WorldWideScience

Sample records for self-sufficient thorium cycle

  1. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  2. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    These disadvantages of thorium fuel cycle were seemingly the reasons why that ... According to the data of figure 2, maximum (equilibrium) content of 233U in ..... Self-sufficient mode is related with rather big effort in the extraction of isotopes of.

  3. Advanced thorium cycles in LWRs and HWRs

    International Nuclear Information System (INIS)

    Radkowsky, A.

    The main aspects of advanced thorium cycles in LWRs and HWRs are reviewed. New concepts include the seed blanket close packed heavy water breeder, the light water seed blanket thorium burner and self-induced thorium cycle in CANDU type reactors. (author)

  4. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30 000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93 percent U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is 'denatured'. The effects of varying the fuel burnup and the recycle delay time are discussed. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally-supplied fissile material. The special case of 'self-sufficient equilibrium thorium cycles', which require no external source of fissile material for equilibrium operation, is also treated. (author)

  5. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In all these cycles thorium is the main fertile component of the fuel and all assume recycling of the uranium component. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30,000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93% U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is ''denatured''. The effects of varying the fuel burnup and the recycle delay time are discussed for the reference cases. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally supplied fissile material. The special case of ''self sufficient equilibrium thorium cycles'', which require no external source of fissile material for equilibrium operation, is also treated

  6. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  7. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  8. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  9. Growth scenarios with thorium fuel cycles in pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    Since India has generous deposits of thorium, the availability of thorium will not be a limiting factor in any growth scenario. It is fairly well accepted that the best system for utilisation of thorium is the heavy water reactor. The growth scenarios possible using thorium in HWRs are considered. The base has been taken as 50,000 tons of natural uranium and practically unlimited thorium. The reference reactor has been assumed to be the PHWR, and all other growth scenarios are compared with the growth scenario provided by the once-through natural cycle in the PHWR. Two reactor types have been considered: the heavy water moderated, heavy water cooled, pressure tube reactor, known as the PHWR; and the heavy water moderated and cooled pressure vessel kind, similar to the ATUCHA reactor in Argentina. For each reactor, a number of different fuel cycles have been studied. All these cycles have been based on thorium. These are: the self-sustaining equilibrium thorium cycle (SSET); the high conversion ratio high burnup cycle; and the once through thorium cycle (OTT). The cycle have been initiated in two ways: one is by starting the cycle with natural uranium, reprocessing the spent fuel to obtain plutonium, and use that plutonium to initiate the thorium cycle; the other is to enrich the uranium to about 2-3% U-235 (the so-called Low Enriched Uranium or LEU), and use the LEU to initiate the thorium cycle. Both cases have been studied, and growth scenarios have been projected for every one of the possible combinations. (author). 1 tab

  10. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive owing to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Rapidly increasing uranium prices, public reluctance for widespread Pu recycling and expected delays for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, problems associated with reprocessing and waste handling, particularly with re-fabrication by remote handling of 233 U, are certainly not appreciably more difficult than for Pu recycling. To divert from uranium as a nuclear energy source it seems worth while intensifying future efforts for closing the Th/ 233 U fuel cycle. HTGRs are particularly promising for economic application. However, further research and development activities should not concentrate on this reactor type alone. Light- and heavy-water-moderated reactors, and even future fast breeders, may just as well take advantage of a demonstrated thorium fuel cycle. (author)

  11. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    2005-05-01

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  12. The Thorium-Cycle: safe, abundant power for the new millennium

    Science.gov (United States)

    Don, May; George, Kim; Peter, Mcintyre; Charles, Meitzler; Robert, Rogers; Akhdior, Sattarov; Mustafa, Yavuz

    2001-10-01

    A design has been developed for using accelerator-driven thorium fission to produce electric power. A thorium-cycle reactor works by electro-breeding. A pattern of thorium fuel rods is supported in a vessel containing molten lead. A beam of high-energy (1 GeV) protons is targeted in the center of the vessel, and produces a copious flux of energetic neutrons by spallation. The neutrons transmute the thorium nuclei two steps up the periodic table to U233, which fissions rapidly to produce thermal energy. The lead serves as the spallation target, the moderator, and the heat exchange medium to transfer heat from the core to steam exchangers above the core. The thorium cycle has several important advantages over current uranium-cycle fission technology: it is intrinsically stable it cannot melt down; it eats its own waste; it cannot produce bomb-grade isotopes; and there are sufficient thorium reserves to supply the entire Earth’s energy economy for the next millennium. The concept of a thorium-cycle power reactor was first proposed by Rubbia in 1995. Key problems in the original concept were the proton injector (15 MW beam power), reliability of accelerator systems, and parasitic absorption of neutrons by fission products during the life of the core. We have addressed all three problems in a design for a flux-coupled stack of isochronous cyclotrons, delivering a pattern of 7 independent beams to the core. An interdisciplinary collaboration is being formed to develop the concept to a serious design.

