WorldWideScience

Sample records for selforganized brownian particles

  1. Brownian quasi-particles in statistical physics

    International Nuclear Information System (INIS)

    Tellez-Arenas, A.; Fronteau, J.; Combis, P.

    1979-01-01

    The idea of a Brownian quasi-particle and the associated differentiable flow (with nonselfadjoint forces) are used here in the context of a stochastic description of the approach towards statistical equilibrium. We show that this quasi-particle flow acquires, at equilibrium, the principal properties of a conservative Hamiltonian flow. Thus the model of Brownian quasi-particles permits us to establish a link between the stochastic description and the Gibbs description of statistical equilibrium

  2. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  3. Brownian coagulation at high particle concentrations

    NARCIS (Netherlands)

    Trzeciak, T.M.

    2012-01-01

    The process of Brownian coagulation, whereby particles are brought together by thermal motion and grow by collisions, is one of the most fundamental processes influencing the final properties of particulate matter in a variety of technically important systems. It is of importance in colloids,

  4. The quantum brownian particle and memory effects

    International Nuclear Information System (INIS)

    Britani, J.R.; Mizrahi, S.S.; Pimentel, B.M.

    1991-01-01

    The Quantum Brownian particle, immersed in a heat bath, is described by a statistical operator whose evolution is ruled by a Generalized Master Equation (GME). The heat bath degrees of freedom are considered to be either white noise or coloured noise correlated,while the GME is considered under either the Markov or Non-Markov approaches. The comparison between these considerations are fully developed and their physical meaning is discussed. (author)

  5. Factorization Procedure for Harmonically Bound Brownian Particle

    International Nuclear Information System (INIS)

    Omolo, JK.

    2006-01-01

    The method of factorization to solve the problem of the one-dimensional harmonically bound Brownian particle was applied. Assuming the the rapidily fluctuating random force is Gaussian and has an infinitely short correlation time, explicit expressions for the position-position,velocity-velocity, and the position-velocity correlation functions, which are also use to write down appropriate distribution functions were used. The correlation and distribution functions for the complex quantity (amplititude) which provides the expressions for the position and velocity of the particle are calculated. Finally, Fokker-Planck equations for the joint probability distribution functions for the amplititude and it's complex conjugate as well as for the position and velocity of the particle are obtained. (author)

  6. Brownian Motion of Boomerang Colloidal Particles

    Science.gov (United States)

    Wei, Qi-Huo; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Chakrabarty, Ayan

    2014-03-01

    We present experimental and theoretical studies on the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  7. Brownian diode: Molecular motor based on a semi-permeable Brownian particle with internal potential drop

    International Nuclear Information System (INIS)

    Plyukhin, A.V.

    2013-01-01

    A model of an autonomous isothermal Brownian motor with an internal propulsion mechanism is considered. The motor is a Brownian particle which is semi-transparent for molecules of surrounding ideal gas. Molecular passage through the particle is controlled by a potential similar to that in the transition rate theory, i.e. characterized by two stationary states with a finite energy difference separated by a potential barrier. The internal potential drop maintains the diode-like asymmetry of molecular fluxes through the particle, which results in the particle's stationary drift.

  8. Directed Transport of Brownian Particles in a Periodic Channel

    International Nuclear Information System (INIS)

    Jiang Jie; Ai Bao-Quan; Wu Jian-Chun

    2015-01-01

    The transport of Brownian particles in the infinite channel within an external force along the axis of the channel has been studied. In this paper, we study the transport of Brownian particle in the infinite channel within an external force along the axis of the channel and an external force in the transversal direction. In this more sophisticated situation, some property is similar to the simple situation, but some interesting property also appears. (paper)

  9. Volume of the domain visited by N spherical Brownian particles

    International Nuclear Information System (INIS)

    Berezhkovskii, A.M.

    1994-01-01

    The average value and variance of the volume of the domain visited in time t by N spherical Brownian particles starting initially at the same point are presented as quadratures of the solutions of simple diffusion problems of the survival of a point Brownian particle in the presence of one and two spherical traps. As an illustration, explicit time dependences are obtained for the average volume in one and three dimensions

  10. Velocity persistence of Brownian particles generated in a glow discharge

    International Nuclear Information System (INIS)

    Hurd, A.J.; Ho, P.

    1989-01-01

    Quasielastic light scattering from Brownian particles in the rarefied environment of a glow discharge exhibits Gaussianlike intensity correlation functions owing to the long mean free paths of the particles. The shape of the correlation function depends on the particles' average thermal velocity and friction coefficient, which can be related to aggregate mass and structure, and indicates a crossover from kinetic to hydrodynamic behavior

  11. Relaxation property of the fractional Brownian particle

    International Nuclear Information System (INIS)

    Wang Litan; Lung, C.W.

    1988-08-01

    Dynamic susceptibility of a diffusion system associated with the fractional Brownian motion (fBm) was examined for the fractal property of the Non-Debye relaxation process. The comparisons between fBm and other approaches were made. Anomalous diffusion and the Non-Debye relaxation processes were discussed with this approach. (author). 8 refs, 1 fig

  12. Spherical particle Brownian motion in viscous medium as non-Markovian random process

    International Nuclear Information System (INIS)

    Morozov, Andrey N.; Skripkin, Alexey V.

    2011-01-01

    The Brownian motion of a spherical particle in an infinite medium is described by the conventional methods and integral transforms considering the entrainment of surrounding particles of the medium by the Brownian particle. It is demonstrated that fluctuations of the Brownian particle velocity represent a non-Markovian random process. The features of Brownian motion in short time intervals and in small displacements are considered. -- Highlights: → Description of Brownian motion considering the entrainment of medium is developed. → We find the equations for statistical characteristics of impulse fluctuations. → Brownian motion at small time intervals is considered. → Theoretical results and experimental data are compared.

  13. Synchronization and collective motion of globally coupled Brownian particles

    International Nuclear Information System (INIS)

    Sevilla, Francisco J; Heiblum-Robles, Alexandro; Dossetti, Victor

    2014-01-01

    In this work, we study a system of passive Brownian (non-self-propelled) particles in two dimensions, interacting only through a social-like force (velocity alignment in this case) that resembles Kuramoto's coupling among phase oscillators. We show that the kinematical stationary states of the system go from a phase in thermal equilibrium with no net flux of particles, to far-from-equilibrium phases exhibiting collective motion by increasing the coupling among particles. The mechanism that leads to the instability of the equilibrium phase relies on the competition between two time scales, namely, the mean collision time of the Brownian particles in a thermal bath and the time it takes for a particle to orient its direction of motion along the direction of motion of the group. Our results show a clear connection between collective motion and the Kuramoto model for synchronization, in our case, for the direction of motion of the particles. (paper)

  14. The escape of brownian particle over potential barriers

    International Nuclear Information System (INIS)

    Zhong Yunxiao

    1985-01-01

    A convenient method is introduced to calculate the rate of escape of Brownian particle over potential barriers by exact solution of Smoluchowskian equation. This method is applied to calculate the nuclear fission probabilities. The results for four different cases are compared with the results of other theories

  15. Collective motion of active Brownian particles with polar alignment.

    Science.gov (United States)

    Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio

    2018-04-04

    We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

  16. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  17. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  18. Adiabatic Processes Realized with a Trapped Brownian Particle

    Science.gov (United States)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  19. Exact master equation for a noncommutative Brownian particle

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Nuno Prata, Joao

    2009-01-01

    We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale

  20. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    Science.gov (United States)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  1. Active Brownian particles with velocity-alignment and active fluctuations

    International Nuclear Information System (INIS)

    Großmann, R; Schimansky-Geier, L; Romanczuk, P

    2012-01-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)

  2. Extending Particle Swarm Optimisers with Self-Organized Criticality

    DEFF Research Database (Denmark)

    Løvbjerg, Morten; Krink, Thiemo

    2002-01-01

    Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions.......Particle swarm optimisers (PSOs) show potential in function optimisation, but still have room for improvement. Self-organized criticality (SOC) can help control the PSO and add diversity. Extending the PSO with SOC seems promising reaching faster convergence and better solutions....

  3. Directed transport of confined Brownian particles with torque

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2012-05-01

    We investigate the influence of an additional torque on the motion of Brownian particles confined in a channel geometry with varying width. The particles are driven by random fluctuations modeled by an Ornstein-Uhlenbeck process with given correlation time τc. The latter causes persistent motion and is implemented as (i) thermal noise in equilibrium and (ii) noisy propulsion in nonequilibrium. In the nonthermal process a directed transport emerges; its properties are studied in detail with respect to the correlation time, the torque, and the channel geometry. Eventually, the transport mechanism is traced back to a persistent sliding of particles along the even boundaries in contrast to scattered motion at uneven or rough ones.

  4. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    Science.gov (United States)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  5. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  6. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  7. Dynamics of a Brownian particle in a plasma in the long-time limit

    International Nuclear Information System (INIS)

    Dickman, R.; Varley, R.L.

    1981-01-01

    The velocity autocorrelation function (VAF) of a Brownian particle in a plasma is calculated in the long-time limit. The Brownian particle VAF exhibits the same qualitative behavior as the electron VAF in a one-component plasma: oscillations at the plasma frequency and decay approx. t -3 sup(/) 2 . (orig.)

  8. Change of particle size distribution during Brownian coagulation

    International Nuclear Information System (INIS)

    Lee, K.W.

    1984-01-01

    Change in particle size distribution due to Brownian coagulation in the continuum regime has been stuied analytically. A simple analytic solution for the size distribution of an initially lognormal distribution is obtained based on the assumption that the size distribution during the coagulation process attains or can, at least, be represented by a time dependent lognormal function. The results are found to be in a form that corrects Smoluchowski's solution for both polydispersity and size-dependent kernel. It is further shown that regardless of whether the initial distribution is narrow or broad, the spread of the distribution is characterized by approaching a fixed value of the geometric standard deviation. This result has been compared with the self-preserving distribution obtained by similarity theory. (Author)

  9. The single- and double-particle properties and the current reversal of coupled Brownian motors

    International Nuclear Information System (INIS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang; Fan, Hong; Shen, Wen-Mei

    2017-01-01

    In this paper, we investigate the directed transport of coupled Brownian motors composed of two identical particles which is individually subject to a time-symmetric rocking force in spatially-symmetric periodic potentials. We find that both the coupling free length and the coupling strength can induce the reversed motion of the coupled Brownian motors, the essence of which is the coupled Brownian motors can exhibit completely different single- or double-particle properties under certain conditions. Namely, the current reversal is the result of the mutual conversion between the single- and double-particle properties of the coupled Brownian motors. Moreover, the directed current of coupled Brownian motors can be optimized and manipulated by adjusting the strength, the period, the phase difference of the rocking forces, and the noise intensity. (paper)

  10. On the biased motion of a brownian particle for the pausing time behavior of the CTRW

    International Nuclear Information System (INIS)

    Kim, K.S.

    1982-01-01

    The purpose of this paper is to discuss the biased Brownian motion with the absorbing barrier for the pausing time behavior of the CTRW (continuous-time random walk method), regarding a Brownian particle as a walker. For two pausing time density functions, the respective values for the transport averaged velocity and the dispersion are calculated as the time t becomes large. (KAERI)

  11. Studying protein assembly with reversible Brownian dynamics of patchy particles

    International Nuclear Information System (INIS)

    Klein, Heinrich C. R.; Schwarz, Ulrich S.

    2014-01-01

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly

  12. Negative mobility of a Brownian particle: Strong damping regime

    Science.gov (United States)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  13. Studying protein assembly with reversible Brownian dynamics of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  14. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  15. Brownian quasi-particles and quantum quasi-particles

    International Nuclear Information System (INIS)

    Fronteau, J.

    1987-01-01

    The concept of quasi-particles is used in Statistical Mechanics as well as in Quantum Mechanics, to associate differentiable trajectories to the equations of evolution, trajectories on which a maximum of informations is concentrated concerning the phenomena studied. Two cases are treated numerically, that of the Fokker-Planck equation with an x - x 3 field, and that of the Schroedinger equation with null potential, in a situation of interference [fr

  16. On the motion of a Brownian particle with an asymmetric bias

    International Nuclear Information System (INIS)

    Kim, K.S.

    1981-01-01

    On the infinite three dimensional cubic lattice, the transport process of a Brownian particle biased on the direction (in the case of nearest-neighbor jumping) is discussed. The Brownian particle is considered as a walker of the random process. By introducing the theorem that the probability density P(l,t) becomes Gaussian for large t, P(l,t) is completely specified when the first and second moments of P(l,t) become known. The respective values for the transprot averaged velocity and dispersion of a biased Brownian particle are obtained. Finally as t becomes large we find Gaussian packets of a biased Brownian particle which propagate with a constant velocity and have a dispersion proportional to time t. (KAERI)

  17. The probability of an encounter of two Brownian particles before escape

    International Nuclear Information System (INIS)

    Holcman, D; Kupka, I

    2009-01-01

    We study the probability of meeting of two Brownian particles before one of them exits a finite interval. We obtain an explicit expression for the probability as a function of the initial distance between the two particles using the Weierstrass elliptic function. We also find the law of the meeting location. Brownian simulations show the accuracy of our analysis. Finally, we discuss some applications to the probability that a double-strand DNA break repairs in confined environments.

  18. Swarming behavior of gradient-responsive Brownian particles in a porous medium

    Science.gov (United States)

    Grančič, Peter; Štěpánek, František

    2012-07-01

    Active targeting by Brownian particles in a fluid-filled porous environment is investigated by computer simulation. The random motion of the particles is enhanced by diffusiophoresis with respect to concentration gradients of chemical signals released by the particles in the proximity of a target. The mathematical model, based on a combination of the Brownian dynamics method and a diffusion problem is formulated in terms of key parameters that include the particle diffusiophoretic mobility and the signaling threshold (the distance from the target at which the particles release their chemical signals). The results demonstrate that even a relatively simple chemical signaling scheme can lead to a complex collective behavior of the particles and can be a very efficient way of guiding a swarm of Brownian particles towards a target, similarly to the way colonies of living cells communicate via secondary messengers.

  19. Experimental Studies of the Brownian Diffusion of Boomerang Colloidal Particle in a Confined Geometry

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo

    2011-03-01

    Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.

  20. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  1. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  2. Achieving swift equilibration of a Brownian particle using flow-fields

    Science.gov (United States)

    Patra, Ayoti; Jarzynski, Christopher

    Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.

  3. The Diffusion Process in Small Particles and Brownian Motion

    Science.gov (United States)

    Khoshnevisan, M.

    Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.

  4. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  5. Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory

    Czech Academy of Sciences Publication Activity Database

    Filip, R.; Zemánek, Pavel

    2016-01-01

    Roč. 18, č. 6 (2016), 065401:1-8 ISSN 2040-8978 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : optically trapped particles * Brownian motion * optomechanics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.741, year: 2016

  6. The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    International Nuclear Information System (INIS)

    Kim, Bongsoo; Kawasaki, Kyozi

    2007-01-01

    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)

  7. Orbital diamagnetism of a charged Brownian particle undergoing birth-death process

    International Nuclear Information System (INIS)

    Jayannawar, A.M.; Kumar, N.

    1980-06-01

    We consider the magnetic response of a charged Brownian particle undergoing a stochastic birth-death process. The latter simulates the electron-hole pair production and recombination in semiconductors. We obtain non-zero, orbital diamagnetism which can be large without violating the Van Leeuwen theorem. (author)

  8. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  9. Configurational entropy and effective temperature in systems of active Brownian particles

    NARCIS (Netherlands)

    Preisler, Zdeněk; Dijkstra, Marjolein

    2016-01-01

    We propose a method to determine the effective density of states and configurational entropy in systems of active Brownian particles by measuring the probability distribution function of potential energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing

  10. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  11. Brownian agents and active particles collective dynamics in the natural and social sciences

    CERN Document Server

    Schweitzer, Frank

    2007-01-01

    ""This book lays out a vision for a coherent framework for understanding complex systems"" (from the foreword by J. Doyne Farmer). By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. This way, an efficient method for computer simulations of complex systems is developed which is also accessible to analytical investigations and quantitative predictions. The book demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from

  12. Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences

    International Nuclear Information System (INIS)

    McKane, Alan

    2003-01-01

    This is a book about the modelling of complex systems and, unlike many books on this subject, concentrates on the discussion of specific systems and gives practical methods for modelling and simulating them. This is not to say that the author does not devote space to the general philosophy and definition of complex systems and agent-based modelling, but the emphasis is definitely on the development of concrete methods for analysing them. This is, in my view, to be welcomed and I thoroughly recommend the book, especially to those with a theoretical physics background who will be very much at home with the language and techniques which are used. The author has developed a formalism for understanding complex systems which is based on the Langevin approach to the study of Brownian motion. This is a mesoscopic description; details of the interactions between the Brownian particle and the molecules of the surrounding fluid are replaced by a randomly fluctuating force. Thus all microscopic detail is replaced by a coarse-grained description which encapsulates the essence of the interactions at the finer level of description. In a similar way, the influences on Brownian agents in a multi-agent system are replaced by stochastic influences which sum up the effects of these interactions on a finer scale. Unlike Brownian particles, Brownian agents are not structureless particles, but instead have some internal states so that, for instance, they may react to changes in the environment or to the presence of other agents. Most of the book is concerned with developing the idea of Brownian agents using the techniques of statistical physics. This development parallels that for Brownian particles in physics, but the author then goes on to apply the technique to problems in biology, economics and the social sciences. This is a clear and well-written book which is a useful addition to the literature on complex systems. It will be interesting to see if the use of Brownian agents becomes

  13. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  14. Brownian entanglement

    International Nuclear Information System (INIS)

    Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, Th.M.

    2005-01-01

    For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot always be prepared via mixing of any factorized distributions referring to the two particles separately. This is possible for particles which have interacted in the past, but do not interact at present. Three factors are crucial for the effect: (1) separation of time scales of coordinate and momentum which motivates the definition of coarse-grained velocities; (2) the resulting uncertainty relations between the coordinate of the Brownian particle and the change of its coarse-grained velocity; (3) the fact that the coarse-grained velocity, though pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental realization of the effect in examples of macroscopic Brownian motion

  15. Non-Markovian Effects on the Brownian Motion of a Free Particle

    OpenAIRE

    Bolivar, A. O.

    2010-01-01

    Non-Markovian effects upon the Brownian movement of a free particle in the presence as well as in the absence of inertial force are investigated within the framework of Fokker-Planck equations (Rayleigh and Smoluchowski equations). More specifically, it is predicted that non-Markovian features can enhance the values of the mean square displacement and momentum, thereby assuring the mathematical property of differentiability of the these physically observable quantities.

  16. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  17. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  18. Friction between Two Brownian Particles in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    Lee, Song Hi

    2010-01-01

    We presented a molecular dynamics (MD) simulation study of friction behavior between two very massive Brownian particles (BPs) oriented along the z axis with BP centers at -R 12 /2 and R 12 /2 in a Lennard-Jones solvent as a function of the inter-particle separation, R 12 . In order to fix the BPs in space an MD simulation method with the mass of the BP as 10 90 g/mol was employed in which the total momentum of the system was conserved. The cross friction coefficients of x- and y-components are nearly insensitive to R 12 but that of z-component varies with R 12 in good accord with the simple hydrodynamic approximation. On the other hand, the self-friction coefficients are estimated as a very small difference from the single particle friction coefficients, ξ 0 , at all inter-particle separations which agrees with the simple hydrodynamic approximation. Consequently ξ (-) xx is nearly independent of R 12 and equal to its asymptotic value of twice the single particle friction coefficient, and the other relative friction, ξ (-) zz , is in good agreement with the simple hydrodynamic approximation. Molecular theory of Brownian motion of a single heavy particle in a fluid had received a considerable attention in earlier years. After molecular dynamics (MD) simulation technique was utilized, this subject has been widely studied by a variety of MD simulation methods. The common issues here were about the long time behavior of the force and velocity autocorrelation functions, the system size dependent friction coefficient of a massive Brownian particle, and test of the Stokes-Einstein law

  19. Unbiased diffusion of Brownian particles on disordered correlated potentials

    International Nuclear Information System (INIS)

    Salgado-Garcia, Raúl; Maldonado, Cesar

    2015-01-01

    In this work we study the diffusion of non-interacting overdamped particles, moving on unbiased disordered correlated potentials, subjected to Gaussian white noise. We obtain an exact expression for the diffusion coefficient which allows us to prove that the unbiased diffusion of overdamped particles on a random polymer does not depend on the correlations of the disordered potentials. This universal behavior of the unbiased diffusivity is a direct consequence of the validity of the Einstein relation and the decay of correlations of the random polymer. We test the independence on correlations of the diffusion coefficient for correlated polymers produced by two different stochastic processes, a one-step Markov chain and the expansion-modification system. Within the accuracy of our simulations, we found that the numerically obtained diffusion coefficient for these systems agree with the analytically calculated ones, confirming our predictions. (paper)

  20. Revealing virtual processes of a quantum Brownian particle in phase space

    International Nuclear Information System (INIS)

    Maniscalco, S

    2005-01-01

    The short-time dynamics of a quantum Brownian particle in a harmonic potential is studied in phase space. An exact non-Markovian analytic approach to calculate the time evolution of the Wigner function is presented. The dynamics of the Wigner function of an initially squeezed state is analysed. It is shown that virtual exchanges of energy between the particle and the reservoir, characterizing the non-Lindblad short-time dynamics where system-reservoir correlations are not negligible, show up in phase space

  1. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  2. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  3. Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates

    International Nuclear Information System (INIS)

    Bocquet, L.; Hansen, J.P.; Piasecki, J.

    1997-01-01

    In this work, we show that in any finite system, the binary friction tenser for two Brownian particles cannot be directly estimated from an evaluation of the microscopic Green Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tenser from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in a finite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles

  4. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    International Nuclear Information System (INIS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  5. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature.

    Science.gov (United States)

    Liot, O; Socol, M; Garcia, L; Thiéry, J; Figarol, A; Mingotaud, A F; Joseph, P

    2018-06-13

    This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.

  6. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature

    Science.gov (United States)

    Liot, O.; Socol, M.; Garcia, L.; Thiéry, J.; Figarol, A.; Mingotaud, A. F.; Joseph, P.

    2018-06-01

    This paper presents experimental results about transport of dilute suspensions of nano-objects in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to understand how these different aspects affect the transport of suspensions in narrow channels and to understand the different mechanisms at play. Concerning the solid beads we observe the appearance of two regimes, one where the experimental mean velocity is close to the expected one and another where this velocity is lower. This is directly related to a competition between confinement, Brownian diffusion and advection. These two regimes are shown to be linked to the inhomogeneity of particles distribution in the channel depth, which we experimentally deduce from velocity distributions. This inhomogeneity appears during the entrance process into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral displacement. Concerning the nature of the particles we observed a shift of transition towards the second regime likely due to the relationships between shear stress and polymersomes mechanical properties which could reduce the inhomogeneity imposed by the geometry of our device.

  7. Brownian motion of a nano-colloidal particle: the role of the solvent.

    Science.gov (United States)

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the

  8. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation

    OpenAIRE

    Cates, M. E.; Tailleur, J.

    2012-01-01

    Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed $v$ along a body-axis ${\\bf u}$ that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant $\\u$ until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density $\\rho$ but not on ${\\bf u}$, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other...

  9. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  10. Correlational approach to study interactions between dust Brownian particles in a plasma

    Science.gov (United States)

    Lisin, E. A.; Vaulina, O. S.; Petrov, O. F.

    2018-01-01

    A general approach to the correlational analysis of Brownian motion of strongly coupled particles in open dissipative systems is described. This approach can be applied to the theoretical description of various non-ideal statistically equilibrium systems (including non-Hamiltonian systems), as well as for the analysis of experimental data. In this paper, we consider an application of the correlational approach to the problem of experimental exploring the wake-mediated nonreciprocal interactions in complex plasmas. We derive simple analytic equations, which allows one to calculate the gradients of forces acting on a microparticle due to each of other particles as well as the gradients of external field, knowing only the information on time-averaged correlations of particles displacements and velocities. We show the importance of taking dissipative and random processes into account, without which consideration of a system with a nonreciprocal interparticle interaction as linearly coupled oscillators leads to significant errors in determining the characteristic frequencies in a system. In the examples of numerical simulations, we demonstrate that the proposed original approach could be an effective instrument in exploring the longitudinal wake structure of a microparticle in a plasma. Unlike the previous attempts to study the wake-mediated interactions in complex plasmas, our method does not require any external perturbations and is based on Brownian motion analysis only.

  11. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  12. Brownian dynamics of self-regulated particles with additional degrees of freedom: Symmetry breaking and homochirality

    Science.gov (United States)

    Bhattacharyya, Debankur; Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-04-01

    We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

  13. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    Science.gov (United States)

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  14. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Science.gov (United States)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-01

    Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  15. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.

    2015-01-01

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  16. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  17. Hydrodynamically enforced entropic current of Brownian particles with a transverse gravitational force

    Science.gov (United States)

    Li, Feng-guo; Ai, Bao-quan

    2014-04-01

    Transport of overdamped Brownian particles in a periodic hydrodynamical channel is investigated in the presence of an asymmetric unbiased force, a transverse gravitational force, and a pressure-driven flow. With the help of the generalized Fick-Jacobs approach, we obtain an analytical expression for the directed current and the generalized potential of mean force. It is found that, when the transverse gravitational force is larger than a certain value, the current is suppressed. Moreover, when the temporal asymmetry parameter of the unbiased force is negative, the current is always negative. However, when the temporal asymmetry parameter is positive, the transverse gravitational force and the pressure drop not only determine the direction of the current but also affect its amplitude. In particular, the competition between the asymmetric unbiased force and the pressure drop can result in multiple current reversals.

