precipitation, temperature was positively correlated with the NPP in 77% of the regions. Our data show that temperature effects on production depend heavily on recent precipitation. Results reported here have significant and far-reaching implications for natural resource management, given the enormous size of these grasslands and the numbers of people dependent on them.

  5. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  6. Examining the relationship between intermediate scale soil moisture and terrestrial evaporation within a semi-arid grassland

    KAUST Repository

    Jana, Raghavendra Belur

    2016-05-17

    Interactions between soil moisture and terrestrial evaporation affect water cycle behaviour and responses between the land surface and the atmosphere across scales. With strong heterogeneities at the land surface, the inherent spatial variability in soil moisture makes its representation via point-scale measurements challenging, resulting in scale-mismatch when compared to coarser-resolution satellite-based soil moisture or evaporation estimates. The Cosmic Ray Soil Moisture Observing System (COSMOS) was developed to address such issues in the measurement and representation of soil moisture at intermediate scales. Here we present an examination of the links observed between COSMOS soil moisture retrievals and evaporation estimates over a pasture in the semi-arid central-west region of New South Wales, Australia. The COSMOS soil moisture product was compared to evaporation derived from three distinct approaches, including the Priestley-Taylor (PT-JPL), Penman-Monteith (PM-Mu) and Surface Energy Balance System (SEBS) models, driven by forcing data from local meteorological station data and remote sensing retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Pearson’s Correlations, Quantile-Quantile (Q-Q) plots, and Analysis of Variance (ANOVA) were used to qualitatively and quantitatively evaluate the temporal distributions of soil moisture and evaporation over the study site. The relationships were examined against nearly two years of observation data, as well as for different seasons and for defined periods of analysis. Results highlight that while direct correlations of raw data were not particularly instructive, the Q-Q plots and ANOVA illustrate that the root-zone soil moisture represented by the COSMOS measurements and the modelled evaporation estimates reflect similar distributions under most meteorological conditions. The PT-JPL and PM-Mu model estimates performed contrary to expectation when high soil moisture and cold

  7. Stereo photo series for quantifying natural fuels.Volume XIII: grasslands, shrublands, oak-bay woodlands, and eucalyptus forests in the East Bay of California.

    Science.gov (United States)

    Clinton S. Wright; Robert E. Vihnanek

    2014-01-01

    Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...

  8. Identifying ozone-sensitive communities of (semi-)natural vegetation suitable for mapping exceedance of critical levels

    International Nuclear Information System (INIS)

    Mills, G.; Hayes, F.; Jones, M.L.M.; Cinderby, S.

    2007-01-01

    Using published data on the responses of individual species to ozone, 54 EUNIS (European Nature Information System) level 4 communities with six or more ozone-sensitive species (%OS) and c. 20% or more species tested for ozone sensitivity, were identified as potentially ozone-sensitive. The largest number of these communities (23) was associated with Grasslands, with Heathland, scrub and tundra, and Mires, bogs and fens having the next highest representation at 11 and 8 level 4 communities each respectively. Within the grasslands classification, E4 (Alpine and sub-alpine grasslands), E5 (Woodland fringes and clearings) and E1 (Dry grasslands) were the most sensitive with 68.1, 51.6 and 48.6%OS respectively. It is feasible to map the land-cover for these and other communities at level 2, but it may not be currently possible to map the land-cover for all communities identified to be ozone-sensitive at levels 3 and 4. - Grassland communities such as alpine and sub-alpine grasslands have the highest potential sensitivity ozone, based on the responses of their component species

  9. Semi-empirical proton binding constants for natural organic matter

    Science.gov (United States)

    Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain

    2010-03-01

    Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed

  10. Dinâmica vegetacional em pastagem natural submetida a diferentes sistemas de manejo Vegetation dynamics of natural grassland under different management systems

    Directory of Open Access Journals (Sweden)

    Marcos da Silva Brum

    2007-06-01

    Full Text Available A dinâmica da composição florística de uma pastagem natural foi avaliada para estimar os efeitos de sistemas de pastejo e introdução de espécies hibernais. O experimento foi realizado em São Gabriel, na região da Depressão Central, Rio Grande do Sul. O período de pastejo foi entre 01/11/2004 e 23/12/2004, totalizando 53 dias. Foram realizados dois levantamentos da composição florística, sendo o primeiro antes do início do pastejo (23/09/2004 e o segundo após o término do período experimental (27/01/2005. Os tratamentos testados foram: pastagem natural melhorada com introdução de espécies hibernais sob pastejo rotativo (CNM; pastagem natural sob pastejo contínuo (CNC e pastagem natural sob pastejo rotativo (CNR, sendo distribuídos em delineamento inteiramente casualizado, com duas repetições. Os animais utilizados no pastejo foram ovelhas com cordeiros da raça Corriedale. Os dados foram submetidos à análise multivariada baseada em ordenação e testes de aleatorização. No primeiro levantamento botânico, o tratamento CNM diferiu (P=0,0001 do CNC e CNR pela elevada participação das espécies introduzidas, enquanto CNC e do CNR foram semelhantes (P=0,6742 na composição de espécies. Os tratamentos CNM e CNC foram diferentes (P=0,0017 no segundo levantamento. O efeito do pastejo rotativo, a introdução de espécies e a adubação são determinantes para mudanças na composição da vegetação. A vegetação sob efeito de pastejo rotativo apresentou trajetórias que convergem para uma situação de semelhança na composição de espécies.Floristic composition's dynamics of a natural grassland was evaluated to estimate the effects of grazing systems and introduction of cool season species. The experiment was held in São Gabriel, in the region of Depressão Central, Rio Grande do Sul, Brazil. The grazing period was from 01/11/2004 to 23/12/2004, totaling 53 days. Floristic composition were evaluated before the

  11. The influence of wind direction on natural ventilation: application to a large semi-enclosed stadium

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.

    2009-01-01

    Natural ventilation is still a commonly applied way in building engineering to ensure a healthy and comfortable indoor climate. In this paper CFD simulations of the natural ventilation of a large semi-enclosed stadium in the Netherlands during the summer are described. Simulations are performed to

  12. Structure, function and management of semi-natural habitats for conservation biological control

    NARCIS (Netherlands)

    Holland, John M.; Bianchi, Felix J.J.A.; Entling, Martin H.; Moonen, Anna Camilla; Smith, Barbara M.; Jeanneret, Philippe

    2016-01-01

    Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with

  13. Characterization of the natural ambient sound environment : Measurements in open agricultural grassland

    NARCIS (Netherlands)

    Boersma, HF

    The audibility of manmade sound in a natural environment is affected because of masking by ambient sound. In this report results are presented of measurements of the level and spectral composition of natural ambient sound. The statistical L-95 level was determined, i.e., the sound pressure level

  14. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    Science.gov (United States)

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  15. Dinâmica vegetacional em pastagem natural submetida a tratamentos de queima e pastejo Vegetation dynamics of natural grassland under treatments of burning and grazing

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Ferreira de Quadros

    2001-10-01

    Full Text Available Foram avaliados durante três anos os efeitos de tratamentos de fogo e pastejo sobre a dinâmica da vegetação de uma pastagem natural localizada em Santa Maria, na região da Depressão Central, Rio Grande do Sul. Foi considerada a hipótese de resiliência, resultado das espécies componentes da pastagem terem evoluído sob influência de tais distúrbios. O experimento foi composto por oito parcelas experimentais submetidas a combinações de níveis de pastejo (pastejado, excluído e de fogo (queimado, não-queimado, em duas posições de relevo (encosta, baixada. A análise multivariada dos dados de composição de espécies foi baseada em ordenação e testes de aleatorização. A vegetação sob efeito de pastejo, independente da queima, apresentou trajetórias direcionais, enquanto sob exclusão as trajetórias foram caóticas. O efeito do pastejo parece ser determinante da dinâmica vegetacional (P=0,077.The effect of fire and grazing treatments on vegetation dynamics was evaluated during three years on a natural grassland located in Santa Maria, in the region of "Depressão Central", Rio Grande do Sul, Brazil. A hypothesis of resilience resulting from the fact that the species of the grassland evolved under the influence of these disturbances was considered. The experimental setup was formed by eight plots subjected to combinations of grazing (grazed, ungrazed and fire (burned, unburned levels, on two relief positions (convex, concave slope. Multivariate analysis of compositional data used ordination and randomization testing. Vegetation under grazing tended to show directional trajectories of floristic composition change, while under grazing exclusion the trajectories could be considered chaotic, independently from the plots being burned or not. Grazing effect seems to be determinant of vegetacional dynamics (P=0.077.

  16. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  17. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.

    2007-01-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  18. Comparing the effect of naturally restored forest and grassland on carbon sequestration and its vertical distribution in the Chinese Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Jie Wei

    Full Text Available Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2 and restored grassland (RG-1 and RG-2 sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ(13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg(-1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0-100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ(13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of (13C atmospheric CO(2 values with the burning of fossil fuel since the Industrial Revolution was minimal. The soil δ(13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ(13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP.

  19. Radiocesium in semi-natural ecosystems in Soer-Varanger, North-Norway

    International Nuclear Information System (INIS)

    Eikelmann, I.M.; Floe, L.; Larsen, E.

    1995-01-01

    The content of radionuclides in the semi-natural ecosystem in Soer-Varanger are mainly fallout from nuclear weapon tests in the fifties and sixties at Novija Zemlja. Favourable natural conditions have encouraged use of semi-natural ecosystems for household, and reindeer herding is still economical important in the area. Samples of reindeer meat, lichen, mushrooms and moose were taken from the area of current interest. The mean radiocesium concentration in reindeer meat was 325 Bq/kg. There is seasonal variations in radiocesium concentration in reindeer, with up to five times higher values in winter than summer. The high intake of lichen in winter is obviously the reason for this increase. Lichens have a high ability to absorb radionuclides directly from precipitation. Radiocesium concentration in lichen samples varied between 210 Bq/kg and 570 Bq/kg. It is concluded that radiocesium from bomb fallout is still existing in some foodstuff produced in semi-natural ecosystem i Soer-Varanger. Lichen-reindeer-man is the important foodchain for the radioactivity. 6 refs., 4 figs

  20. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Horswill, Paul [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)], E-mail: paul.horswill@naturalengland.org.uk; O' Sullivan, Odhran; Phoenix, Gareth K.; Lee, John A.; Leake, Jonathan R. [Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN (United Kingdom)

    2008-09-15

    Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10 years with 35-140 kg N ha{sup -2} y{sup -1} as NH{sub 4}NO{sub 3}. Historic data suggests both grasslands have acidified over the past 50 years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes. - Nitrogen deposition causes base cation depletion, acidification and eutrophication of semi-natural grassland soils.

  1. Estimating species richness and status of solitary bees and bumblebees in agricultural semi-natural habitats

    DEFF Research Database (Denmark)

    Calabuig, Isabel

    2000-01-01

    Estimation of Western Europe number of bee species varies between 2000 and 4500 (Williams 1995) but there are substantial indications of a decline in bee species in Europe and other regions. In Denmark, wild bee species richness, distribution, and abundance have not been studied in detail for about...... 75 years, and nothing is known about which species are potentially vulnerable or endangered. A rough estimate of solitary bees and bumblebees includes approximately 238 species (26 genera) and 29 species respectively. In a pan-trap survey of six kilometres of semi-natural habitats in a Danish...... agricultural landscape, 72 solitary bee species and 19 species of bumblebees were recorded, several of which are considered vulnerable or endangered in neighbouring countries. Nesting conditions for rare cavity-nesting species and the possible role of the semi-natural habitats as corridors for species...

  2. The food chain transfer of radionuclides through semi-natural habitats

    International Nuclear Information System (INIS)

    Copplestone, David.

    1996-07-01

    The behaviour of 134 Cs, 137 Cs, 238 Pu, 239+240 Pu and 241 Am in food chains in three semi-natural ecosystems: a coniferous woodland, a salt marsh and a sand dune have been investigated. These sites, within the environs of the Sellafield nuclear complex in Cumbria, are subject to both anthropogenic and historic inputs of radioactivity. Inputs to these ecosystems have been assessed, as well as activity in soils, vegetation, litter, invertebrates and small mammals. (author)

  3. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006....

  4. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    Science.gov (United States)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  5. Long-term effects of fertilisation regime on earthworm abundance in a semi-natural grassland area

    NARCIS (Netherlands)

    Timmerman, A.; Bos, D.; Ouwehand, J.; Goede, de R.G.M.

    2006-01-01

    Environmental protection organisations involved in farmland-bird conservation promote the use of organic fertilisers, especially farmyard manure, to enhance the availability of earthworms, which are an important prey for farmland-birds. We studied changes in earthworm numbers in a field experiment

  6. Management of semi-natural grasslands benefiting both planbt and insect diversity: The importance of heterogeneity and tradition

    Czech Academy of Sciences Publication Activity Database

    Bonari, G.; Fajmon, K.; Malenovský, I.; Zelený, D.; Holuša, J.; Jongepierová, I.; Kočárek, P.; Konvička, Ondřej; Uřičář, J.; Chytrý, M.

    2017-01-01

    Roč. 246, AUG 01 (2017), s. 243-252 ISSN 0167-8809 Institutional support: RVO:60077344 Keywords : Carabidae * conservation management * Lepidoptera Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.099, year: 2016 http://www.sciencedirect.com/science/article/pii/S0167880917302530

  7. Discrimination of grassland species and their classification in botanical families by laboratory scale hyperspectral imaging NIR: preliminary results

    Science.gov (United States)

    The objective of this study was to discriminate by on-line hyperspectral imaging, taxonomic plant families comprised of different grassland species. Plants were collected from semi-natural meadows of the National Apuseni Park, Apuseni Mountains, Gârda area (Romania) according to botanical families. ...

  8. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    the environmental setting or wider climatic conditions that the grasslands experience. Furthermore, it is demonstrated that the relatively stable ecosystem state that has prevailed in the 'pristine' grasslands studied, is in fact very fragile and may be easily altered, either by anthropogenic forcing, due to land management or by 'semi-natural' processes, related to climate change or changes in the incidence of wildfires (for example). Once structurally altered, it is also shown that positive feedbacks will occur to accelerate the loss of critical resources (topsoil and nutrients) from the ecosystem, in particular in drylands, resulting in widespread land degradation that cannot be reversed. In the temperate grasslands studied, it is shown that anthropogenic intervention may halt or even to some degree reverse the degradation of the soil-vegetation-water continuum. However, such 'landscape restoration' approaches are costly and require long-term management commitment if they are to succeed. degrade these critical ecosystems further. Finally, analysis of water, sediment and nutrient fluxes from this range of grasslands also demonstrates how critical ecosystem services that grasslands can provide; including soil water storage to buffer downstream flooding, soil carbon storage and enhanced biodiversity are reduced, often to the point where restoration of the original (pristine) landscape function is impossible. To conclude, discussion is made of how we can learn across grass landscapes globally, to ensure that those ecosystems that might be restored to build resilient landscapes under future climates are well understood and that future efforts to manage grasslands for increased food production do not degrade these critical ecosystems further.

  9. The simulation of naturally ventilated residential buildings in semi-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    Ghiabaklou, Z.; Ballinger, J.A.; Prasad, D.K. [New South Wales Univ., Kensington, NSW (Australia). Solar Architecture Research Unit

    1995-12-31

    The most important consideration in hot arid and semi-arid zones is to reduce the internal day temperature and to maintain the interior spaces of buildings in a comfortable condition. An important contributor to errors in the thermal analysis of naturally ventilated buildings is inaccurate airflow predictions. These predictions are important for designers in regions where most buildings are naturally ventilated. Passive cooling by day and night natural ventilation in a single story residential building in Wagga Wagga, a semi-arid location in New South Wales has been compared and analyzed theoretically. A modified version of the computer simulation program CHEETAH, has been used to consider a building with continuous natural ventilation to simulate indoor air temperature. The aim of the study was to investigate the thermal behaviour of the building with continuous ventilation (24 hour/day) and the same building with only night time ventilation. Using night time ventilation in high mass buildings in such a climate, leads to a considerable decrease in room air temperature. Simulation results showed that increasing the effective area of windows is effective only when the wind blows. Using a steady averaged air change per hour can also cause a reduction in room air temperatures which results in different temperatures than the actual air changes per hour. (author). 3 figs., 4 refs.

  10. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  11. Effects of shallow natural gas well structures and associated roads on grassland songbird reproductive success in Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Jenny Yoo

    Full Text Available Grassland songbird populations across North America have experienced dramatic population declines due to habitat loss and degradation. In Canada, energy development continues to fragment and disturb prairie habitat, but effects of oil and gas development on reproductive success of songbirds in North American mixed-grass prairies remains largely unknown. From 2010-2012, in southeastern Alberta, Canada, we monitored 257 nests of two ground-nesting grassland songbird species, Savannah sparrow (Passerculus sandwichensis and chestnut-collared longspur (Calcarius ornatus. Nest locations varied with proximity to and density of conventional shallow gas well structures and associated roads in forty-two 258-ha mixed-grass prairie sites. We estimated the probabilities of nest success and clutch size relative to gas well structures and roads. There was little effect of distance to or density of gas well structure on nest success; however, Savannah sparrow experienced lower nest success near roads. Clutch sizes were lower near gas well structures and cattle water sources. Minimizing habitat disturbance surrounding gas well structures, and reducing abundance of roads and trails, would help minimize impacts on reproductive success for some grassland songbirds.

  12. Time-lagged response of carabid species richness and composition to past management practices and landscape context of semi-natural field margins.

    Science.gov (United States)

    Alignier, Audrey; Aviron, Stéphanie

    2017-12-15

    Field margins are key features for the maintenance of biodiversity and associated ecosystem services in agricultural landscapes. Little is known about the effects of management practices of old semi-natural field margins, and their historical dimension regarding past management practices and landscape context is rarely considered. In this paper, the relative influence of recent and past management practices and landscape context (during the last five years) were assessed on the local biodiversity (species richness and composition) of carabid assemblages of field margins in agricultural landscapes of northwestern France. The results showed that recent patterns of carabid species richness and composition were best explained by management practices and landscape context measured four or five years ago. It suggests the existence of a time lag in the response of carabid assemblages to past environmental conditions of field margins. The relative contribution of past management practices and past landscape context varied depending on the spatial scale at which landscape context was taken into account. Carabid species richness was higher in grazed or sprayed field margins probably due to increased heterogeneity in habitat conditions. Field margins surrounded by grasslands and crops harbored species associated with open habitats whilst forest species dominated field margins surrounded by woodland. Landscape effect was higher at fine spatial scale, within 50 m around field margins. The present study highlights the importance of considering time-lagged responses of biodiversity when managing environment. It also suggests that old semi-natural field margins should not be considered as undisturbed habitats but more as management units being part of farming activities in agricultural landscapes, as for arable fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transfer of radionuclides by terrestrial food products from semi-natural ecosystems to humans

    International Nuclear Information System (INIS)

    Howard, B.J.

    1996-01-01

    The potential radiological significance of radionuclide transfer to humans via foodstuffs derived from semi-natural ecosystems has become apparent since the Chernobyl accident. Foodchain models developed before this time usually did not take such transfers into account. The processes leading to contamination of food in these environments are complex and current understanding of the transfer mechanisms is incomplete. For these reasons the approach adopted in Chapter 3 is to represent, by means of aggregated parameters, the empirical relationships between ground deposits and concentration in the food product. 107 refs, 2 figs, 9 tabs

  14. Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films

    International Nuclear Information System (INIS)

    Biswas, Abhijit; Jeong, Yoon Hee

    2015-01-01

    Strong spin-orbit coupled 5d transition metal based ABO 3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO 3 . Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO 3 thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics

  15. Quality of the forage apparently consumed by beef calves in natural grassland under fertilization and oversown with cool season forage species

    Directory of Open Access Journals (Sweden)

    Denise Adelaide Gomes Elejalde

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition of the forage apparently consumed by steers in a natural grassland on region of Campanha, in Rio Grande do Sul, Brazil, subjected or not to different inputs: NP - natural pasture without inputs; FNP - fertilized natural pasture and INP - improved natural grassland with fertilization and over-seeded with cultivated winter species. Three Angus steers testers and a variable number of regulator animals per experimental unit were utilized in order to maintain 13 kg of DM/100 kg of live weight (LW as forage allowance. One time at each season, hand plucking samples were performed along the daily grazing time simulating forage harvested by the animals. The collected samples after drying and grind were submitted to chemical analysis to determine the forage quality. Except in winter and spring, the values of neutral detergent fiber were higher than the critical value of 550 g/kg of DM, which could limit forage intake, demonstrating that the values of forage on offer provided (15.6; 13.7; 13.5; 15.8 kg of DM/100 kg of LW/day in summer, autumn, winter and spring, respectively were not restrictive to intake. The oversowing of winter cultivated species or fertilization positively alter the degradable fiber content. The seasons had marked influence on the chemical composition of forage apparently consumed; positively increasing some fractions of forage chemical composition in the seasons in which native or cultivated winter species increased their participation. The forage chemical composition is the determining factor in animal performance in natural pasture.

  16. Relationships between botanical and chemical composition of forages: a multivariate approach to grasslands in the Western Italian Alps.

    Science.gov (United States)

    Ravetto Enri, Simone; Renna, Manuela; Probo, Massimiliano; Lussiana, Carola; Battaglini, Luca M; Lonati, Michele; Lombardi, Giampiero

    2017-03-01

    Plant composition of species-rich mountain grasslands can affect the sensorial and chemical attributes of dairy and meat products, with implications for human health. A multivariate approach was used to analyse the complex relationships between vegetation characteristics (botanical composition and plant community variables) and chemical composition (proximate constituents and fatty acid profile) in mesophilic and dry vegetation ecological groups, comprising six different semi-natural grassland types in the Western Italian Alps. Mesophilic and dry grasslands were comparable in terms of phenology, biodiversity indices and proportion of botanical families. The content of total fatty acids and that of the most abundant fatty acids (alpha-linolenic, linoleic and palmitic acids) were mainly associated to nutrient-rich plant species, belonging to the mesophilic grassland ecological group. Mesophilic grasslands showed also higher values of crude protein, lower values of fibre content and they were related to higher pastoral values of vegetation compared to dry grasslands. The proximate composition and fatty acid profile appeared mainly single species dependent rather than botanical family dependent. These findings highlight that forage from mesophilic grasslands can provide higher nutritive value for ruminants and may be associated to ruminant-derived food products with a healthier fatty acid profile. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments

    Directory of Open Access Journals (Sweden)

    Thomas O. Crist

    2014-07-01

    Full Text Available The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services.

  18. The biological transport of radionuclides in grassland and freshwater ecosystems

    International Nuclear Information System (INIS)

    Rudge, S.A.

    1989-12-01

    This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)

  19. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  20. Some insights on grassland health assessment based on remote sensing.

    Science.gov (United States)

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  1. Radioecological Study in Natural Grasslands of Argentina. Modeling and Evaluation of the Impact on Humans and the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Juri Ayub, Jimena; Velasco, Hugo; Rizzotto, Marcos G. [Grupo de Estudios Ambientales - Instituto de Matematica Aplicada San Luis (GEA-IMASL), Universidad Nacional de San Luis/CONICET, Ejercito de los Andes 950 D5700HHW, San Luis (Argentina)

    2014-07-01

    The concentration of gamma emitting radionuclides was measured in two natural grasslands (SA and SB), where soils have been undisturbed since the atmospheric {sup 137}Cs global fallout. Site SA is characterized by a small slope (<0.8 deg.) and only the grass Eragrostis curvula grows. Site SB shows a more marked slope (1.7 deg. - 2.0 deg.) where a mixture of grasses grows. Following standard procedures soil and vegetation samples were obtained. Soil profiles were collected up to 25 cm depth (slices 5 cm thickness) and 10 cm depth (0-2, 2-5 and 5-10 cm). In plants, radionuclides uptake by roots and resuspension were distinguished. In soil, {sup 40}K, {sup 226}Ra and {sup 228}Ac activity concentration ranged from 706±71 Bq kg{sup -1} to 743±74 Bq kg{sup -1}, 26±2.6 Bq kg{sup -1} to 20±2.0 Bq kg{sup -1} and 31.0±3.1 Bq kg{sup -1} to 35.2±3.6 Bq kg{sup -1}, respectively; showing a uniform vertical distribution and no differences between sites. Instead, for {sup 137}Cs, the vertical distribution is not uniform and differences between sites were found. The {sup 137}Cs activity concentration ranged from 0.37±0.04 Bq kg{sup -1} to 6.2±0.06 Bq kg{sup -1}, reaching the maximum value??in the intermediate soil layer (10-15 cm). The {sup 137}Cs deposition on soil was 0.56±0.10 kBq m{sup -2} in SA and 0.51±0.15 kBq m{sup -2} in SB. The {sup 137}Cs vertical transport in soil was described using a convection-dispersion model. The diffusion coefficients (0.43-0.96 cm{sup 2} y{sup -1} for SA and 0.67-2.27 cm{sup 2} y{sup -1} for SB) are in the range of values reported in the literature, instead the convection velocities (0.29-0.64 cm y{sup -1} for SA and 0.33-0.73 cm y{sup -1} for SB) are one order of magnitude higher. This could be due to the high sand and low fine materials content in these soils (sand > 60%, clay <8 %). In plants, {sup 137}Cs was not detected. We have not found differences in {sup 40}K content in plants between sites but differences between sampling

  2. Semi-analytical models of hydroelastic sloshing impact in tanks of liquefied natural gas vessels.

    Science.gov (United States)

    Ten, I; Malenica, Š; Korobkin, A

    2011-07-28

    The present paper deals with the methods for the evaluation of the hydroelastic interactions that appear during the violent sloshing impacts inside the tanks of liquefied natural gas carriers. The complexity of both the fluid flow and the structural behaviour (containment system and ship structure) does not allow for a fully consistent direct approach according to the present state of the art. Several simplifications are thus necessary in order to isolate the most dominant physical aspects and to treat them properly. In this paper, choice was made of semi-analytical modelling for the hydrodynamic part and finite-element modelling for the structural part. Depending on the impact type, different hydrodynamic models are proposed, and the basic principles of hydroelastic coupling are clearly described and validated with respect to the accuracy and convergence of the numerical results.

  3. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygård; Barker, J. Stuart F.; Pedersen, Kamilla Sofie

    2008-01-01

    when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results...... show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected...... the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally...

  4. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Norhteast Brazil

    NARCIS (Netherlands)

    Krol, Martinus S.; Bronstert, Axel

    2007-01-01

    Semi-arid regions are characterised by a high vulnerability of natural resources to climate change, pronounced climatic variability and often by water scarcity and related social stress. The analysis of the dynamics of natural conditions and the assessment of possible strategies to cope with

  5. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    Grasslands occupy some 40% of the terrestrial land surface. They are generally categorised as natural (occurring mainly in those regions where the rainfall is too low to support forest ecosystems), semi-natural (where management, mainly by grazing, has changed the vegetation composition), and artificial (where forests have been cleared to create new pasture land). The soils of the natural and semi-natural grasslands constitute a large reservoir of carbon, and make a substantial contribution to the soil sink for atmospheric CH_4. The conversion of much of the natural temperate grassland to arable agriculture, e.g. in North America and Europe, resulted in a considerable decrease in soil organic carbon, and its release to the atmosphere as CO_2 has made a substantial contribution to the total atmospheric concentration of this gas. The associated increase in cycling of soil N (released from the organic matter) will have contributed to N_2O emissions, and land disturbance and fertilisation has resulted in a depletion of the soil CH_4 sink. Conversion of tropical forests to pastures has also been a major source of CO_2, and these pastures show elevated emissions of N_2O for some years after conversion. Seasonally flooded tropical grasslands are a significant source of CH_4 emissions. Consideration of grassland ecosystems in their entirety, in relation to GHG exchange, necessitates the inclusion of CH_4 production by fauna - domesticated livestock and wild herbivores, as well as some species of termites - in the overall assessment. Stocking rates on pasture land have increased, and the total CH_4 emissions likewise. The relationship between animal production and CH_4 emissions is dependent on the nutritional quality of the vegetation, as well as on animal numbers. In both temperate and tropical regions, increased N inputs as synthetic fertilisers and manures (and increased N deposition) are producing possibly a more-than-linear response in terms of emissions of N_2O. In

  6. A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands.

    Science.gov (United States)

    Batzias, A F; Siontorou, C G

    2008-10-30

    This work introduces a semi-natural wetland biomonitoring framework for heavy metal concentrations based on a robust dynamic integration between biological assemblages and relevant biosensors. The cooperative/synergistic scheme developed minimizes uncertainty and monitoring costs and increases reliability of pollution control and abatement. Attention is given to establishing a fully functioning and reliable network approach for monitoring inflows and achieving dose-response relations and calibration of biomonitoring species. The biomonitoring network initially consists of both, biosensors and species, as a validation phase in each wetland of the surveillance area; once the species monitoring efficiency is verified by the biosensors, the biosensor network moves to the next wetland and so on, following a circular pattern until all area wetlands have a fully functional natural monitoring scheme. By means of species recalibration with periodic revisiting of the biosensors, the scheme progressively reaches a quasi steady-state (including seasonality), thus ensuring reliability and robustness. This framework, currently pilot-tested in Voiotia, Greece, for assessing chromium levels, has been built to cover short-, medium- and long-term monitoring requirements. The results gathered so far, support the employment of the proposed scheme in heavy metal monitoring, and, further, arise the need for volunteer involvement to achieve long-term viability.

  7. First standardized inventory of ants (Hymenoptera: Formicidae in the natural grasslands of Paraná: New records for Southern Brazil

    Directory of Open Access Journals (Sweden)

    Weslly Franco

    2018-03-01

    Full Text Available Abstract Despite the large number of studies investigating ant diversity in Brazilian biomes, no ant-related studies have been carried out in Campos Gerais, a grassland physiognomy in Paraná state. The present study is the first inventory of the ant fauna in one of the few conservation units protecting the Campos Gerais landscape, the Guartelá State Park (PEG. Sixty samples were collected from different habitats within PEG using pitfall traps. Qualitative samples of leaf litter were collected from forest fragments and submitted to Winkler extractors. In addition, manual qualitative sampling was carried out in the various physiognomies within the PEG. A total of 163 species was collected and sorted into 43 genera and nine subfamilies. Five genera and 28 species were recorded for the first time in the state of Paraná. Out of these, 17 species were also recorded for the first time in the Southern Region of Brazil and two were recorded for the first time to the country. The significant species richness in the PEG and the high number of new records is a strong sign of this ecosystem’s potential to reveal taxonomic novelties. These results suggest that PEG, and the Campos Gerais as a whole, should be the target of greater conservation efforts to preserve native remnants.