  13. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  14. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  15. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  16. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233 U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  17. India's baseline plan for nuclear energy self-sufficiency

    International Nuclear Information System (INIS)

    Bucher, R.G.

    2009-01-01

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second

  18. Thorium cycles and proliferation

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1979-01-01

    This paper analyzes several prevalent misconceptions about nuclear fuel cycles that breed fissile uranium-233 from thorium. Its main conclusions are: U-233, despite the gamma radioactivity of associated isotopes, is a rather attractive material for making fission bombs, and is a credible material for subnational as well as national groups to use for this purpose; (2) pure thorium cycles, which in effect merely substitute U-233 for Pu, would take many decades and much U to establish, and offer no significant safeguards advantage over Pu, cycles; (3) denatured Th-U cycles, which dilute the U-233 with inert U-238 to a level not directly usable in bombs, are not an effective safeguard even against subnational bomb-making; (4) several other features of mixed Th-U cycles are rather unattractive from a safeguards point of view; (5) thus, Th cycles of any kind are not a technical fix for proliferation (national or subnational) and, though probably more safeguardable than Pu cycles, are less so than once-through U cycles that entail no reprocessing; (6) while thorium cycles have some potential technical advantages, including flexibility, they cannot provide major savings in nuclear fuel resources compared to simpler ways of saving neutrons and U; and (7) while advocates of nuclear power may find Th cycles worth exploring, such cycles do not differ fundamentally from U cycles in any of the respects--including safeguards and fuel resources--that are relevant to the broader nuclear debate, and should not be euphorically embraced as if they did

  19. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  20. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  1. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  2. Heavy water reactors on the denatured thorium cycles

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the denatured U-233/Thorium fuel cycle for use in early comparisons of alternate nuclear systems. The once-through uranium fuel cycle is discussed in a companion paper. In presenting this preliminary information at this time, it is recognized that there are several other denatured thorium fuel cycles of potential interest, such as the U-235/thorium cycle which could be implemented at an earlier date. Information on these alternate cycles is currently being developed, and will be provided to INFCE when available

  3. Thorium nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  4. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de

    1981-01-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discussed. (Author) [pt

  5. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de.

    1981-02-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve reactor doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discused. (Author) [pt

  6. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  7. Present state and perspective of research on thorium cycle

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1994-01-01

    For the prosperity of Japan and the welfare of mankind in the world, enormous quantity of energy is required in 21st century, and the general circumstances of energy and nuclear power are described. In addition to the present nuclear power using mostly 235 U and the plutonium produced from 238 U, it is the thorium cycle that 233 U produced from the third nuclear fuel, thorium, is used for electric power generation as an energy source. In this report, the 'General research on thorium cycle as a promising energy source in and after 21st century' is outlined, which has been advanced by accepting the subsidy of scientific research expense of the Ministry of Education. The features of the thorium cycle and the nuclear data and the nuclear characteristics in comparison with uranium-plutonium reactors are described. The trend of the research and development in the world and in Japan is reported. Two general researches were carried out for five years from fiscal year 1988 to 1992 on the thorium cycle. The results of the research on the nuclear data, the design of thorium reactors, the criticality experiment and analysis, thorium hybrid, thorium fuel, molten salt, fuel reprocessing and radiation safety are reported. (K.I.)