  18. Nucleation theory in Langevin's approach and lifetime of a Brownian particle in potential wells.

    Science.gov (United States)

    Alekseechkin, N V

    2008-07-14

    The multivariable theory of nucleation suggested by Alekseechkin [J. Chem. Phys. 124, 124512 (2006)] is further developed in the context of Langevin's approach. The use of this approach essentially enhances the capability of the nucleation theory, because it makes possible to consider the cases of small friction which are not taken into account by the classical Zel'dovich-Frenkel theory and its multivariable extensions. The procedure for the phenomenological determination of the nucleation parameters is described. Using the similarity of the Kramers model with that of nucleation, the lifetime of a Brownian particle in potential wells in various dimensionalities is calculated with the help of the expression for the steady state nucleation rate.

  19. Hydrodynamically enforced entropic current of Brownian particles with a transverse gravitational force

    International Nuclear Information System (INIS)

    Li, Feng-guo; Ai, Bao-quan

    2014-01-01

    Transport of overdamped Brownian particles in a periodic hydrodynamical channel is investigated in the presence of an asymmetric unbiased force, a transverse gravitational force, and a pressure-driven flow. With the help of the generalized Fick–Jacobs approach, we obtain an analytical expression for the directed current and the generalized potential of mean force. It is found that, when the transverse gravitational force is larger than a certain value, the current is suppressed. Moreover, when the temporal asymmetry parameter of the unbiased force is negative, the current is always negative. However, when the temporal asymmetry parameter is positive, the transverse gravitational force and the pressure drop not only determine the direction of the current but also affect its amplitude. In particular, the competition between the asymmetric unbiased force and the pressure drop can result in multiple current reversals. (paper)

  20. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    Science.gov (United States)

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  1. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  2. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    Science.gov (United States)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  3. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  4. Dynamic properties of polydisperse colloidal particles in the presence of thermal gradient studied by a modified Brownian dynamic model

    Science.gov (United States)

    Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin

    2018-03-01

    Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.

  5. Dynamic tracking of a nano-particle in fluids under Brownian motions

    International Nuclear Information System (INIS)

    Wu, X C; Zhang, W J; Sammynaiken, R

    2008-01-01

    Most previous studies on H 2 S were devoted to its toxic effects. However, recently there have been increasing evidences which show that endogenously generated H 2 S in specific mammalian tissues has certain significant positive physiological effects such as a neuromodulator and vasorelaxant in a membrane receptor-independent manner. In order to know the functions of endogenous H 2 S, low concentration and high accuracy measurement of H 2 S is a must. Furthermore, this measurement is desired to be real-time and non-invasive. It is reported that low concentration and nano quantity of H 2 S can be detected in water solutions and sera using carbon nanotubes with the fluorescence by confocal laser scanning microscopy. However, because of the Brownian motion of the small particle (carbon nanotube), a control system must be developed to track the movement of the particle in fluids. In this paper, we present a study to track a carbon nanotube which absorbs H 2 S in water or serum using a Raman microscope or confocal laser scanning microscope. In particular, we developed a novel control system for this task. Simulation has shown that our system works very well.

  6. Rate laws of the self-induced aggregation kinetics of Brownian particles

    Science.gov (United States)

    Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra

    2016-03-01

    In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.

  7. Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential

    Science.gov (United States)

    Cai, Chun-Chun; Liu, Jian-Li; Chen, Hao; Li, Feng-Guo

    2018-03-01

    Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force, respectively. From numerical simulations, we obtain the current average velocity. The current reversals and the absolute negative mobility are presented. The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear. When the static force is small, the increase of the potential deformation suppresses the absolute negative mobility. When the force is large, the absolute negative mobility disappears. In particular, when the potential deformation is equal to 0.015, the two current reversals present with the increasing of the force. Remarkably, when the potential deformation is small, there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior. Supported in part by the National Natural Science Foundation of China under Grant Nos. 11575064 and 11175067, and the Natural Science Foundation of Guangdong Province under Grant No. 2016A030313433

  8. Brownian modulated optical nanoprobes

    International Nuclear Information System (INIS)

    Behrend, C.J.; Anker, J.N.; Kopelman, R.

    2004-01-01

    Brownian modulated optical nanoprobes (Brownian MOONs) are fluorescent micro- and nanoparticles that resemble moons: one hemisphere emits a bright fluorescent signal, while an opaque metal darkens the other hemisphere. Brownian motion causes the particles to tumble and blink erratically as they rotate literally through the phases of the moon. The fluctuating probe signals are separated from optical and electronic backgrounds using principal components analysis or images analysis. Brownian MOONs enable microrheological measurements on size scales and timescales that are difficult to study with other methods. Local chemical concentrations can be measured simultaneously, using spectral characteristics of indicator dyes embedded within the MOONs

  9. The Asymptotic Behavior of Particle Size Distribution Undergoing Brownian Coagulation Based on the Spline-Based Method and TEMOM Model

    Directory of Open Access Journals (Sweden)

    Qing He

    2018-01-01

    Full Text Available In this paper, the particle size distribution is reconstructed using finite moments based on a converted spline-based method, in which the number of linear system of equations to be solved reduced from 4m × 4m to (m + 3 × (m + 3 for (m + 1 nodes by using cubic spline compared to the original method. The results are verified by comparing with the reference firstly. Then coupling with the Taylor-series expansion moment method, the evolution of particle size distribution undergoing Brownian coagulation and its asymptotic behavior are investigated.

  10. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.

    Science.gov (United States)

    Hahn, Melinda W; O'Meliae, Charles R

    2004-01-01

    The deposition and reentrainment of particles in porous media have been examined theoretically and experimentally. A Brownian Dynamics/Monte Carlo (MC/BD) model has been developed that simulates the movement of Brownian particles near a collector under "unfavorable" chemical conditions and allows deposition in primary and secondary minima. A simple Maxwell approach has been used to estimate particle attachment efficiency by assuming deposition in the secondary minimum and calculating the probability of reentrainment. The MC/BD simulations and the Maxwell calculations support an alternative view of the deposition and reentrainment of Brownian particles under unfavorable chemical conditions. These calculations indicate that deposition into and subsequent release from secondary minima can explain reported discrepancies between classic model predictions that assume irreversible deposition in a primary well and experimentally determined deposition efficiencies that are orders of magnitude larger than Interaction Force Boundary Layer (IFBL) predictions. The commonly used IFBL model, for example, is based on the notion of transport over an energy barrier into the primary well and does not address contributions of secondary minimum deposition. A simple Maxwell model based on deposition into and reentrainment from secondary minima is much more accurate in predicting deposition rates for column experiments at low ionic strengths. It also greatly reduces the substantial particle size effects inherent in IFBL models, wherein particle attachment rates are predicted to decrease significantly with increasing particle size. This view is consistent with recent work by others addressing the composition and structure of the first few nanometers at solid-water interfaces including research on modeling water at solid-liquid interfaces, surface speciation, interfacial force measurements, and the rheological properties of concentrated suspensions. It follows that deposition under these

  11. Random walks, Brownian motion, and interacting particle systems: a festschrift in honor of Frank Spitzer

    National Research Council Canada - National Science Library

    Durrett, Richard; Kesten, Harry; Spitzer, Frank

    1991-01-01

    ..., made the transparency used in the printing process. STUDENTS OF FRANK SPITZERSTUDENTS OF FRANK SPITZER 1957 J. W. Lamperti, On the asymptotic behavior of recurrent and almostrecurrent events. 1964 W. W. Whitman, Some strong laws for random walks and Brownian motion. 1965 J. C. Mineka, The existence and uniqueness of positive solutions to the Wien...

  12. Particle acceleration in solar active regions being in the state of self-organized criticality.

    Science.gov (United States)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  13. Diffusion of Brownian particles in a tilted periodic potential under the influence of an external Ornstein-Uhlenbeck noise

    Science.gov (United States)

    Bai, Zhan-Wu; Zhang, Wei

    2018-01-01

    The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.

  14. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    Science.gov (United States)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  15. A bimodal temom model for particle Brownian coagulation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    He Qing

    2016-01-01

    Full Text Available In this paper, a bimodal Taylor-series expansion moment of method is proposed to deal with Brownian coagulation in the continuum-slip regime, where the non-linear terms in the Cunningham correction factor is approximated by Taylor-series expansion technology. The results show that both the number concentration and volume fraction decrease with time in the smaller mode due to the intra and inter coagulation, and the asymptotic behavior of the larger mode is as same as that in the continuum regime.

  16. Distribution and spectrum of fluctuations of a Brownian particle in a potential well with reflecting walls

    International Nuclear Information System (INIS)

    Soskin, S.M.

    1987-01-01

    The authors examine Brownian motion in a square well with reflecting walls. An exact solution is obtained for the corresponding Einstein-Fokker-Planck equation, which is used to find the coordinate correlation function in explicit form. The correlation function, normalized to the square of the distance between the walls, typically exhibits a similarity property: its behavior as a function of time, friction, temperature, and wall separation reduces to a function of one simple combination of those four quantities. The limiting cases of low and high friction are investigated in detail, with explicit expressions being derived for the spectrum

  17. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  18. Semiclassical Klein-Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential

    International Nuclear Information System (INIS)

    Coffey, W T; Kalmykov, Yu P; Titov, S V; Mulligan, B P

    2007-01-01

    The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(ℎ 4 ) and in the classical limit, ℎ → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived. (fast track communication)

  19. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk; Vinothkumar, K.R.; Henderson, R.

    2015-11-15

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å{sup 2} for every incident 300 keV e{sup −}/Å{sup 2}. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e{sup −}/Å{sup 2} per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. - Highlights: • Thon rings can be seen from amorphous ice. • Radiation damage to amorphous ice randomly displaces water molecules. • Each incident 300 keV e{sup −}/Å{sup 2} displaces water molecules on average by ∼1 Å. • Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.

  20. Optimizing photophoresis and asymmetric force fields for grading of Brownian particles.

    Science.gov (United States)

    Neild, Adrian; Ng, Tuck Wah; Woods, Timothy

    2009-12-10

    We discuss a scheme that incorporates restricted spatial input location, orthogonal sort, and movement direction features, with particle sorting achieved by using an asymmetric potential cycled on and off, while movement is accomplished by photophoresis. Careful investigation has uncovered the odds of sorting between certain pairs of particle sizes to be solely dependent on radii in each phase of the process. This means that the most effective overall sorting can be achieved by maximizing the number of phases. This optimized approach is demonstrated using numerical simulation to permit grading of a range of nanometer-scale particle sizes.

  1. How does a scanning ribosomal particle move along the 5'-untranslated region of eukaryotic mRNA? Brownian Ratchet model.

    Science.gov (United States)

    Spirin, Alexander S

    2009-11-17

    A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.

  2. Constructive role of Brownian motion: Brownian motors and Stochastic Resonance

    Science.gov (United States)

    Hänggi, Peter

    2005-03-01

    Noise is usually thought of as the enemy of order rather as a constructive influence. For the phenomena of Stochastic Resonance [1] and Brownian motors [2], however, stochastic noise can play a beneficial role in enhancing detection and/or facilitating directed transmission of information in absence of biasing forces. Brownian motion assisted Stochastic Resonance finds useful applications in physical, technological, biological and biomedical contexts [1,3]. The basic principles that underpin Stochastic Resonance are elucidated and novel applications for nonlinear classical and quantum systems will be addressed. The presence of non-equilibrium disturbances enables to rectify Brownian motion so that quantum and classical objects can be directed around on a priori designed routes in biological and physical systems (Brownian motors). In doing so, the energy from the haphazard motion of (quantum) Brownian particles is extracted to perform useful work against an external load. This very concept together with first experimental realizations are discussed [2,4,5]. [1] L. Gammaitoni, P. Hä'nggi, P. Jung and F. Marchesoni, Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998).[2] R. D. Astumian and P. Hä'nggi, Brownian motors, Physics Today 55 (11), 33 (2002).[3] P. Hä'nggi, Stochastic Resonace in Physics and Biology, ChemPhysChem 3, 285 (2002).[4] H. Linke, editor, Special Issue on Brownian Motors, Applied Physics A 75, No. 2 (2002).[5] P. Hä'nggi, F. Marchesoni, F. Nori, Brownian motors, Ann. Physik (Leipzig) 14, xxx (2004); cond-mat/0410033.

  3. Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling.

    Science.gov (United States)

    Ng, Tuck Wah; Neild, Adrian; Heeraman, Pascal

    2008-03-15

    Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5 microm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.

  4. Meandering Brownian Donkeys

    Science.gov (United States)

    Eichhorn, R.; Reimann, P.

    2004-04-01

    We consider a Brownian particle whose motion is confined to a ``meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ``donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results.

  5. Meandering Brownian Donkeys

    International Nuclear Information System (INIS)

    Eichhorn, R.; Reimann, P.

    2004-01-01

    We consider a Brownian particle whose motion is confined to a ''meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ''donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results. (author)

  6. Irreversible Brownian Heat Engine

    Science.gov (United States)

    Taye, Mesfin Asfaw

    2017-10-01

    We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

  7. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  8. Active motions of Brownian particles in a generalized energy-depot model

    International Nuclear Information System (INIS)

    Zhang Yong; Koo Kim, Chul; Lee, Kong-Ju-Bock

    2008-01-01

    We present a generalized energy-depot model in which the rate of conversion of the internal energy into motion can be dependent on the position and velocity of a particle. When the conversion rate is a general function of the velocity, the active particle exhibits diverse patterns of motion, including a braking mechanism and a stepping motion. The phase trajectories of the motion are investigated in a systematic way. With a particular form of the conversion rate dependent on the position and velocity, the particle shows a spontaneous oscillation characterizing a negative stiffness. These types of active behaviors are compared with similar phenomena observed in biology, such as the stepping motion of molecular motors and amplification in the hearing mechanism. Hence, our model can provide a generic understanding of the active motion related to the energy conversion and also a new control mechanism for nano-robots. We also investigate the effect of noise, especially on the stepping motion, and observe random walk-like behavior as expected.

  9. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy.

    Science.gov (United States)

    McMullan, G; Vinothkumar, K R; Henderson, R

    2015-11-01

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å(2) for every incident 300 keV e(-)/Å(2). The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e(-)/Å(2) per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    Science.gov (United States)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  11. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.

    Science.gov (United States)

    Patti, Alessandro; Cuetos, Alejandro

    2012-07-01

    We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.

  12. Brownian dynamics with hydrodynamic interactions

    International Nuclear Information System (INIS)

    Ermak, D.L.; McCammon, J.A.

    1978-01-01

    A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution

  13. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description

    OpenAIRE

    Cosseddu, Salvatore M.; Khovanov, Igor A.; Allen, Michael P.; Rodger, P. M.; Luchinsky, Dmitry G.; McClintock, Peter V. E.

    2013-01-01

    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by u...

  14. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  15. Entropic Approach to Brownian Movement.

    Science.gov (United States)

    Neumann, Richard M.

    1980-01-01

    A diffusional driving force, called the radial force, which is responsible for the increase with time of the scalar separation between a fixed point and a particle undergoing three-dimensional Brownian motion, is derived using Boltzmann's equation. (Author/HM)

  16. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  17. Brownian movement and molecular reality

    CERN Document Server

    Perrin, Jean

    2005-01-01

    How do we know that molecules really exist? An important clue came from Brownian movement, a concept developed in 1827 by botanist Robert Brown, who noticed that tiny objects like pollen grains shook and moved erratically when viewed under a microscope. Nearly 80 years later, in 1905, Albert Einstein explained this ""Brownian motion"" as the result of bombardment by molecules. Einstein offered a quantitative explanation by mathematically estimating the average distance covered by the particles over time as a result of molecular bombardment. Four years later, Jean Baptiste Perrin wrote Brownia

  18. Brownian motion in a flowing fluid revisited

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1981-01-01

    It is shown how the phenomenon of osmosis may be treated using the phenomenological theory of Brownian motion in a flowing fluid. The theory is also generalized to include viscous stresses in the particle and mixture momentum equations

  19. A multiscale approach to Brownian motors

    International Nuclear Information System (INIS)

    Pavliotis, G.A.

    2005-01-01

    The problem of Brownian motion in a periodic potential, under the influence of external forcing, which is either random or periodic in time, is studied in this Letter. Multiscale techniques are used to derive general formulae for the steady state particle current and the effective diffusion tensor. These formulae are then applied to calculate the effective diffusion coefficient for a Brownian particle in a periodic potential driven simultaneously by additive Gaussian white and colored noise. Our theoretical findings are supported by numerical simulations

  20. Slow kinetics of Brownian maxima.

    Science.gov (United States)

    Ben-Naim, E; Krapivsky, P L

    2014-07-18

    We study extreme-value statistics of Brownian trajectories in one dimension. We define the maximum as the largest position to date and compare maxima of two particles undergoing independent Brownian motion. We focus on the probability P(t) that the two maxima remain ordered up to time t and find the algebraic decay P ∼ t(-β) with exponent β = 1/4. When the two particles have diffusion constants D(1) and D(2), the exponent depends on the mobilities, β = (1/π) arctan sqrt[D(2)/D(1)]. We also use numerical simulations to investigate maxima of multiple particles in one dimension and the largest extension of particles in higher dimensions.

  1. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  2. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    International Nuclear Information System (INIS)

    Purwins, H.-G.

    2008-01-01

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating 'molecules' and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed

  3. Dissipation and decoherence in Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Bruno [Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, Via Archirafi, 36, 90123 Palermo (Italy); Barnett, Stephen M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2007-05-15

    We consider the evolution of a Brownian particle described by a measurement-based master equation. We derive the solution to this equation for general initial conditions and apply it to a Gaussian initial state. We analyse the effects of the diffusive terms, present in the master equation, and describe how these modify uncertainties and coherence length. This allows us to model dissipation and decoherence in quantum Brownian motion.

  4. Area distribution of an elastic Brownian motion

    International Nuclear Information System (INIS)

    Rajabpour, M A

    2009-01-01

    We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self-adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will focus on the power of self-adjoint extension to investigate different possible boundary conditions for the stochastic processes. We also discuss some possible physical applications.

  5. Resonant activation of a Brownian particle out of a potential well: Microwave-enhanced escape from the zero-voltage state of a Josephson junction

    International Nuclear Information System (INIS)

    Devoret, M.H.; Esteve, D.; Martinis, J.M.; Cleland, A.; Clarke, J.

    1987-01-01

    A current-biased Josephson tunnel junction in its zero-voltage state can be modeled as a Brownian particle in a potential well from which it can escape by thermal activation at a rate Γ(0). The enhancement γ = Γ(I/sub m/)/Γ(0) of the escape rate has been measured in the presence of a microwave current of amplitude I/sub m/, which represents a weak, sinusoidal force driving the particle. When the microwave frequency is varied, lnγ peaks approximately at the natural frequency at which the particle oscillates at the bottom of the anharmonic potential well. At higher frequencies, lnγ exhibits a sharp roll-off that steepens as the quality factor Q of the junction is increased, while at lower frequencies lnγ has a long tail with a shape which is almost independent of Q. These features are qualitatively consistent with the theories of Ivlev and Mel'nikov and Larkin and Ovchinnikov, which we discuss. These theories however, are not able to predict analytically the behavior of lnγ near the peak. To overcome this difficulty a detailed series of computer simulations has been performed. These simulations, together with certain scaling properties of the theories, have been used to construct an empirical formula for lnγ that is in qualitative agreement with the experimentally determined frequency dependence of lnγ. The experimentally observed dependences of lnγ on temperature and microwave amplitude are in good quantitative agreement with predictions

  6. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  7. Presentation of quantum Brownian movement in the collective coordinate method

    International Nuclear Information System (INIS)

    Oksak, A.I.; Sukhanov, A.D.

    2003-01-01

    Two explicitly solved models of quantum randomized processes described by the Langevin equation, i. e. a free quantum Brownian particle and a quantum Brownian harmonic oscillator, are considered. The Hamiltonian (string) realization of the models reveals soliton-like structure of classical solutions. Accordingly, the method of zero mode collective coordinate is an adequate means for describing the models quantum dynamics [ru

  8. O'Connell's process as a vicious Brownian motion

    International Nuclear Information System (INIS)

    Katori, Makoto

    2011-01-01

    Vicious Brownian motion is a diffusion scaling limit of Fisher's vicious walk model, which is a system of Brownian particles in one dimension such that if two motions meet they kill each other. We consider the vicious Brownian motions conditioned never to collide with each other and call it noncolliding Brownian motion. This conditional diffusion process is equivalent to the eigenvalue process of the Hermitian-matrix-valued Brownian motion studied by Dyson [J. Math. Phys. 3, 1191 (1962)]. Recently, O'Connell [Ann. Probab. (to be published)] introduced a generalization of the noncolliding Brownian motion by using the eigenfunctions (the Whittaker functions) of the quantum Toda lattice in order to analyze a directed polymer model in 1 + 1 dimensions. We consider a system of one-dimensional Brownian motions with a long-ranged killing term as a generalization of the vicious Brownian motion and construct the O'Connell process as a conditional process of the killing Brownian motions to survive forever.

  9. From a stochastic to a macroscopic approach to brownian motion

    International Nuclear Information System (INIS)

    Bocquet, L.

    1998-01-01

    In this lecture, we examine the dynamics of suspensions of mesoscopic (Brownian) particles in a molecular fluid, starting from first principles. We introduce the technique of multiple time-scales to derive the Fokker-Planck equation for a single, or for a set of interacting Brownian particles, starting from the Liouville equation for the full system (Brownian particles and discrete bath). The limitations of the Fokker-Planck equation will then be emphasized. In particular, we shall point out that under ''standard'' experimental conditions, the Fokker-Planck description cannot be correct and that non-Markovian effects are expected. A microscopic description in the true experimental limit confirms this breakdown and leads to a ''generalized'' (non-Markovian and non-local in velocity space) Fokker-Planck equation, which describes the thermalization of the Brownian particle. (author)

  10. Conformal geometry and invariants of 3-strand Brownian braids

    International Nuclear Information System (INIS)

    Nechaev, Sergei; Voituriez, Raphael

    2005-01-01

    We propose a simple geometrical construction of topological invariants of 3-strand Brownian braids viewed as world lines of 3 particles performing independent Brownian motions in the complex plane z. Our construction is based on the properties of conformal maps of doubly-punctured plane z to the universal covering surface. The special attention is paid to the case of indistinguishable particles. Our method of conformal maps allows us to investigate the statistical properties of the topological complexity of a bunch of 3-strand Brownian braids and to compute the expectation value of the irreducible braid length in the non-Abelian case

  11. Breaking the symmetry of a Brownian motor with symmetric potentials

    International Nuclear Information System (INIS)

    Hagman, H; Zelan, M; Dion, C M

    2011-01-01

    The directed transport of Brownian particles requires a system with an asymmetry and with non-equilibrium noise. Here we investigate numerically alternative ways of fulfilling these requirements for a two-state Brownian motor, realized with Brownian particles alternating between two phase-shifted, symmetric potentials. We show that, besides the previously known spatio-temporal asymmetry based on unequal transfer rates between the potentials, inequalities in the potential depths, the frictions, or the equilibrium temperatures of the two potentials also generate the required asymmetry. We also show that the effects of the thermal noise and the noise of the transfer's randomness depend on the way the asymmetry is induced.

  12. Static structure of active Brownian hard disks

    Science.gov (United States)

    de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.

    2018-02-01

    We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

  13. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  14. Symmetry breaking in clogging for oppositely driven particles

    Science.gov (United States)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  15. Brownian motion of tethered nanowires.

    Science.gov (United States)

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  16. Directed motion of a Brownian motor in a temperature gradient

    Science.gov (United States)

    Liu, Yibing; Nie, Wenjie; Lan, Yueheng

    2017-05-01

    Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.

  17. Brownian motion probe for water-ethanol inhomogeneous mixtures

    Science.gov (United States)

    Furukawa, Kazuki; Judai, Ken

    2017-12-01

    Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.

  18. Optimum analysis of a Brownian refrigerator.

    Science.gov (United States)

    Luo, X G; Liu, N; He, J Z

    2013-02-01

    A Brownian refrigerator with the cold and hot reservoirs alternating along a space coordinate is established. The heat flux couples with the movement of the Brownian particles due to an external force in the spatially asymmetric but periodic potential. After using the Arrhenius factor to describe the behaviors of the forward and backward jumps of the particles, the expressions for coefficient of performance (COP) and cooling rate are derived analytically. Then, through maximizing the product of conversion efficiency and heat flux flowing out, a new upper bound only depending on the temperature ratio of the cold and hot reservoirs is found numerically in the reversible situation, and it is a little larger than the so-called Curzon and Ahlborn COP ε(CA)=(1/√[1-τ])-1. After considering the irreversible factor owing to the kinetic energy change of the moving particles, we find the optimized COP is smaller than ε(CA) and the external force even does negative work on the Brownian particles when they jump from a cold to hot reservoir.

  19. An adjustable Brownian heat engine

    International Nuclear Information System (INIS)

    Asfaw, Mesfin; Bekele, Mulugeta

    2002-09-01

    A microscopic heat engine is modeled as a Brownian particle in a sawtooth potential (with load) moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot and cold heat reservoirs. We found a closed form expression for the current as a function of the parameters characterizing the model. Depending on the values these model parameters take, the engine is also found to function as a refrigerator. Expressions for the efficiency as well as for the refrigerator performance are also reported. Study of how these quantities depend on the model parameters enabled us in identifying the points in the parameter space where the engine performs either with maximum power or with optimized efficiency. The corresponding efficiencies of the engine are then compared with those of the endoreversible and Carnot engines. (author)

  20. Fractional Brownian motion with a reflecting wall

    Science.gov (United States)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α implications of these findings, in particular, for applications that are dominated by rare events.

  1. Time-averaged MSD of Brownian motion

    OpenAIRE

    Andreanov, Alexei; Grebenkov, Denis

    2012-01-01

    We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we de...