  8. Artificial semi-rigid tissue sensitized with natural pigments: Effect of photon radiations

    Directory of Open Access Journals (Sweden)

    Adnan Jaradat

    2011-01-01

    Full Text Available Background: A new approach for evaluating the optical penetration depth and testing its validity with Monte Carlo simulations and Kubelka-Munk theory is used for artificial semi-rigid tissue sensitized with natural pigments. Photodynamic therapy is a promising cancer treatment in which a photosensitizing drug concentrates in malignant cells and is activated by visible light at certain wavelength. Materials and Methods: Cheap artificial semi-rigid tissue incorporated with scattering and absorbing materials along with some other composites comparable to normal human tissue has been performed. The optical parameters as measured with different conditions and calculated with various techniques are investigated. Results: The probability of interaction of light with tissue is very high when exposed to light in presence of Cichorium pumilum and RBCs followed by photohemolysis or/and photodegradation. The optical penetration depth calculated by linear absorption coefficient ranges from 0.63 to 2.85 mm is found to be comparable to those calculated using Kubelka-Munk theory or Monte Carlo simulation (range from 0.78 to 2.42 mm. The ratio of absorption to the scattering is independent of thickness and decreases with increasing irradiation time. Moreover, the optical parameters as well as their ratios are in very good agreement in the two approaches of calculation. The values of absorption and scattering coefficients are independent of thickness. Furthermore, the average photon ranges in the samples containing no scattering and absorbing materials are about three times greater than those samples containing scattering materials. Conclusion: Our results suggest that light propagation with optical properties presented in this work could be applicable in diagnostic and therapeutic of the human biological tissue for photodynamic therapy.

  9. Flesh flies species (Diptera: Sarcophagidae from a grassland and a woodland in a Nature Reserve of Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Pablo R Mulieri

    2008-09-01

    Full Text Available Temporal changes of flesh flies abundance were simultaneously recorded at monthly intervals during a year in a woodland and in a grassland at the "Reserva Ecológica Costanera Sur" (RECS, Buenos Aires city, Argentina. Samples were taken at monthly intervals (February 2004-January 2005. Hourly captures of adult flies (10:00 am - 04:00 pm were taken each sampling date with a hand net. Temperature was recorded at each hourly capture. The baits used were 200 g of rotten cow liver and 200 g of fresh dog faeces. Records of abundance included only species whose abundance was ≥30 individuals accumulated during the whole sampling period. Considering overall abundance, a non-parametric Chi-square test was used to estimate deviations of an expected habitat and bait preference ratios of 1:1. The same criterion was applied to include species in a contingency table to describe their seasonality. The final matrix included four species whose associations to seasons were analyzed by using a Correspondence Analysis. To normalize the data, a log 10(n+1 transformation was applied prior to the analysis of correlation. Pearson product-moment correlations were used to examine the relationship between flesh-fly abundance with temperature and habitat preference. The entire sample accumulated 1 305 individuals and 18 species. The flies were more abundant in the grassland than in the woodland. Microcerella muehni, Oxysarcodexia paulistanensis, O. varia and Tricharaea (Sarcophagula occidua exhibited the higher relative abundance, representing the remaining species less than 8 % of the entire sample. Most of the recorded species showed preference for faces as bait. Concerning the dominant species, all of them but M. muehni, a suggestively termophobic species, prevailed in late spring-summer. The observed species arrangement at both sites indicates low species diversity and equitability and high information per individual in the average. The referred community traits would

  10. Is the Invasive Species Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae) (Argentine Stem Weevil) a Threat to New Zealand Natural Grassland Ecosystems?

    Science.gov (United States)

    Barratt, Barbara I P; Barton, Diane M; Philip, Bruce A; Ferguson, Colin M; Goldson, Stephen L

    2016-01-01

    Listronotus bonariensis (Argentine stem weevil) is a stem-boring weevil that has become a major pasture pest in New Zealand, and cool climate turf grass in Australia. This species is also frequently found in native tussock grassland in New Zealand. Laboratory and field trials were established to determine the risk posed to both seedlings and established plants of three native grass species compared to what happens with a common host of this species, hybrid ryegrass (L. perenne X L. multiflorum). Adult weevil feeding damage scores were higher on Poa colensoi and Festuca novae-zelandiae than Chionochloa rigida. Oviposition was lower on P. colensoi than hybrid ryegrass, and no eggs were laid on F. novae-zelandiae. In field trials using the same four species established as spaced plants L. bonariensis laid more eggs per tiller in ryegrass in a low altitude pasture site than in ryegrass in a higher altitude site. No eggs were found on the three native grass species at the tussock sites, and only low numbers were found on other grasses at the low altitude pasture site. Despite this, numbers of adult weevils were extracted from the plants in the field trials. These may have comprised survivors of the original weevils added to the plants, together with new generation weevils that had emerged during the experiment. Irrespective, higher numbers were recovered from the tussock site plants than from those from the pasture site. It was concluded that L. bonariensis is likely to have little overall impact, but a greater impact on native grass seedling survival than on established plants.

  11. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  12. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone

    International Nuclear Information System (INIS)

    Hayes, F.; Jones, M.L.M.; Mills, G.; Ashmore, M.

    2007-01-01

    This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities. - Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone showed some relationships with physiological and ecological characteristics

  13. Genetic resistance to natural coccidiosis infection in goats in a semi-arid region of India

    Directory of Open Access Journals (Sweden)

    P.K. Rout

    2015-12-01

    Full Text Available Coccidiosis is one of the major causes of kid mortality in tropical regions and causes significant loss to farmers by affecting growth and feed efficiency in the growing kid. The strategy to control the coccidiosis is mainly through drug usage and is not efficacious at present. Therefore, an alternative strategy is required to control the disease in goats. Increasing genetic resistance to coccidiosis may be an appropriate complementary control strategy. The purpose of this study was to analyse the genetic variation in severity of natural coccidiosis infections in kids in the semi-arid region. The observations were recorded in 227 kids of Barbari and Jamunapari goats. Barbari goats had higher mean faecal oocyst counts (FOC than Jamunapari goats at 3 and 6 months of age. The heritability for FOC was 0.05 and 0.15 at 3 and 6 months of age, respectively. All phenotypic and environmental correlations between FOC and live weight traits were low and negative, indicating a tendency for more heavily infected kids in the flock to grow more slowly. Genetic correlations were largely similar, but had large standard errors. The results suggest that genetic resistance control strategy can potentially be useful for the better performance in the existing managemental condition.

  14. Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions

    Science.gov (United States)

    Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.

    2012-01-01

    Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525

  15. Thermal conditions in selected urban and semi-natural habitats, important for the forensic entomology.

    Science.gov (United States)

    Michalski, Marek; Nadolski, Jerzy

    2018-06-01

    A long-term study on thermal conditions in selected urban and semi-natural habitats, where human corpses are likely to be found, was conducted in the city of Lodz (Central Poland). Thermal data were collected during two years at nine sites and compared with corresponding data from the nearest permanent meteorological station at Lodz Airport (ICAO code: EPLL). The conditions closest to those at the meteorological station prevailed in the deciduous forest, coefficient of determination R 2 for those sets of data was above 0.96. The open field was characterized by high daily amplitudes, especially during spring, while the site in the allotment gardens was characterized by relatively high winter temperatures. The conditions prevailing in all closed space sites were very diverse and only slightly similar to the external ones. The most distinct site was an unheated basement in a tenement house, where temperature was almost always above 0°C and daily amplitudes were negligible. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  17. Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies.

    Science.gov (United States)

    Holland, John M; Bianchi, Felix Jja; Entling, Martin H; Moonen, Anna-Camilla; Smith, Barbara M; Jeanneret, Philippe

    2016-09-01

    Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with agri-environment scheme funding in all EU member states. Understanding the contribution of each habitat type can aid the development of conservation control strategies. Here we review the extent to which the predominant habitat types in Europe support natural enemies, whether this results in enhanced natural enemy densities in the adjacent crop and whether this leads to reduced pest densities. Considerable variation exists in the available information for the different habitat types and trophic levels. Natural enemies within each habitat were the most studied, with less information on whether they were enhanced in adjacent fields, while their impact on pests was rarely investigated. Most information was available for woody and herbaceous linear habitats, yet not for woodland which can be the most common semi-natural habitat in many regions. While the management and design of habitats offer potential to stimulate conservation biocontrol, we also identified knowledge gaps. A better understanding of the relationship between resource availability and arthropod communities across habitat types, the spatiotemporal distribution of resources in the landscape and interactions with other factors that play a role in pest regulation could contribute to an informed management of semi-natural habitats for biocontrol. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?

    DEFF Research Database (Denmark)

    Olsen, J. L.; Miehe, S.; Ceccato, Pietro

    2015-01-01

    Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference...... vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time...... exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds...

  19. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis

    NARCIS (Netherlands)

    Groot, de M.; Kleijn, D.; Jogan, N.

    2007-01-01

    We studied the impact of the invasive plant species Solidago canadensis on the species richness of vascular plants and the abundance, species richness and diversity of butterflies, hoverflies and carabid beetles in herbaceous semi-natural habitats near Ljubljana, Slovenia. The species groups were

  20. Pollinator diversity (Hymenoptera and Diptera in semi-natural habitats in Serbia during summer

    Directory of Open Access Journals (Sweden)

    Mudri-Stojnić Sonja

    2012-01-01

    Full Text Available The aim of this study was to assess species diversity and population abundance of the two main orders of pollinating insects, Hymenoptera and Diptera. The survey was conducted in 16 grassland fragments within agro-ecosystems in Vojvodina, as well as in surrounding fields with mass-flowering crops. Pollinators were identified and the Shannon-Wiener Diversity Index was used to measure their diversity. Five families, 7 subfamilies, 26 genera and 63 species of insects were recorded. All four big pollinator groups investigated were recorded; hoverflies were the most abundant with 32% of the total number of individuals, followed by wild bees - 29%, honeybees - 23% and bumblebees with 16%.

  1. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  2. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Science.gov (United States)

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  3. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  4. Darwin's naturalization hypothesis up-close: Intermountain grassland invaders differ morphologically and phenologically from native community dominants

    Science.gov (United States)

    Dean E. Pearson; Yvette K. Ortega; Samantha J. Sears

    2012-01-01

    Darwin's naturalization hypothesis predicts that successful invaders will tend to differ taxonomically from native species in recipient communities because less related species exhibit lower niche overlap and experience reduced biotic resistance. This hypothesis has garnered substantial support at coarse scales. However, at finer scales, the influence of traits...

  5. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Science.gov (United States)

    Brooke E. Penaluna; David L. G. Noakes

    2015-01-01

    Piscivory by birds can be important, particularly on fish in small streams and during seasonal low flows when available cover from predators can be limited. We conducted an experiment at the Oregon Hatchery Research Center to evaluate size-selective survival of Coastal Cutthroat Trout (Figure 8; Oncorhynchus clarkii clarkii) in replicated semi-...

  6. Priming of soil carbon decomposition in two inner Mongolia grassland soils following sheep dung addition: A study using13C natural abundance approach

    DEFF Research Database (Denmark)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heav......To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content......) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = -26.8‰; dung δ13C = -26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = -14.6‰; dung δ13C = -15.7‰). Fresh C3 and C4 sheep dung was mixed......-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg-1 dry soil had been emitted as CO2 for the L. chinensis...

  7. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Van Dasselaar, A. [Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands); Oenema, O. [NMI, Wageningen (Netherlands)

    1995-11-01

    Net methane (CH{sub 4}) emissions from managed grassland on peat soils in the Netherlands have been monitored with vented closed flux chambers in the period January - June 1994. Net CH{sub 4} emissions from two intensively managed grasslands were low, in general less than 0.1 mg CH{sub 4} m{sup -2} d{sup -l}. On these sites, the effect of management was negligibly small. CH{sub 4} emission from three extensively managed grasslands in a nature preserve ranged from 0 to 185 mg CH{sub 4} m{sup -2} d{sup -l}. The results presented here indicate that CH{sub 4} emissions are 2-3 orders of magnitude higher on extensively managed grasslands than on intensively managed grasslands. 2 figs., 6 refs.

  8. Impact of weather on dynamics of plant functional groups in an abandoned limestone grassland

    Directory of Open Access Journals (Sweden)

    Zbigniew Dzwonko

    2011-12-01

    Full Text Available We examined to what extend the rate and direction of changes in unmanaged grassland depend on fluctuations in climatic conditions. Vegetation data from permanent plots in a semi-natural grassland in southern Poland collected over 12 years were used. Relations between weather variables, time, and the cover of 41 more frequent species and 14 plant functional groups were analysed. The greatest effect on the dynamics of species and functional groups had precipitation in spring and/or early summer, particularly in the current year. The majority of plant groups were significantly affected also by the temperature in spring and early summer in one of the three previous years. During 12 years, the cover of annuals and biennials, short plants, and plants with small leaves decreased, while the cover of taller plants, plants with larger leaves, and with vegetative spread increased. The analyses suggest that these successional changes were not directly associated with climatic conditions but were affected by them indirectly through interspecific competition. The fluctuations in climatic conditions, chiefly precipitation, had a significant effect on both the composition and the rate of changes in abandoned grassland. The increase in the cover of tall perennial species with broad leaves hindered succession towards woodland despite of the presence of woods in the closed vicinity. It can be expected that during drier periods colonisation of grassland by later successional species could be easier.

  9. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  10. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data

    Science.gov (United States)

    Pitkänen, T. P.; Käyhkö, N.

    2017-08-01

    Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to

  11. Exploring the development of fourth graders' environmental identity through participation in a semi-formal nature club

    Science.gov (United States)

    Brock, Ryan J.

    Nature deficit, where disconnections occur between children and nature have come to the forefront of environmental education in recent years. This study explored how fourth graders in an after-school Nature Club developed or strengthened their environmental identity, thus decreasing nature deficit. Through a program that utilized semi-formal instruction, both classroom learning and direct experiences with nature, took place over a nine week period of time. Six children were followed as qualitative data was collected and analyzed for themes that would reveal how adolescent children in the developmental stage of concrete operations developed environmental identity. The results indicate that all students strengthened their environmental identity when social aspects were embedded. Students who entered Nature Club with low environmental identity required more direct experiences with nature while those with higher environmental identity required a combination of reflective components along with nature experiences. Based upon this study, the nine-week program which combined formal and non-formal means of learning was able to strengthen environmental identity in each of the participants. A strong theme of social learning, not explicitly identified in the literature was found. Additionally, and most importantly, findings also indicate that educators, both formal and non-formal, who teach environmental education and seek to strengthen environmental identity for adolescents for early interventions need to understand the development of environmental identity in concrete operational learners at a theoretical level.

  12. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on "1"3C natural abundances

    International Nuclear Information System (INIS)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F.; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-01-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ"1"3C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier "1"3C due to closing stomata leading to an enrichment of "1"3C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ"1"3C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ"1"3C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ"1"3C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. - Highlights

  13. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on {sup 13}C natural abundances

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Valentin H., E-mail: v.klaus@uni-muenster.de [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Hölzel, Norbert [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Prati, Daniel; Schmitt, Barbara [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Schöning, Ingo; Schrumpf, Marion; Solly, Emily F. [Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena (Germany); Hänsel, Falk [University Marburg, Environmental Informatics, Faculty of Geography, Deutschhausstr. 12, 35037 Marburg (Germany); Fischer, Markus [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Kleinebecker, Till [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany)

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ{sup 13}C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier {sup 13}C due to closing stomata leading to an enrichment of {sup 13}C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ{sup 13}C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ{sup 13}C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ{sup 13}C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future

  14. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  15. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  16. Semi-empirical modelling of radiation exposure of humans to naturally occurring radioactive materials in a goldmine in Ghana

    International Nuclear Information System (INIS)

    Darko, E. O.; Tetteh, G.K.; Akaho, E.H.K.

    2005-01-01

    A semi-empirical analytical model has been developed and used to assess the radiation doses to workers in a gold mine in Ghana. The gamma dose rates from naturally occurring radioactive materials (uranium-thorium series, potassium-40 and radon concentrations) were related to the annual effective doses for surface and underground mining operations. The calculated effective doses were verified by comparison with field measurements and correlation ratios of 0.94 and 0.93 were obtained, respectively, between calculated and measured data of surface and underground mining. The results agreed with the approved international levels for normal radiation exposure in the mining environment. (au)

  17. Persistent semi-metal-like nature of epitaxial perovskite CaIrO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-05-21

    Strong spin-orbit coupled 5d transition metal based ABO{sub 3} oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO{sub 3}. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO{sub 3} thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.

  18. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  19. Natural and artificial aging response of semi-solid metal processed alloy A356

    CSIR Research Space (South Africa)

    Möller, H

    2008-09-01

    Full Text Available oC between 1 and 5 hours without any prior natural aging. A natural aging period as short as 1 hour results in a hardness peak (rather than a plateau) to be reached during artificial aging after 4 hours at 180oC...

  20. Root uptake of 137Cs by natural and semi-natural grasses as a function of texture and moisture of soils

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Davydchuk, V.

    2006-01-01

    This work studies the dependence of 137 Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137 Cs contamination (from 20 up to 5000 kBq m -2 ), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137 Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137 Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137 Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils

  1. Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition: a study using ¹³C natural abundance approach.

    Science.gov (United States)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ¹³C = -26.8‰; dung δ¹³C = -26.2‰) or Cleistogenes squarrosa (C₄ plant with δ¹³C = -14.6‰; dung δ¹³C = -15.7‰). Fresh C₃ and C₄ sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of ¹³C-CO₂ emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ¹³C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO₂. The cumulative amounts of C respired from dung treated soils during 152 days were 7-8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO₂ originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg⁻¹ dry soil had been emitted as CO₂ for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg⁻¹ soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.

  2. Interações entre herbicidas e protetores para o controle de capim-annoni em pastagem natural Interactions among herbicides and safeners for the south african lovegrass control in natural grassland

    Directory of Open Access Journals (Sweden)

    Ives Clayton Gomes dos Reis Goulart

    2012-10-01

    field conditions in area of natural grassland of the Biome Pampa where several herbicides were evaluated in pre and post-emergence. A third experiment was carried out in greenhouse evaluating the herbicides glufosinate-ammonium and imazethapyr and the species E. plana and Paspalum notatum. In both experiments, the herbicides were evaluated isolated and in association with the safeners anhydride naphtalic, dietholate and fluxofenim. The field experiments indicated that the evaluated safeners did not increase E. plana control and native grassland selectively. The greenhouse experiment indicated the occurrence of synergism on E. plana for the herbicide glufosinate-ammonium in mixture with the safeners anhydride naphtalic, dietholate and fluxofenim. The different results in the field and greenhouse experiments are related to the plant stage and density. The use of herbicides in association with safeners indicated a potentiality for selective control of E. plana when applied to plants in the early stages of development.

  3. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    International Nuclear Information System (INIS)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J.

    2002-01-01

    New developments in molecular-level 14 C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14 C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ( 14 C-free) and natural compounds should have 'modern' or 'contemporary' 14 C levels. As a baseline study, we measured, for the first time, the 14 C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14 C-free except for the pesticide toxaphene, which had a modern 14 C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14 C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock

  4. Preliminary results of studies on the distribution of invasive alien vascular plant species occurring in semi-natural and natural habitats in NW Poland

    Directory of Open Access Journals (Sweden)

    Popiela Agnieszka

    2015-03-01

    Full Text Available In Western Pomerania, as in other areas of Europe, alien species play an increasingly important role. In particular, invasive plants tend to spread rapidly and in large numbers which may reduce diversity of native species, leading to the phenomenon of “trivialisation of flora”, and transform ecosystems. The list of invasive species (32 taxa includes alien species occurring throughout Western Pomerania, and penetrating natural or semi-natural habitats. The second group consists of potentially invasive species (23 taxa, i.e. those distributed across the area under study and tending to increase the number of their localities in semi-natural and natural habitats, taxa invasive only locally, as well as species with missing data, which does not currently allow including them into the first group. Invasive weeds, as well as some epecophytes and archaeophytes occurring only on anthropogenic sites and tending to spread, were not taken into account. Among hemiagriophytes, the most common and troublesome ones are: Conyza canadensis, Erigeron annuus, Lolium multiflorum, Lupinus polyphyllus, Solidago canadensis, S. gigantea. Among holoagriophytes, i.e. the taxa which received the highest naturalisation status, very expansive species, successful in land colonisation, like Acer negundo, Bidens frondosa, B. connata, Clematis vitalba, Elodea canadensis, Epilobium ciliatum, Heracleum sosnowskyi, Impatiens glandulifera, I. parviflora, Padus serotina, Quercus rubra and Robinia pseudoacacia, should be given particular attention. Among the invasive and potentially invasive species, most taxa penetrate plant communities of the Artemisietea and Molinio-Arrhenatheretea class, followed by Querco-Fagetea, Vaccinio-Piceetea, Stellarietea mediae, Salicetea purpurae and Koelerio-Corynophoretea. The number of invasive species is twice as high when compared to the situation of these species in Poland; on the contrary, the number of species inhabiting anthropogenic, semi-natural

  5. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions.

    Science.gov (United States)

    Freyth, Katharina; Janowitz, Tim; Nunes, Frank; Voss, Melanie; Heinick, Alexander; Bertaux, Joanne; Scheu, Stefan; Paul, Rüdiger J

    2010-10-01

    Laboratory breeding conditions of the model organism C. elegans do not correspond with the conditions in its natural soil habitat. To assess the consequences of the differences in environmental conditions, the effects of air composition, medium and bacterial food on reproductive fitness and/or dietary-choice behavior of C. elegans were investigated. The reproductive fitness of C. elegans was maximal under oxygen deficiency and not influenced by a high fractional share of carbon dioxide. In media approximating natural soil structure, reproductive fitness was much lower than in standard laboratory media. In seminatural media, the reproductive fitness of C. elegans was low with the standard laboratory food bacterium E. coli (γ-Proteobacteria), but significantly higher with C. arvensicola (Bacteroidetes) and B. tropica (β-Proteobacteria) as food. Dietary-choice experiments in semi-natural media revealed a low preference of C. elegans for E. coli but significantly higher preferences for C. arvensicola and B. tropica (among other bacteria). Dietary-choice experiments under quasi-natural conditions, which were feasible by fluorescence in situ hybridization (FISH) of bacteria, showed a high preference of C. elegans for Cytophaga-Flexibacter-Bacteroides, Firmicutes, and β-Proteobacteria, but a low preference for γ-Proteobacteria. The results show that data on C. elegans under standard laboratory conditions have to be carefully interpreted with respect to their biological significance.

  6. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  7. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil

    Science.gov (United States)

    Teixeira, A. H. de Castro; Bastiaanssen, W. G. M.; Ahmad, M. D.; Moura, M. S. B.; Bos, M. G.

    2008-11-01

    SummaryKnowledge on evapotranspiration is essential in quantifying water use depletion and to allocate scarce water resources to competing uses. Despite that an extensive literature describes the theoretical mechanisms of turbulent water vapour transport above and within crop canopies fewer studies have examined land surface parameters within composite landscapes of irrigated crops and semi-arid natural vegetation. Aiming to improve parameterizations of the radiation and energy balance in irrigated crops and natural vegetation, micro-climatic measurements were carried out on irrigated land (vineyards and mango orchard) and natural vegetation (caatinga) in the semi-arid zone of the São Francisco River basin (Brazil) from 2002 to 2005. The fractions of 24 h incident solar radiation available for net radiation were 46%, 55%, 51% and 53%, for wine grape, table grape, mango orchard and caatinga, respectively. Daily evaporative fractions of the net available energy used as latent heat flux ( λE) were 0.80, 0.88, 0.75 and 0.33 respectively. The daylight values of bulk surface resistances ( rs) averaged 128 s m -1, 73 s m -1, 133 s m -1 and 1940 s m -1 for wine grape, table grape, mango orchard and caatinga, respectively. Simplified parameterizations on roughness and evaporation resistances were performed. It could be concluded that net radiation can be estimated by means of a linear expression with incident global solar radiation depending on the type of vegetation. The variability of aerodynamic resistance ( ra) could be mainly explained by the friction velocity ( u ∗) which on turn depends on the surface roughness length for momentum transport ( z 0m). The experimental data showed that for sparse canopies z 0m being 9% of the mean vegetation height is a doable operational rule for the semi-arid region of São Francisco River basin. The seasonal values of rs for irrigated crops were highly correlated with water vapour pressure deficit. The availability of analytical

  8. Intensive agriculture to semi-natural grassland: evaluating changes in ecosystem service provision to help determine costs and benefits of agri-environment schemes

    OpenAIRE

    Horrocks, Claire Alice

    2013-01-01

    Intensive agriculture has led to an increase in production; however this has often coincided with a decline in the provision of other Ecosystem Services (ES). ES affected include those regulated by soil chemical, physical and biological properties such as biodiversity provision and the regulation of nutrient cycling, water quality and rates of greenhouse gas emissions. A growing awareness of the value of nonproduction ES to human health and wellbeing has encouraged the funding ...

  9. Semi-conducting material obtained from natural fiber modified with PAni

    International Nuclear Information System (INIS)

    Rocha, Eli V. da; Silva Junior, Fernando Gomes; Oliveira, Geiza E.; Pinto, Jose Carlos

    2009-01-01

    The surface of natural Brazilian Amazonic fibers (curaua, Ananas erectifolius) was modified with polyaniline nanoparticles, through in-situ preparation of polyaniline nanoparticles in presence of the curaua fibers. As it was shown here, this modification allowed a very significant increase of the electrical conductivity of the fibers (about 2.500 times). The modified materials were also characterized by FTIR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy) and SAXS (Small Angle X-ray Scattering) and the obtained results were used to explain some of the chemical and morphological aspects of the materials. (author)

  10. Semi-supervised learning and domain adaptation in natural language processing

    CERN Document Server

    Søgaard, Anders

    2013-01-01

    This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias.This book is intended to be both

  11. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest?

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Christensen, Søren

    2005-01-01

    The relative importance of litter quality and site heterogeneity on population dynamics of decomposer food webs was investigated in a semi-natural mixed deciduous forest in Denmark. Litterbags containing beech or ash leaves were placed in four plots. Plots were located within gaps and under closed...... at the end of the study period. At the first sampling, where bacterial activity prevailed, the relative abundance of the two dominant bacterial-feeders, Rhabditidae (fast growing) and Plectus spp. (slower growing), depended more on site than litter type. At the second sampling where fungal activity became...... in the decomposer food web, site effects were also detected and nematode functional groups responded more to site than to litter quality early on in the decomposition process....

  12. Do Humans Really Prefer Semi-open Natural Landscapes? A Cross-Cultural Reappraisal

    Science.gov (United States)

    Hägerhäll, Caroline M.; Ode Sang, Åsa; Englund, Jan-Eric; Ahlner, Felix; Rybka, Konrad; Huber, Juliette; Burenhult, Niclas

    2018-01-01

    There is an assumption in current landscape preference theory of universal consensus in human preferences for moderate to high openness in a natural landscape. This premise is largely based on empirical studies of urban Western populations. Here we examine for the first time landscape preference across a number of geographically, ecologically and culturally diverse indigenous populations. Included in the study were two urban Western samples of university students (from southern Sweden) and five non-Western, indigenous and primarily rural communities: Jahai (Malay Peninsula), Lokono (Suriname), Makalero (Timor), Makasae (Timor), and Wayuu (Colombia). Preference judgements were obtained using pairwise forced choice assessments of digital visualizations of a natural landscape varied systematically on three different levels of topography and vegetation density. The results show differences between the Western and non-Western samples, with interaction effects between topography and vegetation being present for the two Swedish student samples but not for the other five samples. The theoretical claim of human preferences for half-open landscapes was only significantly confirmed for the student sample comprising landscape architects. The five non Western indigenous groups all preferred the highest level of vegetation density. Results show there are internal similarities between the two Western samples on the one hand, and between the five non-Western samples on the other. To some extent this supports the idea of consensus in preference, not universally but within those categories respectively.

  13. Discriminating Natural Variation from Legacies of Disturbance in Semi-Arid Forests, Southwestern USA

    Science.gov (United States)

    Swetnam, T. L.; Lynch, A. M.; Falk, D. A.; Yool, S. R.; Guertin, D. P.

    2014-12-01

    Characterizing differences in existing vegetation driven by natural variation versus disturbance legacies could become a critical component of applied forest management practice with important implications for monitoring ecologic succession and eco-hydrological interactions within the critical zone. Here we characterize variations in aerial LiDAR derived forest structure at individual tree scale in Arizona and New Mexico. Differences in structure result from both topographic and climatological variations and from natural and human related disturbances. We chose a priori undisturbed and disturbed sites that included preservation, development, logging and wildfire as exemplars. We compare two topographic indices, the topographic position index (TPI) and topographic wetness index (TWI), to two local indicators of spatial association (LISA): the Getis-Ord Gi and Anselin's Moran I. We found TPI and TWI correlate well to positive z-scores (tall trees in tall neighborhoods) in undisturbed areas and that disturbed areas are clearly defined by negative z-scores, in some cases better than what is visible from traditional orthophotography and existing GIS maps. These LISA methods also serve as a robust technique for creating like-clustered stands, i.e. common stands used in forest inventory monitoring. This research provides a significant advancement in the ability to (1) quantity variation in forest structure across topographically complex landscapes, (2) identify and map previously unrecorded disturbance locations, and (3) quantify the different impacts of disturbance within the perimeter of a stand or event at ecologically relevant scale.