  8. Light water reactors with a denatured thorium fuel cycle

    International Nuclear Information System (INIS)

    1978-05-01

    Discussed in this paper is the performance of denatured thorium fuel cycles in PWR plants of conventional design, such as those currently in operation or under construction. Although some improvement in U 3 O 8 utilization is anticipated in PWRs optimized explicitly for the denatured thorium fuel cycle, this paper is limited to a discussion of the performance of denatured thorium fuels in conventional PWRs and consequently the data presented is representative of the use of thorium fuel in existing PWRs or those presently under construction. In subsequent sections of this paper, the design of the PWR, its performance on the denatured thorium fuel cycle, safety, accident and environmental considerations, and technological status and R and D requirements are discussed

  9. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  10. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    Hyland, B.; Hamilton, H.

    2011-01-01

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO 2 ) based fuel offers both fuel performance and safety advantages over urania (UO 2 ) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO 2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  11. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  12. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  13. U.S. leans toward denatured thorium cycle

    International Nuclear Information System (INIS)

    Smock, R.

    1977-01-01

    Denatured thorium appears to be the most promising among the nonproliferating alternatives to the plutonium cycle, which the Carter Administration is trying to cancel. Criteria for a better system include uranium utilization comparable to current light water reactors and minimal separation of fissile material into the waste stream. Comparisons with other systems conclude that thorium is preferable because it can lead to an acceptable fast breeder. The thorium cycle can be placed in energy centers for sensitive facilities and can also be introduced into ongoing light water systems. Reprocessing can be handled in the centers, where thorium can be mixed with plutonium for use in reactors within the center, while light water reactors operate on the outside. Any fuel leaving the center would be unsuitable for weapons. Later adaptation to in-center fast breeders will extend energy supplies, although a thorium breeder will be less efficient than a plutonium fast breeder. Denatured thorium is a technical answer to a complex political problem, but those in the nuclear industry see the U.S. goal of a nonproliferating fuel as futile in the light of world politics and breeder efforts in other countries

  14. Spectral shift controlled reactors, denatured U-233/thorium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents technical and economic data on the SSCR which may be of use in the International Fuel Cycle Evaluation Program to intercompare alternative nuclear systems. Included in this paper are data on the denatured U-233/thorium cycle. This cycle shows a proliferation advantage over more classical thorium fuel cycle (e.g., highly-enriched U-235/thorium or plutonium/thorium) due to the elimination of chemically-separable, concentrated fissile material from unirradiated nuclear fuel. The U-233 is denatured by mixing with depleted uranium to a concentration no greater than 12 w/o. An exogenous source of U-233 is assumed in this paper, since U-233 does not occur in nature and only a limited supply has been produced to date for research and development work

  15. Once-through thorium cycles in Candu reactors

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1982-01-01

    In once-through thorium cycles pure thorium fuel bundles can be irradiated conjointly with uranium fuel bundles in a CANDU reactor with parameters judiciously chosen such that the overall fuel cycle cost is competitive with other possibilities - notably low-enriched uranium. Uranium 233 can be created and stockpiled for possible future use with no imperative that it be used unless future conditions warrant, and a stockpile can be begun independently of the state of reprocessing technology. The existence and general properties of these cycles are discussed

  16. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  17. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  18. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  19. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  20. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    International Nuclear Information System (INIS)

    Gangotra, Suresh; Grover, R.B.; Ramakumar, K.L.

    2013-01-01

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U 232 associated with U 233 . This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U 233 fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site

  1. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, Suresh, E-mail: sgangotra@yahoo.co.in; Grover, R.B.; Ramakumar, K.L.

    2013-09-15

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U{sup 232} associated with U{sup 233}. This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U{sup 233} fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site.

  2. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  3. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  4. Self-Sustaining Thorium Boiling Water Reactors

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-01-01

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  5. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  6. Feasibility and desirability of employing the thorium fuel cycle for power generation - 254

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2010-01-01

    Thorium fuel cycle for nuclear power generation has been considered since the very start of the nuclear power era. In spite of a very large amount of research, experimentation, pilot scale and prototypic scale installations, the thorium fuel was not adopted for large scale power generation [1,2]. This paper reviews the developments over the years on the front and the back-end of the thorium fuel cycle and describes the pros and cons of employing the thorium fuel cycle for large generation of nuclear power. It examines the feasibility and desirability of employing the thorium fuel cycle in concert with the uranium fuel cycle for power generation. (authors)

  7. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  8. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  9. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  10. Evaluation of plutonium, uranium, and thorium use in power reactor fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.