  2. Brownian motion, dynamical randomness and irreversibility

    International Nuclear Information System (INIS)

    Gaspard, Pierre

    2005-01-01

    A relationship giving the entropy production as the difference between a time-reversed entropy per unit time and the standard one is applied to stochastic processes of diffusion of Brownian particles between two reservoirs at different concentrations. The entropy production in the nonequilibrium steady state is interpreted in terms of a time asymmetry in the dynamical randomness between the forward and backward paths of the diffusion process

  3. Brownian motion in short range random potentials

    International Nuclear Information System (INIS)

    Romero, A.H.; Romero, A.H.; Sancho, J.M.

    1998-01-01

    A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society

  4. Influences of surface charge, size, and concentration of colloidal nanoparticles on fabrication of self-organized porous silica in film and particle forms.

    Science.gov (United States)

    Nandiyanto, Asep Bayu Dani; Suhendi, Asep; Arutanti, Osi; Ogi, Takashi; Okuyama, Kikuo

    2013-05-28

    Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.

  5. Near-Field, On-Chip Optical Brownian Ratchets.

    Science.gov (United States)

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  6. Behavior of aerosols undergoing Brownian coagulation, Brownian diffusion and gravitational settling in a closed chamber

    International Nuclear Information System (INIS)

    Okuyama, Kikuo; Kousaka, Yasuo; Yoshida, Tetsuo

    1976-01-01

    The behavior of aerosols undergoing Brownian coagulation. Brownian diffusion and gravitational settling in a closed chamber was studied by solving the basic equation, the so-called population balance equation, numerically for a polydisperse aerosol system and analytically for a monodisperse system, and then the results were examined by experiment. In solving the basic equation, two dimensionless parameters, which are determined by the initial properties of an aerosol and the chamber dimension and also characterize the relative effects of Brownian coagulation and Brownian diffusion to gravitational settling, were introduced in order to generalize the behavior under arbitrary conditions. The calculated results, the time-dependent changes in particle number concentration and particle size distribution for a polydisperse system, were presented graphically by using the above two parameters. And further using these parameters, the domains of the three controlling factors were mapped to show the extent of each effect of these factors under various conditions for a monodisperse system. Some of the calculated results were compared with the experimental results obtained by the ultramicroscopic size analysis previously developed by the authors. (auth.)

  7. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    Science.gov (United States)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  8. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  9. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  10. Entropy production of a Brownian ellipsoid in the overdamped limit.

    Science.gov (United States)

    Marino, Raffaele; Eichhorn, Ralf; Aurell, Erik

    2016-01-01

    We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamics is based on the entropy production associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit of vanishing inertia effects (as compared to viscous fricion) produces a so-called "anomalous" contribution to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an additional contribution to the "anomalous" entropy. We calculate its specific form by performing a systematic singular perturbation analysis for the generating function of the entropy production. As a side result, we also obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of particle shape and give explicit expressions of the "anomalous entropy" for prolate and oblate spheroids and for near-spherical Brownian particles.

  11. Algorithm for generating a Brownian motion on a sphere

    International Nuclear Information System (INIS)

    Carlsson, Tobias; Elvingson, Christer; Ekholm, Tobias

    2010-01-01

    We present a new algorithm for generation of a random walk on a two-dimensional sphere. The algorithm is obtained by viewing the 2-sphere as the equator in the 3-sphere surrounded by an infinitesimally thin band with boundary which reflects Brownian particles and then applying known effective methods for generating Brownian motion on the 3-sphere. To test the method, the diffusion coefficient was calculated in computer simulations using the new algorithm and, for comparison, also using a commonly used method in which the particle takes a Brownian step in the tangent plane to the 2-sphere and is then projected back to the spherical surface. The two methods are in good agreement for short time steps, while the method presented in this paper continues to give good results also for larger time steps, when the alternative method becomes unstable.

  12. On the Humble Origins of the Brownian Entropic Force

    OpenAIRE

    Neumann, Richard M.

    2015-01-01

    Recognition that certain forces arising from the averaging of the multiple impacts of a solute particle by the surrounding solvent particles undergoing random thermal motion can be of an entropic nature has led to the incorporation of these forces and their related entropies into theoretical protocols ranging from molecular-dynamics simulations to the modeling of quarkonium suppression in particle physics. Here we present a rigorous derivation of this Brownian entropic force by means of the c...

  13. PREFACE: Self-organized nanostructures

    Science.gov (United States)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  14. Time-averaged MSD of Brownian motion

    International Nuclear Information System (INIS)

    Andreanov, Alexei; Grebenkov, Denis S

    2012-01-01

    We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we deduce the first four cumulant moments of the TAMSD, the asymptotic behavior of the probability density and its accurate approximation by a generalized Gamma distribution

  15. Time-averaged MSD of Brownian motion

    Science.gov (United States)

    Andreanov, Alexei; Grebenkov, Denis S.

    2012-07-01

    We study the statistical properties of the time-averaged mean-square displacements (TAMSD). This is a standard non-local quadratic functional for inferring the diffusion coefficient from an individual random trajectory of a diffusing tracer in single-particle tracking experiments. For Brownian motion, we derive an exact formula for the Laplace transform of the probability density of the TAMSD by mapping the original problem onto chains of coupled harmonic oscillators. From this formula, we deduce the first four cumulant moments of the TAMSD, the asymptotic behavior of the probability density and its accurate approximation by a generalized Gamma distribution.

  16. Laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    The principle of laser light scattering in Brownian medium and photon correlation spectroscopy are described in detail. Their application to the study of the behaviour of a polystyrene latex solution are discussed. The auto-correlation function of light scattered by the polystyrene latex solution in various angle, various temperature and in various sample times, have been measured. Information on the translation diffusion coefficient and size on the particle can be obtained from the auto-correlation function. Good agreement between the available data and experiment is shown. (author)

  17. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  18. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  19. Survival probabilities for branching Brownian motion with absorption

    OpenAIRE

    Harris, John; Harris, Simon

    2007-01-01

    We study a branching Brownian motion (BBM) with absorption, in which particles move as Brownian motions with drift $-\\rho$, undergo dyadic branching at rate $\\beta>0$, and are killed on hitting the origin. In the case $\\rho>\\sqrt{2\\beta}$ the extinction time for this process, $\\zeta$, is known to be finite almost surely. The main result of this article is a large-time asymptotic formula for the survival probability $P^x(\\zeta>t)$ in the case $\\rho>\\sqrt{2\\beta}$, where $P^x$ is...

  20. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-04-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.

  1. Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion

    Directory of Open Access Journals (Sweden)

    Kaminsky A. V.

    2010-07-01

    Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the am- plitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2 m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes (“fluctuation amplitudes” of the spectra of stochastic processes upon rotation of the Earth.

  2. Brownian gas models for extreme-value laws

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2013-01-01

    In this paper we establish one-dimensional Brownian gas models for the extreme-value laws of Gumbel, Weibull, and Fréchet. A gas model is a countable collection of independent particles governed by common diffusion dynamics. The extreme-value laws are the universal probability distributions governing the affine scaling limits of the maxima and minima of ensembles of independent and identically distributed one-dimensional random variables. Using the recently introduced concept of stationary Poissonian intensities, we construct two gas models whose global statistical structures are stationary, and yield the extreme-value laws: a linear Brownian motion gas model for the Gumbel law, and a geometric Brownian motion gas model for the Weibull and Fréchet laws. The stochastic dynamics of these gas models are studied in detail, and closed-form analytical descriptions of their temporal correlation structures, their topological phase transitions, and their intrinsic first-passage-time fluxes are presented. (paper)

  3. Quantum Brownian motion model for the stock market

    Science.gov (United States)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  4. Self-organizing plasmas

    International Nuclear Information System (INIS)

    Hayashi, T.; Sato, T.

    1999-01-01

    The primary purpose of this paper is to extract a grand view of self-organization through an extensive computer simulation of plasmas. The assertion is made that self-organization is governed by three key processes, i.e. the existence of an open complex system, the existence of information (energy) sources and the existence of entropy generation and expulsion processes. We find that self-organization takes place in an intermittent fashion when energy is supplied continuously from outside. In contrast, when the system state is suddenly changed into a non-equilibrium state externally, the system evolves stepwise and reaches a minimum energy state. We also find that the entropy production rate is maximized whenever a new ordered structure is created and that if the entropy generated during the self-organizing process is expelled from the system, then the self-organized structure becomes more prominent and clear. (author)

  5. Brownian relaxation of an inelastic sphere in air

    Energy Technology Data Exchange (ETDEWEB)

    Bird, G. A., E-mail: gab@gab.com.au [University of Sydney, Sydney, NSW 2006 (Australia)

    2016-06-15

    The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at sea level. While the gas-surface interaction model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the air to an initially stationary sphere as it acquires Brownian motion. Individual particle trajectories vary wildly, but a clear relaxation process emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and air, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average air molecule mass and the Knudsen number, which is the ratio of the mean free path in the air to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.

  6. Self-Organizing Robots

    CERN Document Server

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  7. A hydrodynamic formalism for Brownian systems

    International Nuclear Information System (INIS)

    Pina, E.; Rosales, M.A.

    1981-01-01

    A formal hydrodynamic approach to Brownian motion is presented and the corresponding equations are derived. Hydrodynamic quantities are expressed in terms of the physical variables characterizing the Brownian systems. Contact is made with the hydrodynamic model of Quantum Mechanics. (author)

  8. Quantum self-organization and nuclear collectivities

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-02-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The outcome of the collective mode is determined basically by the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger gaps between relevant single particle states. Thus, the single-particle state and the collective mode are “enemies” each other. However, the nuclear forces are demonstrated to be rich enough so as to enhance relevant collective mode by reducing the resistance power by changing singleparticle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, when the quantum self-organization occurs, single-particle energies can be self-organized, being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.

  9. Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics

    KAUST Repository

    Franz, Benjamin

    2013-06-19

    Two algorithms that combine Brownian dynami cs (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface, which partitions the domain, and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that the overlap region is required to accurately compute variances using PBD simulations. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented. © 2013 Society for Industrial and Applied Mathematics.

  10. Brownian motion in Robertson-Walker spacetimes from electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Bessa, Carlos H. G.; Bezerra, V. B.; Ford, L. H.

    2009-01-01

    We consider the effects of the vacuum fluctuations of a quantized electromagnetic field on particles in an expanding universe. We find that these particles typically undergo Brownian motion and acquire a nonzero mean squared velocity that depends on the scale factor of the universe. This Brownian motion can be interpreted as due to noncancellation of anticorrelated vacuum fluctuations in the time-dependent background spacetime. Alternatively, one can interpret this effect as the particles acquiring energy from the background spacetime geometry, a phenomenon that cannot occur in a static spacetime. We treat several types of coupling between the electromagnetic field and the particles and several model universes. We also consider both free particles, which, on the average, move on geodesics, and particles in bound systems. There are significant differences between these two cases, which illustrates that nongeodesic motion alters the effects of the vacuum fluctuations. We discuss the possible applications of this Brownian motion effect to cosmological scenarios.

  11. Communication: Memory effects and active Brownian diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak K. [Department of Chemistry, Presidency University, Kolkata 700073 (India); Li, Yunyun, E-mail: yunyunli@tongji.edu.cn [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Marchegiani, Giampiero [Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Marchesoni, Fabio [Center for Phononics and Thermal Energy Science, Tongji University, Shanghai 200092 (China); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy)

    2015-12-07

    A self-propelled artificial microswimmer is often modeled as a ballistic Brownian particle moving with constant speed aligned along one of its axis, but changing direction due to random collisions with the environment. Similarly to thermal noise, its angular randomization is described as a memoryless stochastic process. Here, we speculate that finite-time correlations in the orientational dynamics can affect the swimmer’s diffusivity. To this purpose, we propose and solve two alternative models. In the first one, we simply assume that the environmental fluctuations governing the swimmer’s propulsion are exponentially correlated in time, whereas in the second one, we account for possible damped fluctuations of the propulsion velocity around the swimmer’s axis. The corresponding swimmer’s diffusion constants are predicted to get, respectively, enhanced or suppressed upon increasing the model memory time. Possible consequences of this effect on the interpretation of the experimental data are discussed.

  12. Brownian motion with multiplicative noises revisited

    International Nuclear Information System (INIS)

    Kuroiwa, T; Miyazaki, K

    2014-01-01

    The Langevin equation with multiplicative noise and a state-dependent transport coefficient should always complemented with the proper interpretation rule of the noise, such as the Itô and Stratonovich conventions. Although the mathematical relationship between the different rules and how to translate from one rule to another are well established, the subject of which is a more physically natural rule still remains controversial. In this communication, we derive the overdamped Langevin equation with multiplicative noise for Brownian particles, by systematically eliminating the fast degrees of freedom of the underdamped Langevin equation. The Langevin equations obtained here vary depending on the choice of the noise conventions but they are different representations for an identical phenomenon. The results apply to multi-variable, nonequilibrium, non-stationary systems, and other general settings. (fast track communication)

  13. Quantum work fluctuation theorem: Nonergodic Brownian motion case

    International Nuclear Information System (INIS)

    Bai, Zhan-Wu

    2014-01-01

    The work fluctuations of a quantum Brownian particle driven by an external force in a general nonergodic heat bath are studied under a general initial state. The exact analytical expression of the work probability distribution function is derived. Results show the existence of a quantum asymptotic fluctuation theorem, which is in general not a direct generalization of its classical counterpart. The form of this theorem is dependent on the structure of the heat bath and the specified initial condition.

  14. Biased and flow driven Brownian motion in periodic channels

    Science.gov (United States)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  15. On micro-scale self-organization in a plasma

    International Nuclear Information System (INIS)

    Maluckov, A.; Jovanovic, M.S.; Skoric, M.M.; Sato, T.

    1998-01-01

    We concentrate on a nonlinear saturation of a stimulated Raman backscattering in an open convective weakly confined model in the context of micro-kinetic scale self-organization in plasmas. The results have led to an assertion that a long-time nonlinear saturation in an open SRBS model with phenomenological effects of anomalous dissipation, plasma heating and subsequent entropy expulsion, reveals a generic interrelation of self-organization at wave-fluid (macro) and particle-kinetic (micro) levels. (author)

  16. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  17. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  18. Non-intersecting Brownian motions leaving from and going to several points

    Science.gov (United States)

    Adler, Mark; van Moerbeke, Pierre; Vanderstichelen, Didier

    2012-03-01

    Consider n non-intersecting Brownian motions on R, depending on time t∈[0,1], with mi particles forced to leave from ai at time t=0, 1≤i≤q, and nj particles forced to end up at bj at time t=1, 1≤j≤p. For arbitrary p and q, it is not known if the distribution of the positions of the non-intersecting Brownian particles at a given time 0miracle! Unfortunately we were unable to find its explicit expression. The case p=q=2 will be discussed in the last section.

  19. Anomalous yet Brownian.

    Science.gov (United States)

    Wang, Bo; Anthony, Stephen M; Bae, Sung Chul; Granick, Steve

    2009-09-08

    We describe experiments using single-particle tracking in which mean-square displacement is simply proportional to time (Fickian), yet the distribution of displacement probability is not Gaussian as should be expected of a classical random walk but, instead, is decidedly exponential for large displacements, the decay length of the exponential being proportional to the square root of time. The first example is when colloidal beads diffuse along linear phospholipid bilayer tubes whose radius is the same as that of the beads. The second is when beads diffuse through entangled F-actin networks, bead radius being less than one-fifth of the actin network mesh size. We explore the relevance to dynamic heterogeneity in trajectory space, which has been extensively discussed regarding glassy systems. Data for the second system might suggest activated diffusion between pores in the entangled F-actin networks, in the same spirit as activated diffusion and exponential tails observed in glassy systems. But the first system shows exceptionally rapid diffusion, nearly as rapid as for identical colloids in free suspension, yet still displaying an exponential probability distribution as in the second system. Thus, although the exponential tail is reminiscent of glassy systems, in fact, these dynamics are exceptionally rapid. We also compare with particle trajectories that are at first subdiffusive but Fickian at the longest measurement times, finding that displacement probability distributions fall onto the same master curve in both regimes. The need is emphasized for experiments, theory, and computer simulation to allow definitive interpretation of this simple and clean exponential probability distribution.

  20. Operator Fractional Brownian Motion and Martingale Differences

    Directory of Open Access Journals (Sweden)

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  1. Self-organizing networks

    DEFF Research Database (Denmark)

    Marchetti, Nicola; Prasad, Neeli R.; Johansson, Johan

    2010-01-01

    In this paper, a general overview of Self-Organizing Networks (SON), and the rationale and state-of-the-art of wireless SON are first presented. The technical and business requirements are then briefly treated, and the research challenges within the field of SON are highlighted. Thereafter, the r...

  2. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  3. Brownian dynamics of aggregation kinetics of hard spheres with flexibele bounds

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.; Vliet, van T.

    2001-01-01

    Brownian dynamics (BD) simulations have been performed on the aggregation dynamics of colloidal particles within the context of a ball-and-string model. Particles are treated as hard spheres that can bind irreversibly through a string attached to their surface. The model is set up to mimic some

  4. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  5. Rotational and translational Brownian motion

    International Nuclear Information System (INIS)

    Coffey, W.T.; Salford Univ.

    1980-01-01

    In this review it is proposed to summarise the work on the theory of the translational and rotational Brownian movement which has been carried on over roughly the past 30 years. The review is intended to take the form of a tutorial paper rather than a list of the results obtained by the various investigators over the period in question. In this vein then it seems appropriate to firstly give a brief account of those parts of the theory of probability which are relevant to the problems under discussion. (orig.)

  6. Decay ratio for third order Brownian oscillators

    International Nuclear Information System (INIS)

    Konno, H.; Kanemoto, S.

    1998-01-01

    We have obtained the analytical expressions of the decay ratios for two types of third order Brownian oscillators which are generalizations of the second order Brownian oscillator driven by the Gaussian-white noise. The resulting expressions will provide us useful baseline information for more complicated practical problems and their applications

  7. Brownian Optimal Stopping and Random Walks

    International Nuclear Information System (INIS)

    Lamberton, D.

    2002-01-01

    One way to compute the value function of an optimal stopping problem along Brownian paths consists of approximating Brownian motion by a random walk. We derive error estimates for this type of approximation under various assumptions on the distribution of the approximating random walk

  8. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  9. A multiscale guide to Brownian motion

    International Nuclear Information System (INIS)

    Grebenkov, Denis S; Belyaev, Dmitry; Jones, Peter W

    2016-01-01

    We revise the Lévy construction of Brownian motion as a simple though rigorous approach to operate with various Gaussian processes. A Brownian path is explicitly constructed as a linear combination of wavelet-based ‘geometrical features’ at multiple length scales with random weights. Such a wavelet representation gives a closed formula mapping of the unit interval onto the functional space of Brownian paths. This formula elucidates many classical results about Brownian motion (e.g., non-differentiability of its path), providing an intuitive feeling for non-mathematicians. The illustrative character of the wavelet representation, along with the simple structure of the underlying probability space, is different from the usual presentation of most classical textbooks. Similar concepts are discussed for the Brownian bridge, fractional Brownian motion, the Ornstein-Uhlenbeck process, Gaussian free fields, and fractional Gaussian fields. Wavelet representations and dyadic decompositions form the basis of many highly efficient numerical methods to simulate Gaussian processes and fields, including Brownian motion and other diffusive processes in confining domains. (topical review)

  10. Non-Markovian quantum Brownian motion in one dimension in electric fields

    Science.gov (United States)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  11. The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2003-01-01

    The paper is a rather informal introduction to the concepts and results of the E-infinity Cantorian theory of quantum physics. The fundamental tools of complexity theory and non-linear dynamics (Hausdorff dimensions, fat fractals, etc.) are used to give what we think to be a new interpretation of high energy physics and to determine the corresponding mass-spectrum. Particular attention is paid to the role played by the VAK, KAM theorem, Arnold diffusion, Newhaus sinks and knot theory in determining the stability of an elementary 'particle-wave' which emerges in self-organizatory manner out of sizzling vacuum fluctuation

  12. Stock price prediction using geometric Brownian motion

    Science.gov (United States)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  13. Brownian motion using video capture

    International Nuclear Information System (INIS)

    Salmon, Reese; Robbins, Candace; Forinash, Kyle

    2002-01-01

    Although other researchers had previously observed the random motion of pollen grains suspended in water through a microscope, Robert Brown's name is associated with this behaviour based on observations he made in 1828. It was not until Einstein's work in the early 1900s however, that the origin of this irregular motion was established to be the result of collisions with molecules which were so small as to be invisible in a light microscope (Einstein A 1965 Investigations on the Theory of the Brownian Movement ed R Furth (New York: Dover) (transl. Cowper A D) (5 papers)). Jean Perrin in 1908 (Perrin J 1923 Atoms (New York: Van Nostrand-Reinhold) (transl. Hammick D)) was able, through a series of painstaking experiments, to establish the validity of Einstein's equation. We describe here the details of a junior level undergraduate physics laboratory experiment where students used a microscope, a video camera and video capture software to verify Einstein's famous calculation of 1905. (author)

  14. The open quantum Brownian motions

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2014-01-01

    Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H z : orbital (walker) Hilbert space, C Z in the discrete, L 2 (R) in the continuum H c : internal spin (or gyroscope) Hilbert space H sys =H z ⊗H c : system Hilbert space H p : probe (or quantum coin) Hilbert space, H p =C 2 ρ t tot : density matrix for the total system (walker + internal spin + quantum coins) ρ-bar t : reduced density matrix on H sys : ρ-bar t =∫dxdy ρ-bar t (x,y)⊗|x〉 z 〈y| ρ-hat t : system density matrix in a quantum trajectory: ρ-hat t =∫dxdy ρ-hat t (x,y)⊗|x〉 z 〈y|. If diagonal and localized in position: ρ-hat t =ρ t ⊗|X t 〉 z 〈X t | ρ t : internal density matrix in a simple quantum trajectory X t : walker position in a simple quantum trajectory B t : normalized Brownian motion ξ t , ξ t † : quantum noises (paper)

  15. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  16. Self-organizing representations

    Energy Technology Data Exchange (ETDEWEB)

    Kohonen, T.

    1983-01-01

    A property which is commonplace in the brain but which has always been ignored in learning machines is the spatial order of the processing units. This order is clearly highly significant and in nature it develops gradually during the lifetime of the organism. It then serves as the basis for perceptual and cognitive processes, and memory, too. The spatial order in biological organisms is often believed to be genetically determined. It is therefore intriguing to learn that a meaningful and optimal spatial order is formed in an extremely simple self-organizing process whereby certain feature maps are formed automatically. 8 references.

  17. Biased Brownian dynamics for rate constant calculation.

    OpenAIRE

    Zou, G; Skeel, R D; Subramaniam, S

    2000-01-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampl...

  18. On some generalization of fractional Brownian motions

    International Nuclear Information System (INIS)

    Wang Xiaotian; Liang Xiangqian; Ren Fuyao; Zhang Shiying

    2006-01-01

    The multifractional Brownian motion (mBm) is a continuous Gaussian process that extends the classical fractional Brownian motion (fBm) defined by Barton and Vincent Poor [Barton RJ, Vincent Poor H. IEEE Trans Inform 1988;34(5):943] and Decreusefond and Ustuenel [Decreusefond L, Ustuenel AS. Potential Anal 1999;10:177]. In addition, an innovational representation of fBm is given

  19. Deep inelastic collisions viewed as Brownian motion

    International Nuclear Information System (INIS)

    Gross, D.H.E.; Freie Univ. Berlin

    1980-01-01

    Non-equilibrium transport processes like Brownian motion, are studied since perhaps 100 years and one should ask why does one not use these theories to explain deep inelastic collision data. These theories have reached a high standard of sophistication, experience, and precision that I believe them to be very usefull for our problem. I will try to sketch a possible form of an advanced theory of Brownian motion that seems to be suitable for low energy heavy ion collisions. (orig./FKS)

  20. Leader Election and Shape Formation with Self-Organizing Programmable Matter

    OpenAIRE

    Daymude, Joshua J.; Derakhshandeh, Zahra; Gmyr, Robert; Strothmann, Thim; Bazzi, Rida; Richa, Andréa W.; Scheideler, Christian

    2015-01-01

    We consider programmable matter consisting of simple computational elements, called particles, that can establish and release bonds and can actively move in a self-organized way, and we investigate the feasibility of solving fundamental problems relevant for programmable matter. As a suitable model for such self-organizing particle systems, we will use a generalization of the geometric amoebot model first proposed in SPAA 2014. Based on the geometric model, we present efficient local-control ...

  1. Analytical Solutions of a Model for Brownian Motion in the Double Well Potential

    International Nuclear Information System (INIS)

    Liu Ai-Jie; Zheng Lian-Cun; Zhang Xin-Xin; Ma Lian-Xi

    2015-01-01

    In this paper, the analytical solutions of Schrödinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker—Planck equation known as the Klein—Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schrödinger equation. The analytical results obtained from the two different methods agree with each other well. The double well potential is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function. (general)

  2. Functionals of Brownian motion, localization and metric graphs

    International Nuclear Information System (INIS)

    Comtet, Alain; Desbois, Jean; Texier, Christophe

    2005-01-01

    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed: some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schroedinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of planar Brownian motion. (topical review)

  3. Active Brownian motion models and applications to ratchets

    Science.gov (United States)

    Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.

    2008-10-01

    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.

  4. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  5. Self-Organized Transport System

    Science.gov (United States)

    2009-09-28

    This report presents the findings of the simulation model for a self-organized transport system where traffic lights communicate with neighboring traffic lights and make decisions locally to adapt to traffic conditions in real time. The model is insp...

  6. Order out of Randomness: Self-Organization Processes in Astrophysics

    Science.gov (United States)

    Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.