  14. EVALUATION OF VEGETABLE EXTRACTS FROM THE SEMI-ARID AS NATURAL pH INDICATOR

    Directory of Open Access Journals (Sweden)

    Sebastiana Estefana Torres Brilhante

    2015-02-01

    Full Text Available Given the various difficulties to expose the contents of the subject of chemistry is a constant search for alternative materials to facilitate learning. This may partly be due to chemical science to be a significant practical character. However, due to professional educational institutions and material limitations ends up being passed on to the student of predominantly theoretical way, requiring a high degree of abstraction and consequently in their disinterest the same. In this context , we investigated the use of ethanol extracts of various plants, such as: Jitirana (Ipomoea glabra , Íxora (Ixora coccínea, Centro (Centrosema brasilianum and Candlebush (Senna alata flowers, Beet (Beta vulgaris L. fruit and Urucum (Bixa orellana seeds as an acids and bases natural indicator, from laboratory tests capable of identifying properties demonstrate the pH. Initially we evaluated the variation in the coloration of extracts using for this buffer solutions at pH 3, 7 and 12. Among the cited vegetable flowers Jitirana, ixora and Centro presented activities relevant indicator as staining variants between pH 2:13. The extracts of plants were further added in glass tubes containing buffer solutions with a pH ranging from 2 to 13. The change in color of the extracts showed good activity has the same pH indicator.

  15. Micrometeorological measurements of ammonia and total reactive nitrogen exchange over semi-natural peatland

    Science.gov (United States)

    Brümmer, Christian; Richter, Undine; Schrader, Frederik; Kutsch, Werner

    2015-04-01

    Intensive agriculture generates a substantial atmospheric burden for nitrogen-limited ecosystems such as peatlands when the latter are located in close vicinity to arable sites and animal houses. The exchange of reactive nitrogen compounds between these bog ecosystems and the atmosphere is still not very well understood due to the lack of suitable measurement techniques. With recent advancements in laser spectrometry, we used a quantum cascade laser spectrometer as well as a custom-built total reactive atmospheric nitrogen (ΣNr) converter (TRANC) coupled to a fast-response chemiluminescence detector to measure NH3 and ΣNr concentrations, respectively. The analyzers' high temporal resolution allowed for determination of the respective nitrogen exchange within eddy covariance-based setups. Field campaigns were conducted at a northwestern German peatland site that is surrounded by an area of highly fertilized agricultural land and intensive livestock production (~1 km distance). The field site is part of a natural park with a very small remaining protected zone of less than 2 km x 2 km. Ammonia and ΣNr concentrations were highly variable between 2 to 110 ppb and 10 to 120 ppb, respectively. Peak values coincided with main fertilization periods on the neighboring agricultural land in early spring and fall. The trend in weekly averaged ΣNr concentrations from TRANC measurements was in good agreement with results from KAPS denuder filter systems when the latter were combined with the missing and apparently highly variable NOx contribution. Wind direction and land use in the closer vicinity clearly regulated whether ΣNr concentrations were NH3 or NOx-dominated. Ammonia uptake rates between 40 ng N m-2 s-1 and near-neutral exchange were observed. The cumulative net uptake for the period of investigation was ~700 g N ha-1 resulting in a dry net deposition of ~4 kg N ha-1 when extrapolated to an entire year, whereas KAPS denuder measurements in combination with dry

  16. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2016-12-01

    Full Text Available Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998 a series of grassland conservation and management policies that restrict the use of grasslands. To ease the impact on the residents’ livelihoods, the national and regional governments have offered a series of top-down arrangements to stimulate sustainable use of the grasslands. Simultaneously, local households spontaneously developed bottom-up countermeasures. To determine the effects of these processes, we interviewed members of 135 households using a mix of qualitative and quantitative methods. We analyzed the effects on household dependence on local grasslands and on perceptions of the future of grassland use. Our findings show that the implementation of the grassland conservation policies significantly affected household livelihoods, which in turn affected household use of natural assets (primarily the land, their agricultural assets (farming and grazing activities and their financial assets (income and consumption, resulting in fundamental transformation of their lifestyles. The households developed adaptation measures to account for the dependence of their livelihood on local ecosystems by initializing strategies, such as seeking off-farm work, leasing pasture land, increasing purchases of fodder for stall-fed animals and altering their diet and fuel consumption to compensate for their changing livelihoods.

  17. Altered reward processing in pathological computer gamers--ERP-results from a semi-natural gaming-design.

    Science.gov (United States)

    Duven, Eva C P; Müller, Kai W; Beutel, Manfred E; Wölfling, Klaus

    2015-01-01

    Internet Gaming Disorder has been added as a research diagnosis in section III for the DSM-V. Previous findings from neuroscientific research indicate an enhanced motivational attention toward cues related to computer games, similar to findings in substance-related addictions. On the other hand in clinical observational studies tolerance effects are reported by patients with Internet Gaming disorder. In the present study we investigated whether an enhanced motivational attention or tolerance effects are present in patients with Internet Gaming Disorder. A clinical sample from the Outpatient Clinic for Behavioral Addictions in Mainz, Germany was recruited, fulfilling the diagnostic criteria for Internet Gaming Disorder. In a semi-natural EEG design participants played a computer game during the recording of event-related potentials to assess reward processing. The results indicated an attenuated P300 for patients with Internet Gaming Disorder in response to rewards in comparison to healthy controls, while the latency of N100 was prolonged and the amplitude of N100 was increased. Our findings support the hypothesis that tolerance effects are present in patients with Internet Gaming Disorder, when actively playing computer games. In addition, the initial orienting toward the gaming reward is suggested to consume more capacity for patients with Internet Gaming Disorder, which has been similarly reported by other studies with other methodological background in disorders of substance-related addictions.

  18. Effects of hatchery rearing on Florida largemouth bass Micropterus floridanus resource allocation and performance under semi-natural conditions.

    Science.gov (United States)

    Garlock, T M; Monk, C T; Lorenzen, K; Matthews, M D; St Mary, C M

    2014-12-01

    This study examined the growth, activity, metabolism and post-release survival of three groups of Florida largemouth bass Micropterus floridanus: wild-caught fish, hatchery fish reared according to standard practice (hatchery standard) and hatchery fish reared under reduced and unpredictable food provisioning (hatchery manipulated). Hatchery-standard fish differed from wild-caught fish in all measured variables, including survival in semi-natural ponds. Hatchery-standard and hatchery-manipulated fish showed higher activity levels, faster growth and lower standard metabolic rates than wild-caught fish in the hatchery. Fish reared under the manipulated feeding regime showed increased metabolic rates and increased post-release growth, similar to wild-caught fish. Their activity levels and post-release survival, however, remained similar to those of hatchery-standard fish. Activity was negatively correlated with post-release survival and failure of the feed manipulation to reduce activity may have contributed to its failure to improve post-release survival. Activity and post-release survival may be influenced by characteristics of the rearing environment other than the feeding regime, such as stock density or water flow rates. © 2014 The Fisheries Society of the British Isles.

  19. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    Directory of Open Access Journals (Sweden)

    Aurelie Lacoeuilhe

    Full Text Available Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  20. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships.

    Science.gov (United States)

    Morais, Thiago R; da Costa-Silva, Thais A; Tempone, Andre G; Borborema, Samanta Etel T; Scotti, Marcus T; de Sousa, Raquel Maria F; Araujo, Ana Carolina C; de Oliveira, Alberto; de Morais, Sérgio Antônio L; Sartorelli, Patricia; Lago, João Henrique G

    2014-05-05

    Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees.

  1. Antiparasitic Activity of Natural and Semi-Synthetic Tirucallane Triterpenoids from Schinus terebinthifolius (Anacardiaceae: Structure/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Thiago R. Morais

    2014-05-01

    Full Text Available Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae, and nine semi-synthetic derivatives were investigated against Leishmania (L. infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR data as well as electrospray ionization mass spectrometry (ESI-MS. Additionally, structure-activity relationships were performed using Decision Trees.

  2. Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey.

    Science.gov (United States)

    Ozkan, Kürsad; Gulsoy, Serkan; Aerts, Raf; Muys, Bart

    2010-01-01

    We explored the semi-natural forests in south western Anatolia along a gradient between Mediterranean and continental climates to determine the site requirements of Juniperus excelsa in Turkey. We hypothesized that environmental variables and indicator species can be used to predict differences in occurrence and cover of J. excelsa and can therefore support decision making in reforestation management planning. Plant species composition and environmental variables were assessed in 153 plots. Association between J. excelsa and other plant species and environmental variables were analyzed using Fisher exact probability tests and stepwise discriminant analysis. High altitude (> 1000 m) as a proxy for an Oromediterranean climate, and high surface stoniness as a proxy for low competition by other tree species, are positive site properties for J. excelsa. The tree species avoids Eumediterranean and Supramediterranean plant communities. Twelve plant species, including the herbs Dianthus zonatus, Ajuga chamaepitys and Paronchia carica and the shrub Cotoneaster nummularia may be used as site indicators for J. excelsa restoration. Platanus orientalis, with similar site requirements but at present negatively associated to J. excelsa due to competitive effects, may be considered an additional indicator if stand conversion (harvesting and replacing P. orientalis) is part of the management plan.

  3. Preliminary study of semi-refined carrageenan (SRC) as secondary gelling agent in natural rubber (NR) latex foam

    Science.gov (United States)

    Norhazariah, S.; Azura, A. R.; Azahari, B.; Sivakumar, R.

    2017-12-01

    Semi-refined carrageenan (SRC) product is considerably cheaper and easier to produce as a natural polysaccharide, which was utilized in food and other product application. However, the application in latex is limited. The aim of this work is to evaluate the SRC produced from low industrial grade seaweed (LIGS) in the latex foam application. The FTIR spectra showed the SRC produced as kappa type carrageenan with lower sulfur content compared to native LIGS. NR latex foam is produced by using the Dunlop method with some modifications. The effect of SRC loading as a secondary gelling agent in NR latex foam is investigated. The density and morphology of the NR latex foam with the addition of the SRC are analyzed. NR latex foam density increased with SRC loading and peaked at 1.8 phr SRC. The addition of SRC has induced the bigger cell size compared to the cell size of the control NR latex foam, as shown in the optical micrograph. It can be concluded that SRC LIGS could be acted as secondary gelling agent in NR latex foam.

  4. The influence of low intensities of light pollution on bat communities in a semi-natural context.

    Science.gov (United States)

    Lacoeuilhe, Aurelie; Machon, Nathalie; Julien, Jean-François; Le Bocq, Agathe; Kerbiriou, Christian

    2014-01-01

    Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.

  5. Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation

    Directory of Open Access Journals (Sweden)

    M. Z. H. Makmud

    2018-02-01

    Full Text Available Nowadays, studies of alternative liquid insulation in high voltage apparatus have become increasingly important due to higher concerns regarding safety, sustainable resources and environmentally friendly issues. To fulfil this demand, natural ester has been extensively studied and it can become a potential product to replace mineral oil in power transformers. In addition, the incorporation of nanoparticles has been remarkable in producing improved characteristics of insulating oil. Although much extensive research has been carried out, there is no general agreement on the influence on the dielectric response of base oil due to the addition of different amounts and conductivity types of nanoparticle concentrations. Therefore, in this work, a natural ester-based nanofluid was prepared by a two-step method using iron oxide (Fe2O3 and titanium dioxide (TiO2 as the conductive and semi-conductive nanoparticles, respectively. The concentration amount of each nanoparticle types was varied at 0.01, 0.1 and 1.0 g/L. The nanofluid samples were characterised by visual inspection, morphology and the dynamic light scattering (DLS method before the dielectric response measurement was carried out for frequency-dependent spectroscopy (FDS, current-voltage (I-V, and dielectric breakdown (BD strength. The results show that the dielectric spectra and I-V curves of nanofluid-based iron oxide increases with the increase of iron oxide nanoparticle loading, while for titanium dioxide, it exhibits a decreasing response. The dielectric BD strength is enhanced for both types of nanoparticles at 0.01 g/L concentration. However, the increasing amount of nanoparticles at 0.1 and 1.0 g/L led to a contrary dielectric BD response. Thus, the results indicate that the augmentation of conductive nanoparticles in the suspension can lead to overlapping mechanisms. Consequently, this reduces the BD strength compared to pristine materials during electron injection in high electric

  6. Predators and predation rates of skylark Alauda arvensis and woodlark Lullula arborea nests in a semi-natural area in the Netherlands

    NARCIS (Netherlands)

    Praus, Libor; Hegemann, Arne; Tieleman, B. Irene; Weidinger, Karel

    2014-01-01

    Predation is a major cause of breeding failure in bird species with open nests. Although many studies have investigated nest predation rates, direct identification of nest predators is sporadic, especially in (semi-)natural habitats. We quantified nest success and identified nest predators in a

  7. Structure-cytotoxicity relationships of a series of natural and semi-synthetic simple coumarins as assessed in two human tumour cell lines

    NARCIS (Netherlands)

    Kolodziej, H; Kayser, O; Woerdenbag, HJ; vanUden, W; Pras, N

    1997-01-01

    The cytotoxicity of 22 natural and semi-synthetic simple coumarins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values > 100 mu M, following a continuous (96h)

  8. Long-term dynamics of radionuclides in semi-natural environments. Derivation of parameters and modelling. Final Report 1996-1999

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M. [Agenzia Nazionale per la Protezione dell' Ambiente, Rome (Italy). Dipt. Stato Ambiente, Controlli e Sistemi Informativi, Unita' Interdipartimentale di Metrologia Ambientale

    2000-07-01

    During the Chernobyl accident large areas of semi-natural ecosystems were affected by radionuclide deposition. Meadows and forests are typical semi-natural ecosystems. Meadows are used extensively in many countries as pastures for cattle, sheep and goats, while forests are important to man since they provide wood, paper, wild berries, mushrooms, game and recreational areas. Post-Chernobyl investigations have shown that dose to man from semi-natural ecosystems is relatively greater than from agricultural systems and that this dose risk persists for the long-term. Predictive models are essential to take long-term decisions on the management of contaminated environment and to identify key processes controlling the dynamics of radionuclides inside the ecosystems. During the period following the atmospheric fallout due to the nuclear weapons testing, few models for some specific semi-natural environments were developed. The applicability of these models to a wide range of semi-natural ecosystem is questionable, because in these complex systems it is more difficult to identify general key processes and to apply to other sites models developed for one site. Studies carried out since the Chernobyl accident have increased the understanding of radionuclide behaviour in semi-natural ecosystems, especially for boreal forests and middle European meadow systems which have been extensively investigated. Data sets have been obtained which describe the distribution and the cycling of radionuclides (especially {sup 137}Cs and {sup 90}Sr) within these systems. However, predictive modelling has largely been restricted to aggregated transfer factors which provide good contamination estimates, but only for the sites from which data have been obtained directly. There was a need to develop models that can be applied to a broad variety of ecosystems. They are needed for dose estimation, countermeasure implementation and environmental management. They should give reliable estimates of the

  9. Long-term dynamics of radionuclides in semi-natural environments. Derivation of parameters and modelling. Final Report 1996-1999

    International Nuclear Information System (INIS)

    Belli, M.

    2000-04-01

    During the Chernobyl accident large areas of semi-natural ecosystems were affected by radionuclide deposition. Meadows and forests are typical semi-natural ecosystems. Meadows are used extensively in many countries as pastures for cattle, sheep and goats, while forests are important to man since they provide wood, paper, wild berries, mushrooms, game and recreational areas. Post-Chernobyl investigations have shown that dose to man from semi-natural ecosystems is relatively greater than from agricultural systems and that this dose risk persists for the long-term. Predictive models are essential to take long-term decisions on the management of contaminated environment and to identify key processes controlling the dynamics of radionuclides inside the ecosystems. During the period following the atmospheric fallout due to the nuclear weapons testing, few models for some specific semi-natural environments were developed. The applicability of these models to a wide range of semi-natural ecosystem is questionable, because in these complex systems it is more difficult to identify general key processes and to apply to other sites models developed for one site. Studies carried out since the Chernobyl accident have increased the understanding of radionuclide behaviour in semi-natural ecosystems, especially for boreal forests and middle European meadow systems which have been extensively investigated. Data sets have been obtained which describe the distribution and the cycling of radionuclides (especially 137 Cs and 90 Sr) within these systems. However, predictive modelling has largely been restricted to aggregated transfer factors which provide good contamination estimates, but only for the sites from which data have been obtained directly. There was a need to develop models that can be applied to a broad variety of ecosystems. They are needed for dose estimation, countermeasure implementation and environmental management. They should give reliable estimates of the behaviour

  10. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  11. Trends in caesium activity concentrations in milk from agricultural and semi-natural environments after nuclear fallout

    International Nuclear Information System (INIS)

    Mueck, K.

    1995-12-01

    The radiocaesium contamination of milk and milk products is directly related to that in grass or hay and therefore the time trend to the effective half-life in these fodders. In the early phase the half-life in grass predominantly depends on effects such as dilution due to plant growth, translocation and weathering effects. The average effective half-life during this period (growing season) lies between 5 and 18 days. In upland pastures values of up to 25 days are observed. Studies performed on a great number of sites in particular countries after the Chernobyl accident showed half-lives for 137 Cs in grass from 7.9±1.5 d to 10.5±1.4 d for the period of May to July. An equivalent biological half-life for 131 I was observed. Only one measurement of half-lives in winter was performed up to now indicating a substantially longer value (50 d). No reliable data on effective half-lives at other periods of the year (late summer, fall) are available and would require further research. The long-term decline is determined by soil properties. Soils with low fixation capacity and low pH show higher aggregated transfer factors into milk than others. In certain semi-natural alpine pastures these factors remain high for years which cannot be explained by extreme soil properties only. Other reasons such as water logging, little dilution due to low plant growth, cycling of radionuclides within living and dead plant biomass and runoff effects have to be considered as main causes. A classification system for the long-term trend in Cs-availability to milk is proposed, but further research on the differences and possible measures with respect to seasonal variations and climatic conditions is required. (author)

  12. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  13. Environmental quality of a semi-natural area of the Po Valley (northern Italy): aspects of soil and vegetation.

    Science.gov (United States)

    Manfredi, Paolo; Giupponi, Luca; Cassinari, Chiara; Trevisan, Marco

    2014-05-01

    This work, originating in the preliminary analyses of a Life project and co-financed by the European Union ("Environmental recovery of degraded soils and desertified by a new treatment technology for land reconstruction", Life 10 ENV IT 400 "New Life"; http://www.lifeplusecosistemi.eu), aims to evaluate the environmental quality of a semi-natural area of the Po Valley (northern Italy) by analysing the characteristics of soil and vegetation. The area of study is located in the municipal territory of Piacenza (Emilia-Romagna, Italy) along the eastern shores of the river Trebbia and is made up of the closed landfill of Solid Urban Waste of Borgotrebbia (active from 1972 to 1985) and of the neighbouring areas (in North-South order: riverside area, northern borders of the landfill, landfill disposal, southern borders and cultivated corn fields). For each area pedological and vegetational analyses were carried out and in particular, as regards the soil, various chemical-physical analyses were done among which: pH, organic carbon, total nitrogen, salinity, exchangeable bases and granulometry. The ground vegetation data were collected using phytosociological relevés according to the method of the Zurich-Montpellier Sigmatist School, (Braun-Blanquet, 1964). For the analysis of the environmental quality of each area, the floristic-vegetation indexes system was applied as proposed by Taffetani & Rismondo (2009) (updated by Rismondo et al., 2011) conveniently created for analysing the ecological functionality of the agro-ecosystems. The results obtained by such applications drew attention to a dynamic vegetation mass in the landfill which, despite a value of the floristic biodiversity index (IFB) comparable to that of the borders, shows a much lower value of the maturity index (IM). This is due to the elevated percentage of annual species (index of the therophytic component = 52.78%) belonging to the phytosociological class Stellarietea mediae Tüxen, Lohmeyer & Preising ex

  14. The role of grasslands in food security and climate change.

    Science.gov (United States)

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and

  15. CFD analysis of natural ventilation in large semi-enclosed buildings - case study: Amsterdam ArenA football stadium

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Strachan, P.A.; Kelly, N.J.; Kummert, M.

    2009-01-01

    Large modern sports stadia are often multifunctional buildings that are not only used for sports purposes but also for other events such as concerts, conferences and festivities. Some of the stadia that have been built in recent years in north-western Europe are equipped with a semi-transparent roof

  16. Grassland simulation with the LPJmL model : version 3.4.018

    NARCIS (Netherlands)

    Boons-Prins, E.R.

    2010-01-01

    One third of the land surface is covered with natural and cultivated grasslands. Most of these grasslands are intensively or extensively exploited by humans to feed animals. With growing wealth, causing an increase of meat consumption, there is a need to better understand the processes that

  17. Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity

    Science.gov (United States)

    Simons, Nadja K.; Gossner, Martin M.; Lewinsohn, Thomas M.; Boch, Steffen; Lange, Markus; Müller, Jörg; Pašalić, Esther; Socher, Stephanie A.; Türke, Manfred; Fischer, Markus; Weisser, Wolfgang W.

    2014-01-01

    Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity. PMID:25188423

  18. THE EFFECT OF INTRODUCED FORAGE LEGUMES ON IMPROVEMENT OF SOIL FERTILITY IN NATURAL PASTURES OF SEMI-ARID RANGELANDS OF KAJIADO DISTRICT, KENYA

    Directory of Open Access Journals (Sweden)

    Peter N Macharia

    2010-11-01

    Full Text Available A two phase study was carried out from 2002 to 2005 in the semi-arid rangelands of Kajiado District, Kenya to determine the effect of introduced forage legumes on soil fertility improvement of natural pastures. During legume evaluation phase, Neonotonia wightii (Glycine, Macroptilium atropurpureum (Siratro, Lablab purpureus cv. Rongai (Dolichos, Mucuna pruriens (Velvet bean and Stylosanthes scabra var. Seca (Stylo were screened for adaptability and growth performance under the semi-arid conditions for two years. Results of soil analysis showed there were significant increases in soil pH (4.92 to 5.36, organic carbon (1.17 to 2.57% , nitrogen (0.17 to 0.22% and potassium (1.23 to 1.68 me% probably due to the large amounts of organic residues produced by the legumes (particularly Glycine, Siratro and Stylo which are perennials. The calcium content decreased significantly from 7.97 to 4.50 me% (which was attributed to plant uptake while the decrease of phosphorus was not significant. During the second phase of study for 1½ years Glycine, Siratro and Stylo were integrated into natural pastures. The results showed that only the soil pH significantly increased from 5.23 to 5.31 while all the other nutrients decreased results, which were attributed to production of less organic residues by the legumes compared to the residues produced during the legume evaluation phase. The study concluded that Glycine, Siratro and Stylo were capable of improving the soil fertility of semi-arid natural pastures only if the respective dry matter production was 10.31, 7.81 and 3.52 tha-1, amounts which were able to produce large amounts of organic residues. Â

  19. The importance of ammonium mobility in nitrogen-impacted unfertilized grasslands: A critical reassessment

    International Nuclear Information System (INIS)

    Mian, Ishaq Ahmad; Riaz, Muhammad; Cresser, Malcolm S.

    2009-01-01

    The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution. - Ammonium mobility is more important than previously thought in N-impacted, unfertilized grasslands

  20. Dinámica temporal del NDVI del bosque y pastizal natural en el Chaco de la Provincia de Santiago del Estero, Argentina / The temporal dynamic of NDVI, of forest and grassland in the Chaco Seco of Santiago del Estero province, Argentine

    Directory of Open Access Journals (Sweden)

    Hugo Raul Zerda

    2010-04-01

    Full Text Available Mediante imágenes mapas del índice de vegetación de diferencia normalizada (NDVI derivados del SPOT 4-Vegetation, se analizó la dinámica interanual y mensual de muestras de bosque nativo y pastizal natural de la provincia de Santiago del Estero, Argentina. Los resultados, muestran diferencias significativas (p pequenõs 0.05 para ambas coberturas, en la dinámica interanual y mensual. La actividad fotosintética del bosque se muestra superior a la del pastizal natural, analizada a partir de las curvas de NDVI. La dinámica del bosque y del pastizal natural, sigue el modelo regional de precipitaciones, alcanzando mayores valores de NDVI, durante la estación húmeda estival (Octubre-Mayo y menores valores de NDVI, durante la estación seca invernal (Junio-Septiembre. El bosque presentó mayor estabilidad que el pastizal natural, ante variaciones en las precipitaciones y temperatura, esperable por la mayor diversidad de especies en los bosques, y especialmente por las leñosas de raíces más profundas. La curva NDVI del pastizal natural, muestra sensibilidad al efecto de las elevadas intensidades de radiación en el verano, evapotranspiración y sequías; y debido a la mayor eficiencia del sistema radicular para el aprovechamiento del agua disponible, responde de manera inmediata ante las precipitaciones.AbstarctThe interannual and monthly dynamic of samples of forest and grassland from Santiago del Estero province, Argentine Republic, was analyzed through maps of vegetation of normalized difference (NDVI index derived from Vegetation/SPOT4 sensor. The results demonstrate that both covers, interannual and monthly dynamic mentioned before, have significant differences (p<0.05. The photosynthetic activity of the forest is superior compared with the one of the grassland, analyzed from the NDVI curves. The forest and the grassland dynamic, follows the regional precipitation pattern, reaching higher values from NDVI, during the summer humid

  1. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  2. Loss of memory CD4+ T-cells in semi-wild mandrills (Mandrillus sphinx) naturally infected with species-specific simian immunodeficiency virus SIVmnd-1.

    Science.gov (United States)

    Greenwood, Edward J D; Schmidt, Fabian; Liégeois, Florian; Kondova, Ivanela; Herbert, Anaïs; Ngoubangoye, Barthelemy; Rouet, François; Heeney, Jonathan L

    2014-01-01

    Simian immunodeficiency virus (SIV) infection is found in a number of African primate species and is thought to be generally non-pathogenic. However, studies of wild primates are limited to two species, with SIV infection appearing to have a considerably different outcome in each. Further examination of SIV-infected primates exposed to their natural environment is therefore warranted. We performed a large cross-sectional study of a cohort of semi-wild mandrills with naturally occurring SIV infection, including 39 SIV-negative and 33 species-specific SIVmnd-1-infected animals. This study was distinguished from previous reports by considerably greater sample size, examination of exclusively naturally infected animals in semi-wild conditions and consideration of simian T-lymphotropic virus (STLV) status in addition to SIVmnd-1 infection. We found that SIVmnd-1 infection was associated with a significant and progressive loss of memory CD4(+) T-cells. Limited but significant increases in markers of immune activation in the T-cell populations, significant increases in plasma neopterin and changes to B-cell subsets were also observed in SIV-infected animals. However, no increase in plasma soluble CD14 was observed. Histological examination of peripheral lymph nodes suggested that SIVmnd-1 infection was not associated with a significant disruption of the lymph node architecture. Whilst this species has evolved numerous strategies to resist the development of AIDS, significant effects of SIV infection could be observed when examined in a natural environment. STLVmnd-1 infection also had significant effects on some markers relevant to understanding SIV infection and thus should be considered in studies of SIV infection of African primates where present.

  3. On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.

    2010-01-01

    Natural ventilation of buildings refers to the replacement of indoor air with outdoor air due to pressure differences caused by wind and/or buoyancy. It is often expressed in terms of the air change rate per hour (ACH). The pressure differences created by the wind depend – among others – on the wind

  4. Positive natural resource shocks and domestic adjustments in a semi-industrialized economy: Argentina in the 2004-2007 period

    NARCIS (Netherlands)

    L.A. Serino (Leandro)

    2009-01-01

    textabstractThis paper evaluates the domestic adjustment to recent positive external shocks in Argentina's natural resource sectors. Although there is no single, exclusive determinant of Argentina's fast economic growth in the period 2003-2007, the paper illustrates the favourable contribution of

  5. Bird communities of contrasting semi-natural habitats of Lac bay, Bonaire, during the fall migration season, 2011

    NARCIS (Netherlands)

    Debrot, A.O.; Bemmelen, van R.S.A.; Ligon, J.

    2013-01-01

    The mangrove and seagrass lagoon of Lac Bay on Bonaire covers an area of roughly 700 ha. It is home to endangered green sea turtles, Chelonia mydas, and the Caribbean queen conch, Strombus gigas, and is a roosting and breeding area for several birds. Based on its nature values this 7 km2 bay has

  6. Estimating seasonal herbage production of a semi-arid grassland ...

    African Journals Online (AJOL)

    The relation between above-ground phytomass production and three independent variables, namely, seasonal rainfall, evapotranspiration (Et) and veld condition, were investigated using fourteen years' data (1977-1991) from the dry Themeda-Cymbopogon grassveld of the central Orange Free State. The data showed that ...

  7. PRODUCTION AND ECONOMIC ANALYSIS OF MOUNTAIN GRASSLANDS IN LOW-INPUT FARMING SYSTEM

    Directory of Open Access Journals (Sweden)

    Ivan Holubek

    2013-09-01

    Full Text Available Ecological management of semi natural grassland was evaluated in three year long vegetative cycle in locality Chvojnica Strazovska vrchovina. Experimental treatments were studied in variant 1 unfertilized, variant 2 30 kg*ha 1 of P and 60 kg*ha 1 of K, treatment 3 PK + 90kg*ha 1 of N. Vegetation in all treatments of fertilization was cut three times in haymaking time of ripening. The aim of research was to find changes in phytocenology, production, nutrition and economy under different treatments of fertilization, cutting and experimental years. In the structure of semi natural grass vegetation, grasses dominated in the first cuttings, clovers dominated in the second cuttings and other meadow herbs dominated in the third cuttings. Application of fertilizers increases production of dry mass. Non fertilized grass vegetation produced 3.43 5.16 t*ha 1 of dry mass, vegetation with added PK fertilizers 4.71 5.91 t*ha 1 of dry mass and vegetation 7.12 7.97 t*ha of dry mass. Costs per 1 ha and 1 ton of hay and sales per 1 ha increased in the following sequence: var. 1 ? var. 2 ? var. 3. As for the profit, the most effective variants were variant 1 (256.79 EUR per ha and variant 3 (227.34 EUR per ha. The least effective variant was the variant fertilized by PK (180.62 EUR per ha.

  8. Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru.

    Science.gov (United States)

    Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola

    2006-09-01

    Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.