    1977-01-01

    The increased cost of uranium and separative work has increased the attractiveness of plutonium use in both uranium and thorium fuel cycles in thermal reactors. A technology, fuel utilization, and economic evaluation is given for uranium and thorium fuel cycles in various reactor types, along with the use of plutonium and 238 U. Reactors considered are LWRs, HWRs, LWBRs, HTGRs, and FBRs. Key technology factors are fuel irradiation performance and associated physical property values. Key economic factors are unit costs for fuel fabrication and reprocessing, and for refabrication of recycle fuels; consistent cost estimates are utilized. In thermal reactors, the irradiation performance of ceramic fuels appears to be satisfactory. At present costs for uranium ore and separative work, recycle of plutonium with thorium rather than uranium is preferable from fuel utilization and economic viewpoints. Further, the unit recovery cost of plutonium is lower from LWR fuels than from natural-uranium HWR fuels; use of LWR product permits plutonium/thorium fueling to compete with uranium cycles. Converting uranium cycles to thorium cycles increases the energy which can be extracted from a given uranium resource. Thus, additional fuel utilization improvement can be obtained by fueling all thermal reactors with thorium, but this requires use of highly enriched uranium; use of 235 U with thorium is most economic in HTGRs followed by HWRs and then LWRs. Marked improvement in long-term fuel utilization can be obtained through high thorium loadings and short fuel cycle irradiations as in the LWBR, but this imposes significant economic penalties. Similar operating modes are possible in HWRs and HTGRs. In fast reactors, use of the plutonium-uranium cycle gives advantageous fuel resource utilization in both LMFBRs and GCFRs; use of the thorium cycle provides more negative core reactivity coefficients and more flexibility relative to use of recycle fuels containing uranium of less than 20

  11. Introduction of Thorium in the Nuclear Fuel Cycle. Short- to long-term considerations

    International Nuclear Information System (INIS)

    Allibert, M.; Merle-Lucotte, E.; Ghetta, V.; Ault, T.; Krahn, S.; Wymer, R.; Croff, A.; Baron, P.; Chauvin, N.; Eschbach, R.; Rimpault, G.; Serp, J.; Bergeron, A.; Bromley, B.; Floyd, M.; Hamilton, H.; Hyland, B.; Wojtaszek, D.; McDonald, M.; Collins, E.; Cornet, S.; Michel-Sendis, F.; ); Feinberg, O.; Ignatiev, V.; Hesketh, K.; Kelly, J.F.; Porsch, D.; Vidal, J.; Taiwo, T.; Uhlir, J.; Van Den Durpel, L.; Van Den Eynde, G.; Vitanza, C.; Butler, Gregg; Cornet, Stephanie; Dujardin, Thierry; Greneche, Dominique; Nordborg, Claes; Rimpault, Gerald; Van Den Durpel, Luc; Michel-Sendis, Franco

    2015-01-01

    Since the beginning of the nuclear era, significant scientific attention has been given to thorium's potential as a nuclear fuel. Although the thorium fuel cycle has never been fully developed, the opportunities and challenges that might arise from the use of thorium in the nuclear fuel cycle are still being studied in many countries and in the context of diverse international programmes around the world. This report provides a scientific assessment of thorium's potential role in nuclear energy both in the short to longer term, addressing diverse options, potential drivers and current impediments to be considered if thorium fuel cycles are to be pursued. (authors)

  12. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  13. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  14. Some thorium fuel cycle strategies

    International Nuclear Information System (INIS)

    Duret, M.F.; Hatton, H.

    1979-02-01

    The report deals with the problem of introducing an advanced nuclear fuel cycle based on thorium in Canada. It is pointed out that timing and introduction rate are important considerations, certain choices of these variables leading to undesirable business fluctuations in some of the industries involved in the production of nuclear energy. (author)

  15. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, Steven [Vanderbilt Univ., Nashville, TN (United States); Ault, Timothy [Vanderbilt Univ., Nashville, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-30

    The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.