    2018-03-01

    Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

  7. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    Science.gov (United States)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  8. Reflection Negative Kernels and Fractional Brownian Motion

    Directory of Open Access Journals (Sweden)

    Palle E. T. Jorgensen

    2018-06-01

    Full Text Available In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0 < H ≤ 1 / 2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1 / 2 . We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL 2 ( R . We relate this to a measure preserving action on a Gaussian L 2 -Hilbert space L 2 ( E .

  9. Eigenfunction expansion for fractional Brownian motions

    International Nuclear Information System (INIS)

    Maccone, C.

    1981-01-01

    The fractional Brownian motions, a class of nonstationary stochastic processes defined as the Riemann-Liouville fractional integral/derivative of the Brownian motion, are studied. It is shown that these processes can be regarded as the output of a suitable linear system of which the input is the white noise. Their autocorrelation is then derived with a study of their standard-deviation curves. Their power spectra are found by resorting to the nonstationary spectral theory. And finally their eigenfunction expansion (Karhunen-Loeve expansion) is obtained: the eigenfunctions are proved to be suitable Bessel functions and the eigenvalues zeros of the Bessel functions. (author)

  10. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  11. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  12. Generalized Arcsine Laws for Fractional Brownian Motion.

    Science.gov (United States)

    Sadhu, Tridib; Delorme, Mathieu; Wiese, Kay Jörg

    2018-01-26

    The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a Brownian B_{t} starting from the origin, and evolving during time T, one considers the following three observables: (i) the duration t_{+} the process is positive, (ii) the time t_{last} the process last visits the origin, and (iii) the time t_{max} when it achieves its maximum (or minimum). All three observables have the same cumulative probability distribution expressed as an arcsine function, thus the name arcsine laws. We show how these laws change for fractional Brownian motion X_{t}, a non-Markovian Gaussian process indexed by the Hurst exponent H. It generalizes standard Brownian motion (i.e., H=1/2). We obtain the three probabilities using a perturbative expansion in ϵ=H-1/2. While all three probabilities are different, this distinction can only be made at second order in ϵ. Our results are confirmed to high precision by extensive numerical simulations.

  13. Self-organized Learning Environments

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Mathiasen, Helle

    2007-01-01

    system actively. The two groups used the system in their own way to support their specific activities and ways of working. The paper concludes that self-organized learning environments can strengthen the development of students’ academic as well as social qualifications. Further, the paper identifies......The purpose of the paper is to discuss the potentials of using a conference system in support of a project based university course. We use the concept of a self-organized learning environment to describe the shape of the course. In the paper we argue that educational technology, such as conference...... systems, has a potential to support students’ development of self-organized learning environments and facilitate self-governed activities in higher education. The paper is based on an empirical study of two project groups’ use of a conference system. The study showed that the students used the conference...

  14. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Dzhamanbalin, K.K.; Medetov, N.A.

    2003-01-01

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  15. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    Science.gov (United States)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle

  16. Study of two-dimensional Debye clusters using Brownian motion

    International Nuclear Information System (INIS)

    Sheridan, T.E.; Theisen, W.L.

    2006-01-01

    A two-dimensional Debye cluster is a system of n identical particles confined in a parabolic well and interacting through a screened Coulomb (i.e., a Debye-Hueckel or Yukawa) potential with a Debye length λ. Experiments were performed for 27 clusters with n=3-63 particles (9 μm diam) in a capacitively coupled 9 W rf discharge at a neutral argon pressure of 13.6 mTorr. In the strong-coupling regime each particle exhibits small amplitude Brownian motion about its equilibrium position. These motions were projected onto the center-of-mass and breathing modes and Fourier analyzed to give resonance curves from which the mode frequencies, amplitudes, and damping rates were determined. The ratio of the breathing frequency to the center-of-mass frequency was compared with theory to self-consistently determine the Debye shielding parameter κ, Debye length λ, particle charge q, and mode temperatures. It is found that 1 < or approx. κ < or approx. 2, and κ decreases weakly with n. The particle charge averaged over all measurements is -14 200±200 e, and q decreases slightly with n. The two center-of-mass modes and the breathing mode are found to have the same temperature, indicating that the clusters are in thermal equilibrium with the neutral gas. The average cluster temperature is 399±5 K

  17. Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions

    International Nuclear Information System (INIS)

    Hu, B.L.; Matacz, A.

    1994-01-01

    The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics

  18. Novel forms of colloidal self-organization in temporally and spatially varying external fields: from low-density network-forming fluids to spincoated crystals

    Science.gov (United States)

    Yethiraj, Anand

    2010-03-01

    External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).

  19. The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor

    International Nuclear Information System (INIS)

    Tian-Fu, Gao; Jin-Can, Chen; Yue, Zhang

    2009-01-01

    Based on a general model of Brownian motors, the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are not affected by the kinetic energy change due to the particle's motion. Only when the heat leak in the system is negligible can the determinant of the Onsager matrix vanish. Moreover, the influence of the main parameters characterizing the model on the generalized efficiency of the Brownian motor is discussed in detail. The characteristic curves of the generalized efficiency varying with these parameters are presented, and the maximum generalized efficiency and the corresponding optimum parameters are determined. The results obtained here are of general significance. They are used to analyze the performance characteristics of the Brownian motors operating in the three interesting cases with zero heat leak, zero average drift velocity or a linear response relation, so that some important conclusions in current references are directly included in some limit cases of the present paper. (general)

  20. The colour of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation

    International Nuclear Information System (INIS)

    Berg-Soerensen, Kirstine; Flyvbjerg, Henrik

    2005-01-01

    One hundred years after Einstein modelled Brownian motion, a central aspect of this motion in incompressible fluids has not been verified experimentally: the thermal noise that drives the Brownian particle, is not white, as in Einstein's simple theory. It is slightly coloured, due to hydrodynamics and the fluctuation-dissipation theorem. This theoretical result from the 1970s was prompted by computer simulation results in apparent violation of Einstein's theory. We discuss how a direct experimental observation of this colour might be carried out by using optical tweezers to separate the thermal noise from the particle's dynamic response to it. Since the thermal noise is almost white, very good statistics is necessary to resolve its colour. That requires stable equipment and long recording times, possibly making this experiment one for the future only. We give results for experimental requirements and for stochastic errors as functions of experimental window and measurement time, and discuss some potential sources of systematic errors

  1. A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion

    International Nuclear Information System (INIS)

    Suidan, T M

    2001-01-01

    The surprising connection between a one-dimensional gravitationally interacting gas of sticky particles and the convex minorant process generated by Brownian motion on [0,1] is studied. A study is made of the dynamics of this 1-D gas system by identifying three distinct clustering regimes and the time scales at which they occur. At the critical moment of time the mass distribution of the gas can be computed in terms of functionals of the convex minorant process

  2. Brownian dynamics simulations of an order-disorder transition in sheared sterically stabilized colloidal suspensions

    International Nuclear Information System (INIS)

    Rigos, A.A.; Wilemski, G.

    1992-01-01

    The shear thinning behavior of a sterically stabilized nonaqueous colloidal suspension was investigated using nonequilibrium Brownian dynamics simulations of systems with 108 and 256 particles. At a volume fraction of 0.4, the suspension is thixotropic: it has a reversible shear thinning transition from a disordered state to an ordered, lamellar state with triangularly packed strings of particles. The time scale for the transition is set by the free particle diffusion constant. For the smaller system, the transition occurs gradually with increasing shear rate. For the larger system, the transition is sharp and discontinuous shear thinning is found. 34 refs., 9 figs., 1 tab

  3. Brownian motion in complex fluids: venerable field and frontier of modern physics

    International Nuclear Information System (INIS)

    Vizcarra-Rendon, A.; Medina-Noyola, M.; Ruiz-Estrada, H.; Arauz-Lara, J.L.

    1989-01-01

    This paper reviews the current status of our understanding of tracer-diffusion phenomena in colloidal suspensions. This is the most direct observation of the Brownian motion executed by labelled Brownian particles interacting with the rest of colloidal particles in a suspension. The fundamental description of this phenomenon constitutes today one of the most relevant problems in the process of understanding the dynamic properties of this important class of complex fluids, from the experimental and theoretical perspective of physical research. This paper describes the recent developments in the extension of the classical theory of Brownian motion and its application to the description of the effects of direct and hydrodynamic interactions among colloidal particles. As a result, a coherent pictured has emerged in which the agreement between theory and experiment from nature fields of physics. The moral of the paper is that the use of well established concepts as statistical physics, assisted by modern experimental techniques, are contributing to transform complex fluids into a more amialbe class of materials from the point of view of the physicist. (Author)

  4. Theory of relativistic Brownian motion in the presence of electromagnetic field in (1+1) dimension

    Science.gov (United States)

    Mukhopadhyay, Annesh; Bandyopadhyay, M.; Bhamidipati, C.

    2018-04-01

    In this work, we consider the relativistic generalization of the theory of Brownian motion for the (1+1) dimensional case, which is again consistent with Einstein's special theory of relativity and reduces to standard Brownian motion in the Newtonian limit. All the generalizations are made considering Special theory of relativity into account. The particle under consideration has a velocity close to the speed of light and is a free Brownian particle suspended in a heat bath. With this generalization the velocity probability density functions are also obtained using Ito, Stratonovich and Hanggi-Klimontovich approach of pre-point, mid-point and post-point discretization rule. Subsequently, in our work, we have obtained the relativistic Langevin equations in the presence of an electromagnetic field. Finally, taking a special case of a constant vector potential and a constant electric field into account the Langevin equations are solved for the momentum and subsequently the velocity of the particle. Using a similar approach to the Fokker-planck equations of motion, the velocity distributions are also obtained in the presence of a constant vector potential and are plotted, which shows essential deviations from the one obtained without a potential. Our constant potential model can be realized in an optical potential.

  5. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  6. Frustrated Brownian Motion of Nonlocal Solitary Waves

    International Nuclear Information System (INIS)

    Folli, V.; Conti, C.

    2010-01-01

    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.

  7. Analyzing animal movements using Brownian bridges.

    Science.gov (United States)

    Horne, Jon S; Garton, Edward O; Krone, Stephen M; Lewis, Jesse S

    2007-09-01

    By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.

  8. Intrinsic and extrinsic measurement for Brownian motion

    International Nuclear Information System (INIS)

    Castro-Villarreal, Pavel

    2014-01-01

    Based upon the Smoluchowski equation on curved manifolds, three physical observables are considered for Brownian displacement, namely geodesic displacement s, Euclidean displacement δR, and projected displacement δR ⊥ . The Weingarten–Gauss equations are used to calculate the mean-square Euclidean displacements in the short-time regime. Our findings show that from an extrinsic point of view the geometry of the space affects the Brownian motion in such a way that the particle’s diffusion is decelerated, contrasting with the intrinsic point of view where dynamics is controlled by the sign of the Gaussian curvature (Castro-Villarreal, 2010 J. Stat. Mech. P08006). Furthermore, it is possible to give exact formulas for 〈δR〉 and 〈δR 2 〉 on spheres and minimal surfaces, which are valid for all values of time. In the latter case, surprisingly, Brownian motion corresponds to the usual diffusion in flat geometries, albeit minimal surfaces have non-zero Gaussian curvature. Finally, the two-dimensional case is emphasized due to its close relation to surface self-diffusion in fluid membranes. (paper)

  9. Interacting Brownian Swarms: Some Analytical Results

    Directory of Open Access Journals (Sweden)

    Guillaume Sartoretti

    2016-01-01

    Full Text Available We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact. Depending on the values of the control parameters, one of the following patterns emerges after collision: (i Both swarms remain essentially flocked, or (ii the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings.

  10. Quantum dynamical framework for Brownian heat engines

    Science.gov (United States)

    Agarwal, G. S.; Chaturvedi, S.

    2013-07-01

    We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.

  11. Properties of Brownian Image Models in Scale-Space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup

    2003-01-01

    Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum...... law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix......In this paper it is argued that the Brownian image model is the least committed, scale invariant, statistical image model which describes the second order statistics of natural images. Various properties of three different types of Gaussian image models (white noise, Brownian and fractional...

  12. Self-organized topology of recurrence-based complex networks

    International Nuclear Information System (INIS)

    Yang, Hui; Liu, Gang

    2013-01-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  13. Brownian motion under dynamic disorder: effects of memory on the decay of the non-Gaussianity parameter

    Science.gov (United States)

    Tyagi, Neha; Cherayil, Binny J.

    2018-03-01

    The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.

  14. Time rescaling and Gaussian properties of the fractional Brownian motions

    International Nuclear Information System (INIS)

    Maccone, C.

    1981-01-01

    The fractional Brownian motions are proved to be a class of Gaussian (normal) stochastic processes suitably rescaled in time. Some consequences affecting their eigenfunction expansion (Karhunen-Loeve expansion) are inferred. A known formula of Cameron and Martin is generalized. The first-passage time probability density is found. The partial differential equation of the fractional Brownian diffusion is obtained. And finally the increments of the fractional Brownian motions are proved to be independent for nonoverlapping time intervals. (author)

  15. Theory of molecular crowding in Brownian hard-sphere liquids.

    Science.gov (United States)

    Zaccone, Alessio; Terentjev, Eugene M

    2012-06-01

    We derive an analytical pair potential of mean force for Brownian molecules in the liquid state. Our approach accounts for many-particle correlations of crowding particles of the liquid and for diffusive transport across the spatially modulated local density of crowders in the dense environment. Focusing on the limit of equal-size particles, we show that this diffusive transport leads to additional density- and structure-dependent terms in the interaction potential and to a much stronger attraction (by a factor of ≈4 at average volume fraction of crowders φ{0}=0.25) than in the standard depletion interaction where the diffusive effects are neglected. As an illustration of the theory, we use it to study the size of a polymer chain in a solution of inert crowders. Even in the case of an athermal background solvent, when a classical chain should be fully swollen, we find a sharp coil-globule transition of the ideal chain collapsing at a critical value of the crowder volume fraction φ{c}≈0.145.

  16. Hierarchical organization versus self-organization

    OpenAIRE

    Busseniers, Evo

    2014-01-01

    In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...

  17. Superaging correlation function and ergodicity breaking for Brownian motion in logarithmic potentials.

    Science.gov (United States)

    Dechant, A; Lutz, E; Kessler, D A; Barkai, E

    2012-05-01

    We consider an overdamped Brownian particle moving in a confining asymptotically logarithmic potential, which supports a normalized Boltzmann equilibrium density. We derive analytical expressions for the two-time correlation function and the fluctuations of the time-averaged position of the particle for large but finite times. We characterize the occurrence of aging and nonergodic behavior as a function of the depth of the potential, and we support our predictions with extensive Langevin simulations. While the Boltzmann measure is used to obtain stationary correlation functions, we show how the non-normalizable infinite covariant density is related to the superaging behavior.

  18. Effective diffusion of confined active Brownian swimmers

    Science.gov (United States)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  19. Eigenfunction statistics of Wishart Brownian ensembles

    International Nuclear Information System (INIS)

    Shukla, Pragya

    2017-01-01

    We theoretically analyze the eigenfunction fluctuation measures for a Hermitian ensemble which appears as an intermediate state of the perturbation of a stationary ensemble by another stationary ensemble of Wishart (Laguerre) type. Similar to the perturbation by a Gaussian stationary ensemble, the measures undergo a diffusive dynamics in terms of the perturbation parameter but the energy-dependence of the fluctuations is different in the two cases. This may have important consequences for the eigenfunction dynamics as well as phase transition studies in many areas of complexity where Brownian ensembles appear. (paper)

  20. Quantum Darwinism in Quantum Brownian Motion

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  1. Microscopic derivation of open quantum Brownian motion: a particular example

    International Nuclear Information System (INIS)

    Sinayskiy, Ilya; Petruccione, Francesco

    2015-01-01

    The microscopic derivation of a new type of Brownian motion, namely open quantum Brownian motion (OQBM) is presented. The quantum master equation for OQBM is derived for a weakly driven system interacting with a decoherent environment. Examples of the dynamics for initial Gaussian and non-Gaussian distributions are presented. Both examples demonstrate convergence of the OQBM dynamics to Gaussian distributions. (topical article)

  2. Quantum description of the Brownian movement in an external field

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1976-01-01

    The Schroedinger equation for brownian motion in an external field is obtained on the basis of the classical Langevin equation. The specific features of the approach proposed are illustrated by the example of the brownian motion of the quantum oscillator. The influence of the fluctuations on the various physical quantities is considered

  3. Diffusion in one dimensional random medium and hyperbolic Brownian motion

    International Nuclear Information System (INIS)

    Comtet, A.; Monthus, C.; Paris-6 Univ., 75

    1995-03-01

    Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. This relationship is analyzed in detail and various distributions are studied using stochastic calculus and functional integration. (author) 17 refs

  4. Simple Brownian diffusion an introduction to the standard theoretical models

    CERN Document Server

    Gillespie, Daniel T

    2013-01-01

    Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.

  5. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  6. Comment on 'Finding viscosity of liquids from Brownian motion at students' laboratory' and 'Brownian motion using video capture'

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2007-01-01

    The authors make comments and remarks on the papers by Salmon et al (2002 Eur. J. Phys. 23 249-53) and their own (2005 Eur. J. Phys. 26 827-33) concerning Brownian motion in two-dimensional space. New, corrected results of calculations and measurements for students' experiments on finding the viscosity of liquids from Brownian motion are presented. (letters and comments)

  7. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  8. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    EDOARDO MILOTTI

    walks with spatially correlated white noise: the time- dependence of the distance of pairs of random walkers. ... Dedicated to the memory of the late Professor Charusita Chakravarty. also quite well-known that the two-sided noise .... due to the individual noise components, we find that in the present context the value of ξ2 is.

  9. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    Spatial correlations of the noise are usually ruled out, and the paths traced by the random walkers are statistically independent. In this study, I consider instead noise which is white in time and has a Gaussian correlation in space, and by means of numerical simulation, I show how the spatial correlation determines the time ...

  10. Active Brownian particles at interfaces: An effective equilibrium approach

    Science.gov (United States)

    Wittmann, René; Brader, Joseph M.

    2016-06-01

    A simple theoretical approach is used to investigate active colloids at the free interface and near repulsive substrates. We employ dynamical density functional theory to determine the steady-state density profiles in an effective equilibrium system (Farage T. F. F. et al., Phys. Rev. E, 91 (2015) 042310). In addition to the known accumulation at surfaces, we predict wetting and drying transitions at a flat repulsive wall and capillary condensation and evaporation in a slit pore. These new phenomena are closely related to the motility-induced phase separation (MIPS) in the bulk.

  11. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    International Nuclear Information System (INIS)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi

    2014-01-01

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions

  12. The Schroedinger and Dirac free particle equations without quantum mechanics

    International Nuclear Information System (INIS)

    Ord, G.N.

    1996-01-01

    Einstein close-quote s theory of Brownian Movement has provided a well accepted microscopic model of diffusion for many years. Until recently the relationship between this model and Quantum Mechanics has been completely formal. Brownian motion provides a microscopic model for diffusion, but quantum mechanics and diffusion are related by a formal analytic continuation, so the relationship between Brownian motion and Quantum Mechanics has been correspondingly vague. Some recent work has changed this picture somewhat and here we show that a random walk model of Brownian motion produces the diffusion equation or the telegraph equations as a descriptions of particle densities, while at the same time the correlations in the space-time geometry of these same Brownian particles obey the Schroedinger and Dirac equations respectively. This is of interest because the equations of Quantum Mechanics appear here naturally in a classical context without the problems of interpretation they have in the usual context. copyright 1996 Academic Press, Inc

  13. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell’s equations

    Energy Technology Data Exchange (ETDEWEB)

    Dubina, Sean Hyun, E-mail: sdubin2@uic.edu; Wedgewood, Lewis Edward, E-mail: wedge@uic.edu [Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St. (MC 110), Chicago, Illinois 60607-4408 (United States)

    2016-07-15

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished by allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.

  14. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows.

    Science.gov (United States)

    Dobramysl, U; Holcman, D

    2018-02-15

    Is it possible to recover the position of a source from the steady-state fluxes of Brownian particles to small absorbing windows located on the boundary of a domain? To address this question, we develop a numerical procedure to avoid tracking Brownian trajectories in the entire infinite space. Instead, we generate particles near the absorbing windows, computed from the analytical expression of the exit probability. When the Brownian particles are generated by a steady-state gradient at a single point, we compute asymptotically the fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in two dimensions, which agree with stochastic simulations. We also derive an expression for the splitting probability between small windows using the matched asymptotic method. Finally, when there are more than two small absorbing windows, we show how to reconstruct the position of the source from the diffusion fluxes. The present approach provides a computational first principle for the mechanism of sensing a gradient of diffusing particles, a ubiquitous problem in cell biology.

  15. Performance characteristics and parametric optimum criteria of a Brownian micro-refrigerator in a spatially periodic temperature field

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2009-01-01

    It is shown that a microscopic system consisting of Brownian particles moving in a spatially asymmetric but periodic potential (ratchet) and contacting with the alternating hot and cold reservoirs along space coordinate and an external force applying on the particles may work as a refrigerator. In order to clarify the underlying physical pictures of the system, the heat flows via both the potential energy and the kinetic energy of the particles are considered simultaneously. Based on an Arrhenius' factor describing the forward and backward particle currents, expressions for some important performance parameters of the refrigerator, such as the coefficient of performance, cooling rate and power input, are derived analytically. The maximum coefficient of performance and cooling rate are numerically calculated for some given parameters. The influence of the main parameters such as the external force, barrier height of the potential, asymmetry of the potential and temperature ratio of the heat reservoirs on the performance of the Brownian refrigerator is discussed. The optimum criteria of some characteristic parameters are given. It is found that the Brownian refrigerator may be controlled to operate in different regions through the choice of several parameters

  16. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell’s equations

    International Nuclear Information System (INIS)

    Dubina, Sean Hyun; Wedgewood, Lewis Edward

    2016-01-01

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished by allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.

  17. Fractional Brownian motion and long term clinical trial recruitment.

    Science.gov (United States)

    Zhang, Qiang; Lai, Dejian

    2011-05-01

    Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM), however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations.

  18. On the joint residence time of N independent two-dimensional Brownian motions

    International Nuclear Information System (INIS)

    Benichou, O; Coppey, M; Klafter, J; Moreau, M; Oshanin, G

    2003-01-01

    We study the behaviour of several joint residence times of N independent Brownian particles in a disc of radius R in two dimensions. We consider: (i) the time T N (t) spent by all N particles simultaneously in the disc within the time interval [0, t], (ii) the time T (m) N (t) which at least m out of N particles spend together in the disc within the time interval [0, t], and (iii) the time T-tilde (m) N (t) which exactly m out of N particles spend together in the disc within the time interval [0, t]. We obtain very simple exact expressions for the expectations of these three residence times in the limit t → ∞

  19. Parallel Molecular Distributed Detection With Brownian Motion.

    Science.gov (United States)

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  20. Yukawa Potential, Panharmonic Measure and Brownian Motion

    Directory of Open Access Journals (Sweden)

    Antti Rasila

    2018-05-01

    Full Text Available This paper continues our earlier investigation, where a walk-on-spheres (WOS algorithm for Monte Carlo simulation of the solutions of the Yukawa and the Helmholtz partial differential equations (PDEs was developed by using the Duffin correspondence. In this paper, we investigate the foundations behind the algorithm for the case of the Yukawa PDE. We study the panharmonic measure, which is a generalization of the harmonic measure for the Yukawa PDE. We show that there are natural stochastic definitions for the panharmonic measure in terms of the Brownian motion and that the harmonic and the panharmonic measures are all mutually equivalent. Furthermore, we calculate their Radon–Nikodym derivatives explicitly for some balls, which is a key result behind the WOS algorithm.

  1. Self-organizing sensing and actuation for automatic control

    Science.gov (United States)

    Cheng, George Shu-Xing

    2017-07-04

    A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.

  2. Self-organizing magnetic beads for biomedical applications

    International Nuclear Information System (INIS)

    Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas

    2012-01-01

    In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle–particle particle–mesh method for effective computation of the magnetic force and torque acting on the particles. - Highlights: ► We propose to use self-organized bead structures to isolate circulating tumor cells. ► Flexible ways are important to get a high probability of catching cancer cells. ► The beads make it possible to tune the geometry in size position and shape.

  3. Bose polaron as an instance of quantum Brownian motion

    Directory of Open Access Journals (Sweden)

    Aniello Lampo

    2017-09-01

    Full Text Available We study the dynamics of a quantum impurity immersed in a Bose-Einstein condensate as an open quantum system in the framework of the quantum Brownian motion model. We derive a generalized Langevin equation for the position of the impurity. The Langevin equation is an integrodifferential equation that contains a memory kernel and is driven by a colored noise. These result from considering the environment as given by the degrees of freedom of the quantum gas, and thus depend on its parameters, e.g. interaction strength between the bosons, temperature, etc. We study the role of the memory on the dynamics of the impurity. When the impurity is untrapped, we find that it exhibits a super-diffusive behavior at long times. We find that back-flow in energy between the environment and the impurity occurs during evolution. When the particle is trapped, we calculate the variance of the position and momentum to determine how they compare with the Heisenberg limit. One important result of this paper is that we find position squeezing for the trapped impurity at long times. We determine the regime of validity of our model and the parameters in which these effects can be observed in realistic experiments.

  4. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    Science.gov (United States)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  5. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    Science.gov (United States)

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane

  6. Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids.