  9. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  10. Land valuation and marginalization processes in cultural landscapes - a comparative study of valuation systems related to natural and semi-natural areas

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Svenningsen, Stig Roar; Brandt, Jesper

    2012-01-01

    awareness that the behavior of rural landscape managers reflect culture, and that cultural valuation systems need to be included in research addressing such themes as sustainability and multifunctionality which is often difficult to regulate effectively and depend directly on local decision behavior. Two......, their preferences for different areas and their valuation procedures related to landscape and land cover. The maps developed with the interviewees were compared with maps delineating the 205 Natura-2000 habitat areas in the nature park which were designated by the Danish Nature Agency in 2006. Results...

  11. Grassland communities of urban open spaces in Bloemfontein, Free State, South Africa

    Directory of Open Access Journals (Sweden)

    Mamokete N.V. Dingaan

    2013-02-01

    Full Text Available Natural vegetation in urban environments is greatly impacted by human activities and it is in constant threat of degradation and destruction as a result of urbanisation. This vegetation, although fragmented, serves an important ecological function and needs to be properly managed and conserved. Studies on urban vegetation are lacking in South Africa, with only a handful having been carried out since the end of the last century. This study was initiated to identify, classify and describe the grassland communities of the urban open spaces in Bloemfontein. Relevés were compiled in 61 sample plots, where species present and habitat information were recorded. Care was taken to restrict sample plots to vegetation in pristine condition, wherever possible, and severely degraded stands were avoided. A two-way indicator species analysis (TWINSPAN classification, refined by Braun-Blanquet procedures, revealed two distinct major communities, seven communities and four sub-communities. Both detrended and canonical correspondence analyses indicated the vegetation units to be associated with soil texture and pH, although biotic factors such as overgrazing, burning and mowing also influence the composition of the vegetation. The proper management and conservation of urban open spaces requires in-depth knowledge of the spatial distribution, floristic, structural and functional compositions within the major vegetation types in this environment. The present study further contributed towards formulating ways for the proper management, utilisation and functioning of the open spaces within the Bloemfontein area.Conservation implications: The Grassland Biome of South Africa is poorly conserved, mainly because of its status as an agricultural hub of the country. The preservation of natural and semi-natural forms of urban vegetation is important because such vegetation, although often disturbed and degraded, could form dispersal corridors between peri-urban and rural

  12. Protecting Mongolia's grassland steppes | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... windy grassland region is severely damaged, desertification can quickly set in. ... to marketing to the sound use of (grassland) resources," explains Ykhanbai, who ... is going to require improvement in the skills of researchers, adds Ykhanbai.

  13. A novel semi-automatic snake robot for natural orifice transluminal endoscopic surgery: preclinical tests in animal and human cadaver models (with video).

    Science.gov (United States)

    Son, Jaebum; Cho, Chang Nho; Kim, Kwang Gi; Chang, Tae Young; Jung, Hyunchul; Kim, Sung Chun; Kim, Min-Tae; Yang, Nari; Kim, Tae-Yun; Sohn, Dae Kyung

    2015-06-01

    Natural orifice transluminal endoscopic surgery (NOTES) is an emerging surgical technique. We aimed to design, create, and evaluate a new semi-automatic snake robot for NOTES. The snake robot employs the characteristics of both a manual endoscope and a multi-segment snake robot. This robot is inserted and retracted manually, like a classical endoscope, while its shape is controlled using embedded robot technology. The feasibility of a prototype robot for NOTES was evaluated in animals and human cadavers. The transverse stiffness and maneuverability of the snake robot appeared satisfactory. It could be advanced through the anus as far as the peritoneal cavity without any injury to adjacent organs. Preclinical tests showed that the device could navigate the peritoneal cavity. The snake robot has advantages of high transverse force and intuitive control. This new robot may be clinically superior to conventional tools for transanal NOTES.

  14. Enhancing agricultural productivity and rural incomes through sustainable use of natural resources in the semi arid tropics.

    Science.gov (United States)

    Wani, Suhas P; Dixin, Yin; Li, Zhong; Dar, William D; Chander, Girish

    2012-03-30

    A participatory watershed management approach is one of the tested, sustainable and eco-friendly options to upgrade rain-fed agriculture to meet growing food demand along with additional multiple benefits in terms of improving livelihoods, addressing equity issues and biodiversity concerns. Watershed interventions at study sites in Thailand (Tad Fa and Wang Chai) and India (Kothapally) effectively reduced runoff and the associated soil loss. Such interventions at Xiaoxincun (China) and Wang Chai improved groundwater recharging and availability. Enhanced productive transpiration increased rainwater use efficiency for crop production by 13-29% at Xiaoxincun; 13-160% at Lucheba (China), 32-37% at Tad Fa and 23-46% at Wang Chai and by two to five times at Kothapally. Watershed interventions increased significantly the additional net returns from crop production as compared with the pre-watershed intervention period. Increased water availability opened up options for crop diversification with high-value crops, including increased forage production and boosted livestock-based livelihoods. In dryland tropics, integrated watershed management approach enabled farmers to diversify the systems along with increasing agricultural productivity through increased water availability, while conserving the natural resource base. Household incomes increased substantially, leading to improved living and building the resilience of the community and natural resources. Copyright © 2011 Society of Chemical Industry.

  15. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  16. Ciclo Vital de Schistosoma mansoni através do Holochilus brasiliensis (Desmarest, 1818 em ambiente semi-natural (Trematoda, Shistosomatidae; Rodentia, Cricetidae

    Directory of Open Access Journals (Sweden)

    Omar dos Santos Carvalho

    1976-10-01

    Full Text Available Junto ao Lago da Pampulha, Belo Horizonte, MG, foram capturados (julho/72-novembro/73 28 exemplares de Holochilus brasiliensis, dos quais 11 (39,3% eliminavam nas fezes ovos viáveis de S. mansoni. Miracídios da cepa mencionada ("H" infectaram Biomphalaria glabrata e as cercárias obtidas também infectaram camundongos albinos, recuperando-se, ao final do experimento, 35,3% de vermes adultos. Por outro lado, cercárias de cepa humana ("LE" de S. mansoni infectaram sete exemplares de H. brasiliensis, nascidos em laboratório, recuperando-se no fim de 60 dias, 30,5% de vermes adultos. Estudos anatomapatológicos de H. brasiliensis demonstraram infecção generalizada, encontrando-se granuloma no esôfago, estômago, intestino (delgado e grosso, fígado, baço, pâncreas e linfonodos abdominais. Espessamentos fibrosos da íntima da veia porta, granulomas em espaços porta e fibrose incipiente dos espaços porta e interlobular foram lesões decorrentes da presença de ovos de S. mansoni encontrados no fígado. Em ambiente semi-natural, foi possível fechar o ciclo do S. mansoni sem direta participação humana, utilizando-se B. glabrata experimentalmente infectadas com trematódeos da cepa "LE", H. brasiliensis nascidos em laboratório e B. glabrata nascida no ambiente semi-natural estabelecido. Verificou-se que ambas as cepas ("H" e "LE" comportaram-se de maneira análoga, não sendo verificadas, também, diferenças morfológicas entre os ovos e vermes adultos de ambas. As observações, realizadas no campo e no laboratório demonstraram que o Holochilus brasiliensis é bom hospedeiro de Schistosoma mansoni. Assim, em determinadas áreas e sob certas condições ecológicas, o cricetídeo em questão poderá, efetivamente, integrar-se ao ciclo do trematódeo na natureza, independente ou paralelamente à presença do homem. Assinala-se, finalmente, que o presente trabalho relata o segundo fechamento do ciclo biológico de S. mansoni em condi

  17. Appreciation of grassland functions by European stakeholders

    NARCIS (Netherlands)

    Pol, van den A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.

    2014-01-01

    In order to promote sustainable and competitive ruminant production systems, the European Multisward project was aimed at improving farmer trust in grassland and grassland mixtures. A questionnaire on grassland functions was submitted in eight languages, in order to better understand the importance

  18. Survey of biochemical and oxidative profile in donkey foals suckled with one natural and one semi-artificial technique.

    Directory of Open Access Journals (Sweden)

    Pasquale De Palo

    Full Text Available Dairy donkey milking procedures require separating foals from their dams for a few hours a day. Artificial suckling in this species is a good technique for improving milk production and foal welfare. The aim of the work is to compare the effect of two different diets on donkey foals when separated from jennies for milking procedures with and without a milk replacer. Forty newborn Martina Franca donkey foals were subdivided into two experimental groups. Both groups were separated from their respective dams from 8.00to 20.00to allow the jennies to be milked. During the separation, all the foals had access ad libitum to water, hay and feed. During the separation period, one group had the availability of a mechanical milk replacer dispenser, so foals were partially artificially suckled (AS, while the other group had no milk replacer available, and so were totally naturally suckled (NS. The AS group had milk replacer availability until 120±7d of life. Both groups were naturally weaned at 168±7d. Blood samples were collected weekly starting from birth until two wks after weaning (i.e. at 182d, from all the foals included in the trial. Almost all the analytes were influenced by suckling technique and age of foals. Alanine-aminotransferase, aspartate-aminotransferase, alkaline phosphatase, NEFA, lipid hydroperoxides, serum proteins showed the greatest differences between the two experimental groups. Separating foals from their dams for 12hdaily for 24 weeks does not lead to pathological subclinical and metabolic conditions, thus confirming the high rusticity and resistance of the donkey.

  19. Wild bees visiting cucumber on midwestern U.S. organic farms benefit from near-farm semi-natural areas.

    Science.gov (United States)

    Smith, A A; Bentley, M; Reynolds, H L

    2013-02-01

    Wild bees that provide pollination services to vegetable crops depend on forage resources, nesting sites, and overwintering sites in the agricultural landscape. The scale at which crop-visiting bees use resources in the landscape can vary regionally, and has not been characterized in the Midwestern United States. We investigated the effects of seminatural land cover on wild bee visitation frequency to cucumber (Cucumis sativus L.) and on wild bee species richness on 10 organic farms in Indiana. We estimated the spatial scale at which the effects of land cover were strongest, and also examined the effects of nonlandscape factors on wild bees. The visitation frequency of wild bees to cucumber was positively related to the proportion of seminatural land in the surrounding landscape, and this relationship was strongest within 250 m of the cucumber patch. The species richness of wild cucumber visitors was not affected by land cover at any spatial scale, nor by any of the nonlandscape factors we considered. Our results indicate that wild, crop visiting bees benefit from seminatural areas in the agricultural landscape, and benefit most strongly from seminatural areas within 250 m of the crop field. This suggests that setting aside natural areas in the near vicinity of vegetable fields may be an effective way to support wild, crop-visiting bees and secure their pollination services.

  20. Monitoring in South African grasslands

    CSIR Research Space (South Africa)

    Mentis, MT

    1984-12-01

    Full Text Available The main purpose of this document is to propose how ecological monitoring might be developed in the Grassland Biome of South Africa. Monitoring is defined as the maintenance of regular surveillance to test the null hypothesis of no change...

  1. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  2. Effects of haying on breeding birds in CRP grasslands

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  3. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  4. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  5. Radioecological sensitivity of permanent grasslands

    International Nuclear Information System (INIS)

    Besson, Benoit

    2009-01-01

    The project 'SENSIB' of the Institute for Radiological Protection and Nuclear Safety (IRSN) aims at characterizing and classifying parameters with significant impact on the transfer of radioactive contaminants in the environment. This thesis is focused on permanent grassland areas. Its objectives are the analysis of the activity variations of two artificial radionuclides ( 137 Cs and 90 Sr) in the chain from soil to dairy products as well as the categorization of ecological and anthropogenic parameters, which determine the sensitivity of the studied area. For this study, in situ sampling is carried out in 15 farms in 3 different French regions (Charente, Puy-de-Dome and Jura). The sampling sites are chosen according to their natural variations (geology, altitude and climate) and the soil types. Additionally to the radiologic measurements, geographic, soil and vegetation data as well as data concerning cattle-rearing and cheese manufacturing processes are gathered. From the soil to the grass vegetation, 137 Cs transfer factors vary between 3 x 10-3 and 148 x 10-3 Bq kg-1 (dry weight) per Bq kg-1 (dry weight) (N = 73). Theses transfer factors are significantly higher in the Puy-de-Dome region than in the Jura region. The 137 Cs transfer factor from cattle feed to milk varies from 5.9 x 10-3 to 258 x 10-3 Bq kg-1 (fresh weight) per Bq kg-1 (dry weight) (N = 28). Statistically, it is higher in the Charente region. Finally, the 90 Sr transfer factor from milk to cheese ranges from 3.9 to 12.1. The studied site with the highest factor is the Jura (N = 25). The link between milk and dairy products is the stage with the most 137 Cs and 90 Sr transfers. A nonlinear approach based on a discretization method of the transfer factor with multiple comparison tests admits a classification of the sensitivity factors from soil to grass vegetation. We can determine 20 factors interfering in the 137 Cs transfer into the vegetation, for instance, the clay rate of the soils or a marker

  6. Research on the Mechanism of Cross Regional Grassland Ecological Compensation

    Science.gov (United States)

    Yang, Ran; Ma, Jun

    2018-01-01

    In recent years, grassland environmental damage has become serious, and grassland resources protection task has become heavy, grassland ecological compensation has become an effective way to solve this problem; but the current grassland ecological compensation standards were low, the effect is poor. The fundamental reason is the model of administrative division destroys the integrity of grassland. Based on the analysis of the status quo of grassland compensation, this paper tries to protect the grassland integrity, breaks the administrative division restriction, implements the space regulation, constructs the framework of cross-regional grassland ecological compensation mechanism, describes its operation process. It provides new way to realize the sustainable development of the grassland environment.

  7. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  8. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  9. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Maria Aparecida M. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br

    2007-03-15

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC{sub 50} = 166 {mu}M (1), 164 {mu}M (2), 65 {mu}M (6) and 10 {mu}M (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC{sub 50} = 38 {mu}M (3), 33 {mu}M (5), 36 {mu}M (6) and 43 {mu}M (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  10. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    International Nuclear Information System (INIS)

    Maciel, Maria Aparecida M.; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R.; Esteves-Souza, Andressa; Echevarria, Aurea

    2007-01-01

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC 50 = 166 μM (1), 164 μM (2), 65 μM (6) and 10 μM (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC 50 = 38 μM (3), 33 μM (5), 36 μM (6) and 43 μM (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  11. Comparison of a semi-automatic annotation tool and a natural language processing application for the generation of clinical statement entries.

    Science.gov (United States)

    Lin, Ching-Heng; Wu, Nai-Yuan; Lai, Wei-Shao; Liou, Der-Ming

    2015-01-01

    Electronic medical records with encoded entries should enhance the semantic interoperability of document exchange. However, it remains a challenge to encode the narrative concept and to transform the coded concepts into a standard entry-level document. This study aimed to use a novel approach for the generation of entry-level interoperable clinical documents. Using HL7 clinical document architecture (CDA) as the example, we developed three pipelines to generate entry-level CDA documents. The first approach was a semi-automatic annotation pipeline (SAAP), the second was a natural language processing (NLP) pipeline, and the third merged the above two pipelines. We randomly selected 50 test documents from the i2b2 corpora to evaluate the performance of the three pipelines. The 50 randomly selected test documents contained 9365 words, including 588 Observation terms and 123 Procedure terms. For the Observation terms, the merged pipeline had a significantly higher F-measure than the NLP pipeline (0.89 vs 0.80, pgenerating entry-level interoperable clinical documents. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.comFor numbered affiliation see end of article.

  12. Sex-dependent effects of larval food stress on adult performance under semi-natural conditions: only a matter of size?

    Science.gov (United States)

    Rosa, Elena; Saastamoinen, Marjo

    2017-07-01

    Organisms with complex life-cycles acquire essential nutrients as juveniles, and hence even a short-term food stress during development can impose serious fitness costs apparent in adults. We used the Glanville fritillary butterfly to investigate the effects of larval food stress on adult performance under semi-natural conditions in a population enclosure. We were specifically interested in whether the negative effects observed were due to body mass reduction only or whether additional effects unrelated to pupal mass were evident. The two sexes responded differently to the larval food stress. In females, larval food stress reduced pupal mass and reproductive performance. The reduced reproductive performance was partially mediated by pupal mass reduction. Food stressed females also had reduced within-patch mobility, and this effect was not dependent on pupal mass. Conversely, food stress had no effect on male pupal mass, suggesting a full compensation via prolonged development time. Nonetheless, food stressed males were less likely to sire any eggs, potentially due to changes in their territorial behavior, as indicated by food stress also increasing male within-patch mobility (i.e., patrolling behavior). When males did sire eggs, the offspring number and viability were unaffected by male food stress treatment. Viability was in general higher for offspring sired by lighter males. Our study highlights how compensatory mechanisms after larval food stress can act in a sex-specific manner and that the alteration in body mass is only partially responsible for the reduced adult performance observed.

  13. Effect of synthetic and natural water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality of potato in a semi-arid region.

    Science.gov (United States)

    Xu, Shengtao; Zhang, Lei; McLaughlin, Neil B; Mi, Junzhen; Chen, Qin; Liu, Jinghui

    2016-02-01

    The effect of water-absorbing soil amendments on photosynthesis characteristics and tuber nutritional quality was investigated in a field experiment in a semi-arid region in northern China in 2010-2012. Treatments included two synthetic water-absorbing amendments, potassium polyacrylate (PAA) and polyacrylamide (PAM), and one natural amendment, humic acid (HA), both as single amendments and compound amendments (HA combined with PAA or PAM), and a no amendment control. Soil amendments had a highly significant effect (P ≤ 0.01) on photosynthesis characteristics, dry biomass, crop root/shoot (R/S) ratio and tuber nutritional quality. They improved both dry biomass above ground and dry biomass underground in the whole growing season by 4.6-31.2 and 1.1-83.1% respectively in all three years. Crop R/S ratio was reduced in the early growing season by 2.0-29.4% and increased in the later growing season by 2.3-32.6%. Soil amendments improved leaf soil plant analysis development value, net photosynthesis rate, stomatal conductance and transpiration rate by 1.4-17.0, 5.1-45.9, 2.4-90.6 and 2.0-22.6% respectively and reduced intercellular CO2 concentration by 2.1-19.5% in all three years. Amendment treatment with PAM + HA always had the greatest effect on photosynthesis characteristics and tuber nutritional quality among all amendment treatments and thus merits further research. © 2015 Society of Chemical Industry.

  14. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    Directory of Open Access Journals (Sweden)

    Péter Török

    Full Text Available Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i How does cattle grazing affect species composition and diversity of the grasslands? (ii What are the effects of grazing on short-lived and perennial noxious species? (iii Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable

  15. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    Science.gov (United States)

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  16. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    NARCIS (Netherlands)

    Du, Bingzhen; Zhen, Lin; Yan, Huimin; Groot, de Dolf

    2016-01-01

    Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998) a series of grassland conservation and management policies that restrict the use of

  17. Microsatellite analysis of the parental contribution of Piaractus mesopotamicus to the production of offspring in the semi-natural system of reproduction

    Directory of Open Access Journals (Sweden)

    Jayme Aparecido Povh

    2010-04-01

    Full Text Available The objective of this study was to evaluate the genetic diversity and the parental contribution of Piaractus mesopotamicus in the production of offspring in the semi-natural system of reproduction. Twenty parental fishes (eleven males and nine females and the total of 100 larvae were evaluated by microsatellite marker. The parents and offspring had thirty-one alleles and heterozygosity of 0.550 and 0.563, respectively. The females were fertilised by two up to six males while the males fertilised three up to five females. The contribution of the females and males to the offspring were 66.6 and 58%, respectively. Such results indicated no loss in the genetic variability in the offspring, and the parents had multiple paternity and reasonable contribution to the offspring production.O objetivo deste trabalho foi avaliar a diversidade genética e a contribuição parental de Piaractus mesopotamicus na produção de descendência no sistema seminatural de reprodução. Vinte peixes parentais (onze machos e nove fêmeas e o total de 100 larvas foram avaliados por meio do marcador microssátelite. Os parentais e a progênie tiveram trinta e um alelos e heterozigosidade de 0,550 e 0,563, respectivamente. As fêmeas foram fertilizadas por dois até seis machos enquanto machos fertilizaram três até cinco fêmeas. A contribuição de fêmeas e machos para a descendência seja 66,6 e 58,0%, respectivamente. Tais resultados não indicam diminuição da variabilidade genética na progênie e os parentais apresentaram paternidade múltipla e razoável contribuição à produção de descendência.

  18. Integrating Agricultural and Ecological Goals into the Management of Species-Rich Grasslands: Learning from the Flowering Meadows Competition in France

    Science.gov (United States)

    Magda, Danièle; de Sainte Marie, Christine; Plantureux, Sylvain; Agreil, Cyril; Amiaud, Bernard; Mestelan, Philippe; Mihout, Sarah

    2015-11-01

    Current agri-environmental schemes for reconciling agricultural production with biodiversity conservation are proving ineffective Europe-wide, increasing interest in results-based schemes (RBSs). We describe here the French "Flowering Meadows" competition, rewarding the "best agroecological balance" in semi-natural grasslands managed by livestock farmers. This competition, which was entered by about a thousand farmers in 50 regional nature parks between 2007 and 2014, explicitly promotes a new style of agri-environmental scheme focusing on an ability to reach the desired outcome rather than adherence to prescriptive management rules. Building on our experience in the design and monitoring of the competition, we argue that the cornerstone of successful RBSs is a collective learning process in which the reconciliation of agriculture and environment is reconsidered in terms of synergistic relationships between agricultural and ecological functioning. We present the interactive, iterative process by which we defined an original method for assessing species-rich grasslands in agroecological terms. This approach was based on the integration of new criteria, such as flexibility, feeding value, and consistency of use, into the assessment of forage production performance and the consideration of biodiversity conservation through its functional role within the grassland ecosystem, rather than simply noting the presence or abundance of species. We describe the adaptation of this methodology on the basis of competition feedback, to bring about a significant shift in the conventional working methods of agronomists and conservationists (including researchers).The potential and efficacy of RBSs for promoting ecologically sound livestock systems are discussed in the concluding remarks, and they relate to the ecological intensification debate.

  19. Changes in productivity of grassland with ageing

    NARCIS (Netherlands)

    Hoogerkamp, M.

    1984-01-01

    The productivity of grassland may change greatly with ageing. Frequently, a productive ley period, occurring in the first time after (re)seeding, is followed by a period in which productivity decreases. Under conditions favourable to grassland this may be temporary. A production level

  20. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  1. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  2. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...

  3. Grassland habitat restoration: lessons learnt from long term monitoring of Swanworth Quarry, UK, 1997–2014

    Directory of Open Access Journals (Sweden)

    Barbara Maria Smith

    2017-11-01

    Full Text Available Habitat restoration projects are often conducted when prior use or extraction of natural resources results in land degradation. The success of restoration programmes, however, is variable, and studies that provide evidence of long term outcomes are valuable for evaluation purposes. This study focused on the restoration of vegetation within a limestone quarry in Dorset, UK between 1997 and 2014. Using a randomised block design, the effect of seed mix and seed rate on the development of community assemblage was investigated in comparison to a nearby target calcareous grassland site. We hypothesised that seed mix composition and sowing rate would influence both the trajectory of the grassland assemblage and final community composition. We found that species composition (in relation to both richness and community assemblage was strongly influenced by time and to some extent by seed rate and seed mix. However, no treatments achieved strong resemblance to the calcareous grassland target vegetation; rather they resembled mesotrophic communities. We conclude that (as with previous studies there is no “quick fix” for the establishment of a grassland community; long-term monitoring provides useful information on the trajectory of community development; sowing gets you something (in our case mesotrophic grassland, but, it may not be the target vegetation (e.g., calcicolous grassland you want that is difficult to establish and regenerate; it is important to sow a diverse mix as subsequent recruitment opportunities are probably limited; post-establishment management should be explored further and carefully considered as part of a restoration project.

  4. Striking a balance: socioeconomic development and conservation in grassland through community-based zoning.

    Directory of Open Access Journals (Sweden)

    Craig Leisher

    Full Text Available The goal of preserving nature is often in conflict with economic development and the aspirations of the rural poor. Nowhere is this more striking than in native grasslands, which have been extensively converted until a mere fraction of their original extent remains. This is not surprising; grasslands flourish in places coveted by humans, primed for agriculture, plantations, and settlements that nearly always trump conservation efforts. The Umgano grassland conservation and poverty reduction project in KwaZulu-Natal Province, South Africa uses community-based spatial planning to balance the conversion of its lower-conservation value grasslands to a timber plantation, while conserving higher-value grasslands for heritage purposes and managed livestock grazing. Ten years after project launch, we measured the ecological and socioeconomic impacts of the project using Normalized Differential Vegetation Index remote sensing data and over 500 household interviews, as compared with similar non-conserved areas. Zoned management of the Umgano area had resulted in between 9% and 17% greater average peak production in the grassland areas compared to control sites. There was also a 21% gain in incomes for the roughly one hundred people employed by the forestry efforts, when compared to others in their village. Community-based spatial zoning is an overlooked tool for balancing conservation and development but may require, as we found in Umgano, certain critical factors including strong local leadership, an accountable financial management mechanism to distribute income, outside technical expertise for the zoning design, and community support.

  5. Energy production from grassland - Assessing the sustainability of different process chains under German conditions

    International Nuclear Information System (INIS)

    Roesch, Christine; Skarka, J.; Raab, K.; Stelzer, V.

    2009-01-01

    In many regions of Europe, grassland shapes the landscape and fulfils important functions in protecting nature, soil, and water. However, the traditional uses of grassland for forage production are vanishing with progress in breeding and structural adaptations in agriculture. On the other hand, the demand for biomass energy is rising due to political sustainability goals and financial measures to support renewable energy. Against this background, the Institute for Technology Assessment and Systems Analysis investigated the applicability, economic efficiency, and sustainability of different techniques for energy production from grassland as well as from grassland converted into maize fields or short-rotation poplars under German conditions. The results show that despite relatively high energy prices and the financial support for bioenergy, the effects of energy production from grassland on employment in agriculture and farmers' income are modest. What is beneficial are savings in non-renewable energy, reductions in greenhouse gas emissions, and local provision of energy carriers. If grassland biomass (grass silage or hay) is used for energy purposes, this brings the further advantages of preserving biodiversity and the cultural landscape and protecting of soil and groundwater. Negative impacts on sustainable development result from an increase in emissions, which leads to acidification, eutrophication, and risks to human health. The overall evaluation indicates that short-rotation poplars are comparatively advantageous from the economic and ecological point of view. Therefore, a development plan for grassland is required to identify areas where grassland could be used as an energy resource or where it would be favourable to install energy plantations with fast-growing perennial plants

  6. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    Directory of Open Access Journals (Sweden)

    Renaud eBerlemont

    2014-11-01

    Full Text Available In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of two years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and constituted ~18.2% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.

  7. Changing patterns of basic household consumption in the Inner Mongolian grasslands: a case study of policy-oriented adoptive changes in the use of grasslands

    NARCIS (Netherlands)

    Du, B.; Zhen, L.; Groot, de R.S.; Goulden, C.E.; Long, X.; Cao, X.; Wu, R.; Sun, C.