  16. Activities of the research committee on thorium cycle in atomic energy society of Japan

    International Nuclear Information System (INIS)

    Hohki, Shiro

    1985-01-01

    In 1978 the Research Committee on Thorium Cycle was established as one of committees of the Atomic Energy Society of Japan, and the Committee published a report titled 'The Thorium Cycle - Present Status and Future Prospect' in October 1980 as a result of investigations on the status of the thoirum cycle in Japan as well as that in overseas. Based on this investigation, the Committee is intending to evaluate synthetically the thorium utilization in Japan under the prospect for the middle and long term by intensifying the activities of the Committee. Furthermore, from this viewpoint, the author supplements comments on following three points: (1) Reasons why the thorium utilization has not received positive evaluation in Japan; (2) Reasons why Japan has to pay attention to thorium; (3) How the technology on thorium should be developed in Japan. (author)

  17. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  18. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  19. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  20. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  1. Potential of axial fuel management strategies in thorium-fuelled CANDU's

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1978-06-01

    Three axial fuel management strategies are compared for use in a CANDU-PHW reactor operating on a self-sufficient, equilibrium thorium cycle. Two of these strategies are familiar ones for uranium reactors, and the third seeks to take advantage of the nuclear characteristics of the Th 232 → U 233 transmutation chain to improve the economics of the fuel cycle by periodically removing the fuel from the reactor. This results in an approximately 50% increase in burnup and an approximately 15% decrease in heavy element fuel inventory at a channel power of 6 MW, relative to the other strategies. (author)

  2. Analysis of thorium and uranium fuel cycles in an iso-breeder lead fast reactor using extended-EQL3D procedure

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Krepel, Jiri; Cammi, Antonio; Franceschini, Fausto; Mikityuk, Konstantin; Ricotti, Marco Enrico

    2013-01-01

    Highlights: ► Extension of EQL3D procedure to calculate radio-toxicity and decay heat. ► Characterization of uranium- and thorium-fueled LFR from BOL to equilibrium. ► Safety improvements for a LFR in a closed thorium cycle. ► Advantages of thorium-fueled LFR in terms of decay heat and radio-toxicity generation. ► Safety, decay heat and radio-toxicity concerns for a Th–Pu beginning-of-life core. - Abstract: Use of thorium in fast reactors has typically been considered as a secondary option, mainly thanks to a possible self-sustaining thorium cycle already in thermal reactors and due to the limited breeding capabilities compared to U–Pu in the fast neutron energy range. In recent years nuclear waste management has become more important, and the thorium option has been reconsidered for the claimed potential to burn transuranic waste and the lower build-up of hazardous isotopes in a closed cycle. To ascertain these claims and their limitations, the fuel cycle isotopic inventory, and associated waste radio-toxicity and decay heat, should be quantified and compared to the case of the uranium cycle using realistic core configurations, with complete recycle of all the actinides. Since the transition from uranium to thorium fuel cycles will likely involve a transuranic burning phase, this transition and the challenges that the evolving fuel actinide composition presents, for instance on reactor feedback parameters, should also be analyzed. In the present paper, these issues are investigated based on core physics analysis of the Lead-cooled Fast Reactor ELSY, performed with the fast reactor ERANOS code and the EQL3D procedure allowing full-core characterization of the equilibrium cycle and the transition cycles. In order to compute radio-toxicity and decay heat, EQL3D has been extended by developing a new module, which has been assessed against ORIGEN-S and is presented here. The capability of the EQL3D procedure to treat full-core 3D geometries allowed to

  3. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  4. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  5. Review of Brazilian activities related to the thorium fuel cycle and production of thorium compounds at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Freitas, Antonio A.; Mindrisz, Ana C.

    2013-01-01

    The Brazilian's interest in the nuclear utilization of thorium has started in the 50's as a consequence of the abundant occurrence of monazite sands. Since the sixties, IPEN-CNEN/SP has performed some developments related to the thorium fuel cycle. The production and purification of thorium compounds was carried out at IPEN for about 18 years and the main product was the thorium nitrate with high purity, having been produced over 170 metric tons of this material in the period, obtained through solvent extraction. The thorium nitrate was supplied to the domestic industry and used for gas portable lamps (Welsbach mantle). Although the thorium compounds produced have not been employed in the nuclear area, several studies were conducted. Therefore, those activities and the accumulated experience are of strategic importance, on one hand due to huge Brazilian thorium reserves, on the other hand by the resurgence of the interest of thorium for the Generation IV Advanced Reactors. This paper presents a review of the Brazilian research and development activities related to thorium technology. (author)

  6. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  7. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  8. Performance of Energy Multiplier Module (EM2) with long-burn thorium fuel cycle

    International Nuclear Information System (INIS)