    Science.gov (United States)

    Park, Moongyu; Cushman, John Howard; O'Malley, Dan

    2014-09-30

    The collective molecular reorientations within a nematic liquid crystal fluid bathing a spherical colloid cause the colloid to diffuse anomalously on a short time scale (i.e., as a non-Brownian particle). The deformations and fluctuations of long-range orientational order in the liquid crystal profoundly influence the transient diffusive regimes. Here we show that an anisotropic fractional Brownian process run with a nonlinear multiscaling clock effectively mimics this collective and transient phenomenon. This novel process has memory, Gaussian increments, and a multiscale mean square displacement that can be chosen independently from the fractal dimension of a particle trajectory. The process is capable of modeling multiscale sub-, super-, or classical diffusion. The finite-size Lyapunov exponents for this multiscaling process are defined for future analysis of related mixing processes.

  7. Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances

    International Nuclear Information System (INIS)

    Ai Baoquan; Wang Liqiu; Liu Lianggang

    2006-01-01

    We study the thermodynamic features of a thermal motor driven by temperature differences, which consists of a Brownian particle moving in a sawtooth potential with an external load. The motor can work as a heat engine or a refrigerator under different conditions. The heat flow driven by both potential and kinetic energy is considered. The former is reversible when the engine works quasistatically and the latter is always irreversible. The efficiency of the heat engine (Coefficient Of Performance (COP) of a refrigerator) can never approach Carnot efficiency (COP)

  8. Chain propagator, mass, and universality in polymer solutions from Brownian relativity

    International Nuclear Information System (INIS)

    Mezzasalma, Stefano A.

    2005-01-01

    A Lagrangian theory for single chains in polymer solutions is addressed via a recent Brownian relativity. By employing generalized diffusive coordinates, statements of covariance and diffusivity invariance result into free particle Lagrangians, where mass turns out to rise as a universal spacetime property. It descends from lowering diffusivity (or curving spacetime), so identifying a mechanism which conceptually resemble those ruling macromolecular scaling laws. An extended chain propagator recovers the Gaussian end-to-end distribution and, in the limits of time-like and space-like orbits, the dualism for diffusive paths and polymer random-walks

  9. Self-organization, Networks, Future

    Directory of Open Access Journals (Sweden)

    T. S. Akhromeyeva

    2013-01-01

    Full Text Available This paper presents an analytical review of a conference on the great scientist, a brilliant professor, an outstanding educator Sergei Kapitsa, held in November 2012. In the focus of this forum were problems of self-organization and a paradigm of network structures. The use of networks in the context of national defense, economics, management of mass consciousness was discussed. The analysis of neural networks in technical systems, the structure of the brain, as well as in the space of knowledge, information, and behavioral strategies plays an important role. One of the conference purposes was to an online organize community in Russia and to identify the most promising directions in this field. Some of them are presented in this paper.

  10. Self-organizing magnetohydrodynamic plasma

    International Nuclear Information System (INIS)

    Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.

    1990-09-01

    In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. When sufficiently large free magnetic energy does exist, however, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process. (author)

  11. Conformal correlation functions in the Brownian loop soup

    Science.gov (United States)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  12. Conformal correlation functions in the Brownian loop soup

    Energy Technology Data Exchange (ETDEWEB)

    Camia, Federico, E-mail: federico.camia@nyu.edu [New York University Abu Dhabi (United Arab Emirates); VU University, Amsterdam (Netherlands); Gandolfi, Alberto, E-mail: albertogandolfi@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Università di Firenze (Italy); Kleban, Matthew, E-mail: kleban@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Center for Cosmology and Particle Physics, Department of Physics, New York University (United States)

    2016-01-15

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  13. Conformal correlation functions in the Brownian loop soup

    Directory of Open Access Journals (Sweden)

    Federico Camia

    2016-01-01

    Full Text Available We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  14. An explicit local uniform large deviation bound for Brownian bridges

    NARCIS (Netherlands)

    Wittich, O.

    2005-01-01

    By comparing curve length in a manifold and a standard sphere, we prove a local uniform bound for the exponent in the Large Deviation formula that describes the concentration of Brownian bridges to geodesics.

  15. Manipulation and controlled amplification of Brownian motion of microcantilever sensors

    International Nuclear Information System (INIS)

    Mehta, Adosh; Cherian, Suman; Hedden, David; Thundat, Thomas

    2001-01-01

    Microcantilevers, such as those used in atomic force microscopy, undergo Brownian motion due to mechanical thermal noise. The root mean square amplitude of the Brownian motion of a cantilever typically ranges from 0.01--0.1 nm, which limits its use in practical applications. Here we describe a technique by which the Brownian amplitude and the Q factor in air and water can be amplified by three and two orders of magnitude, respectively. This technique is similar to a positive feedback oscillator, wherein the Brownian motion of the vibrating cantilever controls the frequency output of the oscillator. This technique can be exploited to improve sensitivity of microcantilever-based chemical and biological sensors, especially for sensors in liquid environments

  16. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    Science.gov (United States)

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Diffuse correlation tomography in the transport regime: A theoretical study of the sensitivity to Brownian motion

    Science.gov (United States)

    Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.

    2018-02-01

    Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.

  18. Fast orthogonal transforms and generation of Brownian paths.

    Science.gov (United States)

    Leobacher, Gunther

    2012-04-01

    We present a number of fast constructions of discrete Brownian paths that can be used as alternatives to principal component analysis and Brownian bridge for stratified Monte Carlo and quasi-Monte Carlo. By fast we mean that a path of length [Formula: see text] can be generated in [Formula: see text] floating point operations. We highlight some of the connections between the different constructions and we provide some numerical examples.

  19. Estimation of the global regularity of a multifractional Brownian motion

    DEFF Research Database (Denmark)

    Lebovits, Joachim; Podolskij, Mark

    This paper presents a new estimator of the global regularity index of a multifractional Brownian motion. Our estimation method is based upon a ratio statistic, which compares the realized global quadratic variation of a multifractional Brownian motion at two different frequencies. We show that a ...... that a logarithmic transformation of this statistic converges in probability to the minimum of the Hurst functional parameter, which is, under weak assumptions, identical to the global regularity index of the path....

  20. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

    Directory of Open Access Journals (Sweden)

    A.E.Kobryn

    2003-01-01

    Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

  1. Growing hierarchical probabilistic self-organizing graphs.

    Science.gov (United States)

    López-Rubio, Ezequiel; Palomo, Esteban José

    2011-07-01

    Since the introduction of the growing hierarchical self-organizing map, much work has been done on self-organizing neural models with a dynamic structure. These models allow adjusting the layers of the model to the features of the input dataset. Here we propose a new self-organizing model which is based on a probabilistic mixture of multivariate Gaussian components. The learning rule is derived from the stochastic approximation framework, and a probabilistic criterion is used to control the growth of the model. Moreover, the model is able to adapt to the topology of each layer, so that a hierarchy of dynamic graphs is built. This overcomes the limitations of the self-organizing maps with a fixed topology, and gives rise to a faithful visualization method for high-dimensional data.

  2. Exponential Self-Organization and Moore’s Law: Measures and Mechanisms

    OpenAIRE

    Georgiev, Georgi Yordanov; Chatterjee, Atanu; Iannacchione, Germano

    2017-01-01

    The question of how complex systems become more organized and efficient with time is open. Examples are the formation of elementary particles from pure energy, the formation of atoms from particles, the formation of stars and galaxies, and the formation of molecules from atoms, of organisms, and of the society. In this sequence, order appears inside complex systems and randomness (entropy) is expelled to their surroundings. Key features of self-organizing systems are that they are open and th...

  3. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  4. Biosensor based on measurements of the clustering dynamics of magnetic particles

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample.......Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample....

  5. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    International Nuclear Information System (INIS)

    Yeh, L.

    1993-01-01

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented

  6. Brownian dynamics simulations of insulin microspheres formation

    Science.gov (United States)

    Li, Wei; Chakrabarti, Amit; Gunton, James

    2010-03-01

    Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.

  7. From Brownian motion to power of fluctuations

    Directory of Open Access Journals (Sweden)

    B. Berche

    2012-12-01

    Full Text Available The year 2012 marks the 140th birth anniversary of Marian Smoluchowski (28.05.1872-5.09.1917, a man who "made ground-breaking contribution to the theory of Brownian motion, the theory of sedimentation, the statistical nature of the Second Law, the theory and practice of density fluctuations (critical opalescence. During his final years of scientific creativity his pioneering theory of coagulation and diffusion-limited reaction rate appeared. These outstanding achievements present true gems which dominate the description of soft matter physics and chemical physics as well as the related areas up till now!" This quotation was taken from the lecture by Peter Hanggi given at international conference Statistical Physics: Modern Trends and Applications that took place in Lviv, Ukraine on July 3-6, 2012 (see conference web-page for more details and was dedicated to the commemoration of Smoluchowski's work. This and forthcoming issues of the Condensed Matter Physics contain papers presented at this conference.

  8. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    Science.gov (United States)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  9. Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution

    International Nuclear Information System (INIS)

    Tothova, J.; Lisy, V.

    2015-01-01

    The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)

  10. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

    Science.gov (United States)

    Brites, Carlos D. S.; Xie, Xiaoji; Debasu, Mengistie L.; Qin, Xian; Chen, Runfeng; Huang, Wei; Rocha, João; Liu, Xiaogang; Carlos, Luís D.

    2016-10-01

    Brownian motion is one of the most fascinating phenomena in nature. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems, gene therapy in biomedical research, artificial motors and galaxy formation to the behaviour of stock prices. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K-1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

  11. Self-organization through decoupling

    Directory of Open Access Journals (Sweden)

    Romar Correa

    2000-01-01

    Full Text Available In one line of research, the transition from Fordism to flexible specialisation is explained by the infeasibility of a mode of regulation that relied on central controls. According to another explanation, which we favour, the disintegration of vertically integrated production is unpredictable. The concept of self-organization is often recommended to model the transition from hierarchical organizational forms to flatter structures. Formally, a conditionally stable nonlinear system of differential equations is examined. In the first thesis, the characteristic roots with positive real parts play the role of ‘order’ parameters which can become unstable modes. The rest of the variables refer to stable modes. The strategy is to show that the stable modes can be expressed in terms of the unstable modes so that the former can be eliminated from the system. On the other hand, we provide a theorem showing that a coupled set of differential equations can become uncoupled and vice versa as an argument in favour of the second thesis. The path of evolution can turn both ways.

  12. Self-organized criticality paradigm

    International Nuclear Information System (INIS)

    Duran, I.; Stoeckel, J.; Hron, M.; Horacek, J.; Jakubka, K.; Kryska, L.

    2000-01-01

    According to the paradigm of the Self-Organized Criticality (SOC), the anomalous transport in tokamaks is caused by fast transient processes - avalanches. One of the manifestations of these phenomena should be 1/f decay of electrostatic fluctuations power spectra in a certain frequency range. In this paper, the frequency spectra of floating potential, density and fluctuation-induced flux, measured by poloidal and radial arrays of Langmuir probes on the CASTOR tokamak, are presented. The floating potential and the fluctuation-induced flux decay from 30 kHz up to 100 kHz as f -1 . The plasma density decays as f -1 in a more narrow band, 20 to 40 kHz. The possible limitation of SOC behavior for frequencies higher than 100 kHz due to intermittency is stressed. For this reason the Probability Distribution Functions (PDFs) of floating potential fluctuations were computed at different time scales using wavelet transform. A clear departure of the computed PDFs from Gaussianity, which is a classical signature of intermittency, is observed at time scales under 10 μs (100 kHz). (author)

  13. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  14. Non-Taylor magnetohydrodynamic self-organization

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya.

    1994-10-01

    A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, j perpendicular = B x ∇p/B·B and j parallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)

  15. Browndye: A software package for Brownian dynamics

    Science.gov (United States)

    Huber, Gary A.; McCammon, J. Andrew

    2010-11-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. Program summaryProgram title: Browndye Catalogue identifier: AEGT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license, included in distribution No. of lines in distributed program, including test data, etc.: 143 618 No. of bytes in distributed program, including test data, etc.: 1 067 861 Distribution format: tar.gz Programming language: C++, OCaml ( http://caml.inria.fr/) Computer: PC, Workstation, Cluster Operating system: Linux Has the code been vectorised or parallelized?: Yes. Runs on multiple processors with shared memory using pthreads RAM: Depends linearly on size of physical system Classification: 3 External routines: uses the output of APBS [1] ( http://www.poissonboltzmann.org/apbs/) as input. APBS must be obtained and installed separately. Expat 2.0.1, CLAPACK, ocaml-expat, Mersenne Twister. These are included in the Browndye distribution. Nature of problem: Exploration and determination of rate constants of bimolecular interactions involving large biological molecules. Solution method: Brownian dynamics with electrostatic, excluded volume, van der Waals, and desolvation forces. Running time: Depends linearly on size of physical system and quadratically on precision of results. The included example executes in a few minutes.

  16. Engineering Autonomous Chemomechanical Nanomachines Using Brownian Ratchets

    Science.gov (United States)

    Lavella, Gabriel

    Nanoscale machines which directly convert chemical energy into mechanical work are ubiquitous in nature and are employed to perform a diverse set of tasks such as transporting molecules, maintaining molecular gradients, and providing motion to organisms. Their widespread use in nature suggests that large technological rewards can be obtained by designing synthetic machines that use similar mechanisms. This thesis addresses the technological adaptation of a specific mechanism known as the Brownian ratchet for the design of synthetic autonomous nanomachines. My efforts were focused more specifically on synthetic chemomechanical ratchets which I deem will be broadly applicable in the life sciences. In my work I have theoretically explored the biophysical mechanisms and energy landscapes that give rise to the ratcheting phenomena and devised devices that operate off these principles. I demonstrate two generations of devices that produce mechanical force/deformation in response to a user specified ligand. The first generation devices, fabricatied using a combination nanoscale lithographic processes and bioconjugation techniques, were used to provide evidence that the proposed ratcheting phenomena can be exploited in synthetic architectures. Second generation devices fabricated using self-assembled DNA/hapten motifs were constructed to gain a precise understanding of ratcheting dynamics and design constraints. In addition, the self-assembled devices enabled fabrication en masse, which I feel will alleviate future experimental hurdles in analysis and facilitate its adaptation to technologies. The product of these efforts is an architecture that has the potential to enable numerous technologies in biosensing and drug delivery. For example, the coupling of molecule-specific actuation to the release of drugs or signaling molecules from nanocapsules or porous materials could be transformative. Such architectures could provide possible avenues to pressing issues in biology and

  17. Concept and Feasibility Study of Self-Organized Electrochemical Devices

    National Research Council Canada - National Science Library

    Moorehead, William

    2002-01-01

    .... In this work, using attractive and repulsive London-van der Waals forces, a self-organized, interpenetrating, separator-free rechargeable lithium ion battery called a self-organized battery system (SBS) is proposed...

  18. How superdiffusion gets arrested: Ecological encounters explain shift from Lévy to Brownian movement

    NARCIS (Netherlands)

    De Jager, M.; Bartumeus, F.; Kölzsch, A.; Weissing, F.J.; Hengeveld, G.M.; Nolet, B.A.; Herman, P.M.J.; Van de Koppel, J.

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when

  19. How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement

    NARCIS (Netherlands)

    de Jager, M.; Bartumeus, F.; Kölzsch, A.; Weissing, F.J.; Hengeveld, G.M.; Nolet, B.A.; Herman, P.M.J.; de Koppel, J.

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when

  20. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    NARCIS (Netherlands)

    Jager, de M.; Bartumeus, F.; Kölzsch, A.; Weissing, F.J.; Hengeveld, G.M.; Nolet, B.A.; Herman, P.M.J.; Koppel, van de J.

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when

  1. Exponential functionals of Brownian motion, I: Probability laws at fixed time

    OpenAIRE

    Matsumoto, Hiroyuki; Yor, Marc

    2005-01-01

    This paper is the first part of our survey on various results about the distribution of exponential type Brownian functionals defined as an integral over time of geometric Brownian motion. Several related topics are also mentioned.

  2. How superdiffusion gets arrested : ecological encounters explain shift from Levy to Brownian movement

    NARCIS (Netherlands)

    de Jager, Monique; Bartumeus, Frederic; Kolzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; de Koppel, Johan van

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when

  3. How superdiffusion gets arrested : Ecological encounters explain shift from Levy to Brownian movement

    NARCIS (Netherlands)

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M.J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when

  4. On the use of reverse Brownian motion to accelerate hybrid simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    2017-04-01

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategies for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.

  5. On modeling animal movements using Brownian motion with measurement error.

    Science.gov (United States)

    Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun

    2014-02-01

    Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.

  6. Brownian dynamic simulations and experiments of MR fluids

    International Nuclear Information System (INIS)

    Segovia-Gutiérrez, J P; Vicente, J de; Hidalgo, R; Puertas, A M

    2013-01-01

    The use of computational techniques in magnetorheology is not new. I general, these approaches assume dipolar magnetic interactions, hard sphere repulsions, and no-slip conditions. In this contribution we focus on the dynamics of the equilibrium state in the presence of uniaxial DC fields. To achieve this goal we make use of Brownian Dynamic Simulations. We highlight the importance of the Brownian forces versus magnetic dipolar interaction in the range of low magnetic field strengths. We monitor the formation of columnar structures and their dynamics, in competition with the Brownian motion, until a hexatic crystal phase appears at high field strengths for monodisperse systems. The shear viscosity is computed from the Einstein relation and eventually compared with experimental data at very low-shear rates. A reasonably good agreement between both data sets is observed.

  7. Nonparametric Regression with Subfractional Brownian Motion via Malliavin Calculus

    Directory of Open Access Journals (Sweden)

    Yuquan Cang

    2014-01-01

    Full Text Available We study the asymptotic behavior of the sequence Sn=∑i=0n-1K(nαSiH1(Si+1H2-SiH2, as n tends to infinity, where SH1 and SH2 are two independent subfractional Brownian motions with indices H1 and H2, respectively. K is a kernel function and the bandwidth parameter α satisfies some hypotheses in terms of H1 and H2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motion SH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.

  8. Non-colliding Brownian Motions and the Extended Tacnode Process

    Science.gov (United States)

    Johansson, Kurt

    2013-04-01

    We consider non-colliding Brownian motions with two starting points and two endpoints. The points are chosen so that the two groups of Brownian motions just touch each other, a situation that is referred to as a tacnode. The extended kernel for the determinantal point process at the tacnode point is computed using new methods and given in a different form from that obtained for a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the extended kernel is also different from that obtained for the extended tacnode kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the correlation kernel for a finite number of non-colliding Brownian motions starting at two points and ending at arbitrary points.

  9. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0Brownian SDE. The author develops optimal filtering of mixed models including linear case, and studies financial applications and statistical inference with hypotheses testing and parameter estimation. She proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional mark...

  10. Deterministic Brownian motion generated from differential delay equations.

    Science.gov (United States)

    Lei, Jinzhi; Mackey, Michael C

    2011-10-01

    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.

  11. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.

    Science.gov (United States)

    Arduini, Maria; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2007-07-31

    Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.

  12. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  13. Self-Organization Activities of College Students: Challenges and Opportunities

    Science.gov (United States)

    Shmurygina, Natalia; Bazhenova, Natalia; Bazhenov, Ruslan; Nikolaeva, Natalia; Tcytcarev, Andrey

    2016-01-01

    The article provides the analysis of self-organization activities of college students related to their participation in youth associations activities. The purpose of research is to disclose a degree of students' activities demonstration based on self-organization processes, assessment of existing self-organization practices of the youth,…

  14. Singularity spectrum of self-organized criticality

    International Nuclear Information System (INIS)

    Canessa, E.

    1992-10-01

    I introduce a simple continuous probability theory based on the Ginzburg-Landau equation that provides for the first time a common analytical basis to relate and describe the main features of two seemingly different phenomena of condensed-matter physics, namely self-organized criticality and multifractality. Numerical support is given by a comparison with reported simulation data. Within the theory the origin of self-organized critical phenomena is analysed in terms of a nonlinear singularity spectrum different form the typical convex shape due to multifractal measures. (author). 29 refs, 5 figs

  15. The Intersection Probability of Brownian Motion and SLEκ

    Directory of Open Access Journals (Sweden)

    Shizhong Zhou

    2015-01-01

    Full Text Available By using excursion measure Poisson kernel method, we obtain a second-order differential equation of the intersection probability of Brownian motion and SLEκ. Moreover, we find a transformation such that the second-order differential equation transforms into a hypergeometric differential equation. Then, by solving the hypergeometric differential equation, we obtain the explicit formula of the intersection probability for the trace of the chordal SLEκ and planar Brownian motion started from distinct points in an upper half-plane H-.

  16. Stochastic flows in the Brownian web and net

    Czech Academy of Sciences Publication Activity Database

    Schertzer, E.; Sun, R.; Swart, Jan M.

    2014-01-01

    Roč. 227, č. 1065 (2014), s. 1-160 ISSN 0065-9266 R&D Projects: GA ČR GA201/07/0237; GA ČR GA201/09/1931 Institutional support: RVO:67985556 Keywords : Brownian web * Brownian net * stochastic flow of kernels * measure-valued process * Howitt-Warren flow * linear system * random walk in random environment * finite graph representation Subject RIV: BA - General Mathematics Impact factor: 1.727, year: 2014 http://library.utia.cas.cz/separaty/2013/SI/swart-0396636.pdf

  17. On the Generalized Brownian Motion and its Applications in Finance

    DEFF Research Database (Denmark)

    Høg, Esben; Frederiksen, Per; Schiemert, Daniel

    This paper deals with dynamic term structure models (DTSMs) and proposes a new way to handle the limitation of the classical affine models. In particular, the paper expands the exibility of the DTSMs by applying generalized Brownian motions with dependent increments as the governing force...... of the state variables instead of standard Brownian motions. This is a new direction in pricing non defaultable bonds. By extending the theory developed by Dippon & Schiemert (2006a), the paper developes a bond market with memory, and proves the absence of arbitrage. The framework is readily extendable...

  18. Finding viscosity of liquids from Brownian motion at students' laboratory

    International Nuclear Information System (INIS)

    Greczylo, Tomasz; Debowska, Ewa

    2005-01-01

    Brownian motion appears to be a good subject for investigation at advanced students' laboratory [1]. The paper presents such an investigation carried out in Physics Laboratory II at the Institute of Experimental Physics of Wroclaw University. The experiment has been designed to find viscosity of liquids from Brownian motion phenomenon. Authors use modern technology that helps to proceed with measurements and makes the procedure less time and effort consuming. Discussion of the process of setting up the experiment and the results obtained for three different solutions of glycerin in water are presented. Advantages and disadvantages of the apparatus are pointed out along with descriptions of possible future uses

  19. Brownian motion of solitons in a Bose-Einstein condensate.

    Science.gov (United States)

    Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B

    2017-03-07

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  20. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials

    Science.gov (United States)

    Hyeon, Changbong; Hwang, Wonseok

    2017-07-01

    Using Brownian motion in periodic potentials V (x ) tilted by a force f , we provide physical insight into the thermodynamic uncertainty relation, a recently conjectured principle for statistical errors and irreversible heat dissipation in nonequilibrium steady states. According to the relation, nonequilibrium output generated from dissipative processes necessarily incurs an energetic cost or heat dissipation q , and in order to limit the output fluctuation within a relative uncertainty ɛ , at least 2 kBT /ɛ2 of heat must be dissipated. Our model shows that this bound is attained not only at near-equilibrium [f ≪V'(x ) ] but also at far-from-equilibrium [f ≫V'(x ) ] , more generally when the dissipated heat is normally distributed. Furthermore, the energetic cost is maximized near the critical force when the barrier separating the potential wells is about to vanish and the fluctuation of Brownian particles is maximized. These findings indicate that the deviation of heat distribution from Gaussianity gives rise to the inequality of the uncertainty relation, further clarifying the meaning of the uncertainty relation. Our derivation of the uncertainty relation also recognizes a bound of nonequilibrium fluctuations that the variance of dissipated heat (σq2) increases with its mean (μq), and it cannot be smaller than 2 kBT μq .

  1. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.

    Science.gov (United States)

    Puchkov, Evgeny O

    2010-06-01

    In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.

  2. An image encryption scheme based on three-dimensional Brownian motion and chaotic system

    International Nuclear Information System (INIS)

    Chai Xiu-Li; Yuan Ke; Gan Zhi-Hua; Lu Yang; Chen Yi-Ran

    2017-01-01

    At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional (3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion (BCB3DBM) is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system (LTS). Furthermore, block confusion based on position sequence group (BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed. (paper)

  3. Crossover to self-organized criticality in an inertial sandpile model

    OpenAIRE

    Head, DA; Rodgers, GJ

    1996-01-01

    We introduce a one-dimensional sandpile model which incorporates particle inertia. The inertial dynamics are governed by a new parameter which, as it passes through a threshold value, alters the toppling dynamics in such a way that the system no longer evolves to a self-organized critical state. A range of mean-field theories based on a kinetic equation approach is presented which confirm the numerical findings. We conclude by considering the physical applications of this model, particularly ...

  4. Self-organized critical pinball machine

    DEFF Research Database (Denmark)

    Flyvbjerg, H.

    2004-01-01

    The nature of self-organized criticality (SOC) is pin-pointed with a simple mechanical model: a pinball machine. Its phase space is fully parameterized by two integer variables, one describing the state of an on-going game, the other describing the state of the machine. This is the simplest...

  5. Self-organized criticality in fragmenting

    DEFF Research Database (Denmark)

    Oddershede, L.; Dimon, P.; Bohr, J.

    1993-01-01

    The measured mass distributions of fragments from 26 fractured objects of gypsum, soap, stearic paraffin, and potato show evidence of obeying scaling laws; this suggests the possibility of self-organized criticality in fragmenting. The probability of finding a fragment scales inversely to a power...

  6. Functional self-organization in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA))

    1990-01-01

    A novel approach to functional self-organization is presented. It consists of a universe generated by a formal language that defines objects (=programs), their meaning (=functions), and their interactions (=composition). Results obtained so far are briefly discussed. 17 refs., 5 figs.