    2014-01-01

    Grassland ecosystems, as the basic natural resources in the Inner Mongolia Autonomous Region, are becoming increasingly sensitive to human intervention, leading to deterioration in fragile ecosystems. The goal of this study was to describe the restoration policy-oriented adoptive changes to basic

  8. Resistência natural de nove madeiras do semiárido brasileiro a fungos xilófagos em simulares de campo Natural resistance of nine woods from the Brazilian semi-arid region to wood-destroying fungi in field simulators

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2009-06-01

    Full Text Available Os objetivos desta pesquisa foram avaliar a resistência de nove madeiras de ocorrência no semiárido brasileiro a fungos xilófagos em simuladores de campo e relacionar a resistência natural com a densidade e teor de substâncias extraídas em água quente. As madeiras estudadas foram algaroba (Prosopis juliflora, angico-vermelho (Anadenanthera colubrina var. cebil, aroeira (Myracrodruon urundeuva, braúna (Schinopsis brasiliensis, cássia (Senna siamea, craibeira (Tabebuia aurea, cumaru (Amburana cearensis, pau-d'arco (Tabebuia impetiginosa e pereiro (Aspidosperma pyrifolium. De cada espécie foram retirados corpos-de-prova de 0,5 x 1,5 x 15,0 cm, com a maior dimensão na direção das fibras, em quatro posições na direção medula-casca do tronco. As amostras permaneceram por 180 dias sob ação da microflora natural existente em três tipos de solos: de floresta, de uso agrícola e com gramíneas. Em todas as madeiras ensaiadas, a resistência ao apodrecimento foi afetada pela posição na direção medula-casca. Apenas na aroeira a resistência da madeira esteve associada à sua densidade e à quantidade de extrativos solúveis em água quente. A resistência das madeiras de algaroba, angico, craibeira e pau-d'arco não esteve associada à densidade nem ao teor de extrativos. O alburno foi a posição mais atacada em todos os solos analisados. Entre os solos testados, o de uso agrícola apresentou menos atividade biológica, deteriorando menos as madeiras testadas.The objectives of this research were to evaluate the natural resistance of nine woods from the Brazilian semi-arid region to fungi under field simulator condition and to correlate the wood natural resistance with the wood density and the content of extractives soluble in hot water. The studied woods were Prosopis juliflora, Anadenanthera colubrina var. cebil, Myracrodruon urundeuva, Schinopsis brasiliensis, Senna siamea, Tabebuia aurea, Amburana cearensis, Tabebuia

  9. Resistência natural de nove madeiras do semi-árido brasileiro a fungos xilófagos em condições de laboratório Natural resistance of nine woods of Brazilian semi-arid region to wood-destroying fungi under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2004-04-01

    Full Text Available Objetivou-se avaliar a resistência natural de nove madeiras do semi-árido brasileiro a fungos xilófagos, em condições de laboratório. As madeiras estudadas foram a algaroba (Prosopis juliflora, o angico (Anadenanthera macrocarpa, a aroeira (Myracrodruon urundeuva, a braúna (Schinopsis brasiliensis, a cássia (Senna siamea, a craibeira (Tabebuia aurea, o cumaru (Amburana cearensis, o ipê (Tabebuia impetiginosa e o pereiro (Aspidosperma pyrifolium. De cada espécie foram retirados corpos-de-prova de 2,54 x 2,00 x 1,00 cm, com a maior dimensão na direção das fibras, em quatro posições na direção medula-casca. As amostras foram submetidas, por 14 semanas, à ação dos fungos Postia placenta e Neolentinus lepideus. A resistência natural, com exceção da algaroba e do angico (P. placenta, da craibeira (N. lepideus e da cássia (P. placenta e N. lepideus, foi afetada pela posição na direção medula-casca, sem estar relacionada à densidade das madeiras ensaiadas. A madeira de ipê e a madeira de cerne da aroeira e braúna foram as mais resistentes aos fungos testados. As diferenças entre a resistência natural, exceto para a aroeira e braúna, não estavam associadas à concentração de extrativos solúveis em água quente.The objective of this research was to evaluate the natural resistance of nine semi arid region Brazilian woods to wood-destroying fungi under laboratory conditions. The studied woods were the Prosopis juliflora, Anadenanthera macrocarpa, Myracrodruon urundeuva, Schinopsis brasiliensis, Senna siamea, Tabebuia aurea, Amburana cearensis, Tabebuia impetiginosa and Aspidosperma pyrifolium. Test samples measuring 2.54 x 2.00 x 1.00 cm, with the largest measure taken fiber-wise were obtained from four pith-to-bark positions. The samples were submitted to action of the Postia placenta and Neolentinus lepideus fungi for 14 weeks. Species resistance, with exception of those of Prosopis juliflora and Anadenanthera

  10. A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands

    Directory of Open Access Journals (Sweden)

    Rong Ge

    2018-01-01

    Full Text Available It is important to accurately evaluate ecosystem respiration (RE in the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau, as it serves as a sensitivity indicator of regional and global carbon cycles. Here, we combined flux measurements taken between 2003 and 2013 from 16 grassland sites across northern China and the corresponding MODIS land surface temperature (LST, enhanced vegetation index (EVI, and land surface water index (LSWI to build a satellite-based model to estimate RE at a regional scale. First, the dependencies of both spatial and temporal variations of RE on these biotic and climatic factors were examined explicitly. We found that plant productivity and moisture, but not temperature, can best explain the spatial pattern of RE in northern China’s grasslands; while temperature plays a major role in regulating the temporal variability of RE in the alpine grasslands, and moisture is equally as important as temperature in the temperate grasslands. However, the moisture effect on RE and the explicit representation of spatial variation process are often lacking in most of the existing satellite-based RE models. On this basis, we developed a model by comprehensively considering moisture, temperature, and productivity effects on both temporal and spatial processes of RE, and then, we evaluated the model performance. Our results showed that the model well explained the observed RE in both the alpine (R2 = 0.79, RMSE = 0.77 g C m−2 day−1 and temperate grasslands (R2 = 0.75, RMSE = 0.60 g C m−2 day−1. The inclusion of the LSWI as the water-limiting factor substantially improved the model performance in arid and semi-arid ecosystems, and the spatialized basal respiration rate as an indicator for spatial variation largely determined the regional pattern of RE. Finally, the model accurately reproduced the seasonal and inter-annual variations and spatial variability of RE, and it avoided

  11. Machine Learning to Assess Grassland Productivity in Southeastern Arizona

    Science.gov (United States)

    Ponce-Campos, G. E.; Heilman, P.; Armendariz, G.; Moser, E.; Archer, V.; Vaughan, R.

    2015-12-01

    We present preliminary results of machine learning (ML) techniques modeling the combined effects of climate, management, and inherent potential on productivity of grazed semi-arid grasslands in southeastern Arizona. Our goal is to support public land managers determine if agency management policies are meeting objectives and where to focus attention. Monitoring in the field is becoming more and more limited in space and time. Remotely sensed data cover the entire allotments and go back in time, but do not consider the key issue of species composition. By estimating expected vegetative production as a function of site potential and climatic inputs, management skill can be assessed through time, across individual allotments, and between allotments. Here we present the use of Random Forest (RF) as the main ML technique, in this case for the purpose of regression. Our response variable is the maximum annual NDVI, a surrogate for grassland productivity, as generated by the Google Earth Engine cloud computing platform based on Landsat 5, 7, and 8 datasets. PRISM 33-year normal precipitation (1980-2013) was resampled to the Landsat scale. In addition, the GRIDMET climate dataset was the source for the calculation of the annual SPEI (Standardized Precipitation Evapotranspiration Index), a drought index. We also included information about landscape position, aspect, streams, ponds, roads and fire disturbances as part of the modeling process. Our results show that in terms of variable importance, the 33-year normal precipitation, along with SPEI, are the most important features affecting grasslands productivity within the study area. The RF approach was compared to a linear regression model with the same variables. The linear model resulted in an r2 = 0.41, whereas RF showed a significant improvement with an r2 = 0.79. We continue refining the model by comparison with aerial photography and to include grazing intensity and infrastructure from units/allotments to assess the

  12. [Fractal features of soil particle size in the process of desertification in desert grassland of Ningxia, China].

    Science.gov (United States)

    Yan, Xin; An, Hui

    2017-10-01

    The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles 50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.

  13. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  14. Carbon balance of renovated grasslands: input- or output-driven?

    Science.gov (United States)

    Choncubhair, Órlaith Ní; Osborne, Bruce; Lanigan, Gary

    2015-04-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. In permanent temperate grasslands, biomass production and sward quality can deteriorate over time and periodic renovation activities, involving soil tillage and reseeding, are commonly carried out to halt this decline. Long-term cultivation of agricultural land has been associated with soil aggregate degradation and reduced soil carbon storage. However, the impact of these single tillage disturbances on C cycling in grasslands is less clear. This study evaluated gaseous and dissolved organic carbon (DOC) losses following a single tillage event by subjecting grassland lysimeters with contrasting soil drainage characteristics to simulated conventional inversion or minimum tillage. Field-scale CO2 emissions after conventional tillage were also quantified and empirically modelled over short- and medium-term timeframes to delineate the ecosystem response to environmental variables. Soil moisture was the limiting determinant of ecosystem carbon release following conventional tillage. Freshly-tilled soils were associated with reduced water retention and increased sensitivity to soil moisture, which was particularly pronounced following rewetting events. Significantly elevated but ephemeral CO2 effluxes were detected in the hours following inversion ploughing, however tillage disturbance did not generate significantly enhanced C emission rates in the medium term. Equally, DOC losses were not significantly amplified by conventional tillage compared with conservative minimum tillage and were predominantly controlled by soil drainage across tillage regimes. Our results suggest that a net ecosystem source of 120 to 210 g C m-2 over an approximately two-month period was most likely a consequence of reduced productivity and C input rather than enhanced soil CO2

  15. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Directory of Open Access Journals (Sweden)

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  16. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  17. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  18. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  19. A study of the carbon dynamics of Japanese grassland and forest using 14C and 13C

    International Nuclear Information System (INIS)

    Katsuno, Kazumi; Miyairi, Yosuke; Tamura, Kenji; Matsuzaki, Hiroyuki; Fukuda, Kenji

    2010-01-01

    We quantified the carbon contents of grassland and forest soil using conventional methods and studied the changes in their dynamics by measuring δ 13 C and Δ 14 C. Soil samples were taken from a neighboring Miscanthus sinensis grassland and Pinus densiflora forest in central Japan. Both had been maintained as grassland until the 1960s, when the latter was abandoned and became a pine forest by natural succession. The soil carbon content of the forest was much lower than that of the grassland, implying that the soil carbon decreased as the grassland became forest. The δ 13 C values were very similar in the grassland and forest, at approximately -20 per mille , suggesting that M. sinensis (a C4 plant) contributed to carbon storage, whereas there was little carbon accumulation from P. densiflora (a C3 plant) in forest soil. The Δ 14 C values and calculated soil carbon mean residence time (MRT) showed that the soil carbon in the upper A horizon was older, and that in the lower A horizon was younger in forest than in grassland. From these results, we conclude that young, fast-MRT soil carbon is decomposed in the upper A horizon, and old, stable soil carbon was decomposed in the lower A horizon after the pine invasion.

  20. Grassland communities of traditional orchards in the Western Carpathians (Slovakia

    Directory of Open Access Journals (Sweden)

    Hubert Zarnovican

    2017-06-01

    Full Text Available Traditional orchards are a valuable feature of the rural landscape and they are specific for regions with scattered settlement such as the Myjava hilly land and White Carpathians. Here, the permanent species-rich grasslands beneath trees were regularly managed in the traditional manner until some were replaced in the 1970’s and 80’s by intensively managed orchards, some of which were abandoned in the early 1990’s. Our 2011–2015 phytosociological research followed the standard Braun-Blanquet approach. We classified 178 phytosociological relevés recorded in orchard meadows (156 relevés, former intensively managed orchards (16 relevés, and two relevés from a semi-intensively grazed orchard. Traditionally managed orchard meadows were classified in the following five units: (i Pastinaco sativae-Arrhenatheretum elatioris – thermophilous variant, (ii Pastinaco sativae-Arrhenatheretum elatioris – transitional variant to Alchemillo-Arrhenatheretum elatioris, (iii Ranunculo bulbosi-Arrhenatheretum elatioris, (iv Onobrychido viciifoliae-Brometum erecti, and (v Brachypodio pinnati-Molinietum arundinaceae. Formerly intensively managed large-scale orchards were classified as Pastinaco sativae-Arrhenatheretum elatioris association and the semi-intensively grazed orchard as Lolio perennis-Cynosuretum cristati association. The species composition varies considerably due to tree-shading and different management treatments applied in the orchards, so the relevés of the delimited syntaxonomic units are not typical and have transitional character. Moisture, soil nutrients, and soil reaction were identified as the main environmental gradients influencing species composition. We tested four management treatments in direct gradient analysis and found that abandonment has the strongest effect on species composition. Comparison of grassland vegetation in the studied traditional orchards with that described in Germany reveals differences in species

  1. Analysis on the Change of Grassland Coverage in the Source Region of Three Rivers during 2000-2012

    International Nuclear Information System (INIS)

    Luo, Chengfeng; Wang, Jiao; Liu, Meilin; Liu, Zhengjun

    2014-01-01

    The Source Region of Three Rivers (SRTR) has very important ecological functions which form an ecological security barrier for China's Qinghai-Tibet plateau. As the biggest nationally occuring nature reserve region in China, the ecological environment here is very fragile. In SRTR the grassland coverage is an effective detector to reflect the ecological environment condition, because it records the changing process of climatic and environmental sensitively. In recent years SRTR has been suffering pressures from both nature and social pressures. With MODIS data the study monitored the grassland coverage continuously in SRTR from 2000 to 2012. The density-model was adapted to estimate grassland coverage degree firstly. Then the degree of change and the change intensity, change type were used to judge the grassland coverage change trend comprehensively. For grassland coverage there was natural change annual or within the year, and the degree of change was used to judge if there was change or not. The grassland has another important characteristic, annual fluctuation, and it can be differed from sustained changes with change type. For grassland coverage, such continuous change, like improvement or degradation, and to what extent, has more guidance sense on specific production practice. On the base of change type and degree of change, change intensity was used to identify the change trend of the grassland coverage. The analysis results from our study show that steady state and fluctuation are two main change trends for the vegetation coverage in SRTR from 2000 to 2012. The conclusion of this paper can provide references in response to environment change research and in the regional ecological environmental protection project in SRTR

  2. Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts

    Science.gov (United States)

    Kamp, Johannes; Koshkin, Maxim A; Bragina, Tatyana M; Katzner, Todd E.; Milner-Gulland, E J; Schreiber, Dagmar; Sheldon, Robert; Shmalenko, Alyona; Smelansky, Ilya; Terraube, Julien; Urazaliev, Ruslan

    2016-01-01

    Temperate grasslands have suffered disproportionally from conversion to cropland, degradation and fragmentation. A large proportion of the world’s remaining near-natural grassland is situated in Kazakhstan. We aimed to assess current and emerging threats to steppe and semi-desert biodiversity in Kazakhstan and evaluate conservation research priorities. We conducted a horizon-scanning exercise among conservationists from academia and practice. We first compiled a list of 45 potential threats. These were then ranked by the survey participants according to their perceived severity, the need for research on them, and their novelty. The highest-ranked threats were related to changes in land use (leading to habitat loss and deterioration), direct persecution of wildlife, and rapid infrastructure development due to economic and population growth. Research needs were identified largely in the same areas, and the mean scores of threat severity and research need were highly correlated. Novel threats comprised habitat loss by photovoltaic and wind power stations, climate change and changes in agriculture such as the introduction of biofuels. However, novelty was not correlated with threat severity or research priority, suggesting that the most severe threats are the established ones. Important goals towards more effective steppe and semi-desert conservation in Kazakhstan include more cross-sector collaboration (e.g. by involving stakeholders in conservation and agriculture), greater allocation of funds to under-staffed areas (e.g. protected area management), better representativeness and complementarity in the protected area system and enhanced data collection for wildlife monitoring and threat assessments (including the use of citizen-science databases).

  3. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils (Chapter 7)

    Science.gov (United States)

    Daniel G. Neary

    2011-01-01

    Forest, woodland, and grassland watersheds throughout the world are major sources of high quality water for human use because of the nature of these soils to infiltrate, store, and transmit most precipitation instead of quickly routing it to surface runoff. This characteristic of these wildland soils is due to normally high infiltration rates, porosities, and hydraulic...

  4. Plutonium in a grassland ecosystem

    International Nuclear Information System (INIS)

    Little, C.A.

    1976-08-01

    A study was made of plutonium contamination of grassland at the Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geographical areas; whether or not the predominant isotopes, 238 Pu and 239 Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for Pu analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99 percent of the total plutonium was contained in the soil and the concentrations were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes

  5. Model calculation of radiocaesium transfer into food products in semi-natural forest ecosystems in the Czech Republic after a nuclear reactor accident and an estimate of the population dose burden

    International Nuclear Information System (INIS)

    Svadlenkova, M.; Konecny, J.; Smutny, V.

    1996-01-01

    Radioactivity of food products from semi-natural forest ecosystems can contribute appreciably to the radiological burden of the human population following a nuclear accident, as found after the Chernobyl disaster in 1986. In the Czech Republic, radiocaesium radioactivity has been measured, such as soil, mushrooms, bilberries, deer and boar. In this work, the data are employed to predict how a model accident of the Temelin nuclear power plant in southern Bohemia (which is under construction) would affect selected forest ecosystems in its surroundings. The dose commitment to the critical population group is also estimated. (author)

  6. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...... on soil and litter carbon stocks. The second site showed a clear decline in combined soil and litter carbon stocks following wattle encroachment. The lowest stock was in the oldest wattle stand, meaning that carbon stocks are still declining after 50 years of encroachment. The results from the two sites...

  7. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  8. Ecosystem-scale fluxes in seminatural Pyrenean grasslands: role of annual dynamics of plant functional types

    Science.gov (United States)

    Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa

    2013-04-01

    The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.

  9. Importance and functions of European grasslands.

    Science.gov (United States)

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  10. [Research progress and trend on grassland agroecology].

    Science.gov (United States)

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  11. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  12. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Zhang

    2010-06-01

    Full Text Available As one of the largest land cover types, grassland can potentially play an important role in the ecosystem services of natural resources in China. Nitrous oxide (N2O is a major greenhouse gas emitted from grasslands. Current N2O inventory at a regional or national level in China relies on the emission factor method, which is based on limited measurements. To improve the accuracy of the inventory by capturing the spatial variability of N2O emissions under the diverse climate, soil and management conditions across China, we adopted an approach by utilizing a process-based biogeochemical model, DeNitrification-DeComposition (DNDC, to quantify N2O emissions from Chinese grasslands. In the present study, DNDC was tested against datasets of N2O fluxes measured at eight grassland sites in China with encouraging results. The validated DNDC was then linked to a GIS database holding spatially differentiated information of climate, soil, vegetation and management at county-level for all the grasslands in the country. Daily weather data for 2000–2007 from 670 meteorological stations across the entire domain were employed to serve the simulations. The modelled results on a national scale showed a clear geographic pattern of N2O emissions. A high-emission strip showed up stretching from northeast to central China, which is consistent with the eastern boundary between the temperate grassland region and the major agricultural regions of China. The grasslands in the western mountain regions, however, emitted much less N2O. The regionally averaged rates of N2O emissions were 0.26, 0.14 and 0.38 kg nitrogen (N ha−1 y−1 for the temperate, montane and tropical/subtropical grasslands, respectively. The annual mean N2O emission from the total 337 million ha of grasslands in China was 76.5 ± 12.8 Gg N for the simulated years.

  13. A comunidade de abelhas (Hymenoptera, Apidae s. l. em uma área restrita de campo natural no Parque Estadual de Vila Velha, Paraná: diversidade, fenologia e fontes florais de alimento The bee community (Hymenoptera, Apidae s. l. in a restricted area of native grassland in the Vila Velha State Park, Paraná: diversity, phenology and food plants

    Directory of Open Access Journals (Sweden)

    Rodrigo B. Gonçalves

    2005-12-01

    Full Text Available Coletas sistemáticas de abelhas em uma área restrita no Parque Estadual de Vila Velha, Paraná, no período de outubro de 2002 a outubro de 2003, resultaram em 1552 espécimes pertencentes a 181 espécies. Estas espécies estão distribuídas em 58 gêneros, 24 tribos e 5 subfamílias. As plantas visitadas correspondem a 113 espécies, em 72 gêneros e 38 famílias. Megachile com 20 espécies foi o gênero mais rico e Ceratina o gênero mais abundante dentre os gêneros nativos. Apis mellifera foi a espécie mais coletada, correspondendo a 28% do total de indivíduos, e Bombus atratus foi a espécie mais abundante dentre as abelhas nativas. A riqueza e a equitabilidade nos meses foram variáveis, sendo março o mais rico e novembro o de maior equitabilidade. Apesar de tradicionalmente considerados parte das estepes sulinas, os campos de Vila Velha apresentam uma fauna de abelhas contendo várias espécies típicas de cerrado. O igual número de espécies entre as subfamílias Apinae e Halictinae também apontam para uma peculiaridade de sua fauna. Listas de abelhas e plantas coletadas são apresentadas em anexo.A standardized survey of bees visiting blooming plants in an area covered by natural grasslands in the Vila Velha State Park was conducted from October, 2002, to October, 2003. A total of 1552 specimens belonging to 181 species were collected. These species are distributed in 58 genera, 24 tribes and 5 subfamilies. The visited plants belong to 113 species, in 72 genera and 38 families. Megachile, with 20 species, was the richest genus, while Ceratina was the most abundant native genus. Apis mellifera was the most abundant species, with 28% of all bees collected. Among the native species, Bombus atratus was the most abundant. Monthly richness and equitability varied along the year, March being the richest, and November, the most equitable. Despite being traditionally placed within the southern steppes, the open grasslands of Vila Velha

  14. Plutonium in a grassland ecosystem

    International Nuclear Information System (INIS)

    Little, C.A.

    1976-01-01

    This study was concerned with plutonium contamination of grassland at the U.S. Energy Research and Development Administration Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geogrphical areas; whether or not the predominant isotopes, 238 Pu and 239 Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for plutonium analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99% of the total plutonium was contained in the soil. The concentrations of plutonium in soil were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes. A mechanism of agglomerated submicron plutonium oxide particles and larger (1-500 μm) host soil particles was proposed. Concentrations of Pu in litter and vegetation were inversely correlated to distance from the source and directly correlated to soil concentrations at the same location. Comparatively high concentration ratios of vegetation to soil suggested wind resuspension of contamination as an important transport mechanism. Arthropod and small mammal samples were highly skewed, kurtotic, and quite variable, having coefficients of variation (standard deviation/mean) as high as 600%. Bone Pu concentrations were lower than other tissues. Hide, GI, and lung were generally not higher in Pu than kidney, liver and muscle

  15. Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2018-01-01

    associations between the trajectory patterns for mapping vegetation degradation, which has practical implications for designing management policies to counterpart grassland degradation in arid and semi-arid areas.

  16. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    OpenAIRE

    Jens L. Hollberg; Jürgen Schellberg

    2017-01-01

    Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to contribute to solving these ...

  17. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  18. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project, Treatment Definitions and Descriptions, and Biological Specifications for Facility Design, Final Report 1999

    International Nuclear Information System (INIS)

    Hager, Robert C.; Costello, Ronald J.

    1999-01-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions)

  19. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  20. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  1. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  2. Appreciation of the functions of grasslands by Irish stakeholders

    NARCIS (Netherlands)

    Hennessy, D.; Pol-van Dasselaar, van den A.

    2014-01-01

    The European project MultiSward studied the appreciation of different functions of grasslands by European stakeholders. This paper describes the importance of grasslands for stakeholders in Ireland. Ireland currently has approximately 4.6 million ha of grassland, which is 90% of the total utilized

  3. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  4. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field {sup 13}C pulse labeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Chen, Dongdong; Zhao, Liang [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Yang, Xue [Department of Education of Qinghai Province, Xining 810008, Qinghai (China); Xu, Shixiao [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Zhao, Xinquan, E-mail: xqzhao@nwipb.cas.cn [Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 10041, Sichuan (China)

    2016-04-15

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ {sup 13}C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO{sub 2} uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered {sup 13}C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m{sup −2} yr{sup −1} significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by {sup 13}CO{sub 2} pulse labeling. • Different mass of {sup 13}C in excess, similar {sup 13}C partitioning are shown in grasslands. • Soil organic carbon of

  5. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field "1"3C pulse labeling

    International Nuclear Information System (INIS)

    Li, Qi; Chen, Dongdong; Zhao, Liang; Yang, Xue; Xu, Shixiao; Zhao, Xinquan

    2016-01-01

    Anthropogenic changes in land use/cover have altered the vegetation, soil, and carbon (C) cycling on the Qinghai–Tibetan Plateau (QTP) over the last ~ 50 years. As a result, the Grain for Green Program (GfGP) has been widely implemented over the last 10 years to mitigate the impacts of cultivation. To quantify the effects of the GfGP on C partitioning and turnover rates at the ecosystem scale, an in situ "1"3C pulse labeling experiment was conducted on natural and GfGP grasslands in an agro-pastoral ecotone in the Lake Qinghai region on the QTP. We found that there were significant differences in the C stocks of all the considered pools in both the natural and GfGP grasslands, with higher CO_2 uptake rates in the GfGP grassland than that in the natural grassland. Partitioning of photoassimilate (% of recovered "1"3C) in C pools of both grasslands was similar 25 days after labeling, except in the roots of the 0–15 and 5–15 cm soil layer. Soil organic C (SOC) sequestration rate in the GfGP grassland was 11.59 ± 1.89 g C m"−"2 yr"−"1 significantly greater than that in the natural grassland. The results confirmed that the GfGP is an efficient approach for grassland restoration and C sequestration. However, it will take more than a century (119.19 ± 20.26 yr) to restore the SOC stock from the current cropland baseline level to the approximate level of natural grassland. We suggest that additional measures are needed in the selection of suitable plant species for vegetation restoration, and in reasonable grazing management. - Highlights: • Grain for Green Project initiated in 1999 converts cropland to grassland/shrubland. • Impact of Grain for Green on carbon cycling on Qinghai–Tibetan Plateau is unknown. • Effects on carbon partitioning and turnover were accessed by "1"3CO_2 pulse labeling. • Different mass of "1"3C in excess, similar "1"3C partitioning are shown in grasslands. • Soil organic carbon of cropland will be restored to natural

  6. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  7. Populisme et démocratie semi-directe : la dénaturation des procédés référendaires en France et aux Etats-Unis

    Directory of Open Access Journals (Sweden)

    Christophe Premat

    2005-09-01

    Full Text Available Si le populisme se caractérise par l’incarnation d’un ensemble de frustrations à l’égard du système représentatif, il est primordial de s’interroger sur le lien entre une déception à l’égard des institutions et les instruments de démocratie semi-directe. En nous appuyant sur une comparaison entre la France et les Etats-Unis pour analyser d´une part comment le référendum et l’initiative populaire ont modifié la donne dans certains Etats américains et d’autre part comment en France les référendums nationaux ont connu la suspicion « plébiscitaire » à plusieurs reprises, nous souhaiterions comprendre si par nature la démocratie semi-directe n’est que le ressentiment engendré par la lenteur du travail de représentation ou si elle est le complément essentiel à la transformation du régime représentatif.Si la frustración contra el sistema representativo es expresada por el populismo, es crucial interrogarse por el acoplamiento entre una decepción relacionada con las instituciones y los instrumentos semidirectos de la democracia. Al comparar Francia con Estados Unidos con el objetivo de analizar por una parte, cómo las iniciativas populares y los referendums influenciaron la legislación de algunos estados americanos y por otra, cómo los referéndums nacionales en Francia fueron reducidos a plebiscitos, intentamos descifrar si la naturaleza de la democracia semidirecta es el resultado de un resentimiento contra la lentitud del trabajo representativo o si concluye la transformación del gobierno representativo.If the feelings of frustration against the representative system are expressed by populism, it is crucial to question the link between a disappointment vis-à-vis the institutions and the semi-direct democracy instruments. By comparing France and United States in order to analyze on the one hand how popular initiatives and referenda influenced the legislation of some American States and on the other

  8. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  9. CFD evaluation of natural ventilation of indoor environments by the concentration decay method : CO2 gas dispersion from a semi-enclosed stadium

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.

    2013-01-01

    Computational Fluid Dynamics (CFD) simulations can be used to assess indoor natural ventilation by solving the interaction between the urban wind flow and the indoor airflow. The air exchange rate (ACH) can be obtained from the simulated volume flow rates through the ventilation openings or by the

  10. Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium : possibilities and limitations for CFD validation

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.

    2012-01-01

    The use of Computational Fluid Dynamics (CFD) to study complex physical processes in the built environment requires model validation by means of reduced-scale or full-scale experimental data. CFD studies of natural ventilation of buildings in urban areas should be validated concerning both the wind

  11. Efforts to improve and sustain the productive utilization of dry grasslands in Armenia

    Science.gov (United States)

    Mezhunts, Bagrat; Navasardyan, Marine

    2014-05-01

    Armenia is a small mountainous country (29,743 km2) located in the South Caucasus. It lies in the sub-tropical zone and has a continental climate with hot summers (av. +250C) and cold winters (av. -60C). The average precipitation is 550 mm; in the dry-steppe zone it amounts to only 250 mm and with a rainy season in spring-early summer. Altitudinal variation (390-4,095 m) gives rise to a range of climatic zones (from semi-desert to alpine), soil types and plant communities. Besides, Armenia is situated on the crossroads of Caucasian - mesophyllous (humid) and Armeno-Iranian - xerophyllous (arid) floristic provinces, which has made it to a "biodiversity hotspot". Agriculture is important as a source of employment and for domestic food supply. The rural population (ca. 1.2 million) is largely dependent on livestock for their livelihood. The principal feed resource is extensive grasslands (60% of total agricultural lands), but past practices of uncontrolled grazing management has led to low grassland productivity and low proportion of valuable legume forages. Improvement of natural grasslands, enhancement of feed quality, prevention of soil erosion and re-establishment of vegetation cover are key socio-economic challenges and are needed to raise the livelihood of rural population in Armenia. This presentation focuses on present status and trends of dry pastureland degradation, exposed to intensive grazing, and on results from case studies to increase productivity and restore valuable forage species for sustainable use in agriculture. Three different conventional approaches have been applied in these studies including: fertilization with moderate doses of ammonium and potassium nitrate and superphosphate, over-sowing by local legume seeds and implementation of a 2-year rest period in overgrazed areas. From 1986 to 2007, the total yield (TY) in studied dry-steppe pastures decreased by 40%, while at the same time, the proportion of grasses in total yield decreased by 50

  12. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-12-01

    Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  13. Predicting the establishment success of introduced target species in grassland restoration by functional traits.

    Science.gov (United States)

    Engst, Karina; Baasch, Annett; Bruelheide, Helge

    2017-09-01

    Species-rich semi-natural grasslands are highly endangered habitats in Central Europe and numerous restoration efforts have been made to compensate for the losses in the last decades. However, some plant species could become more easily established than others. The establishment success of 37 species was analyzed over 6 years at two study sites of a restoration project in Germany where hay transfer and sowing of threshing material in combination with additional sowing were applied. The effects of the restoration method applied, time since the restoration took place, traits related to germination, dispersal, and reproduction, and combinations of these traits on the establishment were analyzed. While the specific restoration method of how seeds were transferred played a subordinate role, the establishment success depended in particular on traits such as flower season or the lifeform. Species flowering in autumn, such as Pastinaca sativa and Serratula tinctoria , became established better than species flowering in other seasons, probably because they could complete their life cycle, resulting in increasingly stronger seed pressure with time. Geophytes, like Allium angulosum and Galium boreale , became established very poorly, but showed an increase with study duration. For various traits, we found significant trait by method and trait by year interactions, indicating that different traits promoted establishment under different conditions. Using a multi-model approach, we tested whether traits acted in combination. For the first years and the last year, we found that models with three traits explained establishment success better than models with a single trait or two traits. While traits had only an additive effect on the establishment success in the first years, trait interactions became important thereafter. The most important trait was the season of flowering, which occurred in all best models from the third year onwards. Overall, our approach revealed the

  14. On the stability of mixed grasslands

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2001-01-01

    Recent years have seen a renewed interest in the use of white clover (Trifolium repens) in grasslands, as a more sustainable alternative to fertiliser nitrogen inputs. However, mixtures of grasses and white clover have frequently been associated with unstable and hence unreliable herbage

  15. Purpose and Need for a Grassland Assessment

    Science.gov (United States)

    Deborah M. Finch; Cathy W. Dahms

    2004-01-01

    This report is volume 1 of an ecological assessment of grassland ecosystems in the Southwestern United States, and it is one of a series of planned publications addressing major ecosystems of the Southwest. The first assessment, General Technical Report RM-GTR- 295, An Assessment of Forest Ecosystem Health in the Southwest (by Dahms and Geils, technical editors,...

  16. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    Science.gov (United States)

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  17. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  18. Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward.