    Choi, Hangbok; Schleicher, Robert; Gupta, Puja

    2015-01-01

    Energy Multiplier Module (EM 2 ) is a helium-cooled fast reactor being developed by General Atomics for the 21 st century grid. It is designed as a modular plant with a net electric output of 265 MWe with an evaporative heat sink and 240 MWe with an air-cooled heat sink. EM 2 core performance is examined for the baseline loading of low-enriched uranium (LEU) as fissile material with depleted uranium (DU) as fertile material and compared to the alternate LEU with thorium loading. The latter has two options: a heterogeneous loading of thorium fuel in the place of DU that produces a longer fuel cycle, and homogeneously mixed thorium-uranium fuel loading. Compared to the baseline LEU/DU core, the cycle length of both thorium options is reduced due to higher neutron absorptions by thorium. However, for both, heterogeneous and homogenous thorium loading options, the fuel cycle length is over 24 years without refueling or reshuffling of fuel assemblies. The physics properties of the EM 2 thorium core are close to those of the baseline core which constitute low excess reactivity, negative fuel temperature coefficient, and very small void reactivity. However, unlike the case of baseline EM 2 , the homogeneous thorium fuel loading provides additional advantage in reducing the power peaking of the core, which in turn reduces the cladding material neutron damage rate by 23%. It is interpreted that the relatively slow 233 U buildup as compared to 239 Pu for baseline core retards reactivity increase without the need for a complicated fuel loading pattern of the heterogeneous fuel loading, while maintaining the peak power density low. Therefore both the heterogeneous and homogeneous thorium loading options will be feasible in the EM 2

  9. Once-through thorium fuel cycle evaluation for TVA's Browns Ferry-3 Boiling Water Reactor

    International Nuclear Information System (INIS)

    Hopkins, G.C.

    1982-05-01

    This report documents benchmark evaluations to test thorium lattice predictive methods and neutron cross sections against available data and summarizes specific evaluations of the once-through thorium cycle when applied to the Browns Ferry-3 BWR. It was concluded that appreciable uncertainties in thorium cycle nuclear data cloud the ability to reliably predict the fuel cycle performance and that power reactor irradiations of ThO 2 rods in BWRs are desirable to resolve uncertainties. Benchmark evaluations indicated that the ENDF/B-IV data used in the evaluations should cause an underprediction of U-233/ThO 2 fuel reactivity, and, therefore, the results of the preliminary evaluations completed under the program should be conservative

  10. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    International Nuclear Information System (INIS)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-01-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  11. Remarks on the thorium cycle

    International Nuclear Information System (INIS)

    Teller, E.

    1978-01-01

    The use of thorium and neutrons to make 233 U would provide energy for many thousands of years. Thorium is more abundant than uranium and 233 U is the best fissile material for thermal neutron reactors. Four approaches to the use of thorium are worth developing: heavy water moderated reactors with conversion ratios greater than 0.9, such as modified CANDU with lower cost of separating D 2 O and 235 U; molten salt breeder reactors, from which fission products and excess fuel may be continuously removed; fusion-fission hybrids that produce adequate tritium and excess neutrons for sustenance and 233 U production in a subcritical thorium 233 U blanket; and by fission-initiated thermo-nuclear explosions in cavities in salt beds one mile below the earth's surface, yielding 233 U from the excess neutrons and thorium and decontaminated steam for power production. (author)

  12. The low enriched fuel cycle in the GA 1160 MW design and the switch-over to thorium

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.

    1974-03-15

    Calculations for the GA 1160 MW HTR are presented. The aim of these investigations was to compare the Low Enriched Uranium (LEU) cycle and the Thorium cycle for the GA 1160 MW HTR both using the same GA designed integral block fuel element. The total fuel cycle cost for the equilibrium cycle comes out to be about 16% cheaper for the Thorium cycle than for the Low-Enriched cycle. However, these favorable results for the thorium cycle are completely dependent on the availability of reprocessing and refabrication facilities, for costs comparable with the costs used for these investigations. The possibility of starting the reactor on a LEU 3 year cycle and later switching over to a thorium 4 year cycle was investigated. No cost penalties were found to be paid during the switch-over. The problems of local power peaks and age factors were not investigated in greater detail as only integral physical quantities were obtained from the neutron physics calculations. However, no indications of any problem in the switch-over phase were given. Elaborate 3-dimensional methods are necessary for further investigation of these types of problems.