  7. Self-Organized Criticality Theory Model of Thermal Sandpile

    International Nuclear Information System (INIS)

    Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao

    2015-01-01

    A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)

  8. Self-organized architectures from assorted DNA-framed nanoparticles

    Science.gov (United States)

    Liu, Wenyan; Halverson, Jonathan; Tian, Ye; Tkachenko, Alexei V.; Gang, Oleg

    2016-09-01

    The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.

  9. Statistical properties of laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    Relationship between statistical properties of laser light scattering in Brownian medium and photon-counting distributions are described in detail. A coherence optical detection has been constructed and by using photon-counting technique the ensemble distribution of the scattered field within space and time coherence has been measured. Good agreement between theory and experiment is shown. (author)

  10. Brownian Movement and Avogadro's Number: A Laboratory Experiment.

    Science.gov (United States)

    Kruglak, Haym

    1988-01-01

    Reports an experimental procedure for studying Einstein's theory of Brownian movement using commercially available latex microspheres and a video camera. Describes how students can monitor sphere motions and determine Avogadro's number. Uses a black and white video camera, microscope, and TV. (ML)

  11. Occupation times distribution for Brownian motion on graphs

    CERN Document Server

    Desbois, J

    2002-01-01

    Considering a Brownian motion on a general graph, we study the joint law for the occupation times on all the bonds. In particular, we show that the Laplace transform of this distribution can be expressed as the ratio of two determinants. We give two formulations, with arc or vertex matrices, for this result and discuss a simple example. (letter to the editor)

  12. Phase transition for absorbed Brownian motion with drift

    International Nuclear Information System (INIS)

    Ferrari, P.A.; Martinez, S.; San Martin, J.

    1997-01-01

    We study one-dimensional Brownian motion with constant drift toward the origin and initial distribution concentrated in the strictly positive real line. We say that at the first time the process hits the origin, it is absorbed. We study the asymptotic behavior, as t → ∞, of m t , the conditional distribution at time zero of the process conditioned on survival up to time t and on the process having a fixed value at time t. We find that there is a phase transition in the decay rate of the initial condition. For fast decay rate (subcritical case) m t is localized, in the critical case m t is located around √t, and for slow rates (supercritical case) m, is located around t. The critical rate is given by the decay of the minimal quasistationary distribution of this process. We also study in each case the asymptotic distribution of the process, scaled by √t, conditioned as before. We prove that in the subcritical case this distribution is a Brownian excursion. In the critical case it is a Brownian bridge attaining 0 for the first time at time 1, with some initial distribution. In the supercritical case, after centering around the expected value-which is of the order of t we show that this process converges to a Brownian bridge arriving at 0 at time 1 and with a Gaussian initial distribution

  13. Brownian motion, Minkowski space and principle of special relativity

    International Nuclear Information System (INIS)

    Caubet, J.-P.

    1977-01-01

    From the assumption that the brownian diffusion locally behaves like an ideal gas (pressure being inversely proportional to volume according to Boyle's law) one can deduce the signature +++- of the Minkowski space, the Lorentz addition of velocities, and the principle of special relativity [fr

  14. Asset pricing puzzles explained by incomplete Brownian equilibria

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    We examine a class of Brownian based models which produce tractable incomplete equilibria. The models are based on finitely many investors with heterogeneous exponential utilities over intermediate consumption who receive partially unspanned income. The investors can trade continuously on a finit...... markets. Consequently, our model can simultaneously help explaining the risk-free rate and equity premium puzzles....

  15. Non-cooperative Brownian donkeys: A solvable 1D model

    Science.gov (United States)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  16. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan; Erban, Radek; Chapman, S. Jonathan

    2014-01-01

    is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal

  17. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as

  18. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.

    Science.gov (United States)

    Brenner, Howard

    2005-12-01

    A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle

  19. Single-particle tracking: applications to membrane dynamics.

    Science.gov (United States)

    Saxton, M J; Jacobson, K

    1997-01-01

    Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.

  20. NMR signals within the generalized Langevin model for fractional Brownian motion

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  1. Stripes instability of an oscillating non-Brownian iso-dense suspension of spheres

    Science.gov (United States)

    Roht, Y. L.; Ippolito, I.; Hulin, J. P.; Salin, D.; Gauthier, G.

    2018-03-01

    We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H. We do observe an instability of the initially homogeneous concentration in the form of concentration variation stripes transverse to the flow. The wavelength of these regular spatial structures scales roughly as the gap of the cell and is independent of the particle concentration and of the period of oscillation. This instability requires large enough particle volume fractions φ≥ 0.25 and a gap large enough compared to the sphere diameter (H/d ≥ 8) . Mapping the domain of the existence of this instability in the space of the control parameters shows that it occurs only in a limited range of amplitudes of the fluid displacement. The analysis of the concentration distribution across the gap supports a scenario of particle migration towards the wall followed by an instability due to a particle concentration gradient with a larger concentration at the walls. In order to account for the main features of this stripes instability, we use the theory of longitudinal instability due to normal stresses difference and recent observations of a dependence of the first normal stresses difference on the particle concentration.

  2. Perspectives of experimental and theoretical studies of self-organized dust structures in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Tsytovich, V N

    2015-01-01

    We review research aimed at understanding the phenomena occurring in a complex plasma under microgravity conditions. Some aspects of the work already performed are considered that have not previously been given sufficient attention but which are potentially crucial for future work. These aspects, in particular, include the observation of compact dust structures that are estimated to be capable of confining all components of a dust plasma in a bounded spatial volume; experimental evidence of the nonlinear screening of dust particles; and experimental evidence of the excitation of collective electric fields. In theoretical terms, novel collective attraction processes between likely charged dust particles are discussed and all schemes of the shadowy attraction between dust particles used earlier, including in attempts to interpret observations, are reviewed and evaluated. Dust structures are considered from the standpoint of the current self-organization theory. It is emphasized that phase transitions between states of self-organized systems differ significantly from those in homogeneous states and that the phase diagrams should be constructed in terms of the parameters of a self-organized structure and cannot be constructed in terms of the temperature and density or similar parameters of homogeneous structures. Using the existing theoretical approaches to modeling self-organized structures in dust plasmas, the parameter distribution of a structure is recalculated for a simpler model that includes the quasineutrality condition and neglects diffusion. These calculations indicate that under microgravity conditions, any self-organized structure can contain a limited number of dust particles and is finite in size. The maximum possible number of particles in a structure determines the characteristic inter-grain distance in dust crystals that can be created under microgravity conditions. Crystallization criteria for the structures are examined and the quasispherical

  3. Maximum distance between the Leader and the Laggard for three Brownian walkers

    International Nuclear Information System (INIS)

    Majumdar, Satya N; Bray, Alan J

    2010-01-01

    We consider three independent Brownian walkers moving on a line. The process terminates when the leftmost walker (the 'Leader') meets either of the other two walkers. For arbitrary values of the diffusion constants D 1 (the Leader), D 2 and D 3 of the three walkers, we compute the probability distribution P(m|y 2 , y 3 ) of the maximum distance m between the Leader and the current rightmost particle (the 'Laggard') during the process, where y 2 and y 3 are the initial distances between the Leader and the other two walkers. The result has, for large m, the form P(m|y 2 , y 3 ) ∼ A(y 2 , y 3 )m −δ , where δ = (2π − θ)/(π − θ) and θ= cos -1 (D 1 /√((D 1 +D 2 )(D 1 +D 3 ))). The amplitude A(y 2 , y 3 ) is also determined exactly

  4. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    Science.gov (United States)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  5. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion

    Science.gov (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2017-10-01

    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  6. Ergodicity breaking and ageing of underdamped Brownian dynamics with quenched disorder

    Science.gov (United States)

    Guo, Wei; Li, Yong; Song, Wen-Hua; Du, Lu-Chun

    2018-03-01

    The dynamics of an underdamped Brownian particle moving in one-dimensional quenched disorder under the action of an external force is investigated. Within the tailored parameter regime, the transiently anomalous diffusion and ergodicity breaking, spanning several orders of magnitude in time, have been obtained. The ageing nature of the system weakens as the dissipation of the system increases for other given parameters. Its origin is ascribed to the highly local heterogeneity of the disorder. Two kinds of approximations (in the stationary state), respectively, for large bias and large damping are derived. These results may be helpful in further understanding the nontrivial response of nonlinear dynamics, and also have potential applications to experiments and activities of biological processes.

  7. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  8. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.

    Science.gov (United States)

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan

    2014-01-07

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

  9. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    Science.gov (United States)

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern. PMID:24225464

  10. Self-organization in metal complexes

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1999-01-01

    Inorganic self-organization involves the spontaneous generation of well-defined supramolecular architectures from metal ions and organic ligands. The basic concept of supramolecular chemistry is a molecular recognition. When the substrate are metal ions, recognition is expressed in the stability and selectivity of metal ion complexation by organic ligands and depends on the geometry of the ligand and on their binding sites that it contains. The combination of the geometric features of the ligand units and the coordination geometries of the metal ions provides very efficient tool for the synthesis of novel, intriguing and highly sophisticated species such as catenanes, box structures, double and triple helicates with a variety of interesting properties. The article will focus on the examples of inorganic self-organization involving the templating as a first step for the assembly of supramolecular structures of high complexity. (author)

  11. Self-organized critical neural networks

    International Nuclear Information System (INIS)

    Bornholdt, Stefan; Roehl, Torsten

    2003-01-01

    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters

  12. Information Driven Ecohydrologic Self-Organization

    Directory of Open Access Journals (Sweden)

    Benjamin L. Ruddell

    2010-09-01

    Full Text Available Variability plays an important role in the self-organized interaction between vegetation and its environment, yet the principles that characterize the role of the variability in these interactions remain elusive. To address this problem, we study the dependence between a number of variables measured at flux towers by quantifying the information flow between the different variables along with the associated time lag. By examining this network of feedback loops for seven ecosystems in different climate regions, we find that: (1 the feedback tends to maximize information production in the entire system, and the latter increases with increasing variability within the whole system; and (2 variables that participate in feedback exhibit moderated variability. Self-organization arises as a tradeoff where the ability of the total system to maximize information production through feedback is limited by moderate variability of the participating variables. This relationship between variability and information production leads to the emergence of ordered organization.

  13. Rain scavenging of radioactive particles

    International Nuclear Information System (INIS)

    Williams, A.L.

    1975-01-01

    An assessment is made of the rainout of airborne radioactive particles from a nuclear detonation with emphasis on the microphysical removal processes. For submicron particles the scavenging processes examined are Brownian and turbulent diffusion to cloud droplets. For particles larger than 1 μm radius, nucleation scavenging is examined. For various particle size and radioactivity distributions, it is found that from 27 to 99 percent of the radioactivity is attached to cloud droplets and subject to rapid removal by rain. (U.S.)

  14. Workplace Accidents and Self-Organized Criticality

    OpenAIRE

    Mauro, John C.; Diehl, Brett; Marcellin, Richard F.; Vaughn, Daniel J.

    2018-01-01

    The occurrence of workplace accidents is described within the context of self-organized criticality, a theory from statistical physics that governs a wide range of phenomena across physics, biology, geosciences, economics, and the social sciences. Workplace accident data from the U.S. Bureau of Labor Statistics reveal a power-law relationship between the number of accidents and their severity as measured by the number of days lost from work. This power-law scaling is indicative of workplace a...

  15. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter

    1996-01-01

    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...... both weakly nonlinear analysis and full numerical simulations that closely reproduce the experimental observations. Varying the Reynolds number leads to bifurcation sequences accompanied by topological changes in the distribution of the coherent structures as well as clear transitions in the total...

  16. Self-organized criticality in neural networks

    Science.gov (United States)

    Makarenkov, Vladimir I.; Kirillov, A. B.

    1991-08-01

    Possible mechanisms of creating different types of persistent states for informational processing are regarded. It is presented two origins of criticalities - self-organized and phase transition. A comparative analyses of their behavior is given. It is demonstrated that despite a likeness there are important differences. These differences can play a significant role to explain the physical issue of such highest functions of the brain as a short-term memory and attention. 1.

  17. Exponential Self-Organization and Moore’s Law: Measures and Mechanisms

    Directory of Open Access Journals (Sweden)

    Georgi Yordanov Georgiev

    2017-01-01

    Full Text Available The question of how complex systems become more organized and efficient with time is open. Examples are the formation of elementary particles from pure energy, the formation of atoms from particles, the formation of stars and galaxies, and the formation of molecules from atoms, of organisms, and of the society. In this sequence, order appears inside complex systems and randomness (entropy is expelled to their surroundings. Key features of self-organizing systems are that they are open and they are far away from equilibrium, with increasing energy flows through them. This work searches for global measures of such self-organizing systems, which are predictable and do not depend on the substrate of the system studied. Our results will help to understand the existence of complex systems and mechanisms of self-organization. In part we also provide insights, in this work, about the underlying physical essence of Moore’s law and the multiple logistic growth observed in technological progress.

  18. Instantons in Self-Organizing Logic Gates

    Science.gov (United States)

    Bearden, Sean R. B.; Manukian, Haik; Traversa, Fabio L.; Di Ventra, Massimiliano

    2018-03-01

    Self-organizing logic is a recently suggested framework that allows the solution of Boolean truth tables "in reverse"; i.e., it is able to satisfy the logical proposition of gates regardless to which terminal(s) the truth value is assigned ("terminal-agnostic logic"). It can be realized if time nonlocality (memory) is present. A practical realization of self-organizing logic gates (SOLGs) can be done by combining circuit elements with and without memory. By employing one such realization, we show, numerically, that SOLGs exploit elementary instantons to reach equilibrium points. Instantons are classical trajectories of the nonlinear equations of motion describing SOLGs and connect topologically distinct critical points in the phase space. By linear analysis at those points, we show that these instantons connect the initial critical point of the dynamics, with at least one unstable direction, directly to the final fixed point. We also show that the memory content of these gates affects only the relaxation time to reach the logically consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential equations, that, since instantons connect critical points, noise and perturbations may change the instanton trajectory in the phase space but not the initial and final critical points. Therefore, even for extremely large noise levels, the gates self-organize to the correct solution. Our work provides a physical understanding of, and can serve as an inspiration for, models of bidirectional logic gates that are emerging as important tools in physics-inspired, unconventional computing.

  19. Self-organization in a diversity induced thermodynamics.

    Science.gov (United States)

    Scirè, Alessandro; Annovazzi-Lodi, Valerio

    2017-01-01

    In this work we show how global self-organized patterns can come out of a disordered ensemble of point oscillators, as a result of a deterministic, and not of a random, cooperative process. The resulting system dynamics has many characteristics of classical thermodynamics. To this end, a modified Kuramoto model is introduced, by including Euclidean degrees of freedom and particle polarity. The standard deviation of the frequency distribution is the disorder parameter, diversity, acting as temperature, which is both a source of motion and of disorder. For zero and low diversity, robust static phase-synchronized patterns (crystals) appear, and the problem reverts to a generic dissipative many-body problem. From small to moderate diversity crystals display vibrations followed by structure disintegration in a competition of smaller dynamic patterns, internally synchronized, each of which is capable to manage its internal diversity. In this process a huge variety of self-organized dynamic shapes is formed. Such patterns can be seen again as (more complex) oscillators, where the same description can be applied in turn, renormalizing the problem to a bigger scale, opening the possibility of pattern evolution. The interaction functions are kept local because our idea is to build a system able to produce global patterns when its constituents only interact at the bond scale. By further increasing the oscillator diversity, the dynamics becomes erratic, dynamic patterns show short lifetime, and finally disappear for high diversity. Results are neither qualitatively dependent on the specific choice of the interaction functions nor on the shape of the probability function assumed for the frequencies. The system shows a phase transition and a critical behaviour for a specific value of diversity.

  20. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    asymmetry drive the water ow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed......Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through...... Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by flxing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial...

  1. Brownian motion model with stochastic parameters for asset prices

    Science.gov (United States)

    Ching, Soo Huei; Hin, Pooi Ah

    2013-09-01

    The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift μ and volatility σ may change over time. Presently we consider a model in which the parameter x = (μ,σ) is such that its value x (t + Δt) at a short time Δt ahead of the present time t depends on the value of the asset price at time t + Δt as well as the present parameter value x(t) and m-1 other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.

  2. A distance weighted-based approach for self-organized aggregation in robot swarms

    KAUST Repository

    Khaldi, Belkacem

    2017-12-14

    In this paper, a Distance-Weighted K Nearest Neighboring (DW-KNN) topology is proposed to study self-organized aggregation as an emergent swarming behavior within robot swarms. A virtual physics approach is applied among the proposed neighborhood topology to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach is used as a key factor to identify the K-Nearest neighbors taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbors is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach showing various self-organized aggregations performed by a swarm of N foot-bot robots.

  3. Self-Organization during Friction of Slide Bearing Antifriction Materials

    Directory of Open Access Journals (Sweden)

    Iosif S. Gershman

    2015-12-01

    Full Text Available This article discusses the peculiarities of self-organization behavior and formation of dissipative structures during friction of antifriction alloys for slide bearings against a steel counterbody. It shows that during self-organization, the moment of friction in a tribosystem may be decreasing with the load growth and in the bifurcations of the coefficient of friction with respect to load. Self-organization and the formation of dissipative structures lead to an increase in the seizure load.

  4. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  5. Continuous state branching processes in random environment: The Brownian case

    OpenAIRE

    Palau, Sandra; Pardo, Juan Carlos

    2015-01-01

    We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...

  6. New methods for simulation of fractional Brownian motion

    International Nuclear Information System (INIS)

    Yin, Z.M.

    1996-01-01

    We present new algorithms for simulation of fractional Brownian motion (fBm) which comprises a set of important random functions widely used in geophysical and physical modeling, fractal image (landscape) simulating, and signal processing. The new algorithms, which are both accurate and efficient, allow us to generate not only a one-dimensional fBm process, but also two- and three-dimensional fBm fields. 23 refs., 3 figs

  7. Anyonic partition functions and windings of planar Brownian motion

    International Nuclear Information System (INIS)

    Desbois, J.; Heinemann, C.; Ouvry, S.

    1995-01-01

    The computation of the N-cycle Brownian paths contribution F N (α) to the N-anyon partition function is addressed. A detailed numerical analysis based on a random walk on a lattice indicates that F N 0 (α)=product k=1 N-1 [1-(N/k)α]. In the paramount three-anyon case, one can show that F 3 (α) is built by linear states belonging to the bosonic, fermionic, and mixed representations of S 3

  8. Algorithms for Brownian first-passage-time estimation

    Science.gov (United States)

    Adib, Artur B.

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  9. Reflected Brownian motions in the KPZ universality class

    CERN Document Server

    Weiss, Thomas; Spohn, Herbert

    2017-01-01

    This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the n-th Brownian motion is reflected from the Brownian motion with label n-1. This model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. In fact, because of the singular interaction, many universal properties can be established with rigor. They depend on the choice of initial conditions. Discussion addresses packed and periodic initial conditions (Chapter 5), stationary initial conditions (Chapter 6), and mixtures thereof (Chapter 7). The suitably scaled spatial process will be proven to converge to an Airy process in the long time limit. A chapter on determinantal random fields and another one on Airy processes are added to have the notes self-contained. These notes serve as an introduction to the KPZ universality class, illustrating the main concepts by means of a single model only. The notes will be of interest to readers from interacting diffusion processe...

  10. Active Brownian motion in a narrow channel

    Science.gov (United States)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  11. On the validity of Brownian assumptions in the spin van der Waals model

    International Nuclear Information System (INIS)

    Oh, Suhk Kun

    1985-01-01

    A simple Brownian motion theory of the spin van der Waals model, which can be stationary, Markoffian or Gaussian, is studied. By comparing the Brownian motion theory with an exact theory called the generalized Langevin equation theory, the validity of the Brownian assumptions is tested. Thereby, it is shown explicitly how the Markoffian and Gaussian properties are modified in the spin van der Waals model under the influence of quantum fluctuations and long range ordering. (Author)

  12. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    OpenAIRE

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein’s original theory ...

  13. Equivalence of Brownian dynamics and dynamic Monte Carlo simulations in multicomponent colloidal suspensions.

    Science.gov (United States)

    Cuetos, Alejandro; Patti, Alessandro

    2015-08-01

    We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.

  14. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  15. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    International Nuclear Information System (INIS)

    Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark

    2015-01-01

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces

  16. The role of hierarchy in self-organizing systems

    NARCIS (Netherlands)

    Ollfen, van W.; Romme, A.G.L.

    1995-01-01

    This paper discusses the role of hierarchy in human systems. Two kinds of self-organizing processes are distinguished: conservative and dissipative self-organization. The former leads to rather stable, specialistic systems, whereas the latter leads to continuously changing generalistic systems. When

  17. Self-organized quantum rings : Physical characterization and theoretical modeling

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Koenraad, P.M.; Fomin, V.M.

    2014-01-01

    An adequate modeling of the self-organized quantum rings is possible only on the basis of the modern characterization of those nanostructures.We discuss an atomic-scale analysis of the indium distribution of self-organized InGaAs quantum rings (QRs). The analysis of the shape, size and composition

  18. Enabling Self-Organization in Embedded Systems with Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Christophe Bobda

    2009-01-01

    Full Text Available We present a methodology based on self-organization to manage resources in networked embedded systems based on reconfigurable hardware. Two points are detailed in this paper, the monitoring system used to analyse the system and the Local Marketplaces Global Symbiosis (LMGS concept defined for self-organization of dynamically reconfigurable nodes.

  19. Self-organizing networks for extracting jet features

    International Nuclear Information System (INIS)

    Loennblad, L.; Peterson, C.; Pi, H.; Roegnvaldsson, T.

    1991-01-01

    Self-organizing neural networks are briefly reviewed and compared with supervised learning algorithms like back-propagation. The power of self-organization networks is in their capability of displaying typical features in a transparent manner. This is successfully demonstrated with two applications from hadronic jet physics; hadronization model discrimination and separation of b.c. and light quarks. (orig.)

  20. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  1. Random functions via Dyson Brownian Motion: progress and problems

    International Nuclear Information System (INIS)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-01-01

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C"2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  2. Random functions via Dyson Brownian Motion: progress and problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoyuan; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen,Friedrich Hund Platz 1, D-37077 Goettingen (Germany)

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  3. Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    KAUST Repository

    Lipková, Jana

    2011-01-01

    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-bcȳ model for irreversible bimolecular reactions which was introduced in [R. Erban and S. J. Chapman, Phys. Biol., 6(2009), 046001]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated. © 2011 Society for Industrial and Applied Mathematics.

  4. Whitening filter and innovational representation of fractional Brownian motion

    International Nuclear Information System (INIS)

    Wang Xiaotian; Wu Min

    2009-01-01

    In this paper, by means of fractional differential-integral technique we give a new whitening filter formula for fractional Brownian motion defined by Mandelbrot and van Ness [Mandelbrot BB, van Ness JW. SIAM Rev 1968;10(4):422]. This new formula has potential use in time series analysis and in detecting signals as Barton and Vincent Poor [Barton RJ, Vincent Poor H. IEEE Trans Inform Theory 1988;34(5):943] have shown. Another potential application of it is behavioral finance, where the arbitrage opportunities that come from the reversal effect of stock returns, can be eliminated by such a formula.

  5. Moments of inertia and the shapes of Brownian paths

    International Nuclear Information System (INIS)

    Fougere, F.; Desbois, J.

    1993-01-01

    The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs

  6. Theory of Brownian motion with the Alder-Wainwright effect

    International Nuclear Information System (INIS)

    Okabe, Y.

    1986-01-01

    The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, the authors obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. The authors interested in whether or not it can be measured experimentally

  7. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    International Nuclear Information System (INIS)

    Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2008-01-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays

  8. Nuclear resonant scattering of synchrotron radiation from nuclei in the Brownian motion

    International Nuclear Information System (INIS)

    Razdan, Ashok

    2003-01-01

    The time evolution of the coherent forward scattering of the synchrotron radiation for resonant nuclei in Brownian motion is studied. Apart from target thickness, the appearance of the dynamical beats also depends on 'α' which is the ratio of the harmonic force constant to the damping force constant of harmonic oscillator undergoing Brownian motion

  9. Under which conditions is quantum Brownian motion observable in a microscope?

    International Nuclear Information System (INIS)

    Helseth, L.E.

    2010-01-01

    We investigate under which conditions we can expect to observe quantum Brownian motion in a microscope. Using the fluctuation-dissipation theorem, we investigate quantum Brownian motion in an ohmic bath, and estimate temporal and spatial accuracy required to observe a crossover from classical to quantum behavior.

  10. Statistics of the first passage time of Brownian motion conditioned by maximum value or area

    International Nuclear Information System (INIS)

    Kearney, Michael J; Majumdar, Satya N

    2014-01-01

    We derive the moments of the first passage time for Brownian motion conditioned by either the maximum value or the area swept out by the motion. These quantities are the natural counterparts to the moments of the maximum value and area of Brownian excursions of fixed duration, which we also derive for completeness within the same mathematical framework. Various applications are indicated. (paper)

  11. On the definition of an admitted Lie group for stochastic differential equations with multi-Brownian motion

    International Nuclear Information System (INIS)

    Srihirun, B; Meleshko, S V; Schulz, E

    2006-01-01

    The definition of an admitted Lie group of transformations for stochastic differential equations has been already presented for equations with one-dimensional Brownian motion. The transformation of the dependent variables involves time as well, and it has been proven that Brownian motion is transformed to Brownian motion. In this paper, we will discuss this concept for stochastic differential equations involving multi-dimensional Brownian motion and present applications to a variety of stochastic differential equations

  12. Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-02-01

    Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.

  13. Phase synchronization for two Brownian motors with bistable coupling on a ratchet

    International Nuclear Information System (INIS)

    Mateos, Jose L.; Alatriste, F.R.