    Science.gov (United States)

    Martin, G; Duprat, A; Goby, J-P; Theau, J-P; Roinsard, A; Descombes, M; Legendre, H; Gidenne, T

    2016-10-01

    Organic agriculture is developing worldwide, and organic rabbit production has developed within this context. It entails raising rabbits in moving cages or paddocks, which enables them to graze grasslands. As organic farmers currently lack basic technical information, the objective of this article is to characterize herbage intake, feed intake and the growth rate of rabbits raised on grasslands in different environmental and management contexts (weather conditions, grassland type and complete feed supplementation). Three experiments were performed with moving cages at an experimental station. From weaning, rabbits grazed a natural grassland, a tall fescue grassland and a sainfoin grassland in experiments 1, 2 and 3, respectively. Rabbit diets were supplemented with a complete pelleted feed limited to 69 g dry matter (DM)/rabbit per day in experiment 1 and 52 g DM/rabbit per day in experiments 2 and 3. Herbage allowance and fiber, DM and protein contents, as well as rabbit intake and live weight, were measured weekly. Mean herbage DM intake per rabbit per day differed significantly (P<0.001) between experiments. It was highest in experiment 1 (78.5 g DM/day) and was 43.9 and 51.2 g DM/day in experiments 2 and 3, respectively. Herbage allowance was the most significant determinant of herbage DM intake during grazing, followed by rabbit metabolic weight (live weight0.75) and herbage protein and fiber contents. Across experiments, a 10 g DM increase in herbage allowance and a 100 g increase in rabbit metabolic weight corresponded to a mean increase of 6.8 and 9.6 g of herbage DM intake, respectively. When including complete feed, daily mean DM intakes differed significantly among experiments (P<0.001), ranging from 96.1 g DM/rabbit per day in experiment 2 to 163.6 g DM/rabbit per day in experiment 1. Metabolic weight of rabbits raised on grasslands increased linearly over time in all three experiments, yielding daily mean growth rates of 26.2, 19.2 and 28.5 g/day in

  19. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  20. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  1. Semi-transparent solar cells

    International Nuclear Information System (INIS)

    Sun, J; Jasieniak, J J

    2017-01-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies. (topical review)

  2. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  3. Phytosociological classification of the Nylsvley nature reserve

    CSIR Research Space (South Africa)

    Coetzee, BJ

    1977-12-01

    Full Text Available The vegetation of the Nylsvley Nature Reserve in the Transvaal Mixed Bushveld is classified hierarchically by the Braun-Blanquet method of vegetation survey. The vegetation is seasonal grassland and deciduous savanna with four floristically distinct...

  4. Effects Of Land Use On The Nature And Population Of Microorganisms In The Semi-Arid Region Of North-Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    HS Bello

    2013-12-01

    Full Text Available This study was aim to investigate the effects of land use on the nature and population of microorganisms in soil from five different farms within University of Maiduguri, Borno State. A total of ten composite samples were obtained and analyzed in the laboratory. The total microbial population was consistently higher in the grazing reserved land with mean of 105x104CFU/g than in cultivated farms with means of 84.5x104CFU/g, 66x104CFU/g and 66x104CFU/g, for cereal (sorghum, beans and tomato farms respectively. The site with the least microbial population was gum-Arabic plantation with the mean of 29x104CFU/g. Bacteria were the most dominant species at all sites regardless of depths. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 224-230 DOI: http://dx.doi.org/10.3126/ije.v2i1.9223

  5. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  6. Consequences of artichoke thistle invasion and removal on carbon and water cycling in a Mediterranean grassland

    Science.gov (United States)

    Potts, D. L.; Harpole, W. S.; Suding, K. N.; Goulden, M. L.

    2006-12-01

    Changes in vegetation structure and composition may interact with management activities to influence biosphere-atmosphere exchanges of mass and energy in unforeseen ways. Increases in the distribution and density of artichoke thistle (Cynara cardunculus), a perennial, non-native forb in Californian coastal grasslands, may alter seasonal dynamics of ecosystem C-assimilation and evapotranspiration (ET). During spring and summer 2006, we compared midday net ecosystem CO2 exchange (NEE) and ET among adjacent grassland plots where thistle was present and where it was absent. Estimates of NEE supported the prediction that deeply-rooted thistles increase ecosystem C-assimilation. Measurements of midday ecosystem respiration demonstrated that increases in ecosystem C-assimilation were associated with increased ecosystem photosynthesis rather than declines in respiration. Furthermore, the presence of C. cardunculus increased midday ET but did not influence shallow soil moisture or ecosystem water use efficiency. Following the initial sampling in late April, we removed C. cardunculus from half the thistle- containing plots with spot applications of herbicide. Three weeks later, fluxes in thistle-removal plots were indistinguishable from those in plots where thistles were never present, suggesting additive rather than interactive effects of thistles on grassland CO2 exchange and ET. Similar to woody-encroachment in some semi-arid ecosystems, C. cardunculus invasion in Californian grasslands increases ecosystem CO2 assimilation. Moreover, our results suggest that herbicide removal of C. cardunculus may be accompanied by few legacy effects. Future research should focus on the effects of C. cardunculus on early-growing season fluxes and belowground C-storage, and the interaction between the spread of non-native species and climate variability on biosphere-atmosphere exchanges of carbon and water.

  7. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach

  8. Energy Development in Colorado's Pawnee National Grasslands: Mapping and Measuring the Disturbance Footprint of Renewables and Non-Renewables

    Science.gov (United States)

    Baynard, Chris W.; Mjachina, Ksenya; Richardson, Robert D.; Schupp, Robert W.; Lambert, J. David; Chibilyev, Alexander A.

    2017-06-01

    This paper examines the pattern and extent of energy development in steppe landscapes of northeast Colorado, United States. We compare the landscape disturbance created by oil and gas production to that of wind energy inside the Pawnee National Grasslands eastern side. This high-steppe landscape consists of a mosaic of federal, state, and private lands where dominant economic activities include ranching, agriculture, tourism, oil and gas extraction, and wind energy generation. Utilizing field surveys, remote sensing data and geographic information systems techniques, we quantify and map the footprint of energy development at the landscape level. Findings suggest that while oil and gas and wind energy development have resulted in a relatively small amount of habitat loss within the study area, the footprint stretches across the entire zone, fragmenting this mostly grassland habitat. Futhermore, a third feature of this landscape, the non-energy transportation network, was also found to have a significant impact. Combined, these three features fragment the entire Pawnee National Grasslands eastern side, leaving very few large intact core, or roadless areas. The primary objective of this ongoing work is to create a series of quantifiable and replicable surface disturbance indicators linked to energy production in semi-arid grassland environments. Based on these, and future results, we aim to work with industry and regulators to shape energy policy as it relates to environmental performance, with the aim of reducing the footprint and thus increasing the sustainability of these extractive activities.

  9. Energy analysis of various grassland utilisation systems

    Directory of Open Access Journals (Sweden)

    Jozef Ržonca

    2005-01-01

    Full Text Available In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average. The highest value of energy efficiency (13.23% was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days or two cuts per year (first cut on July 15th, next cuts after 90 days.

  10. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  11. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2017-03-01

    Full Text Available Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra and MYD14A1 (Aqua and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578, which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly

  12. Trajectories of grassland ecosystem change in response to experimental manipulations of precipitation

    Science.gov (United States)

    Knapp, Alan; Smith, Melinda; Collins, Scott; Blair, John; Briggs, John

    2010-05-01

    Understanding and predicting the dynamics of ecological systems has always been central to Ecology. Today, ecologists recognize that in addition to natural and human-caused disturbances, a fundamentally different type of ecosystem change is being driven by the combined and cumulative effects of anthropogenic activities affecting earth's climate and biogeochemical cycles. This type of change is historically unprecedented in magnitude, and as a consequence, such alterations are leading to trajectories of change in ecological responses that differ radically from those observed in the past. Through both short- and long-term experiments, we have been trying to better understand the mechanisms and consequences of ecological change in grassland ecosystems likely to result from changes in precipitation regimes. We have manipulated a key resource for most grasslands (water) and modulators of water availability (temperature) in field experiments that vary from 1-17 years in duration, and used even longer-term monitoring data from the Konza Prairie LTER program to assess how grassland communities and ecosystems will respond to changes in water availability. Trajectories of change in aboveground net primary production (ANPP) in sites subjected to 17 years of soil water augmentation were strongly non-linear with a marked increase in the stimulation of ANPP after year 8 (from 25% to 65%). Lags in alterations in grassland community composition are posited to be responsible for the form of this trajectory of change. In contrast, responses in ANPP to chronic increases in soil moisture variability appear to have decreased over a 10-yr period of manipulation, although the net effects of more variable precipitation inputs were to reduce ANPP, alter the genetic structure of the dominant grass species, increase soil nitrogen availability and reduce soil respiration. The loss of sensitivity to increased resource variability was not reflected in adjacent plots where precipitation was

  13. Termite activity in relation to natural grassland soil attributes

    NARCIS (Netherlands)

    Kaschuk, G.; Pires Santos, J.C.; Almeida, J.A.; Sinhorati, D.S.; Berton-Junior, J.F.

    2006-01-01

    Soil-feeding termites transport soil for mound building, and this process can affect soil characteristics. To verify the influence of soil termite activity on soil characteristics, samples were collected from top, bottom and center of termite mounds, and of the adjacent area, to assess chemical and

  14. Drought effect on selection of conservation reserve program grasslands by white-tailed deer on the Northern Great Plains

    Science.gov (United States)

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2011-01-01

    Limited information exists regarding summer resource selection of white-tailed deer (Odocoileus virginianus) in grassland regions of the Northern Great Plains. During summers 2005-2006, we analyzed habitat selection of adult female white-tailed deer in north-central South Dakota. We collected 1905 summer locations and used 21 and 30 home ranges during 2005 and 2006, respectively, to estimate habitat selection. Results indicated that selection occurred at the population (P rural development areas containing permanent water sources during extreme drought conditions during 2006. Deer likely selected for fields of CRP grasslands during early summer for cover and natural forages, such as clover (Trifolium sp.), prior to the period when agricultural crops become available. Drought conditions occurring in semiarid prairie grassland regions may reduce food and water availability and contribute to subsequent changes in deer habitat selection across the range of the species.

  15. Prescribed burning supports grassland biodiversity - A multi-species study

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

  16. Semi-Markov processes

    CERN Document Server

    Grabski

    2014-01-01

    Semi-Markov Processes: Applications in System Reliability and Maintenance is a modern view of discrete state space and continuous time semi-Markov processes and their applications in reliability and maintenance. The book explains how to construct semi-Markov models and discusses the different reliability parameters and characteristics that can be obtained from those models. The book is a useful resource for mathematicians, engineering practitioners, and PhD and MSc students who want to understand the basic concepts and results of semi-Markov process theory. Clearly defines the properties and

  17. Elevated CO2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability.

    Science.gov (United States)

    Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise

    2018-05-01

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.

  18. Combining machine learning and ontological data handling for multi-source classification of nature conservation areas

    Science.gov (United States)

    Moran, Niklas; Nieland, Simon; Tintrup gen. Suntrup, Gregor; Kleinschmit, Birgit

    2017-02-01

    Manual field surveys for nature conservation management are expensive and time-consuming and could be supplemented and streamlined by using Remote Sensing (RS). RS is critical to meet requirements of existing laws such as the EU Habitats Directive (HabDir) and more importantly to meet future challenges. The full potential of RS has yet to be harnessed as different nomenclatures and procedures hinder interoperability, comparison and provenance. Therefore, automated tools are needed to use RS data to produce comparable, empirical data outputs that lend themselves to data discovery and provenance. These issues are addressed by a novel, semi-automatic ontology-based classification method that uses machine learning algorithms and Web Ontology Language (OWL) ontologies that yields traceable, interoperable and observation-based classification outputs. The method was tested on European Union Nature Information System (EUNIS) grasslands in Rheinland-Palatinate, Germany. The developed methodology is a first step in developing observation-based ontologies in the field of nature conservation. The tests show promising results for the determination of the grassland indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity and 76% for wetness.

  19. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    Directory of Open Access Journals (Sweden)

    Jens L. Hollberg

    2017-01-01

    Full Text Available Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs has the potential to contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing five differently-fertilized grassland communities. Therefore, we collected spectral signatures of these communities in a long-term fertilization experiment (since 1941 in Germany throughout the growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies throughout the growing season. Thus, the selection of the most promising single VI for grassland mapping was dependent on the date of the spectra acquisition. A random forests classification using all calculated VIs reduced variations in classification accuracy within the growing season and provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in the random forests algorithm.

  20. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  1. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  2. Influence of density on the seasonal utilization of broad grassland ...

    African Journals Online (AJOL)

    We monitored seasonal use of grassland types by white rhinos at two sites within the Hluhluwe iMfolozi Park (HiP). Thirty-two rhinos were removed from one site to reduce rhino density. Seasonal use of grassland types was similar at both sites, but differed to what a previous study reported. This was likely due to higher food ...

  3. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  4. A higher-level classification of the Pannonian and western Pontic steppe grasslands (Central and Eastern Europe).

    Science.gov (United States)

    Willner, Wolfgang; Kuzemko, Anna; Dengler, Jürgen; Chytrý, Milan; Bauer, Norbert; Becker, Thomas; Biţă-Nicolae, Claudia; Botta-Dukát, Zoltán; Čarni, Andraž; Csiky, János; Igić, Ruzica; Kącki, Zygmunt; Korotchenko, Iryna; Kropf, Matthias; Krstivojević-Ćuk, Mirjana; Krstonošić, Daniel; Rédei, Tamás; Ruprecht, Eszter; Schratt-Ehrendorfer, Luise; Semenishchenkov, Yuri; Stančić, Zvjezdana; Vashenyak, Yulia; Vynokurov, Denys; Janišová, Monika

    2017-01-01

    What are the main floristic patterns in the Pannonian and western Pontic steppe grasslands? What are the diagnostic species of the major subdivisions of the class Festuco-Brometea (temperate Euro-Siberian dry and semi-dry grasslands)? Carpathian Basin (E Austria, SE Czech Republic, Slovakia, Hungary, Romania, Slovenia, N Croatia and N Serbia), Ukraine, S Poland and the Bryansk region of W Russia. We applied a geographically stratified resampling to a large set of relevés containing at least one indicator species of steppe grasslands. The resulting data set of 17 993 relevés was classified using the TWINSPAN algorithm. We identified groups of clusters that corresponded to the class Festuco-Brometea . After excluding relevés not belonging to our target class, we applied a consensus of three fidelity measures, also taking into account external knowledge, to establish the diagnostic species of the orders of the class. The original TWINSPAN divisions were revised on the basis of these diagnostic species. The TWINSPAN classification revealed soil moisture as the most important environmental factor. Eight out of 16 TWINSPAN groups corresponded to Festuco-Brometea . A total of 80, 32 and 58 species were accepted as diagnostic for the orders Brometalia erecti , Festucetalia valesiacae and Stipo-Festucetalia pallentis , respectively. In the further subdivision of the orders, soil conditions, geographic distribution and altitude could be identified as factors driving the major floristic patterns. We propose the following classification of the Festuco-Brometea in our study area: (1) Brometalia erecti (semi-dry grasslands) with Scabioso ochroleucae-Poion angustifoliae (steppe meadows of the forest zone of E Europe) and Cirsio-Brachypodion pinnati (meadow steppes on deep soils in the forest-steppe zone of E Central and E Europe); (2) Festucetalia valesiacae (grass steppes) with Festucion valesiacae (grass steppes on less developed soils in the forest-steppe zone of E Central

  5. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  6. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  7. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fett Pinto

    2013-03-01

    Full Text Available Few studies have adequately described the floristic and structural features of natural grasslands associated with shallow basalt soils in southern Brazil. This study was carried out on natural grazing land used for livestock production in the municipality of Santana do Livramento, in the Campanha region of the state of Rio Grande do Sul, Brazil. The aim of the study was to describe the floristic and structural diversity of the area. The floristic list obtained comprises 229 plant taxa from 40 botanical families, with a predominance of the families Poaceae (62, Asteraceae (28, Fabaceae (16 and Cyperaceae (12. The estimated diversity and evenness in the community were 3.00 and 0.874, respectively. Bare soil and rock outcrops accounted for 19.3% of the area, resulting in limited forage availability. Multivariate analysis revealed two well-defined groups among the sampling units. One group showed a high degree of internal aggregation, associated with deep soils, and was characterized by the presence of tussocks, whereas the other was less aggregate and was characterized by prostrate species growing on shallow soil. Ordination analysis indicated a gradient of moisture and of soil depth in the study area, resulting in different vegetation patterns. These patterns were analogous to the vegetation physiognomies described for Uruguayan grasslands. Overall, the grassland community studied is similar to others found throughout southern Brazil, although it harbors more winter forage species. In addition, the rare grass Paspalum indecorum Mez is locally dominant in some patches, behaving similarly to P. notatum Fl., a widespread grass that dominates extensive grassland areas in southern Brazil.

  8. Interação comportamento de pastejo´dinâmica de tipos funcionais em pastagem natural na depressão central do Rio Grande do Sul Interaction between grazing behavior and functional type dynamics in native grassland in the central depression Region of Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Betina Raquel Cunha dos Santos

    2006-10-01

    Full Text Available Este estudo foi realizado com o objetivo de avaliar os comportamentos alimentar e espacial de bovinos em pastejo em função da dinâmica de tipos funcionais (TF em pastagem natural, definidos por meio da descrição de atributos morfológicos. Foram utilizadas novilhas em pastejo rotacionado, com oferta média de forragem de 12% (12 kg de MS/100 kg PV. O ritmo de atividade dos animais foi acompanhado durante o período de 12/02 a 27/02/2003 utilizando-se registradores automáticos Ethosys. Para a medição dos atributos, foram marcadas 30 unidades amostrais permanentes, compostas de cinco quadros contíguos de 0,20 x 0,20 m. Os resultados da descrição da comunidade indicaram um subconjunto ótimo de dois atributos (biomassa superior e biomassa lenhosa, os quais definiram oito TF, indicando congruência de 0,43 com a variável ambiental graus-dia. A evolução dos tempos de pastejo comprovou que, à medida que diminuem os TF preferidos, ocorre aumento nos tempos de pastejo. A caracterização da vegetação com base na definição de atributos, em comparação àquela realizada somente pela identificação das espécies presentes na área, facilitou a compreensão da resposta interativa vegetação ´ animal. Simultaneamente, à medida que a vegetação se alterou, os animais modularam seu comportamento ajustando seus ritmos de atividade, no tempo e no espaço, provocando continuamente impactos diferenciais na vegetação, que evolui com o tempo.This study aimed to describe the feeding and spatial behavior of beef heifers under rotational stocking, in response to the dynamics of the morphological functional types (TFs in natural grassland. Stocking rate was adjusted to keep an average of 12% (12 kg DM/100 kg BW of forage allowance. Animal activity was registered from 12 to 27 February 2003 using the Ethosys automatic device. Thirty permanent field sampling units comprised by five adjacent 0.20 x 0.20 m squares were used to determine pasture

  9. Enhancing the diversity of breeding invertebrates within field margins of intensively managed grassland: Effects of alternative management practices.

    Science.gov (United States)

    Fritch, Rochelle A; Sheridan, Helen; Finn, John A; McCormack, Stephen; Ó hUallacháin, Daire

    2017-11-01

    Severe declines in biodiversity have been well documented for many taxonomic groups due to intensification of agricultural practices. Establishment and appropriate management of arable field margins can improve the diversity and abundance of invertebrate groups; however, there is much less research on field margins within grassland systems. Three grassland field margin treatments (fencing off the existing vegetation "fenced"; fencing with rotavation and natural regeneration "rotavated" and; fencing with rotavation and seeding "seeded") were compared to a grazed control in the adjacent intensively managed pasture. Invertebrates were sampled using emergence traps to investigate species breeding and overwintering within the margins. Using a manipulation experiment, we tested whether the removal of grazing pressure and nutrient inputs would increase the abundance and richness of breeding invertebrates within grassland field margins. We also tested whether field margin establishment treatments, with their different vegetation communities, would change the abundance and richness of breeding invertebrates in the field margins. Exclusion of grazing and nutrient inputs led to increased abundance and richness in nearly all invertebrate groups that we sampled. However, there were more complex effects of field margin establishment treatment on the abundance and richness of invertebrate taxa. Each of the three establishment treatments supported a distinct invertebrate community. The removal of grazing from grassland field margins provided a greater range of overwintering/breeding habitat for invertebrates. We demonstrate the capacity of field margin establishment to increase the abundance and richness in nearly all invertebrate groups in study plots that were located on previously more depauperate areas of intensively managed grassland. These results from grassland field margins provide evidence to support practical actions that can inform Greening (Pillar 1) and agri

  10. Soil invertebrate fauna enhances grassland succession and diversity.

    Science.gov (United States)

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  11. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  12. Electrical Resistivity Tomography Reveals Upward Redistribution of Soil-Water by Coyote Brush in a Shrub-Grassland Ecotone

    Science.gov (United States)

    Manning, J. E.; Schulz, M. S.; Lambrecht, D. S.

    2016-12-01

    Species imbalance within many California plant assemblages may arise due to more intense wildfires as well as climate warming. Given this, coyote brush (Baccharis pilularis DC), a native evergreen shrub known as a ready colonizer of disturbed soil, may become more dominant. While prolonged spring soil moisture is required for seedling establishment, 1+ year-old coyote brush can withstand low soil water potentials (-1.2 MPa). Beyond this, little is known about its soil-water dynamics. Hydraulic redistribution of water within the soil profile by plant roots has been established in numerous species in the past 20 years. Recent quantification of the water quantity re-distributed by root systems are beginning to provide detail that could inform ET, weathering, and carbon cycling models. Electrical resistivity tomography (ERT) has been used to study soil hydraulics in natural as well as cropland settings. This study is the first known to use ERT to investigate hydraulic redistribution in coyote brush. One mid-size shrub surrounded by open grassland was selected at the study site, located on a coastal marine terrace west of Santa Cruz, CA. The soil profile, previously characterized with ERT and auger-based soil-water sampling, includes a clay-rich B horizon and is texturally non-uniform due to bioturbation to 0.6 meter. The 12-m ERT survey transect had 48 semi-permanent electrodes, with the 4-m wide shrub canopy at probes 16 to 32. Five repeats of evening and morning surveys were conducted. Heterogeneous texture and severe soil drying necessitated qualitative comparison across time. Overnight resistivity changes using differences plots of the modelled data revealed increased moisture beneath the shrub canopy during the night. Areas beyond the canopy—presumably outside the root zone—experienced variable overnight changes, with moisture increasing in the clay-rich horizon. Preliminary analysis suggests that coyote brush roots redistribute water upward within the soil

  13. Inadequate thermal refuge constrains landscape habitability for a grassland bird species.

    Science.gov (United States)

    Tomecek, John M; Pierce, Brian L; Reyna, Kelly S; Peterson, Markus J

    2017-01-01

    Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite ( Colinus virginianus ; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures) during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations ( n = 126) using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE) compared to random locations (36.81 °C ± 0.07 SE); at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE) than random location (32.99 °C ± 0.06 SE). Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE) and ambient height (36.22% ± 0.10 SE) compared to random locations at nest (33.35% ± 0.12 SE) and ambient height (35.75% ± 0.10 SE). Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites and

  14. Inadequate thermal refuge constrains landscape habitability for a grassland bird species

    Directory of Open Access Journals (Sweden)

    John M. Tomecek

    2017-08-01

    Full Text Available Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite (Colinus virginianus; hereafter bobwhite as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations (n = 126 using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE compared to random locations (36.81 °C ± 0.07 SE; at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE than random location (32.99 °C ± 0.06 SE. Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE and ambient height (36.22% ± 0.10 SE compared to random locations at nest (33.35% ± 0.12 SE and ambient height (35.75% ± 0.10 SE. Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites

  15. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland

    OpenAIRE

    Escolar, Cristina; Maestre, Fernando T.; Rey, Ana

    2015-01-01

    Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increa...

  16. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    Science.gov (United States)

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  17. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  18. Semi-leptonic interactions

    International Nuclear Information System (INIS)

    Gaillard, J.M.

    In spite of the presence of poorly understood strong interaction effects, the theory of hadronic currents leads to a considerable predictive power. This is shown in the discussion of the semi-leptonic decays

  19. Understanding the causes of changing grassland use and productivity in Inner Mongolia, China

    Science.gov (United States)

    Zhang, Y.; Gao, L.; Qiao, G.; Chen, J.

    2012-12-01

    Some dramatic changes of grassland use and productivity have been taking place in Inner Mongolia in the past half century. While the changes are apparently driven by both socio-economic factors and climate, their contribution and interaction are largely unknown. We hypothesize that population growth is an important driving force behind the loss and degradation of the grassland, the market forces and institutional factors such as de-collectivization are become more important factors as the economy is moving from planned economy to market economy. This paper assesses the effects of socio-economic, demographic, institutional and climate factors on grassland use and productivity using a panel data set. The panel data compose the years from 1970s to 2000s and all prefectures in Inner Mongolia. A generalized least squares estimation method, allowing individual effects for prefecture level are applied to the examination. The effect of climate change is tested as well and the coupled socio-economic system and the natural system are investigated.

  20. Conditional CO2 flux analysis of a managed grassland with the aid of stable isotopes

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Emmenegger, L.; Knohl, A.; Buchmann, N.; Eugster, W.

    2009-04-01

    Short statured managed ecosystems, such as agricultural grasslands, exhibit high temporal changes in carbon dioxide assimilation and respiration fluxes for which measurements of the net CO2 flux, e.g. by using the eddy covariance (EC) method, give only limited insight. We have therefore adopted a recently proposed concept for conditional EC flux analysis of forest to grasslands, in order to identify and quantify daytime sub-canopy respiration fluxes. To validate the concept, high frequency (≈5 Hz) stable carbon isotope analyis of CO2 was used. We made eddy covariance measurements of CO2 and its isotopologues during four days in August 2007, using a novel quantum cascade laser absorption spectrometer, capable of high time resolution stable isotope analysis. The effects of a grass cut during the measurement period could be detected and resulted in a sub-canopy source conditional flux classification, for which the isotope composition of the CO2 could be confirmed to be of a respiration source. However, the conditional flux method did not work for an undisturbed grassland canopy. We attribute this to the flux measurement height that was chosen well above the roughness sublayer, where the natural isotopic tracer (δ13C) of respiration was too well mixed with background air.

  1. [Tourism function zoning of Jinyintan Grassland Scenic Area in Qinghai Province based on ecological sensitivity analysis].

    Science.gov (United States)

    Zhong, Lin-sheng; Tang, Cheng-cai; Guo, Hua

    2010-07-01

    Based on the statistical data of natural ecology and social economy in Jinyintan Grassland Scenic Area in Qinghai Province in 2008, an evaluation index system for the ecological sensitivity of this area was established from the aspects of protected area rank, vegetation type, slope, and land use type. The ecological sensitivity of the sub-areas with higher tourism value and ecological function in the area was evaluated, and the tourism function zoning of these sub-areas was made by the technology of GIS and according to the analysis of eco-environmental characteristics and ecological sensitivity of each sensitive sub-area. It was suggested that the Jinyintan Grassland Scenic Area could be divided into three ecological sensitivity sub-areas (high, moderate, and low), three tourism functional sub-areas (restricted development ecotourism, moderate development ecotourism, and mass tourism), and six tourism functional sub-areas (wetland protection, primitive ecological sightseeing, agriculture and pasture tourism, grassland tourism, town tourism, and rural tourism).

  2. Indirect Effects of Energy Development in Grasslands

    Science.gov (United States)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not

  3. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  4. Seedling responses to water pulses in shrubs with contrasting histories of grassland encroachment.

    Directory of Open Access Journals (Sweden)

    Steven R Woods

    Full Text Available Woody plant encroachment into grasslands has occurred worldwide, but it is unclear why some tree and shrub species have been markedly more successful than others. For example, Prosopis velutina has proliferated in many grasslands of the Sonoran Desert in North America over the past century, while other shrub species with similar growth form and life history, such as Acacia greggii, have not. We conducted a glasshouse experiment to assess whether differences in early seedling development could help explain why one species and not the other came to dominate many Sonoran Desert grasslands. We established eight watering treatments mimicking a range of natural precipitation patterns and harvested seedlings 16 or 17 days after germination. A. greggii had nearly 7 times more seed mass than P. velutina, but P. velutina emerged earlier (by 3.0±0.3 d and grew faster (by 8.7±0.5 mg d⁻¹. Shoot mass at harvest was higher in A. greggii (99±6 mg seedling⁻¹ than in P. velutina (74±2 mg seedling⁻¹, but there was no significant difference in root mass (54±3 and 49±2 mg seedling⁻¹, respectively. Taproot elongation was differentially sensitive to water supply: under the highest initial watering pulse, taproots were 52±19 mm longer in P. velutina than in A. greggii. Enhanced taproot elongation under favorable rainfall conditions could give nascent P. velutina seedlings growth and survivorship advantages by helping reduce competition with grasses and maintain contact with soil water during drought. Conversely, A. greggii's greater investment in mass per seed appeared to provide little return in early seedling growth. We suggest that such differences in recruitment traits and their sensitivities to environmental conditions may help explain ecological differences between species that are highly similar as adults and help identify pivotal drivers of shrub encroachment into grasslands.