  13. Elements for evaluation of the potential of the thorium cycle in Argentina

    International Nuclear Information System (INIS)

    Corcuera, R.M.

    1987-01-01

    A comprehensive review of the most important elements to be taken into account for the evaluation and, eventually, the implementation of the introduction of thorium cycle strategies in argentinian heavy-water type power plants, and also of the associated development of the external fuel cycle, is presented. Particularly, the up-dated situations summarized here cover resources and prices of natural uranium and thorium, development of the various stages of the external fuel cycle, description of the most important strategies and their capabilities for the best use of mineral resources and, finally, the economic implications and the global comparison of those strategies. Various data and parameter values are added to those given in AECL's external reports. Some appendices are devoted to the definitions of a 'global fuel-cycle conversion factor' and to the analysis of the effective use of mineral resources, taking into account fissile and fertile material losses in the external fuel cycle., for the different cases of fuel conversion and breeding. (Author) [es

  14. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  15. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  16. A competitive thorium fuel cycle for pressurized water reactors of current technology

    International Nuclear Information System (INIS)

    Galperin, A.; Radkowsky, A.; Todosow, M.

    2002-01-01

    Two important issues may influence the development and public acceptance of the nuclear power worldwide: a reduction of proliferation potential and spent fuel disposal requirements of the nuclear fuel cycle. Both problems may be addressed effectively by replacement of uranium by thorium fertile part of the fuel. A practical and competitive fuel design to satisfy the described design objectives and constraints may be achieved by seed-blanket core, proposed by A. Radkowsky and implemented in Shippingport reactors. The main idea is to separate spatially the uranium part of the core (seed) from the thorium part of the core (blanket), and thus allow two separate fuel management routes for uranium and thorium parts of the fuel. The uranium part (seed) is optimized to supply neutrons to the subcritical thorium blanket. The blanket is designed to generate and bum insitu 233 U. (author)

  17. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  18. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  19. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  20. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  1. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  2. A review of the potential for actinide redistribution in CANDU thorium cycle fuels

    International Nuclear Information System (INIS)

    Cameron, D.J.

    1978-02-01

    Actinide redistribution resulting from large radial temperature gradients is an accepted feature of the technology of fast reactor (U,Pu)O 2 fuels. A thorium cycle in CANDU reactors would require the use of oxide fuels with two or more components, raising the question of actinide redistribution in these fuels. The mechanisms proposed to explain redistribution in (U,Pu)O 2 fuels are reviewed, and their relevance to fuels based on ThO 2 is discussed. The fuel primarily considered is (Th,U)O 2 but some reference is made to (Th,Pu)O 2 . At this early stage of thorium fuel cycle technology, it is not possible to consider quantitatively the question of redistribution in specific fuels. However, some guidelines can be presented to indicate to fuel engineers conditions which might result in significant redistribution. It is concluded that redistribution is probably of little concern in high density, CANDU, thorium cycle fuel whose centre temperature is limited to 2350 K. If this centre temperature is exceeded, or if the fuel contains substantial inter-connected porosity, the potential for redistribution is significant and warrants more serious study. (author)

  3. Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Wenner, M. [Westinghouse Electric Company, Cranberry Township, PA (United States); Fiorina, C. [Polytechnic of Milano, Milan (Italy); Paul Sherrer Institute (Switzerland); Huang, M.; Petrovic, B. [Georgia Technology University, Atlanta, GA (United States); Krepel, J. [Paul Sherrer Institute (Switzerland)