    2010-01-01

    Graphical abstract: We study phase synchronization for a walker with two Brownian motors with bistable coupling on a ratchet and show a connection between synchronization and optimal transport. - Abstract: We study phase synchronization for a walker on a ratchet potential. The walker consist of two particles coupled by a bistable potential that allow the interchange of the order of the particles while moving through a one-dimensional asymmetric periodic ratchet potential. We consider the deterministic and the stochastic dynamics of the center of mass of the walker in a tilted ratchet potential with an external periodic forcing, in the overdamped case. The ratchet potential has to be tilted in order to obtain a rotator or self-sustained nonlinear oscillator in the absence of external periodic forcing. This oscillator has an intrinsic frequency that can be entrained with the frequency of the external driving. We introduced a linear phase through a set of discrete time events and the associated average frequency, and show that this frequency can be synchronized with the frequency of the external driving. In this way, we can properly characterize the phenomenon of synchronization through Arnold tongues and show that the local maxima in the average velocity of the center of mass of the walker, both in the deterministic case and in the presence of noise, correspond to the borders of these Arnold tongues. In this way, we established a connection between optimal transport in ratchets and the phenomenon of phase synchronization.

  14. Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

    1993-02-01

    Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation

  15. The concept of self-organizing systems. Why bother?

    Science.gov (United States)

    Elverfeldt, Kirsten v.; Embleton-Hamann, Christine; Slaymaker, Olav

    2016-04-01

    Complexity theory and the concept of self-organizing systems provide a rather challenging conceptual framework for explaining earth systems change. Self-organization - understood as the aggregate processes internal to an environmental system that lead to a distinctive spatial or temporal organization - reduces the possibility of implicating a specific process as being causal, and it poses some restrictions on the idea that external drivers cause a system to change. The concept of self-organizing systems suggests that many phenomena result from an orchestration of different mechanisms, so that no causal role can be assigned to an individual factor or process. The idea that system change can be due to system-internal processes of self-organization thus proves a huge challenge to earth system research, especially in the context of global environmental change. In order to understand the concept's implications for the Earth Sciences, we need to know the characteristics of self-organizing systems and how to discern self-organizing systems. Within the talk, we aim firstly at characterizing self-organizing systems, and secondly at highlighting the advantages and difficulties of the concept within earth system sciences. The presentation concludes that: - The concept of self-organizing systems proves especially fruitful for small-scale earth surface systems. Beach cusps and patterned ground are only two of several other prime examples of self-organizing earth surface systems. They display characteristics of self-organization like (i) system-wide order from local interactions, (ii) symmetry breaking, (iii) distributed control, (iv) robustness and resilience, (v) nonlinearity and feedbacks, (vi) organizational closure, (vii) adaptation, and (viii) variation and selection. - It is comparatively easy to discern self-organization in small-scale systems, but to adapt the concept to larger scale systems relevant to global environmental change research is more difficult: Self-organizing

  16. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  17. First passage Brownian functional properties of snowmelt dynamics

    Science.gov (United States)

    Dubey, Ashutosh; Bandyopadhyay, Malay

    2018-04-01

    In this paper, we model snow-melt dynamics in terms of a Brownian motion (BM) with purely time dependent drift and difusion and examine its first passage properties by suggesting and examining several Brownian functionals which characterize the lifetime and reactivity of such stochastic processes. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, for a BM with initial starting point x0, we derive analytical expressions for : (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the total fresh water availability during melting, (iii) the PDF P(M) associated with the maximum size M of the BM process before the first passage time, and (iv) the joint PDF P(M; tm) of the maximum size M and its occurrence time tm before the first passage time. These P(M) and P(M; tm) are useful in determining the time of maximum fresh water availability and in calculating the total maximum amount of available fresh water. These PDFs are examined for the power law time dependent drift and diffusion which matches quite well with the available data of snowmelt dynamics.

  18. Research on Corporate Social Responsibility of Supply Chain System Based on the Self-organization Theory

    OpenAIRE

    Baoying Wang

    2013-01-01

    In this study, the characteristics of supply chain system are analyzed based on the Self-organization theory from the angle of view of supply chain system. The mathematical models when the system fulfilling social responsibility including self-organization evolution model and self-organization function model are developed to discuss the formation and function of self-organization in supply chain system and coordination. Some basic conditions and tactics about self-organization establishment a...

  19. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  20. Feedback, Lineages and Self-Organizing Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sameeran Kunche

    2016-03-01

    Full Text Available Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities.

  1. Self-organizing physical fields and gravity

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2009-01-01

    It is shown that the Theory of Self-Organizing Physical Fields provides the adequate and consistent consideration of the gravitational phenomena. The general conclusion lies in the fact that the essence of gravidynamics is the new field concept of time and the general covariant law of energy conservation which in particular means that dark energy is simply the energy of the gravitational field. From the natural geometrical laws of gravidynamics the dynamical equations of the gravitational field are derived. Two exact solutions of these equations are obtained. One of them represents a shock gravitational wave and the other represents the Universe filled up with the gravitational energy only. These solutions are compared with the Schwarzschild and Friedmann solutions in the Einstein general theory of relativity

  2. Feedback, Lineages and Self-Organizing Morphogenesis

    Science.gov (United States)

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  3. Self-organized modularization in evolutionary algorithms.

    Science.gov (United States)

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  4. Self-organizing of critical state in granulated superconductors

    International Nuclear Information System (INIS)

    Ginzburg, S.L.; Savitskaya, N.E.

    2000-01-01

    Critical state in granulated superconductors was studied on the basis of two mathematical models - the system of differential equations for calibration and invariant difference of phases and a simplified model describing the system of associated images and equivalent to the standard models to study self-organizing criticality. The critical state of granulated superconductors in all studied cases was shown to be self-organized. Besides, it is shown that the applied models are practically equivalent ones, that is they both show similar critical behavior and lead to coincidence of noncritical phenomena. For the first time one showed that the occurrence of self-organized critically within the system of nonlinear differential equations and its equivalence to self-organized critically in the standard models [ru

  5. Complexity in plasma: From self-organization to geodynamo

    International Nuclear Information System (INIS)

    Sato, T.

    1996-01-01

    A central theme of open-quote open-quote Complexity close-quote close-quote is the question of the creation of ordered structure in nature (self-organization). The assertion is made that self-organization is governed by three key processes, i.e., energy pumping, entropy expulsion and nonlinearity. Extensive efforts have been done to confirm this assertion through computer simulations of plasmas. A system exhibits markedly different features in self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. As a practical application of our grand view of self-organization a preferential generation of a dipole magnetic field is successfully demonstrated. copyright 1996 American Institute of Physics

  6. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  7. Self-organizing maps: A tool to ascertain taxonomic relatedness ...

    Indian Academy of Sciences (India)

    MADHU

    what is known as numerical taxonomy (Garrity et al. 2001). ... Curvilinear component analysis; self-organizing maps; principal component analysis. Abbreviations used: ... This tool undergoes unsupervised learning and is particularly useful in ...

  8. Modelling the self-organization and collapse of complex networks

    Indian Academy of Sciences (India)

    Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.

  9. Innovative Mechanism of Rural Organization Based on Self-Organization

    OpenAIRE

    Wang, Xing jin; Gao, Bing

    2011-01-01

    The paper analyzes the basic situation for the formation of innovative rural organizations with the form of self-organization; revels the features of self-organization, including the four aspects of openness of rural organization, innovation of rural organization is far away from equilibrium, the non-linear response mechanism of rural organization innovation and the random rise and fall of rural organization innovation. The evolution mechanism of rural organization innovation is reveled accor...

  10. Narrow Escape of Interacting Diffusing Particles

    Science.gov (United States)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  11. BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME

    Directory of Open Access Journals (Sweden)

    Suresh Chandrasekhar

    2016-08-01

    Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.

  12. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    International Nuclear Information System (INIS)

    Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.

    2007-01-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles

  13. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  14. Modeling collective emotions: a stochastic approach based on Brownian agents

    International Nuclear Information System (INIS)

    Schweitzer, F.

    2010-01-01

    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a super linear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities. (author)

  15. Optimal dividends in the Brownian motion risk model with interest

    Science.gov (United States)

    Fang, Ying; Wu, Rong

    2009-07-01

    In this paper, we consider a Brownian motion risk model, and in addition, the surplus earns investment income at a constant force of interest. The objective is to find a dividend policy so as to maximize the expected discounted value of dividend payments. It is well known that optimality is achieved by using a barrier strategy for unrestricted dividend rate. However, ultimate ruin of the company is certain if a barrier strategy is applied. In many circumstances this is not desirable. This consideration leads us to impose a restriction on the dividend stream. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. Under this additional constraint, we show that the optimal dividend strategy is formed by a threshold strategy.

  16. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    International Nuclear Information System (INIS)

    Pan, Y.; Powell, C. V.; Balocco, C.; Song, A. M.

    2014-01-01

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets

  17. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    Science.gov (United States)

    Pan, Y.; Powell, C. V.; Song, A. M.; Balocco, C.

    2014-12-01

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  18. Exact analytical thermodynamic expressions for a Brownian heat engine

    Science.gov (United States)

    Taye, Mesfin Asfaw

    2015-09-01

    The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.

  19. Micro rectennas: Brownian ratchets for thermal-energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Powell, C. V.; Balocco, C., E-mail: claudio.balocco@durham.ac.uk [School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE (United Kingdom); Song, A. M. [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-12-22

    We experimentally demonstrated the operation of a rectenna for harvesting thermal (blackbody) radiation and converting it into dc electric power. The device integrates an ultrafast rectifier, the self-switching nanodiode, with a wideband log-periodic spiral microantenna. The radiation from the thermal source drives the rectenna out of thermal equilibrium, permitting the rectification of the excess thermal fluctuations from the antenna. The power conversion efficiency increases with the source temperatures up to 0.02% at 973 K. The low efficiency is attributed mainly to the impedance mismatch between antenna and rectifier, and partially to the large field of view of the antenna. Our device not only opens a potential solution for harvesting thermal energy but also provides a platform for experimenting with Brownian ratchets.

  20. Elastic moduli of a Brownian colloidal glass former

    Science.gov (United States)

    Fritschi, S.; Fuchs, M.

    2018-01-01

    The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus G_∞ is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus G(t) consistently over several decades in time. By that a very precise specification of the glass transition point and of G_∞ is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.

  1. Semicircular canals circumvent Brownian Motion overload of mechanoreceptor hair cells

    DEFF Research Database (Denmark)

    Muller, Mees; Heeck, Kier; Elemans, Coen P H

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500...... nN/m), and have a 100-fold higher tip displacement threshold (hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above...... differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (

  2. Emergence or self-organization?: Look to the soil population.

    Science.gov (United States)

    Addiscott, Tom

    2011-07-01

    EMERGENCE IS NOT WELL DEFINED, BUT ALL EMERGENT SYSTEMS HAVE THE FOLLOWING CHARACTERISTICS: the whole is more than the sum of the parts, they show bottom-up rather top-down organization and, if biological, they involve chemical signaling. Self-organization can be understood in terms of the second and third stages of thermodynamics enabling these stages used as analogs of ecosystem functioning. The second stage system was suggested earlier to provide a useful analog of the behavior of natural and agricultural ecosystems subjected to perturbations, but for this it needs the capacity for self-organization. Considering the hierarchy of the ecosystem suggests that this self-organization is provided by the third stage, whose entropy maximization acts as an analog of that of the soil population when it releases small molecules from much larger molecules in dead plant matter. This it does as vigorously as conditions allow. Through this activity, the soil population confers self-organization at both the ecosystem and the global level. The soil population has been seen as both emergent and self-organizing, supporting the suggestion that the two concepts are are so closely linked as to be virtually interchangeable. If this idea is correct one of the characteristics of a biological emergent system seems to be the ability to confer self-organization on an ecosystem or other entity which may be larger than itself. The beehive and the termite colony are emergent systems which share this ability.

  3. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    Science.gov (United States)

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-07-02

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field

    Science.gov (United States)

    Das, Joydip; Mondal, Shrabani; Bag, Bidhan Chandra

    2017-10-01

    In the present study, we have proposed the Fokker-Planck equation in a simple way for a Langevin equation of motion having ordinary derivative (OD), the Gaussian random force and a generalized frictional memory kernel. The equation may be associated with or without conservative force field from harmonic potential. We extend this method for a charged Brownian particle in the presence of a magnetic field. Thus, the present method is applicable for a Langevin equation of motion with OD, the Gaussian colored thermal noise and any kind of linear force field that may be conservative or not. It is also simple to apply this method for the colored Gaussian noise that is not related to the damping strength.

  5. Second order limit laws for occupation times of the fractional Brownian motion

    OpenAIRE

    Xu, Fangjun

    2013-01-01

    We prove second order limit laws for (additive) functionals of the $d$-dimensional fractional Brownian motion with Hurst index $H=\\frac{1}{d}$, using the method of moments, extending the Kallianpur-Robbins law.

  6. Self-Intersection Local Times of Generalized Mixed Fractional Brownian Motion as White Noise Distributions

    International Nuclear Information System (INIS)

    Suryawan, Herry P.; Gunarso, Boby

    2017-01-01

    The generalized mixed fractional Brownian motion is defined by taking linear combinations of a finite number of independent fractional Brownian motions with different Hurst parameters. It is a Gaussian process with stationary increments, posseses self-similarity property, and, in general, is neither a Markov process nor a martingale. In this paper we study the generalized mixed fractional Brownian motion within white noise analysis framework. As a main result, we prove that for any spatial dimension and for arbitrary Hurst parameter the self-intersection local times of the generalized mixed fractional Brownian motions, after a suitable renormalization, are well-defined as Hida white noise distributions. The chaos expansions of the self-intersection local times in the terms of Wick powers of white noises are also presented. (paper)

  7. Self-Organized Criticality and Scaling in Lifetime of Traffic Jams

    Science.gov (United States)

    Nagatani, Takashi

    1995-01-01

    The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime of traffic jams scales as \\cong Lν with ν=0.65±0.04. It is shown that the cumulative distribution Nm (L) of lifetimes satisfies the finite-size scaling form Nm (L) \\cong L-1 f(m/Lν).

  8. Modeling of self-organization of two-dimensional ordered structures

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, V V; Garmay, Y P; Shaldzhyan, A A; Vasin, A V; Kiselev, O I [Research Institute of Influenza of the Ministry of Health and Social Development of the Russian Federation, Prof. Popova st. 15/17, St-Petersburg (Russian Federation); Lebedev, D V [Department of Molecular and Radiation Biophysics Petersburg Nuclear Physics Institute of the Russian Academy of Science, Orlova Roscha, Gatchina, Leningrad Region (Russian Federation); Grudinina, N A, E-mail: toizeg@gmail.com [Institute of Experimental Medicine, North-Western Branch of the Russian Academy of Medical Science, 12, Akademika Pavlova st., St-Petersburg (Russian Federation)

    2011-04-01

    The problem of the search of biostructures capable to self-organization is quite urgent considering the prospects of application of nanostructured biomaterials as components of composite materials in transplantology and optics as well as 'scaffolds' for the synthesis of nanostructured materials based on inorganic particles. The given study focuses on modeling of the growth of structures using the cellular automata with a set of states of the two values (0 and 1), with the value corresponding to the state is determined by the contribution of 'the closest neighbor' (by the probability of induction of the state of the nextgeneration in the direction of the interaction) and the geometry of the field isdetermined by the vector of the direction of the particle and the direction of the interaction.

  9. Two-dimensional nature of the active Brownian motion of catalytic microswimmers at solid and liquid interfaces

    International Nuclear Information System (INIS)

    Dietrich, Kilian; Renggli, Damian; Zanini, Michele; Buttinoni, Ivo; Isa, Lucio; Volpe, Giovanni

    2017-01-01

    Colloidal particles equipped with platinum patches can establish chemical gradients in H 2 O 2 -enriched solutions and undergo self-propulsion due to local diffusiophoretic migration. In bulk (3D), this class of active particles swim in the direction of the surface heterogeneities introduced by the patches and consequently reorient with the characteristic rotational diffusion time of the colloids. In this article, we present experimental and numerical evidence that planar 2D confinements defy this simple picture. Instead, the motion of active particles both on solid substrates and at flat liquid–liquid interfaces is captured by a 2D active Brownian motion model, in which rotational and translational motion are constrained in the xy -plane. This leads to an active motion that does not follow the direction of the surface heterogeneities and to timescales of reorientation that do not match the free rotational diffusion times. Furthermore, 2D-confinement at fluid–fluid interfaces gives rise to a unique distribution of swimming velocities: the patchy colloids uptake two main orientations leading to two particle populations with velocities that differ up to one order of magnitude. Our results shed new light on the behavior of active colloids in 2D, which is of interest for modeling and applications where confinements are present. (paper)

  10. Self-organized Segregation on the Grid

    Science.gov (United States)

    Omidvar, Hamed; Franceschetti, Massimo

    2018-02-01

    We consider an agent-based model with exponentially distributed waiting times in which two types of agents interact locally over a graph, and based on this interaction and on the value of a common intolerance threshold τ , decide whether to change their types. This is equivalent to a zero-temperature ising model with Glauber dynamics, an asynchronous cellular automaton with extended Moore neighborhoods, or a Schelling model of self-organized segregation in an open system, and has applications in the analysis of social and biological networks, and spin glasses systems. Some rigorous results were recently obtained in the theoretical computer science literature, and this work provides several extensions. We enlarge the intolerance interval leading to the expected formation of large segregated regions of agents of a single type from the known size ɛ >0 to size ≈ 0.134. Namely, we show that for 0.433sites can be observed within any sufficiently large region of the occupied percolation cluster. The exponential bounds that we provide also imply that complete segregation, where agents of a single type cover the whole grid, does not occur with high probability for p=1/2 and the range of intolerance considered.

  11. Hydrodynamic interactions induce movement against an external load in a ratchet dimer Brownian motor.

    Science.gov (United States)

    Fornés, José A

    2010-01-15

    We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of a elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. For a given set of parameters we observe direct movement against the load force if hydrodynamic interactions were considered.

  12. Asian Option Pricing with Monotonous Transaction Costs under Fractional Brownian Motion

    Directory of Open Access Journals (Sweden)

    Di Pan

    2013-01-01

    Full Text Available Geometric-average Asian option pricing model with monotonous transaction cost rate under fractional Brownian motion was established. The method of partial differential equations was used to solve this model and the analytical expressions of the Asian option value were obtained. The numerical experiments show that Hurst exponent of the fractional Brownian motion and transaction cost rate have a significant impact on the option value.

  13. On the distribution of estimators of diffusion constants for Brownian motion

    International Nuclear Information System (INIS)

    Boyer, Denis; Dean, David S

    2011-01-01

    We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.

  14. On correlations between certain random variables associated with first passage Brownian motion

    International Nuclear Information System (INIS)

    Kearney, Michael J; Pye, Andrew J; Martin, Richard J

    2014-01-01

    We analyse how the area swept out by a Brownian motion up to its first passage time correlates with the first passage time itself, obtaining several exact results in the process. Additionally, we analyse the relationship between the time average of a Brownian motion during a first passage and the maximum value attained. The results, which find various applications, are in excellent agreement with simulations. (paper)

  15. The Pricing of Vulnerable Options in a Fractional Brownian Motion Environment

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-01-01

    Full Text Available Under the assumption of the stock price, interest rate, and default intensity obeying the stochastic differential equation driven by fractional Brownian motion, the jump-diffusion model is established for the financial market in fractional Brownian motion setting. With the changes of measures, the traditional pricing method is simplified and the general pricing formula is obtained for the European vulnerable option with stochastic interest rate. At the same time, the explicit expression for it comes into being.

  16. Revisit to the helicity and the generalized self-organization theory

    International Nuclear Information System (INIS)

    Kondoh, Y.; Takahashi, T.; Momota, H.

    2000-09-01

    It is clarified that the so-caned 'helicity conservation law' is never the conservation equation of the helicity K itself', but is merely 'the time change rate equation of K', which is passively and resultantly determined by the mutually independent volume and surface integral terms. It is shown that since the total helicity K can never be conserved in the real experimental systems, the conjecture of the total helicity invariance is not physically available to real magnetized plasmas in an exact sense. The well-known relaxation theory by Dr. J. B. Taylor is clarified to be neither the variational principle nor the energy principle, but be merely a mathematical calculation, using the variational calculus in order to find the minimum magnetic energy solution from the set of solutions having the same value of K. With the use of auto-correlations for physical quantities, it is presented that a novel basic formulation of an extended generalized self-organization theory, which is not based on neither the variational principle nor the energy principle. It is clarified that conservation equations concerning with all physical quantities for the dynamic system of interest are naturally embedded in the formulation of the generalized self-organization theory. The self-organized states of every physical quantities of interest may be realized during their own phases and the dynamical system may evolve repeatedly those out of phase organizations, depending on boundary conditions and input powers. It is shown that the conservation laws can be used to extend conventional methods of plasma current drives by energy injections with use of various types of energies, such as magnetic energies, electromagnetic wave energies, internal energies of plasmoids by plasma guns, which induce the thermal plasma flow velocity, various particle beam energies, and so on. (author)

  17. Revisit to the helicity and the generalized self-organization theory

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Y.; Takahashi, T. [Dept. of Electronic Engineering, Gunma Univ., Kiryu, Gunma (Japan); Momota, H. [Illinois Univ., Illinois (United States)

    2000-09-01

    It is clarified that the so-caned 'helicity conservation law' is never the conservation equation of the helicity K itself', but is merely 'the time change rate equation of K', which is passively and resultantly determined by the mutually independent volume and surface integral terms. It is shown that since the total helicity K can never be conserved in the real experimental systems, the conjecture of the total helicity invariance is not physically available to real magnetized plasmas in an exact sense. The well-known relaxation theory by Dr. J. B. Taylor is clarified to be neither the variational principle nor the energy principle, but be merely a mathematical calculation, using the variational calculus in order to find the minimum magnetic energy solution from the set of solutions having the same value of K. With the use of auto-correlations for physical quantities, it is presented that a novel basic formulation of an extended generalized self-organization theory, which is not based on neither the variational principle nor the energy principle. It is clarified that conservation equations concerning with all physical quantities for the dynamic system of interest are naturally embedded in the formulation of the generalized self-organization theory. The self-organized states of every physical quantities of interest may be realized during their own phases and the dynamical system may evolve repeatedly those out of phase organizations, depending on boundary conditions and input powers. It is shown that the conservation laws can be used to extend conventional methods of plasma current drives by energy injections with use of various types of energies, such as magnetic energies, electromagnetic wave energies, internal energies of plasmoids by plasma guns, which induce the thermal plasma flow velocity, various particle beam energies, and so on. (author)

  18. Biosensor based on the measurements of clustering dynamics of magnetic particles using a double pass setup

    DEFF Research Database (Denmark)

    2014-01-01

    Disclosed herein is a biosensor for optical detection of Brownian relaxation dynamics of magnetic particles measured by light transmission. The magnetic particles can be functionalized with biological ligands for the detection of target analytes in a sample. The setup may be implemented in a disc...

  19. Numerical analysis of the influence of particle charging on the fume formation process in arc welding

    International Nuclear Information System (INIS)

    Tashiro, Shinichi; Matsui, Sho; Tanaka, Manabu; Murphy, Anthony B

    2013-01-01

    In order to clarify the influence of electrostatic forces caused by charging of particles on the coagulation process in fume formation in arc welding, a previously developed fume formation model is modified to consider the influence of charging, for both local thermodynamic equilibrium (LTE) and non-LTE conditions. The model takes into account formation of the particles from metal vapour by nucleation, growth of the particles by condensation of metal vapour and coagulation of the particles by collisions to form secondary particles. Results are obtained for both ballistic and Brownian motion of the particles. It is found that the growth of secondary particles is suppressed when the average particle charge becomes significant, because charging of the particle hinders collisions among secondary particles through the strong repulsive electrostatic force. Furthermore, deviations from LTE strongly affect the coagulation process, because the increased electron density at a given gas temperature increases the charging of particles. Brownian motion leads to larger secondary particles, since the average particle speed is increased. The influence of Brownian motion and particle charging cancel each other to a large extent, particularly when deviations from LTE are considered. (paper)

  20. Deliberative Self-Organizing Traffic Lights with Elementary Cellular Automata

    Directory of Open Access Journals (Sweden)

    Jorge L. Zapotecatl

    2017-01-01

    Full Text Available Self-organizing traffic lights have shown considerable improvements compared to traditional methods in computer simulations. Self-organizing methods, however, use sophisticated sensors, increasing their cost and limiting their deployment. We propose a novel approach using simple sensors to achieve self-organizing traffic light coordination. The proposed approach involves placing a computer and a presence sensor at the beginning of each block; each such sensor detects a single vehicle. Each computer builds a virtual environment simulating vehicle movement to predict arrivals and departures at the downstream intersection. At each intersection, a computer receives information across a data network from the computers of the neighboring blocks and runs a self-organizing method to control traffic lights. Our simulations showed a superior performance for our approach compared with a traditional method (a green wave and a similar performance (close to optimal compared with a self-organizing method using sophisticated sensors but at a lower cost. Moreover, the developed sensing approach exhibited greater robustness against sensor failures.