  5. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    Science.gov (United States)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  6. Interactions between the flooding regime and floodplain grasslands in the Tana River Delta, in Kenya

    Science.gov (United States)

    Leauthaud, Crystele; Musila, Winfred; Duvail, Stéphanie; Kergoat, Laurent; Hiernaux, Pierre; Grippa, Manuela; Albergel, Jean

    2017-04-01

    The floodplain grasslands of the Tana River Delta, located on the East African coast in Kenya, form part of an intertwined socio-ecological deltaic system of high biodiversity value that delivers numerous goods and services. Mainly composed of Echinochloa stagnina (Retz) P. Beauv., a high-value forage species, this ecosystem is the major dry-season grazing grounds of the local pastoralist communities. The construction of hydroelectric infrastructure has led to a modification of the flooding regime. The impacts of the resulting reduction of floods in the deltaic zone on ecosystem properties and services still need to be assessed. In such a perspective, this study characterizes the link between the flooding regime of the Tana River and the growth pattern of its floodplain grassland. Aboveground dry phytomass was sampled for 15 months under a wide variety of naturally flooded and non-flooded conditions and controlled irrigation and cutting frequency treatments. Annual aboveground dry phytomass attained high values between 11 T.ha-1 and 32 T.ha-1 and annual net primary production of the grasslands reached 35 T.ha-1.year-1. Growth rates clearly depended on the flooding regime, management and climate conditions and were on average more than twice as fast during, and 50% faster after the floods, relative to pre-flood conditions. A plant growth model allowed testing the effect of different flooding regimes on plant productivity, confirming very low productivity in the absence of floods. These results suggest that rangeland and water management for the Tana River deltaic wetlands are tightly linked. The projected construction of another dam could lead to a reduction of flood extent and period and a decrease of grassland productivity and growth duration. Mitigation of this type of negative impacts, which will have direct and adverse consequences for the pastoralist communities as well as on the delivery of other goods and services, needs to be undertaken.

  7. The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands.

    Science.gov (United States)

    Power, Alison G; Borer, Elizabeth T; Hosseini, Parviez; Mitchell, Charles E; Seabloom, Eric W

    2011-08-01

    Research on plant viruses in natural ecosystems has been increasing rapidly over the past decade. This paper reviews recent research on the barley and cereal yellow dwarf viruses (B/CYDVs) in grasslands of the western US, beginning with the evidence that the disease caused by these viruses facilitated the invasion of western US grasslands by European annual grasses. Observational and experimental studies of B/CYDVs were carried out along a latitudinal gradient (33.8-48.8°N) from southern California to southern Canada. The prevalence and community composition of B/CYDVs were assessed over a variety of scales and under a range of biotic and abiotic conditions. The findings indicate that both biotic and abiotic factors are important influences on virus ecology and epidemiology. Introduced annual grasses are high-quality hosts that amplify both virus and vector populations in this system, but our research suggests that endemic perennial grasses are critically important for sustaining virus populations in contemporary grasslands largely composed of introduced species. Experiments indicated that increased phosphorus supply to hosts resulted in greater host biomass and higher virus prevalence. Using experimental exclosures, it was found that the presence of grazing vertebrate herbivores increased the abundance of annual grasses, resulting in increased virus prevalence. The results of these studies suggest that patterns of B/CYDV prevalence and coinfection in western US grasslands are strongly shaped by the interactions of host plants, vectors, vertebrate herbivores, and abiotic drivers including nutrients. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Supporting biodiversity by prescribed burning in grasslands - A multi-taxa approach.

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid D; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2016-12-01

    There are contrasting opinions on the use of prescribed burning management in European grasslands. On the one hand, prescribed burning can be effectively used for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. On the other hand burning can have a detrimental impact on grassland biodiversity by supporting competitor grasses and by threatening several rare and endangered species, especially arthropods. We studied the effects of prescribed burning in alkaline grasslands of high conservation interest. Our aim was to test whether dormant-season prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in East-Hungary: in three sites, a prescribed fire was applied in November 2011, while three sites remained unburnt. We studied the effects of burning on soil characteristics, plant biomass and on the composition of vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soil pH, organic matter, potassium and phosphorous did not change, but soluble salt content increased significantly in the burnt sites. Prescribed burning had several positive effects from the nature conservation viewpoint. Shannon diversity and the number of flowering shoots were higher, and the cover of the dominant grass Festuca pseudovina was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control. The key finding of our study was that prescribed burning did not decrease the abundance and diversity of arthropod taxa. Species-level analyses showed that out of the most abundant invertebrate species, 10 were not affected, 1 was negatively and 1 was positively affected by burning. Moreover, our results suggest that prescribed burning leaving unburnt patches can be a viable management tool in open landscapes, because it supports plant diversity and does not threaten

  9. An assessment of rehabilitation success in an African grassland using ants as bioindicators

    Directory of Open Access Journals (Sweden)

    Samantha-Leigh Jamison

    2016-09-01

    Full Text Available Many studies that evaluate rehabilitation make use of invertebrate bioindicators. Invertebrates, especially ants, make useful indicators as they are sensitive to environmental change. We compared ant assemblages in rehabilitated and control sites in the Rietvlei Nature Reserve, a protected area important for grassland conservation in South Africa. Pitfall traps were used to sample ant assemblages at six control sites and six rehabilitated sites. In addition, environmental and vegetation surveys were conducted at each site. We found that the ant assemblages differed significantly between the control and rehabilitated sites, although there was considerable overlap; the control sites supported a greater species density and higher abundance of ants than the rehabilitated sites. In total, 36 ant species were collected (control sites: 34 species; rehabilitated sites: 26 species. The environmental survey revealed that percentages of bare ground and coarse sand, as well as soil pH, differed significantly between the control and rehabilitated sites. The control and rehabilitated sites also supported significantly different plant assemblages. Three indicator ant species were identified for the control sites: Crematogaster rectinota, Crematogaster amita and Monomorium fastidium. No indicator species were identified for the rehabilitated sites. These results suggest that recovery from the previous agricultural use of the area is still incomplete and highlights the lack of research examining the success of rehabilitation in the grassland biome. Conservation implications: The present study illustrates the need for further research on rehabilitation techniques utilised in the grassland biome. This is of value as the remainder of South African grasslands are considered critically endangered.

  10. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  11. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China

    Directory of Open Access Journals (Sweden)

    He Zhao

    2017-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China. Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05. The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities.

  12. Effects of Erosion from Mounds of Different Termite Genera on Distinct Functional Grassland Types in an African Savannah.

    Science.gov (United States)

    Gosling, Cleo M; Cromsigt, Joris P G M; Mpanza, Nokukhanya; Olff, Han

    A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites can contribute to grazing lawn development is through erosion of soil from aboveground mounds to the surrounding soil surface. This may alter the nutrient status of the surrounding soils. We hypothesize that the importance of this erosion varies with termite genera, depending on feeding strategy and mound type. To test this, we simulated erosion by applying mound soil from three termite genera ( Macrotermes , Odontotermes , and Trinervitermes ) in both a field experiment and a greenhouse experiment. In the greenhouse experiment, we found soils with the highest macro nutrient levels (formed by Trinervitermes ) promoted the quality and biomass of both a lawn ( Digitaria longiflora ) and a bunch ( Sporobolus pyramidalis ) grass species. In the field we found that soils with the highest micro nutrient levels (formed by Macrotermes ) showed the largest increase in cover of grazing lawn species. By linking the different nutrient availability of the mounds to the development of different grassland states, we conclude that the presence of termite mounds influences grassland mosaics, but that the type of mound plays a crucial role in determining the nature of the effects.

  13. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  14. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  15. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  16. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  17. Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2018-06-01

    Full Text Available Soil erosion is one of the most severe problems facing environments and has increased throughout the 20th century. Soil erodibility (K-factor is one of the important indicators of land degradation, and many models have been used to estimate K values. Although soil erodibility has been estimated, the comparison of different models and their usage at a regional scale and, in particular, for different land use types, need more research. Four of the most widely distributed land use types were selected to analyze, including introduced and natural grassland, as well as introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil properties were measured to estimate soil erodibility in the Loess Plateau. The results show that: (1 the erosion productivity impact calculator (EPIC model and SHIRAZI model are both suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters; (2 introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the differences between introduced and natural shrubland are not obvious at a catchment scale; (3 the K values of introduced grassland, natural grassland, introduced shrubland and natural shrubland in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2, while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2 in the 5–20 cm layer. The areas with a mean multiyear precipitation of 370–440 mm are the most important places for vegetation restoration construction management at a regional scale. A comprehensive balance between water conservation and soil conservation is needed and important when selecting the species used to vegetation restoration. This study provides suggestions for ecological restoration and provides a case study for the estimate of soil erodibility in arid and semiarid

  18. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

    DEFF Research Database (Denmark)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen

    2017-01-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants...... in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition...... under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration...

  19. Biodiversity in temperate European grasslands: origin and conservation.

    OpenAIRE

    Pärtel, Meelis; Bruun, Hans Henrik; Sammul, Marek

    2005-01-01

    Northern Europe is in the forest zone, but wild megaherbivores have maintained grass-dominated vegetation here for the last 1.8 million years. Continuity of the grassland biome through glacialinterglacial cycles and connection to steppe vegetation has resulted in the evolution, immigration, and survival of a large number of grassland species. During the last millennia the effect of wild ungulates has been replaced by domestic grazers and hay making, and the persistence of grasslan...

  20. PV water pumping systems for grassland and farmland conservation

    OpenAIRE

    Campana, Pietro Elia

    2013-01-01

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of th...

  1. The Eurasian Dry Grassland Group (EDGG in 2016–2017

    Directory of Open Access Journals (Sweden)

    Venn Stephen

    2018-06-01

    Full Text Available This report summarizes the activities and achievements of the Eurasian Dry Grassland Group (EDGG from mid-2016 through to the end of 2017. During this period, the 13th Eurasian Grassland Conference took place in Sighişoara, Romania, and the 14th conference was held in Riga, Latvia. The 10th EDGG Field Workshop on Biodiversity patterns across a precipitation gradient in the Central Apennine mountains was conducted in the Central Apennines, Italy, this time in addition to multi-scale sampling of vascular plants, bryophytes and lichens, also including one animal group (leaf hoppers. Apart from the quarterly issues of its own electronic journal (Bulletin of the Eurasian Dry Grassland Group, EDGG also finalised five grassland-related Special Features/Issues during the past 1.5 years in the following international journals: Applied Vegetation Science, Biodiversity and Conservation, Phytocoenologia, Tuexenia and Hacquetia. Beyond that, EDGG facilitated various national and supra-national vegetationplot databases of grasslands and established its own specialised database for standardised multi-scale plot data of Palaearctic grasslands (GrassPlot.

  2. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  3. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  4. Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu

    2018-02-01

    Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.

  5. Eficiência de conversão da radiação fotossinteticamente ativa incidente em biomassa aérea da vegetação campestre natural no bioma Campos Sulinos do Brasil Conversion efficiency of photosynthetic active radiation to aboveground natural grasslands dry matter in the Campos Sulinos biome, Brazil

    Directory of Open Access Journals (Sweden)

    Eliana Lima da Fonseca

    2006-04-01

    Full Text Available Neste trabalho, foi calculada, para os diferentes meses da principal estação de crescimento da vegetação, a eficiência de conversão da radiação fotossinteticamente ativa incidente na biomassa aérea para a vegetação campestre natural do bioma Campo Sulino. A área de estudos estava localizada na Embrapa Pecuária Sul, no município de Bagé, (RS, estando a vegetação sob pastejo contínuo. Os resultados indicaram variações nos valores desta eficiência conforme o estádio fenológico da vegetação pastejada, o que demonstra que a utilização de um valor único para o cálculo da produção de biomassa aérea da vegetação campestre natural é inadequado para estimativas feitas para períodos inferiores a um ano.The conversion efficiency of the photosinthetically active radiation in the above ground biomass in the natural pasture of the 'Campos Sulinos' bioma was calculated in this work; the period considered was the main pasture growth season. The area of study was located at Embrapa Pecuária Sul, in Bagé (RS and the pasture was under continuous grazing. The results indicated variations in the values of this efficiency according to the phenological stage of the grazed pasture, which demonstrates that it is not possible to use the same estimate value for biomass accumulation during periods smaller than a year.

  6. Measuring denitrification after grassland renewal and grassland conversion to cropland by using the 15N gas-flux method

    Science.gov (United States)

    Buchen, Caroline; Eschenbach, Wolfram; Flessa, Heinz; Giesemann, Anette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2015-04-01

    Denitrification, the reduction of oxidized forms of inorganic N to N2O and N2 is an important pathway of gaseous nitrogen losses. Measuring denitrification, especially the reduction of N2O to N2, expressed in the product ratio (N2O/(N2O + N2)), is rather difficult and hence rarely performed under field conditions. But using the 15N gas-flux method allows determining N transformation processes in their natural environment. In order to develop effective climate mitigation strategies understanding the N2O source is essential. We used the 15N gas-flux method to determine N2O and N2 emissions following grassland renewal and conversion techniques. Therefore we selected three different treatments: control (C), mechanical grassland renovation (GR) (autumn 2013) and grassland conversion to maize (GM) (spring 2014) from field plot trials on two different sites (Histic Gleysoil and Plaggic Anthrosol) near Oldenburg, Lower Saxony, Germany. We applied 15N labeled KNO3- (60 atom. % 15N) at a rate equivalent to common farming practices (150 kg N*ha-1) using needle injection of fertilizer solution in three different depths (10 cm, 15 cm, 20 cm) for homogeneous soil labeling up to 30 cm in microplots. During the first 10 days after application (May 2014) gas flux measurements from closed chambers were performed every second day and then weekly following a period of 8 weeks. Gas samples were analyzed for δ15N of N2 and N2O by IRMS according to Lewicka-Szczebak et al. (2013). Concentration and 15N enrichment of NO3- in soil water was determined on weekly samples using the SPIN-MAS technique (Stange et al. 2007). Fluxes of N2 and N2O evolved from the 15N labeled soil nitrogen pool were calculated using the equations of Spott et al. (2006). Peak events of N2 and N2O emissions occurred during the first 10 days of measurement, showing differences in soil types, as well as treatment variations. N2 fluxes up to 178 g*ha-1*day-1 and N2O fluxes up to 280 g*ha-1*day-1 were measured on the

  7. Management matters: Testing a mitigation strategy of nitrous oxide emissions on managed grassland

    Science.gov (United States)

    Fuchs, Kathrin; Hörtnagl, Lukas; Eugster, Werner; Koller, Patrick; Käslin, Florian; Merbold, Lutz

    2017-04-01

    The magnitude of greenhouse gas (GHG) exchange between managed grasslands and the atmosphere depends besides climate predominantly on management practices. While natural or extensively managed grasslands are known to function as GHG sinks, intensively managed grasslands are characterized by substantial nitrous oxide (N2O) emissions diminishing their sink function. One potential N2O mitigation strategy is to reduce the required amount of nitrogen (N) fertilizer input by using biological nitrogen fixation (BNF) via legumes. However, the effect of legumes on nitrous oxide emissions is still not fully understood. In this study we quantify net GHG fluxes from two differently managed grassland parcels (mitigation, control) and relate our results to productivity (yields). In addition, we aim at revealing the influence of various driver variables on N2O exchange. Our experimental setup consisted of an eddy covariance tower that measured the net exchange of the three major anthropogenic GHGs, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). Both grassland parcels can be covered with this tower due to two prevailing wind directions. GHG flux measurements were accompanied by measurements of commonly known driver variables such as water filled pore space, soil temperature, soil oxygen concentrations and mineral N to disentangle the soil meteorological influence of N2O fluxes from human drivers. Following organic fertilizer application, we measured elevated N2O emissions (>1 nmol m-2 s-1) at the control parcel and unchanged N2O emissions at the treatment parcel. Net annual fluxes were 54% and 50% lower at the experimental parcel in 2015 and 2016, respectively. Annual yields did not significantly differ between parcels, but were slightly lower at the experimental parcel compared to the control parcel. Significantly lower nitrous oxide fluxes under experimental management indicate that nitrous oxide emissions can be effectively reduced at very low costs with a clover

  8. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  9. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    Science.gov (United States)

    McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin

    2017-01-01

    ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.

  10. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America.

    Science.gov (United States)

    Dotta, G; Phalan, B; Silva, T W; Green, R; Balmford, A

    2016-06-01

    Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density-yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species' total population size was greater under land-sparing, land-sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation. © 2015 Society for Conservation Biology.

  11. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  12. Incorporating grassland management in a global vegetation model

    Science.gov (United States)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  13. Evaluating productivity-biodiversity relationship and spectral diversity in prairie grasslands under different fire management treatments using in-situ and remote sensing hyperspectral data

    Science.gov (United States)

    Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.

    2017-12-01

    Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.

  14. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  15. Grassland ecology and population growth: striking a balance.

    Science.gov (United States)

    Hou, D; Duan, C; Zhang, D

    2000-06-01

    Degradation of forest and grasslands in western China attributes to the soil erosion and desertification in the country. Researchers have established that the primary reason for the degradation of grasslands is overgrazing, which in turn is caused by a number of factors, including over-population and over-reliance on animal husbandry. In addition, the existing administrative system has also proved ineffective in ensuring sustainable development. On contrary, many local governments even encourage exploitative development of grassland; thus, localities opened up grassland for growing crops in an effort to increase income. According to estimates, degraded grassland accounts for more than one-third of utilizable acreage and another one-third suffers from a profusion of rats and pests. To redress the situation, central government should implement strategies in achieving sustainable development, such as providing banking and tax incentives for the development of the secondary and tertiary industries, and supporting education and training of youths from herding areas. Moreover, government should increase spending on infrastructural construction and ecological preservation. Finally, the family planning program needs to be enforced to control population growth and improve the quality of peoples¿ lives.

  16. Prescribed burning to affect a state transition in a shrub-encroached desert grassland

    Science.gov (United States)

    Prescribed burning is a commonly advocated and historical practice for control of woody species encroachment into grasslands on all continents. However, desert grasslands of the southwestern United States often lack needed herbaceous fuel loads for effective prescriptions, dominant perennial gramin...

  17. Data-model synthesis of grassland carbon metabolism. Quantifying direct, indirect & interactive effects of warming & elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pendall, Elise [Univ. of Wyoming, Laramie, WY (United States); Ogle, Kiona [Univ. of Wyoming, Laramie, WY (United States); Parton, William [Univ. of Wyoming, Laramie, WY (United States)

    2016-02-29

    This research project improved understanding of how climate change (elevated atmospheric CO2, warming and altered precipitation) can affect grassland ecosystem productivity and nutrient availability. Our advanced experimental and modeling methods allowed us to test 21 specific hypotheses. We found that ecosystem changes over years of exposure to climate change can shift the plant communities and potentially make them more resilient to future climate changes. These changes in plant communities may be related to increased growth of belowground roots and enhanced nutrient uptake by some species. We also found that climate change can increase the spread of invasive and noxious weeds. These findings are important for land managers to make adaptive planning decisions for domestic livestock production in response to climate variability in semi-arid grasslands.

  18. Carbon fluxes from an urban tropical grassland

    International Nuclear Information System (INIS)

    Ng, B.J.L.; Hutyra, L.R.; Nguyen, H.; Cobb, A.R.; Kai, F.M.; Harvey, C.; Gandois, L.

    2015-01-01

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO 2 respiration. Standing aboveground turfgrass biomass was 80 gC m −2 , with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1 . The contribution of autotrophic respiration was 49–76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO 2 concentrations. - Highlights: • We measured urban turfgrass CO 2 respiration rates and soil characteristics. • Mean observed ecosystem respiration was 7.9 ± 1.1 μmol m −2  s −1 . • Soil temperature and moisture were largely insignificant drivers of observed flux. - We found a Singapore urban turfgrass to be approximately carbon neutral, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1

  19. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    Science.gov (United States)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  20. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  1. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  2. Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"

    Science.gov (United States)

    Gerald J. Gottfried

    2004-01-01

    Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...

  3. Resilience and stability of the grasslands of the Transkei | B | African ...

    African Journals Online (AJOL)

    In spite of very high stocking rates the grasslands of Transkei still have in many areas a high cover and many climax species. The concepts of resilience and stability are used in an attempt to explain dynamics of the grasslands. Keywords: resiliences|stabilities|grasslands|Transkei|stocking rates|basal covers|grass ...

  4. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  5. Forest and grassland carbon in North America: A short course for land managers

    Science.gov (United States)

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  6. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China.

    Science.gov (United States)

    Wu, Junxi; Zhao, Yan; Yu, Chengqun; Luo, Liming; Pan, Ying

    2017-05-15

    Developing sustainable use patterns for alpine grassland in Tibet is the primary challenge related to conserving these vulnerable ecosystems of the 'world's third pole' and guaranteeing the well-being of local inhabitants. This challenge requires researchers to think beyond the methods of most current studies that are limited to a single aspect of conservation or productivity, and focus on balancing various needs. An analysis of trade-offs involving ecosystem services provides a framework that can be used to quantify the type of balancing needed. In this study, we measured variations in four types of ecosystem services under five types of grassland management including grazing exclusion, sowing, combined plowing and grazing exclusion, combined plowing and sowing, and natural grassland, from 2013 to 2015. In addition, we accessed the existence and changing patterns of ecosystem service trade-offs using Spearman coefficients and a trade-off index. The results revealed the existence of trade-offs among provisioning and regulating services. Plowing and sowing could convert the trade-off relationships into synergies immediately. Grazing exclusion reduced the level of trade-offs gradually over time. Thus, the combined plowing and sowing treatment promoted the total supply of multiple ecosystem services when compared with natural grassland. We argue that the variations in dry matter allocation to above- and belowground serve as one cause of the variation in trade-off relationships. Another cause for variation in trade-offs is the varied species competition between selection effects and niche complementarity. Our study provides empirical evidence that the effects of trade-offs among ecosystem services could be reduced and even converted into synergies by optimizing management techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Leaf injury characteristics of grassland species exposed to ozone in relation to soil moisture condition and vapour pressure deficit

    International Nuclear Information System (INIS)

    Bungener, P.; Balls, G.R.; Nussbaum, S.; Geissmann, M.; Grub, A.; Fuhrer, J.

    1999-01-01

    A range of plant species typical of semi-natural grasslands were tested for their sensitivity to short-term ozone injury under normal and reduced irrigation, and in relationship to air vapour pressure deficit. Potted specimens of 24 herbs, legumes and grasses were exposed during two seasons to four O 3 treatments in open-top chambers. The ozone treatments were: (a) charcoal-filtered air; (b) charcoal-filtered air plus ozone to match ambient levels; (c) charcoal-filtered air plus O 3 to ambient levels 1.5 and (d) charcoal-filtered air with ozone added to twice ambient levels during selected episodes of 7–13 d. During these ozone episodes, half of the plants in each ozone treatment received reduced irrigation (dry treatment) while the rest was kept under full irrigation (wet treatment). Type and date of first occurrence of leaf injury were noted during individual growth periods. Plants were harvested three times per year, and the percentage of injured leaves was recorded. Depending on species, injury symptoms were expressed as flecking (O 3 -specific injury), leaf yellowing or anthocyanin formation. Carum carvi and most species of the Fabaceae family (Onobrychis sativa, Trifolium repens, Trifolium pratense) were found to be most responsive to O 3 , injury occurring after only a few days of exposure in treatment (b). An episodic reduction in irrigation tended to reduce the expression of O 3 -specific symptoms, but only in species for which a reduction in soil moisture potential and an associated reduction in stomatal conductance during the dry episodes were observed. In other species, the protection from O 3 injury seemed to be of little importance. Using artificial neural networks the injury response of nine species was analysed in relation to Species, stomatal conductance, ozone as AOT40 (accumulated exposure above a threshold of 0.04 ppm for periods with global radiation ≥ 50 W m −2 (Fuhrer et al., 1997)), mean relative growth rate, air vapour pressure

  8. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  9. The integrated nitrous oxide and methane grassland project

    Energy Technology Data Exchange (ETDEWEB)

    Leffelaar, P.A.; Langeveld, C.A.; Hofman, J.E.; Segers, R.; Van den Pol-van Dasselaar, A.; Goudriaan, J.; Rabbinge, R.; Oenema, O. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    2000-07-01

    The integrated nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) grassland project aims to estimate and explain emissions of these greenhouse gases from two ecosystems, namely drained agricultural peat soil under grass at the experimental farm Zegveld and undrained peat in the nature preserve Nieuwkoopse Plassen, both Netherlands. Peat soils were chosen because of their expected considerable contribution to the greenhouse gas budget considering the prevailing wet and partial anaerobic conditions. The emission dynamics of these ecosystems are considered representatives of large peat areas because the underlying processes are rather general and driven by variables like organic matter characteristics, water and nutrient conditions and type of vegetation. The research approach comprises measurements and modelling at different integration levels relating to the microbiology of the production and consumption of N{sub 2}O and CH{sub 4} (laboratory studies), their movement through peat soil (rhizolab and field studies), and the resulting fluxes (field studies). Typical emissions from drained soil were 15-40 kg ha{sup -1} y{sup -1} N{sub 2}O and virtually zero for CH{sub 4}. The undrained soil in the nature preserve emitted 100-280 kg ha{sup -1} y{sup -1} CH{sub 4}, and probably little N{sub 2}O. The process knowledge, collected and partly integrated in the models, helps to explain these data. For example, the low methane emission from drained peat can more coherently be understood and extrapolated because: (1) upper soil layers are aerobic, thus limiting methane production and stimulating methane oxidation, (2) absence of aerenchymatous roots of wetland plants that connect deeper anaerobic soil layers where methane is produced to the atmosphere and supply labile carbon, (3) a low methane production potential in deep layers due to the low decomposability of organic matter, and (4) long anaerobic periods needed in the topsoil to develop a methane production potential. This

  10. Historia natural cuantitativa de una relación parásito-hospedero: el sistema Tristerix-cactáceas en Chile semiárido Quantitative natural history of a host-parasite relationship: the Tristerix-cactus system in semiarid Chile

    Directory of Open Access Journals (Sweden)

    RODRIGO MEDEL

    2002-03-01

    Full Text Available Presentamos información cuantitativa de la historia natural de la relación parásito-hospedero constituida por el muérdago holoparásito Tristerix aphyllus (Loranthaceae y sus hospederos cactáceas. Más específicamente, indagamos en los determinantes históricos y biogeográficos de la interacción y cuantificamos la autoecología de la biología floral, polinización, dispersión y parasitismo en este sistema. El impacto del parasitismo sobre la evolución de sistemas defensivos en las cactáceas hospederas es considerado tanto a nivel intraespecífico como interespecífico, tomando en cuenta el potencial para selección mediada por parásitos y la estructura geográfica de la interacción. Finalmente, sugerimos futuras avenidas de investigación en este sistema que incluyen los tópicos de: (i evolución de la virulencia, (ii estructuración de la interacción en mosaico geográfico y, (iii pruebas históricas de adaptación. Estos aspectos permitirán adquirir un mayor conocimiento de la sutileza ecológica y de la evolución de esta especial interacción en los sistemas naturales de Chile semiáridoWe present quantitative information on the natural history of a host-parasite interaction that consists on the holoparasitic mistletoe Tristerix aphyllus (Loranthaceae and its cacti host species. More specifically, we inquire into the historical and biogeographical setting of the relationship, and quantify the autoecology of the floral biology, pollination, seed dispersal, and parasitism of the system. The impact of the mistletoe on the evolution of defense systems is evaluated both at intraspecific and interspecific levels through consideration of the potential for parasite-mediated selection and the geographical structure of the host-parasite interaction. Finally, we suggest prospective lines of research which include aspects related to: (i the evolution of virulence, (ii the geographic structure of the interaction, and (iii the historical

  11. Response of biological soil crust diazotrophs to season, altered summer precipitation and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Directory of Open Access Journals (Sweden)

    Chris M Yeager

    2012-10-01

    Full Text Available Biological soil crusts (biocrusts, which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33 Tg y-1, are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring, as well as field manipulations that increased the frequency of small-volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3x106 – 1x108 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised > 98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low and spring (high. A year-round increase of soil temperature (2 − 3 °C had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5 years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6 fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small-volume precipitation events.

  12. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA

    Science.gov (United States)

    Yeager, Chris M.; Kuske, Cheryl R.; Carney, Travis D.; Johnson, Shannon L.; Ticknor, Lawrence O.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts), which supply significant amounts of fixed nitrogen into terrestrial ecosystems worldwide (~33Tg y-1), are likely to respond to changes in temperature and precipitation associated with climate change. Using nifH gene-based surveys, we explored variation in the diazotrophic community of biocrusts of the Colorado Plateau, USA in response to season (autumn vs. spring), as well as field manipulations that increased the frequency of small volume precipitation events and year-round soil temperature. Abundance of nifH genes in biocrusts ranged from 3×106 to 1×8 g-1 soil, and nifH from heterocystous cyanobacteria closely related to Scytonema hyalinum, Spirirestis rafaelensis, and Nostoc commune comprised >98% of the total. Although there was no apparent seasonal effect on total nifH gene abundance in the biocrusts, T-RFLP analysis revealed a strong seasonal pattern in nifH composition. Spirirestis nifH abundance was estimated to oscillate 1 to >2 orders of magnitude between autumn (low) and spring (high). A year-round increase of soil temperature (2–3°C) had little effect on the diazotroph community structure over 2 years. Altered summer precipitation had little impact on diazotroph community structure over the first 1.5years of the study, when natural background patterns across years and seasons superseded any treatment effects. However, after the second summer of treatments, nifH abundance was 2.6-fold lower in biocrusts receiving altered precipitation. Heterocystous cyanobacteria were apparently more resilient to altered precipitation than other cyanobacteria. The results demonstrate that diazotrophic community composition of biocrusts in this semi-arid grassland undergoes strong seasonal shifts and that the abundance of its dominant members decreased in response to more frequent, small volume precipitation events.

  13. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and {sup 1}4c analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-07-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. {delta}{sup 1}3 C and {delta}{sup 1}5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  14. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and 14c analysis

    International Nuclear Information System (INIS)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-01-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. δ 1 3 C and δ 1 5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  15. DYNAMICS OF CARBON SEQUESTRATION IN ABANDONED GRASSLANDS OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    José Israel Yerena Yamallel

    2014-04-01

    Full Text Available Livestock activities due to the improper handling of the load capacity, suffer from low productivity in their grasslands, which are abandoned giving rise to the appearance of species considered invasive and undesirable for producers, without knowing the qualities of these as mitigating of climate change. The objective of the present study was to estimate the carbon content in tamaulipan thornscrub and three abandoned grasslands with a time of abandonment of 10, 20 and 30 years. For the estimation of the carbon content was used a systematic sampling design, in each area were established four sampling sites of 1,600 m2. The primary scrub is the system that resulted in the largest value of carbon content of 14.25 Mg ha-1, followed by the grasslands of 30, 20 and 10 years with 8.03, 7.33 and 4.13 Mg ha-1 respectively. It was concluded that recovering the initial state of the primary scrub take many years, as can be seen in the grasslands system 30 years reaching only 56% of what it had in reserves of primary scrub.