  1. Flow induced crystallisation of penetrable particles

    Science.gov (United States)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  2. Self-organized criticality and urban development

    Directory of Open Access Journals (Sweden)

    Michael Batty

    1999-01-01

    Full Text Available Urban society is undergoing as profound a spatial transformation as that associated with the emergence of the industrial city two centuries ago. To describe and measure this transition, we introduce a new theory based on the concept that large-scale, complex systems composed of many interacting elements, show a surprising degree of resilience to change, holding themselves at critical levels for long periods until conditions emerge which move the system, often abruptly, to a new threshold. This theory is called ‘self-organized criticality’; it is consistent with systems in which global patterns emerge from local action which is the hallmark of self-organization, and it is consistent with developments in system dynamics and their morphology which find expression in fractal geometry and weak chaos theory. We illustrate the theory using a unique space–time series of urban development for Buffalo, Western New York, which contains the locations of over one quarter of a million sites coded by their year of construction and dating back to 1773, some 60 years before the city began to develop. We measure the emergence and growth of the city using urban density functions from which measures of fractal dimension are used to construct growth paths of the way the city has grown to fill its region. These phase portraits suggest the existence of transitions between the frontier, the settled agricultural region, the centralized industrial city and the decentralized postindustrial city, and our analysis reveals that Buffalo has maintained itself at a critical threshold since the emergence of the automobile city some 70 years ago. Our implied speculation is: how long will this kind of urban form be maintained in the face of seemingly unstoppable technological change?

  3. Natural hazards and self-organized criticality

    International Nuclear Information System (INIS)

    Krenn, R.

    2012-01-01

    Several natural hazards exhibit power-law behavior on their frequency-size distributions. Self-organized criticality has become a promising candidate that could offer a more in-depth understanding of the origin of temporal and spatial scaling in dissipative nonequilibrium systems. The outcomes of this thesis are presented in three scientific papers followed by a concluding summary and an appendix.In paper (A) we present a semi-phenomenological approach to explain the complex scaling behavior of the Drossel-Schwabl forest-fire model (DS-FFM) in two dimensions. We derive the scaling exponent solely from the scaling exponent of the clusters' accessible perimeter. Furthermore, the unusual transition to an exponential decay is explained both qualitatively and quantitatively. The exponential decay itself could be reproduced at least qualitatively. In paper (B) we extend the DS-FFM towards anthropogenic ignition factors. The main outcomes are an increase of the scaling exponent with decreasing lightning probability as well as a splitting of the partial frequency-size distributions of lightning induced and man made fires. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results could be validated through an analysis of the Canadian Large Fire Database.In paper (C) we obtain an almost complete theory of the Olami-Feder-Christensen (OFC) model's complex spatio-temporal behavior. Synchronization pushes the system towards a critical state and generates the Gutenberg-Richter law. Desynchronization prevents the system from becoming overcritical and generates foreshocks and aftershocks. Our approach also provides a simple explanation of Omori's law. Beyond this, it explains the phenomena of foreshock migration and aftershock diffusion and the occurrence of large earthquakes without any foreshocks. A novel integer algorithm for the numerics is presented in appendix (A).(author) [de

  4. A bipedal DNA Brownian motor with coordinated legs.

    Science.gov (United States)

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  5. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan

    2014-02-27

    A discrete rate theory for multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed. © 2014 Society for Industrial and Applied Mathematics.

  6. Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion

    Science.gov (United States)

    Setty, V. A.; Sharma, A. S.

    2015-02-01

    The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.

  7. 9th Workshop on Self-Organizing Maps

    CERN Document Server

    Príncipe, José; Zegers, Pablo

    2013-01-01

    Self-organizing maps (SOMs) were developed by Teuvo Kohonen in the early eighties. Since then more than 10,000 works have been based on SOMs. SOMs are unsupervised neural networks useful for clustering and visualization purposes. Many SOM applications have been developed in engineering and science, and other fields. This book contains refereed papers presented at the 9th Workshop on Self-Organizing Maps (WSOM 2012) held at the Universidad de Chile, Santiago, Chile, on December 12-14, 2012. The workshop brought together researchers and practitioners in the field of self-organizing systems. Among the book chapters there are excellent examples of the use of SOMs in agriculture, computer science, data visualization, health systems, economics, engineering, social sciences, text and image analysis, and time series analysis. Other chapters present the latest theoretical work on SOMs as well as Learning Vector Quantization (LVQ) methods.

  8. Thought analysis on self-organization theories of MHD plasma

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Sato, Tetsuya.

    1992-08-01

    A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)

  9. Self-organization of physical fields and spin

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2008-01-01

    The subject of the present investigation is the laws of intrinsic self-organization of fundamental physical fields. In the framework of the Theory of Self-Organization the geometrical and physical nature of spin phenomena is uncovered. The key points are spin symmetry (the fundamental realization of the concept of geometrical internal symmetry) and the spinning field (space of defining representation of spin symmetry). It is shown that the essence of spin is the bipolar structure of spin symmetry induced by the gravitational potentials. The bipolar structure provides natural violation of spin symmetry and leads to spinstatics (theory of spinning field outside the time) and spindynamics. The equations of spinstatics and spindynamics are derived. It is shown that Sommerfeld's formula can be derived from the equations of spindynamics and hence the correspondence principle is valid. This means that the Theory of Self-Organization provides the new understanding of spin phenomena

  10. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  11. Measuring the Complexity of Self-Organizing Traffic Lights

    Directory of Open Access Journals (Sweden)

    Darío Zubillaga

    2014-04-01

    Full Text Available We apply measures of complexity, emergence, and self-organization to an urban traffic model for comparing a traditional traffic-light coordination method with a self-organizing method in two scenarios: cyclic boundaries and non-orientable boundaries. We show that the measures are useful to identify and characterize different dynamical phases. It becomes clear that different operation regimes are required for different traffic demands. Thus, not only is traffic a non-stationary problem, requiring controllers to adapt constantly; controllers must also change drastically the complexity of their behavior depending on the demand. Based on our measures and extending Ashby’s law of requisite variety, we can say that the self-organizing method achieves an adaptability level comparable to that of a living system.

  12. Self-Organization during Friction in Complex Surface Engineered Tribosystems

    Directory of Open Access Journals (Sweden)

    Ben D. Beake

    2010-02-01

    Full Text Available Self-organization during friction in complex surface engineered tribosystems is investigated. The probability of self-organization in these complex tribosystems is studied on the basis of the theoretical concepts of irreversible thermodynamics. It is shown that a higher number of interrelated processes within the system result in an increased probability of self-organization. The results of this thermodynamic model are confirmed by the investigation of the wear performance of a novel Ti0.2Al0.55Cr0.2Si0.03Y0.02N/Ti0.25Al0.65Cr0.1N (PVD coating with complex nano-multilayered structure under extreme tribological conditions of dry high-speed end milling of hardened H13 tool steel.

  13. Self-organized criticality in asymmetric exclusion model with noise for freeway traffic

    Science.gov (United States)

    Nagatani, Takashi

    1995-02-01

    The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval between consecutive jams scales as ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime ≃ Lv‧ with v‧ = 0.52 ± 0.05. The cumulative distribution Nm( L) of lifetimes satisfies the finite-size scaling form Nm( L)≃ L-1g( m/ Lv‧).

  14. Self-Organization in Aggregating Robot Swarms: A DW-KNN Topological Approach

    KAUST Repository

    Khaldi, Belkacem

    2018-02-02

    In certain swarm applications, where the inter-agent distance is not the only factor in the collective behaviours of the swarm, additional properties such as density could have a crucial effect. In this paper, we propose applying a Distance-Weighted K-Nearest Neighbouring (DW-KNN) topology to the behaviour of robot swarms performing self-organized aggregation, in combination with a virtual physics approach to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach, which is used to evaluate the robot density in the swarm, is applied as the key factor for identifying the K-nearest neighbours taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbours is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach, showing various self-organized aggregations performed by a swarm of N foot-bot robots. Also, we compared the aggregation quality of DW-KNN aggregation approach to that of the conventional KNN approach and found better performance.

  15. Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-04-01

    Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this

  16. Coupling motion of colloidal particles in quasi-two-dimensional confinement

    International Nuclear Information System (INIS)

    Ma, Jun; Jing, Guangyin

    2014-01-01

    The Brownian motion of colloidal particles in quasi-two-dimensional (q2D) confinement displays a distinct kinetic character from that in bulk. Here we experimentally report dynamic coupling motion of Brownian particles in a relatively long process (∼100 h), which displays a quasi-equilibrium state in the q2D system. In the quasi-equilibrium state, the q2D confinement results in the coupling of particle motions, which slowly damps the motion and interaction of particles until the final equilibrium state is reached. The process of approaching the equilibrium is a random relaxation of a many-body interaction system of Brownian particles. As the relaxation proceeds for ∼100 h, the system reaches the equilibrium state in which the energy gained by the particles from the stochastic collision in the whole system is counteracted by the dissipative energy resulting from the collision. The relaxation time of this stochastic q2D system is 17.7 h. The theory is developed to explain coupling motions of Brownian particles in q2D confinement. (paper)

  17. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density.

  18. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  19. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  20. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  1. Self-Organizing Map Models of Language Acquisition

    Directory of Open Access Journals (Sweden)

    Ping eLi

    2013-11-01

    Full Text Available Connectionist models have had a profound impact on theories of language. While most early models were inspired by the classic PDP architecture, recent models of language have explored various other types of models, including self-organizing models for language acquisition. In this paper we aim at providing a review of the latter type of models, and highlight a number of simulation experiments that we have conducted based on these models. We show that self-organizing connectionist models can provide significant insights into long-standing debates in both monolingual and bilingual language development.

  2. Unsupervised learning via self-organization a dynamic approach

    CERN Document Server

    Kyan, Matthew; Jarrah, Kambiz; Guan, Ling

    2014-01-01

    To aid in intelligent data mining, this book introduces a new family of unsupervised algorithms that have a basis in self-organization, yet are free from many of the constraints typical of other well known self-organizing architectures. It then moves through a series of pertinent real world applications with regards to the processing of multimedia data from its role in generic image processing techniques such as the automated modeling and removal of impulse noise in digital images, to problems in digital asset management, and its various roles in feature extraction, visual enhancement, segmentation, and analysis of microbiological image data.

  3. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  4. Anomalous relaxation and self-organization in nonequilibrium processes

    International Nuclear Information System (INIS)

    Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.

    2001-01-01

    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration

  5. 5G heterogeneous networks self-organizing and optimization

    CERN Document Server

    Rong, Bo; Kadoch, Michel; Sun, Songlin; Li, Wenjing

    2016-01-01

    This SpringerBrief provides state-of-the-art technical reviews on self-organizing and optimization in 5G systems. It covers the latest research results from physical-layer channel modeling to software defined network (SDN) architecture. This book focuses on the cutting-edge wireless technologies such as heterogeneous networks (HetNets), self-organizing network (SON), smart low power node (LPN), 3D-MIMO, and more. It will help researchers from both the academic and industrial worlds to better understand the technical momentum of 5G key technologies.

  6. Complexity in plasma. A grand view of self-organization

    International Nuclear Information System (INIS)

    Sato, Tetsuya.

    1994-11-01

    The central theme of the Complexity is the inquest of the creation of ordered structure in nature. Extensive computer simulations on plasmas have revealed that self-organization is governed by the three key processes, i.e. energy pumping, entropy expulsion and nonlinearity. A system exhibits characteristically different self-organization, depending on whether the energy pumping is instantaneous or continuous, or whether the produced entropy is expulsed or reserved. The nonlinearity acts to bring a nonequilibrium state into a bifurcation, thus resulting in a new structure along with an anomalous entropy production. (author)

  7. Self-Organized Fission Control for Flocking System

    Directory of Open Access Journals (Sweden)

    Mingyong Liu

    2015-01-01

    Full Text Available This paper studies the self-organized fission control problem for flocking system. Motivated by the fission behavior of biological flocks, information coupling degree (ICD is firstly designed to represent the interaction intensity between individuals. Then, from the information transfer perspective, a “maximum-ICD” based pairwise interaction rule is proposed to realize the directional information propagation within the flock. Together with the “separation/alignment/cohesion” rules, a self-organized fission control algorithm is established that achieves the spontaneous splitting of flocking system under conflict external stimuli. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed algorithm.

  8. TWO CHANNELS OF SELF-ORGANIZATION OF IONIZED GASEOUS MEDIA

    Directory of Open Access Journals (Sweden)

    Benedict Oprescu

    2013-12-01

    Full Text Available The appearance is pointed out, experimentally, of a complex electric charge structure, within an ionized gas, relatively homogeneous at first, under the influence of a number of external constraints. Two different mechanisms of self-organization are presented: the former implying, essentially, long-range interactions, and the latter implying, essentially, short-range quantum interactions. The phenomenological scenarios are presented, which underlie the two mechanisms of self-organization, as well as the broader theoretical frame, currently accepted, concerning the generation of complexity in the material media that are far from the state of thermodynamic equilibrium.

  9. Self-Organization in Coupled Map Scale-Free Networks

    International Nuclear Information System (INIS)

    Xiao-Ming, Liang; Zong-Hua, Liu; Hua-Ping, Lü

    2008-01-01

    We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns

  10. Diffusion of torqued active particles

    Science.gov (United States)

    Sandoval, Mario; Lauga, Eric

    2012-11-01

    Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).

  11. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Li, D.H.; Zheng, H.G.; Li, X.M.; Jiang, F.

    2009-01-01

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  12. Power spectral density of a single Brownian trajectory: what one can and cannot learn from it

    Science.gov (United States)

    Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio

    2018-02-01

    The power spectral density (PSD) of any time-dependent stochastic process X t is a meaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X t over an infinitely large observation time T, that is, it is defined as an ensemble-averaged property taken in the limit T\\to ∞ . A legitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation time T. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is a fluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.

  13. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  14. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  15. Self-organization of topological defects for a triangular-lattice magnetic dots array subject to a perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    R.S. Khymyn

    2014-09-01

    Full Text Available The regular array of magnetic particles (magnetic dots of the form of a two-dimensional triangular lattice in the presence of external magnetic field demonstrates complicated magnetic structures. The magnetic symmetry of the ground state for such a system is lower than that for the underlying lattice. Long range dipole-dipole interaction leads to a specific antiferromagnetic order in small fields, whereas a set of linear topological defects appears with the growth of the magnetic field. Self-organization of such defects determines the magnetization process for a system within a wide range of external magnetic fields.

  16. Self-Organization and Annealed Disorder in a Fracturing Process

    DEFF Research Database (Denmark)

    Caldarelli, Guido; Di Tolla, Francesco; Petri, Alberto

    1996-01-01

    We show that a vectorial model for inhomogeneous elastic media self-organizes under external stress. An onset of crack avalanches of every duration and length scale compatible with the lattice size is observed. The behavior is driven by the introduction of annealed disorder, i.e., by lowering...... condition for reproducing the algebraic distribution of the energy released during cracks formation....

  17. Comparative investigation of two different self-organizing map ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the ability and investigate the performance of two different wavelength selection approaches based on self-organizing map (SOM) technique in partial least-squares (PLS) regression for analysis of pharmaceutical binary mixtures with strongly overlapping spectra. Methods: Two different variable ...

  18. Eco-evolutionary feedbacks in self-organized ecosystems

    NARCIS (Netherlands)

    de Jager, M.

    2015-01-01

    Spatial patterns in natural systems may appear amazingly complex. Yet, they can often be explained by a few simple rules. In self-organized ecosystems, complex spatial patterns at the ecosystem scale arise as the consequence of actions of and interactions between organisms at a local scale.

  19. Self-organized criticality in a network of interacting neurons

    NARCIS (Netherlands)

    Cowan, J.D.; Neuman, J.; Kiewiet, B.; van Drongelen, W.

    2013-01-01

    This paper contains an analysis of a simple neural network that exhibits self-organized criticality. Such criticality follows from the combination of a simple neural network with an excitatory feedback loop that generates bistability, in combination with an anti-Hebbian synapse in its input pathway.

  20. Self-organization as a possible route to fusion energy

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.; Popescu, S.

    2000-01-01

    The generation of a ball lightning-like complex structure by sudden injection of matter and energy proves the presence of a cascading self-organization scenario in an experimental device containing a collisional plasma. Based on these results, we suggest the possibility to replicate, under controlled laboratory conditions, the ball lightning-like structures with potential fusion applications. (author)

  1. 10th Workshop on Self-Organizing Maps

    CERN Document Server

    Schleif, Frank-Michael; Kaden, Marika; Lange, Mandy

    2014-01-01

    The book collects the scientific contributions presented at the 10th Workshop on Self-Organizing Maps (WSOM 2014) held at the University of Applied Sciences Mittweida, Mittweida (Germany, Saxony), on July 2–4, 2014. Starting with the first WSOM-workshop 1997 in Helsinki this workshop focuses on newest results in the field of supervised and unsupervised vector quantization like self-organizing maps for data mining and data classification.   This 10th WSOM brought together more than 50 researchers, experts and practitioners in the beautiful small town Mittweida in Saxony (Germany) nearby the mountains Erzgebirge to discuss new developments in the field of unsupervised self-organizing vector quantization systems and learning vector quantization approaches for classification. The book contains the accepted papers of the workshop after a careful review process as well as summaries of the invited talks.   Among these book chapters there are excellent examples of the use of self-organizing maps in agriculture, ...

  2. Self-organized metal nanostructures through laser-interference driven thermocapillary convection

    International Nuclear Information System (INIS)

    Favazza, C.; Trice, J.; Kalyanaraman, R.; Sureshkumar, R.

    2007-01-01

    Here the authors investigate self-organization and the ensuing length scales when Co films (1-8 nm thick) on SiO 2 surfaces are repeatedly and rapidly melted by nonuniform (interference) laser irradiation. Pattern evolution produces periodic nanowires, which eventually breakup into nanoparticles exhibiting spatial order in the nearest-neighbor (NN) spacing λ NN2 . For films of thickness h 0 >2 nm, λ NN2 ∝h 0 1/2 while the particle radius varies as r p2 ∝h 0 1/2 . This scaling behavior is consistent with pattern formation by a thermocapillary flow and a Rayleigh-like instability. For h 0 ≤2 nm, a hydrodynamic instability of a spinodally unstable film leads to the formation of nanoparticles

  3. Templated dewetting: designing entirely self-organized platforms for photocatalysis.

    Science.gov (United States)

    Altomare, Marco; Nguyen, Nhat Truong; Schmuki, Patrik

    2016-12-01

    Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO 2 photocatalyst assemblies e.g. for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO 2 nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO 2 structures (in terms of e.g. high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic

  4. One-dimensional nonlinear self-organized structures in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2000-01-01

    Dusty plasmas, which are open systems, can form stable one-dimensional self-organized structures. Absorption of plasma by dust particles results in the plasma flux from the plasma regions where the dust is absent. It is found that, in a one-dimensional dust layer, this flux is completely determined by the number of dust particles per unit area of the layer surface. This number determines all of the other parameters of the steady-state dust structure; in particular, it determines the spatial distributions of the dust density, dust charge, electron and ion densities, and ion drift velocity. In these structures, a force and electrostatic balance is established that ensures the necessary conditions for confining the dust and plasma particles in the structure. The equilibrium structures exist only for subthermal ion flow velocities. This criterion determines the maximum possible number of dust particles per unit area in the steady-state structure. The structures have a universal thickness, and the dust density changes sharply at the edge of the structure. The structures with a size either less than or larger than the ion mean free path with respect to ion-neutral collisions, quasi-neutral and charged structures, and soliton- and anti-soliton-like structures are investigated. Laboratory experiments and observations in extraterrestrial plasma formation are discussed in relation to dust structures

  5. Brownian ratchets from statistical physics to bio and nano-motors

    CERN Document Server

    Cubero, David

    2016-01-01

    Illustrating the development of Brownian ratchets, from their foundations, to their role in the description of life at the molecular scale and in the design of artificial nano-machinery, this text will appeal to both advanced graduates and researchers entering the field. Providing a self-contained introduction to Brownian ratchets, devices which rectify microscopic fluctuations, Part I avoids technicalities and sets out the broad range of physical systems where the concept of ratchets is relevant. Part II supplies a single source for a complete and modern theoretical analysis of ratchets in regimes such as classical vs quantum and stochastic vs deterministic, and in Part III readers are guided through experimental developments in different physical systems, each highlighting a specific unique feature of ratchets. The thorough and systematic approach to the topic ensures that this book provides a complete guide to Brownian ratchets for newcomers and established researchers in physics, biology and biochemistry.

  6. Critique of the Brownian approximation to the generalized Langevin equation in lattice dynamics

    International Nuclear Information System (INIS)

    Diestler, D.J.; Riley, M.E.

    1985-01-01

    We consider the classical motion of a harmonic lattice in which only those atoms in a certain subset of the lattice (primary zone) may interact with an external force. The formally exact generalized Langevin equation (GLE) for the primary zone is an appropriate description of the dynamics. We examine a previously proposed Brownian, or frictional damping, approximation that reduces the GLE to a set of coupled ordinary Langevin equations for the primary atoms. It is shown that the solution of these equations can contain undamped motion if there is more than one atom in the primary zone. Such motion is explicitly demonstrated for a model that has been used to describe energy transfer in atom--surface collisions. The inability of the standard Brownian approximation to yield an acceptable, physically meaningful result for primary zones comprising more than one atom suggests that the Brownian approximation may introduce other spurious dynamical effects. Further work on damping of correlated motion in lattices is needed

  7. Unraveling atomic-level self-organization at the plasma-material interface

    Science.gov (United States)

    Allain, J. P.; Shetty, A.

    2017-07-01

    The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion

  8. Co-operation and Self-Organization

    Directory of Open Access Journals (Sweden)

    Christian Fuchs

    2008-07-01

    Full Text Available Co-operation has its specific meanings in physical (dissipative, biological (autopoietic and social (re-creative systems. On upper hierarchical systemic levels there are additional, emergent properties of co-operation, co-operation evolves dialectically. The focus of this paper is human cooperation. Social systems permanently reproduce themselves in a loop that mutually connects social structures and actors. Social structures enable and constrain actions, they are medium and outcome of social actions. This reflexive process is termed re-creation and describes the process of social selforganization. Co-operation in a very weak sense means coaction and takes place permanently in re-creative systems: two or more actors act together in a co-ordinated manner so that a new emergent property emerges. Co-action involves the formation of forces, environment and sense (dispositions, decisions, definitions. Mechanistic approaches conceive coaction in terms of rational planning, consciousness, intention, predictability, and necessity. Holistic approaches conceive coaction in terms of spontaneity, unconscious and unintended actions, non-predictability, chance. Dialectic approaches conceive co-action in terms of a unity of rational planning and spontaneous emergence, a unity of conscious and unconscious aspects and consequences, and a unity of necessity and chance. Co-operation in a strong sense that is employed in this paper means that actors work together, create a new emergent reality, have shared goals, all benefit from co-operating, can reach their goals in joint effort more quickly and more efficiently than on an individual basis, make concerted use of existing structures in order to produce new structures, learn from each other mutually, are interconnected in a social network, and are mutually dependent and responsible. There is a lack of cooperation, self-determination, inclusion and direct democracy in modern society due to its antagonistic

  9. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  10. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  11. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    Directory of Open Access Journals (Sweden)

    Qing-Miao Nie

    2014-04-01

    Full Text Available An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  12. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    Science.gov (United States)

    Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P

    2014-04-01

    An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  13. Interfacial self-organization of bolaamphiphiles bearing mesogenic groups: relationships between the molecular structures and their self-organized morphologies.

    Science.gov (United States)

    Song, Bo; Liu, Guanqing; Xu, Rui; Yin, Shouchun; Wang, Zhiqiang; Zhang, Xi

    2008-04-15

    This article discusses the relationship between the molecular structure of bolaamphiphiles bearing mesogenic groups and their interfacial self-organized morphology. On the basis of the molecular structures of bolaamphiphiles, we designed and synthesized a series of molecules with different hydrophobic alkyl chain lengths, hydrophilic headgroups, mesogenic groups, and connectors between the alkyl chains and the mesogenic group. Through investigating their interfacial self-organization behavior, some experiential rules are summarized: (1) An appropriate alkyl chain length is necessary to form stable surface micelles; (2) different categories of headgroups have a great effect on the interfacial self-organized morphology; (3) different types of mesogenic groups have little effect on the structure of the interfacial assembly when it is changed from biphenyl to azobenzene or stilbene; (4) the orientation of the ester linker between the mesogenic group and alkyl chain can greatly influence the interfacial self-organization behavior. It is anticipated that this line of research may be helpful for the molecular engineering of bolaamphiphiles to form tailor-made morphologies.

  14. Feedback control of two-headed Brownian motors in flashing ratchet potential

    International Nuclear Information System (INIS)

    Zhao A-Ke; Zhang Hong-Wei; Li Yu-Xiao

    2010-01-01

    We presented a detailed investigation on the movement of two-headed Brownian motors in an asymmetric potential under a feedback control. By numerical simulations the direct current is obtained. The current is periodic in the initial length of spring. There is an optimal value of the spring constant. And the dependence of the current on the opposing force is reversed. Then we found that when the change of the temperature and the opposing force have optimal values, the Brownian motors can also obtain the optimal efficiency

  15. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    Science.gov (United States)

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  16. Brownian Motion of 2D Vacancy Islands by Adatom Terrace Diffusion

    International Nuclear Information System (INIS)

    Morgenstern, Karina; Laegsgaard, Erik; Besenbacher, Flemming

    2001-01-01

    We have studied the Brownian motion of two-dimensional (2D) vacancy islands on Ag(110) at temperatures between 175 and 215K. While the detachment of adatoms from the island and their diffusion on the terrace are permitted in this temperature range, the periphery diffusion of single adatoms is prohibited. The present scanning tunneling microscopy results provide the first direct experimental proof that the Brownian motion of the islands follows a simple scaling law with terrace diffusion being the rate limiting process. The activation energy of the vacancy island motion is determined to 0.41eV

  17. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  18. Brownian Motion Problem: Random Walk and Beyond -RE ...

    Indian Academy of Sciences (India)

    was subjected to various killing treatments, liquids other .... This phrase is used for the systems rectifying the inescapable thermal noise to produce unidirectional current of particles in the .... with dispersion 2Dt (Figure 2) implying spread of the.

  19. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  20. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.