  16. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  17. Crude protein changes on grassland along a degradation gradient ...

    African Journals Online (AJOL)

    Evapotranspiration was determined by quantifying the soil-water balance equation with the aid of runoff plots and soil-water content measurements. Crude protein ... The study shows that it is important to keep grassland in optimal condition to utilize limited soil water for sustainable plant and therefore animal production.

  18. Intensification of grassland and forage use: driving forces and constraints

    NARCIS (Netherlands)

    Oenema, O.; Klein, de C.; Alfaro, M.

    2014-01-01

    The increasing demand for safe and nutritional dairy and beef products in a globalising world, together with the needs to increase resource use efficiency and to protect biodiversity, provide strong incentives for intensification of grassland and forage use. This paper addresses the question: 'Does

  19. Achieving grassland production and quality that matches animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different
    constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of
    Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the

  20. Achieving grassland production and quality that matching animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the most relevant

  1. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  2. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  3. Homogenization of the soil surface following fire in semiarid grasslands

    Science.gov (United States)

    Carleton S. White

    2011-01-01

    Semiarid grasslands accumulate soil beneath plant "islands" that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting...

  4. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  5. Transformation of a savanna grassland by drought and grazing | O ...

    African Journals Online (AJOL)

    The relative effects of drought and heavy grazing on the floristic composition, population size and and structure, and basal cover of an African savanna grassland were differentiated by comparing changes over eight years over eight years, which included a severe drought year, across a gradient of grazing history. Drought ...

  6. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  7. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  8. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  9. The effect of grassland management on enchytraeids (Oligochaeta) communities

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Christensen, Bent Tolstrup

    2012-01-01

    Enchytraeids (small white earthworms between 3 to 35 mm) are important regulators of nitrogen turnover in grasslands, as their activities accelerate the decomposition and nutrient recycling processes. In this study, the effect of management on species composition, abundance and biomass of the enc...... biomass and density of the grazed plots are due to compaction by grazing animals....

  10. Effect of burn area on invertebrate recolonization in grasslands in ...

    African Journals Online (AJOL)

    Our study examined the short-term response of grassland invertebrate communities to fire in the South African Drakensberg, in relation to distance from the edge of a burn. We aimed to establish which species survive fire and the dynamics of the post-fire recolonization process, and thereby contribute to establishing the ...

  11. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  12. Vegetation diversity of salt-rich grasslands in Southeast Europe

    Czech Academy of Sciences Publication Activity Database

    Eliáš, P. Jr.; Sopotlieva, D.; Dítě, D.; Hájková, Petra; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, Michal

    2013-01-01

    Roč. 16, č. 3 (2013), s. 521-537 ISSN 1402-2001 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : salt marshes * vegetation survey * grasslands Subject RIV: EF - Botanics Impact factor: 2.416, year: 2013

  13. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  14. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  15. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    Science.gov (United States)

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.

  16. Adaptation to the degradation of natural resources in the semiarid area of Mexico Adaptación a la Degradación de los Recursos Naturales en la Zona Semiárida Mexicana

    Directory of Open Access Journals (Sweden)

    José Luis Gonzalez Barrios

    2010-12-01

    Full Text Available Hydrology and soil research in the semiarid zone of Mexico highlight an erosion process that is worsened by climate and land use changes. Scientific results have inspired a successful adaptation program with an environmental and socioeconomic scope. The Hydrological Environmental Services Programm.e (PSAH, in Spanish pays local workers to build soil and water conservation infrastructure in areas with the potential to provide hydrological environmental services. The programme’s results are still under assessment, but some qualitative results may be already identified: soil and water retention, plant cover recovery, permanence of local people in their comm.unities, and social welfare, among others. The PSAH as a strategy should be echoed in other places of Mexico in order to replicate their benefits on the physical and human environments of the semiarid zone.La investigación hidrológica y edafológica en la zona semiárida mexicana ha puesto en evidencia un proceso de erosión hídrica exacerbado por el cambio climático y el cambio de uso del suelo. Los resultados de investigación han inspirado un programa de adaptación exitoso con una visión ambiental, económica y social. El Programa de Servicios Ambientales Hidrológicos (PSAH consiste en el pago de mano de obra local para la construcción de obras de conservación del suelo y del agua en áreas susceptibles de proporcionar servicios ambientales hidrológicos. Sus resultados cualitativos saltan a la vista: retención del suelo y del agua, mantenimiento de la cobertura vegetal, retención de pobladores en sus comunidades y bienestar social, entre otros. El PSAH como estrategia de adaptación AL impacto del cambio climático deberá encontrar eco en otros lugares de México con el fin de replicar sus beneficios en el medio físico y humano de la zona semiárida.

  17. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  18. Grassland futures in Great Britain - Productivity assessment and scenarios for land use change opportunities.

    Science.gov (United States)

    Qi, Aiming; Holland, Robert A; Taylor, Gail; Richter, Goetz M

    2018-09-01

    To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961-1990) at 1km 2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO 2 ] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO 2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72milliontonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21∗10 6 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Fragmentation of forest, grassland, and shrubland

    Science.gov (United States)

    Kurt H. Riitters

    2013-01-01

    As humans introduce competing land uses into natural landscapes, the public concerns regarding landcover patterns are expressed through headline issues such as urban sprawl, forest fragmentation, water quality, and wilderness preservation. The spatial arrangement of an environment affects all human perceptions and ecological processes within that environment, but this...

  20. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  1. SemiBoost: boosting for semi-supervised learning.

    Science.gov (United States)

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  2. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  3. Effect of acute. gamma. irradiation on phytocenoses (of grasslands and planktonic)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, J E [Universidad Politecnica de Madrid (Spain). Departamento de Biologia y Fisiologia Vegetal de la Escuela T.S. de Ingenieros Agronomos

    1977-04-01

    The effects of acute ..gamma.. irradiation on two models of phytocenoses - natural polyphytic grasslands and freshwater phytoplankton communities developed in artificial cultures - have been studied. A retardation of the successional process and a simplification of community structure was observed. This included a reduction in biomass and degree of complexity. A selection favouring weeds and other species which are usually present in young successional stages was also apparent. To a large extent, the overall effects of ..gamma..-radiation depended upon the degree of ecological stability and maturity. Radiation-induced disturbances seemed to be buffered in advanced successional stages. The model of response to ..gamma..- radiation was similar to that produced by other factors of ecological exploitation or perturbation. Synecological parameters such as diversity, similarity and stability were also studied for acute phytocenoses. Low radiation levels produced some clear stimulation effects, the possible significance of which is discussed.

  4. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  5. Increased competition does not lead to increased phylogenetic overdispersion in a native grassland.

    Science.gov (United States)

    Bennett, Jonathan A; Lamb, Eric G; Hall, Jocelyn C; Cardinal-McTeague, Warren M; Cahill, James F

    2013-09-01

    That competition is stronger among closely related species and leads to phylogenetic overdispersion is a common assumption in community ecology. However, tests of this assumption are rare and field-based experiments lacking. We tested the relationship between competition, the degree of relatedness, and overdispersion among plants experimentally and using a field survey in a native grassland. Relatedness did not affect competition, nor was competition associated with phylogenetic overdispersion. Further, there was only weak evidence for increased overdispersion at spatial scales where plants are likely to compete. These results challenge traditional theory, but are consistent with recent theories regarding the mechanisms of plant competition and its potential effect on phylogenetic structure. We suggest that specific conditions related to the form of competition and trait conservatism must be met for competition to cause phylogenetic overdispersion. Consequently, overdispersion as a result of competition is likely to be rare in natural communities. © 2013 John Wiley & Sons Ltd/CNRS.

  6. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Baldocchi, D

    2004-05-01

    Understanding how environmental variables affect the processes that regulate the carbon flux over grassland is critical for large-scale modeling research, since grasslands comprise almost one-third of the earth's natural vegetation. To address this issue, fluxes of CO{sub 2} (F{sub c}, flux toward the surface is negative) were measured over a Mediterranean, annual grassland in California, USA for 2 years with the eddy covariance method. To interpret the biotic and abiotic factors that modulate F{sub c} over the course of a year we decomposed net ecosystem CO{sub 2} exchange into its constituent components, ecosystem respiration (R{sub eco}) and gross primary production (GPP). Daytime R{sub eco} was extrapolated from the relationship between temperature and nighttime F{sub c} under high turbulent conditions. Then, GPP was estimated by subtracting daytime values of F{sub c} from daytime estimates of R{sub eco}. Results show that most of carbon exchange, both photosynthesis and respiration, was limited to the wet season (typically from October to mid-May). Seasonal variations in GPP followed closely to changes in leaf area index, which in turn was governed by soil moisture, available sunlight and the timing of the last frost. In general, R{sub eco} was an exponential function of soil temperature, but with season-dependent values of Q{sub 10}. The temperature-dependent respiration model failed immediately after rain events, when large pulses of R{sub eco} were observed. Respiration pulses were especially notable during the dry season when the grass was dead and were the consequence of quickly stimulated microbial activity. Integrated values of GPP, R{sub eco}, and net ecosystem exchange (NEE) were 867, 735, and -132g C m{sup -2}, respectively, for the 2000-2001 season, and 729, 758, and 29g C m{sup -2} for the 2001-2002 season. Thus, the grassland was a moderate carbon sink during the first season and a weak carbon source during the second season. In contrast to a

  7. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  8. Direct effects of cattle on grassland birds in Canada.

    Science.gov (United States)

    Bleho, Barbara I; Koper, Nicola; Machtans, Craig S

    2014-06-01

    Effects of grazing on grassland birds are generally thought to be indirect, through alteration of vegetation structure; however, livestock can also affect nest survival directly through trampling and other disturbances (e.g., livestock-induced abandonment). We extracted data on nest fates from 18 grazing studies conducted in Canada. We used these data to assess rates of nest destruction by cattle among 9 ecoregions and between seasonal and rotational grazing systems. Overall, few nests were destroyed by cattle (average 1.5% of 9132 nests). Nest destruction was positively correlated with grazing pressure (i.e., stocking rate or grazing intensity), but nest survival was higher in more heavily grazed areas for some species. Because rates of destruction of grassland bird nests by cattle are low in Canada, management efforts to reduce such destruction may not be of ecological or economic value in Canada. © 2014 Society for Conservation Biology.

  9. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  10. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  11. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  12. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  13. Effects of substrate type and arsenic dosage level on arsenic behavior in grassland microcosms. Part I. Preliminary results on 74As transport

    International Nuclear Information System (INIS)

    Draggan, S.

    1977-01-01

    Microcosm design is an important factor in interpreting results obtained from studies of the environmental effects, mobility and persistence of contaminants. The behavior of pentavalent arsenic and a radioarsenic tracer was studied in three substrate types exposed to differing levels of stable As dosage. Soil cores excised intact from a natural grassland ecosystem were considered to most reliably represent the natural system under study since they retained the soil structure, and closely simulated the abiotic and biotic complexity, of the grassland ecosystem. The behavior of 74 As in the components of intact soil core microcosms differed appreciably from that observed for the other microcosm types where soil underwent manipulation. These differences were explained primarily on the basis of differences in soil structure

  14. Composition, phenology and restoration of campo rupestre mountain grasslands - Brazil

    OpenAIRE

    Le Stradic, Soizig

    2012-01-01

    Global environmental changes, especially land-use changes, have profound effects on both ecosystem functioning and biodiversity, having already altered many ecosystem services. These losses emphasize the need to preserve what remains; however when conservation programs are not sufficient, restoring areas that have been destroyed or disturbed can improve conservation efforts and mitigate damages. This work focuses on campos rupestres, Neotropical grasslands found at altitudes, which are part o...

  15. Carbon dynamics in an Imperata grassland in Northeast India

    Directory of Open Access Journals (Sweden)

    Amrabati Thokchom

    2016-01-01

    Full Text Available Carbon stocks and soil CO2 flux were assessed in an Imperata cylindrica grassland of Manipur, Northeast India. Carbon stocks in the vegetative components were estimated to be 11.17 t C/ha and soil organic carbon stocks were 55.94 t C/ha to a depth of 30 cm. The rates of carbon accumulation in above-ground and below-ground biomass were estimated to be 11.85 t C/ha/yr and 11.71 t C/ha/yr, respectively. Annual soil CO2 flux was evaluated as 6.95 t C/ha and was highly influenced by soil moisture, soil temperature and soil organic carbon as well as by C stocks in above-ground biomass. Our study on the carbon budget of the grassland ecosystem revealed that annually 23.56 t C/ha was captured by the vegetation through photosynthesis, and 6.95 t C/ha was returned to the atmosphere through roots and microbial respiration, with a net balance of 16.61 t C/ha/yr being retained in the grassland ecosystem. Thus the present Imperata grassland exhibited a high capacity to remove atmospheric CO2 and to induce high C stocks in the soil provided it is protected from burning and overgrazing.Keywords: Above-ground biomass, below-ground biomass, carbon stocks, carbon storage, net primary productivity, soil CO2 flux.DOI: 10.17138/TGFT(419-28  

  16. Making Grasslands Sustainable in Mongolia: Herders' Livelihoods and Climate Change

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    The threats posed by climate change have significant impacts on Mongolia’s grassland ecosystems and herders’ livelihoods. This publication discusses the auses of climate change and its impacts on livelihoods and ecosystems for herders and the general public. It explains how good pasture management and livestock roductivity are important for increasing incomes and provides information on adaptation practices. It also identifies sustainable management practices that can increase communities’ re...

  17. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  18. Experimental assessment of N2O background fluxes in grassland systems

    International Nuclear Information System (INIS)

    Neftel, Albrecht; Flechard, Chris; Ammann, Christof; Conen, Franz; Emmenegger, Lukas; Zeyer, Kerstin

    2007-01-01

    In the absence of, or between, fertilization events in agricultural systems, soils are generally assumed to emit N 2 O at a small rate, often described as the 'background' flux. In contrast, net uptake of N 2 O by soil has been observed in many field studies, but has not gained much attention. Observations of net uptake of N 2 O form a large fraction (about half) of all individual flux measurements in a long-term time series at our temperate fertilized grassland site. Individual uptake fluxes from chamber measurements are often not statistically significant but mean values integrated over longer time periods from days to weeks do show a clear uptake. An analysis of semi-continuous chamber flux data in conjunction with continuous measurements of the N 2 O concentration in the soil profile and eddy covariance measurements suggests that gross production and gross consumption of N 2 O are of the same order, and as consequence only a minor fraction of N 2 O molecules produced in the soil reaches the atmosphere

  19. The Effects of Rainfall Pulses on Soil Nitrogen Availability in a Chihuahuan Desert Grassland During the Summer Monsoon

    Science.gov (United States)

    Brown, R. F.; Collins, S. L.; White, C. S.; Sinsabaugh, R. L.

    2015-12-01

    Nitrogen (N) is an essential but limiting nutrient in most terrestrial environments. While numerous studies have demonstrated a tight coupling between soil N availability and soil volumetric water content, this relationship is not well understood in desert ecosystems where rain events create pulses of biological activity, such as microbial secretion of extracellular enzymes that enable nutrient acquisition. Moreover, climate models are projecting shifts in the size and frequency of rain events across semi-arid ecosystems as a result of anthropogenic activities; therefore these changes are expected to have consequences for soil N availability in these regions. The goals of this study were to determine (1) if soil N availability pulses in response to monsoon rain events of differing size and frequency, and (2) how soil N availability varies over the course of a monsoon season in a semi-arid grassland. To answer these questions, we analyzed soils collected from a northern Chihuahuan Desert grassland during the 2014 summer monsoon. Soils were collected monthly over a period of eight days in conjunction with experimentally manipulated irrigation treatments that varied in both size (small=5mm and large=20mm) and frequency (small=weekly (n=12) and large=monthly (n=3)). Using KCl extraction, soils were processed for their inorganic plant-available nitrogen content (NH4+-N and NO3--N). We found that while soil N availability increased over the monsoon season across all treatment types, large events appeared to saturate soils, creating anaerobic conditions that stimulated nitrogen loss most likely through the denitrification pathway. Soils were also assayed for nitrogen specific extracellular enzyme activities, specifically leucine aminopeptidase (LAP), which breaks down the bond in leucine amino acids to mobilize nitrogen, and N-acetylglucosaminidase (NAG), which breaks down amino sugars in microbial cell walls. Preliminary results suggest that by mid-monsoon, LAP activity

  20. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  1. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  2. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  3. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  4. Draft Whole-Genome Sequence of Serratia sp. Strain TEL, Associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae) Isolated from a Grassland in South Africa.

    Science.gov (United States)

    Lephoto, Tiisetso E; Featherston, Jonathan; Gray, Vincent M

    2015-07-09

    Here, we report on the draft genome sequence of Serratia sp. strain TEL, associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae, KM492926) isolated from a grassland in Suikerbosrand Nature Reserve near Johannesburg in South Africa. Serratia sp. strain TEL has a genome size of 5,000,541 bp with 4,647 genes and a G+C content of 59.1%. Copyright © 2015 Lephoto et al.

  5. Draft Whole-Genome Sequence of Serratia sp. Strain TEL, Associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae) Isolated from a Grassland in South Africa

    OpenAIRE

    Lephoto, Tiisetso E.; Featherston, Jonathan; Gray, Vincent M.

    2015-01-01

    Here, we report on the draft genome sequence of Serratia sp. strain TEL, associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae, KM492926) isolated from a grassland in Suikerbosrand Nature Reserve near Johannesburg in South Africa. Serratia sp. strain TEL has a genome size of 5,000,541 bp with 4,647 genes and a G+C content of 59.1%.

  6. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    Science.gov (United States)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  7. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    Science.gov (United States)

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  8. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  9. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Science.gov (United States)

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  10. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Directory of Open Access Journals (Sweden)

    Kevin S Ellison

    Full Text Available Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus] at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow and nesting densities increased (all 3 species in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor] at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]. Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116 and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  11. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  12. Methodology for the elaboration of Natura 2000 sites designation acts in the Walloon Region (Belgium: calcareous grasslands in the Lesse-and-Lomme area

    Directory of Open Access Journals (Sweden)

    Mahy G.

    2005-01-01

    Full Text Available In the Walloon Region (Belgium, 239 sites have been selected to be included in the Natura 2000 network. The next step is to write designation acts in order to legally protect these 221,000 ha. In this pilot study, a designation act was elaborated for a Natura 2000 site of 2,569 ha and located in the Lesse-and-Lomme area within the Calestienne region. Although the site includes 40 ha of calcareous grasslands, characterised by an exceptional flora and fauna, this habitat is very threatened by abandonment and fragmentation.The methodology used to elaborate the designation act is presented with respect to calcareous grassland. Firstly, in spring and summer 2003, an accurate map of natural habitats was produced, with every single patch of calcareous grassland being mapped. Information was also collected in order to evaluate conservation status. Based on this information, conservation status was then assessed with respect to three different criteria: (1 integrity of the cortege species, (2 habitat structure and (3 degradations. Thirdly, the site was divided into objective zones according to the different habitats and species of Community interest found in the site. Hence, an objective zone was delineated for calcareous grasslands. This objective zone was then divided in several management units. Finally, at these different spatial levels (site, objective zone, management unit, management measures were suggested. As a result, in the draft designation act, the target is to maintain or restore 230 ha of calcareous grassland, instead of the existing 40 ha. This ambitious target requires large-scale restoration and an efficient grazing scheme. These will need important resources for their successful implementation

  13. Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events.

    Science.gov (United States)

    Densmore-McCulloch, Justine A; Thompson, Donald L; Fraser, Lauchlan H

    2016-01-01

    Climate change is expected to alter precipitation patterns. Droughts may become longer and more frequent, and the timing and intensity of precipitation may change. We tested how shifting precipitation patterns, both seasonally and by frequency of events, affects soil nitrogen availability, plant biomass and diversity in a shrub-steppe temperate grassland along a natural productivity gradient in Lac du Bois Grasslands Protected Area near Kamloops, British Columbia, Canada. We manipulated seasonal watering patterns by either exclusively watering in the spring or the fall. To simulate spring precipitation we restricted precipitation inputs in the fall, then added 50% more water than the long term average in the spring, and vice-versa for the fall precipitation treatment. Overall, the amount of precipitation remained roughly the same. We manipulated the frequency of rainfall events by either applying water weekly (frequent) or monthly (intensive). After 2 years, changes in the seasonality of watering had greater effects on plant biomass and diversity than changes in the frequency of watering. Fall watering reduced biomass and increased species diversity, while spring watering had little effect. The reduction in biomass in fall watered treatments was due to a decline in grasses, but not forbs. Plant available N, measured by Plant Root Simulator (PRS)-probes, increased from spring to summer to fall, and was higher in fall watered treatments compared to spring watered treatments when measured in the fall. The only effect observed due to frequency of watering events was greater extractable soil N in monthly applied treatments compared to weekly watering treatments. Understanding the effects of changing precipitation patterns on grasslands will allow improved grassland conservation and management in the face of global climatic change, and here we show that if precipitation is more abundant in the fall, compared to the spring, grassland primary productivity will likely be

  14. Comportamento ingestivo diurno de vacas primíparas em pastagem nativa dominada por capim-annoni-2 com suplementação proteica e mineral em diversas estações climáticas Diurnal ingestive behaviour of pregnant heifers grazing on natural grasslands invaded by Eragrostis plana Ness as affected by protein and mineral supplements in the different climatic seasons

    Directory of Open Access Journals (Sweden)

    Silvane Barcelos Carlotto

    2010-03-01

    Full Text Available Avaliou-se a influência da suplementação proteica e mineral sobre o comportamento ingestivo de vacas primíparas em pastagem nativa dominada por capim-annoni-2 (Eragrostis plana Ness recebendo suplementação com sal comum; sal mineral; sal proteinado; ou sal para reprodução e sal proteinado (1:1. Testou-se a hipótese de que suplementos minerais e proteinados pudessem promover alterações no comportamento ingestivo dos animais em pastejo. O estudo foi desenvolvido em uma área de 37 ha de pastagem nativa invadida por capim-annoni-2, dividida em oito potreiros (unidades experimentais. Os animais foram avaliados no período diurno, por dois dias consecutivos, em cada uma das estações climáticas, de abril de 2006 a março de 2007. O delineamento experimental foi inteiramente casualizado com duas repetições. Os tempos de pastejo, de ruminação, de ócio e de outras atividades não diferiram entre suplementos, e os valores médios diários para essas atividades foram 505, 108, 70 e 11 minutos, respectivamente. Os tempos de pastejo, ruminação e ócio e a taxa de bocados diferiram significativamente entre as estações climáticas. A suplementação proteica e mineral não promove alterações significativas no comportamento ingestivo dos animais. O comportamento ingestivo, no entanto, é influenciado pelas estações climáticas.The influence was assessed of protein and mineral supplementation on the ingestive behavior of pregnant heifers on a native grassland dominated by capim-annoni-2 (Eragrostis plana Ness supplementation with common salt, mineral salt, protein salt and protein salt and reproduction salt (1:1. The hypothesis was tested that different mineral and protein salt supplements could promote alterations in the animal grazing ingestive behavior. The study was carried out in a 37 ha area of native pasture invaded by capim-annoni-2, divided into 8 paddocks (experimental units. The animals were evaluated during the daylight

  15. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  16. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  17. Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation.

    NARCIS (Netherlands)

    Stock, W.D.; Ludwig, F.; Morrow, C.; Midgley, G.F.; Wand, S.J.E.; Allsopp, N.; Bell, T.L.

    2005-01-01

    We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4

  18. Diversity of amphibians and reptiles associated with grasslands of Janos-Casas Grandes, Chihuahua, Mexico (La diversidad de anfibios y reptiles asociada a los pastizales de Janos-Casas Grandes, Chihuahua, Mexico)

    Science.gov (United States)

    Georgina Santos-Barrera; Jesus Pacheco-Rodriguez

    2006-01-01

    Prairie-dog (Cynomys ludovicianus) colonies in northwest Chihuahua, Mexico, have been of great significance not only in initiating protection programs for the species but also in learning about the biological diversity (flora and fauna) of the natural grasslands of Janos-Casas Grandes, Chihuahua. Therefore a study of the herpetological fauna within the prairie-dog...

  19. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil

    Directory of Open Access Journals (Sweden)

    Matheus G. Reis

    2016-06-01

    Full Text Available Grasslands are the most threatened physiognomies of the Cerrado biome (Brazilian savanna, a biodiversity hotspot with conservation as a priority. The Serra da Canastra National Park protects the most important remnants of the Cerrado's southern grasslands, which are under strong anthropogenic pressure. The present study describes the structure of bird assemblages that directly use food resources in burned areas, comparing areas affected by natural fire to the areas where controlled fires were set (a management strategy to combat arson. The tested null hypothesis was that different bird assemblages are structured in a similar manner, regardless of the post-fire period or assessed area. Between December/2012 and January/2015, 92 species were recorded foraging in the study areas. The results indicate that both types of burnings triggered profound and immediate changes in bird assemblages, increasing the number of species and individuals. Natural fires exhibited a more significant influence on the structure (diversity and dominance than prescribed burnings. Nevertheless, all the differences were no longer noticeable after a relatively short time interval of 2-3 months after prescribed burnings and 3-4 after natural fires. The findings may help the understanding of prescribed burnings as a management strategy for bird conservation in grasslands.

  20. Graph-based semi-supervised learning

    CERN Document Server

    Subramanya, Amarnag

    2014-01-01

    While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi

  1. Semi-implicit magnetohydrodynamic calculations

    International Nuclear Information System (INIS)

    Schnack, D.D.; Barnes, D.C.; Mikic, Z.; Harned, D.S.; Caramana, E.J.

    1987-01-01

    A semi-implicit algorithm for the solution of the nonlinear, three-dimensional, resistive MHD equations in cylindrical geometry is presented. The specific model assumes uniform density and pressure, although this is not a restriction of the method. The spatial approximation employs finite differences in the radial coordinate, and the pseudo-spectral algorithm in the periodic poloidal and axial coordinates. A leapfrog algorithm is used to advance wave-like terms; advective terms are treated with a simple predictor--corrector method. The semi-implicit term is introduced as a simple modification to the momentum equation. Dissipation is treated implicitly. The resulting algorithm is unconditionally stable with respect to normal modes. A general discussion of the semi-implicit method is given, and specific forms of the semi-implicit operator are compared in physically relevant test cases. Long-time simulations are presented. copyright 1987 Academic Press, Inc

  2. Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands

    Directory of Open Access Journals (Sweden)

    Sandra M. Rodriguez-Artigas

    2016-04-01

    dispersion capacity. Geographic distance, among other factors (climate, and active and passive dispersion capacity, explains assembly structure and the decrease spider community similarity between geographically distant sites. Spiders with the highest dispersal capacity showed greater species replacement. This may be due to the discontinuity (both natural and anthropic of the grasslands in this ecoregion, which limits the dispersal capacity of these spiders, and their close dependence on microhabitats. The dispersal capacity of the least vagile spiders is limited by geographic distance and biotic factors, such as competition, which could explain the nesting observed between their communities.

  3. Functional connectivity as a possible indicator of desertification in degraded grasslands

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Kaste, J. M.; Okin, G. S.

    2011-12-01

    Desertification of semi-arid grasslands impacts air quality, climate, biodiversity, and soil fertility. Desertification processes such as wind erosion lead to declining soil resources and sometimes local climate change. Desertification is irreversible; however, identifying when and where ecological changes are irreversible is problematic, requiring observations of a new ecological state, favoring the continued process of wind erosion and continued depletion of soil resources. Scientists hypothesize that an indicator of irreversibility in desertification might be "connected pathways". The connected pathway hypothesis requires that vegetation structure has changed from a grass to a shrub dominated system with increasing number and size of bare soil gaps. These bare soil gaps are functionally connected through the action of wind; therefore, functional connectivity of a landscape is related to the length and size of pathways through vegetation. This study used a combination of field measurements (total horizontal flux (Qtot) and vegetation structure) and landscape modeling to examine the difference in functional connectivity between grassland locations that were either degraded or relatively intact. At our field site, the degradation process was initiated by groundwater pumping, which adversely affects groundwater dependent grasses, providing a useful link to management seeking to limit the effects or extent of desertification. To analyze the functional connectivity of these locations in Owens Valley, we used circuit theory, a novel graph-based approach, which integrates all possible pathways to determine a "resistance distance" between any two points. Circuit theory uses current and resistance to represent movement of wind and the effect of vegetation and soil roughness on wind. Circuit theory was implemented using the open source software package, Circuitscape. To estimate landscape resistance, we performed a supervised classification on 1m aerial photographs. For

  4. Alternative stable states and the sustainability of forests, grasslands, and agriculture

    Science.gov (United States)

    Henderson, Kirsten A.; Bauch, Chris T.; Anand, Madhur

    2016-01-01

    Endangered forest–grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human–environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations—especially for forests—due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human–environment mosaic ecosystems. PMID:27956605

  5. Prescribed-fire effects on an aquatic community of a southwest montane grassland system

    Science.gov (United States)

    Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna

    2013-01-01

    The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality

  6. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa Tolic, Ljiljana; Koppenaal, David W.; Jansson, Janet K.

    2018-05-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences

  7. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  8. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    Science.gov (United States)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  9. Alternative stable states and the sustainability of forests, grasslands, and agriculture.

    Science.gov (United States)

    Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur

    2016-12-20

    Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.

  10. Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands.

    Science.gov (United States)

    Lucas, Andrew; Bull, James C; de Vere, Natasha; Neyland, Penelope J; Forman, Dan W

    2017-10-01

    Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically-rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum . Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator

  11. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    Science.gov (United States)

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  12. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  13. Coefficients of conservatism for the vascular flora of the Dakotas and adjacent grasslands

    Science.gov (United States)

    ,

    2001-01-01

    Floristic quality assessment can be used to identity natural areas, to facilitate comparisons among different sites, to provide long-term monitoring of natural area quality, and to evaluate habitat management and restoration efforts. To facilitate the use of floristic quality assessment in North Dakota, South Dakota (excluding the Black Hills), and adjacent grasslands, we developed a species list and assigned coefficients of