    2012-07-01

    substantial advantages compared to the U cycle, such as the smaller actinide radiotoxicity and decay heat for up to 25,000 years after irradiation. In order for these benefits to materialize, the capability to reprocess and remotely manufacture industrial amounts of recycled fuel appears to be the key. Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the TRU contained in the current UNF. The general approach and the potential of thorium as TRU burner is described in other papers presented at this conference. The focus of this paper is to analyze the long-term potential of thorium, once the legacy TRU has been exhausted and the thorium reactor system will become self-sufficient. Therefore, a comparison of Th closed cycle, in fast and thermal neutron energy ranges, vs. U closed cycle, in the fast energy range, has been undertaken. The results presented focus on selected backend and front-end metrics: isotopic actinide composition and potential implications on ingested radiotoxicity, decay heat and gamma heat. The evaluation confirms potential substantial improvements in the backend of the fuel cycle by transitioning to a thorium closed cycle. These benefits are the result of a much lower TRU content, in particular Pu-241, Am-241 and Pu-240, characterizing the Th vs. U actinide inventories, and the ensuing process waste to be disposed. On the other hand, the larger gamma activity of Th recycled fuel, consisting predominantly of hard gammas from U-232's decay products, is a significant challenge for fuel handling, transportation and manufacturing but can be claimed as beneficial for the proliferation resistance of the fuel. It is worth remembering that in our perspective the Th closed cycle and the U closed cycle will follow a transmutation phase which will likely take place over several decades and dictate the technologies required. These will likely include remote fuel manufacturing, regardless of the specific system adopted for the

  4. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Todosow, M.; Raitses, G.; Galperin, A.

    2009-01-01

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  5. Method to evaluate covariance data for the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Kawano, T.; Chadwick, M.B.

    2003-01-01

    This power point presentation gives an overview about the evaluation strategy for the experimental data for the thorium-uranium fuel cycle. Uncertainties, error propagation and calculation methods are outlined. Covariance evaluation tools and computer codes have been developed and results are presented

  6. Estimates of particle- and thorium-cycling rates in the northwest Atlantic Ocean

    International Nuclear Information System (INIS)

    Murnane, R.J.; Sarmiento, J.L.; Cochran, J.K.

    1994-01-01

    The authors provide least squares estimates of particle-cycling rate constants and their errors at 13 depths in the Northwest Atlantic Ocean using a compilation of published results and conservation equations for thorium and particle cycling. The predicted rates of particle aggregation and disaggregation vary through the water column. The means and standard deviations, based on lognormal probability distributions, for the lowest and highest rates of aggregation (β 2 ) and disaggregation (β -2 ) in the water column are 8±27 y -1 2 -1 , and 580±2000 y -1 -2 3 ±10 4 y -1 . Median values for these rates are 2.1 y -1 2 -1 , and 149 y -1 -2 -1 . Predicted rate constants for thorium adsorption (k 1 = 5.0±1.0x10 4 m 3 kg -1 y -1 ) and desorption (k -1 = 3.1±1.5 y -1 ) are consistent with previous estimates. Least squares estimates of the sum of the time dependence and transport terms from the particle and thorium conservation equations are on the same order as other terms in the conservation equations. Forcing this sum to equal zero would change the predicted rates. Better estimates of the time dependence of thorium activities and particle concentrations and of the concentration and flux of particulate organic matter would help to constrain estimates of β 2 and β -2 . 46 refs., 8 figs., 5 tabs

  7. Potential for the near-term use of the thorium cycle in a sustainable way

    International Nuclear Information System (INIS)

    Wider, H.; Tucek, K.; Carlsson, J.

    2007-01-01

    Nuclear sustainability is generally believed to be only reachable through the building of many fast breeder reactors. This paper shows that there is another possibility by using existing reactors that are either thermal breeders or have at least a high conversion ratio and considerably smaller critical masses than fast systems. Earlier it was believed that thermal molten salt breeders could eventually use the thorium / 233U cycle, which doesn't generate minor actinides and is therefore a cleaner fuel cycle. In the meantime, it has become rather clear that CANDU reactors that use heavy water cooling can also be self-breeders. The CANDU reactors could generate themselves 233U in thorium targets and could become selfsustaining after 12 years. However, additional 233U could also be generated in LWRs and fast reactors. It is shown that this generation of 233U will allow a faster large-term nuclear expansion than fast reactors alone. There could actually be a synergy between thermal and fast breeders if the latter are run with Pu/Minor Actinides/Th fuel, which burns the minor actinides and generates sizeable amounts of 233U. The main problem is still the necessary reprocessing on which India is working and intends to have in 10 years a large scale reprocessing facility available. However, there is at least an existing method for removing the 233U by the fluoride volatility method and to further use it in CANDUs. For the preparation of the use of 233U, we should attempt to run thorium subassemblies in CANDUs, LWRs, and fast reactors. Besides breeding 233U or at least having a high conversion ratio, CANDUs have the further advantage that they don't need a pressure vessel and therefore could be built in large numbers faster than LWRs. (author)

  8. Determination of dose equivalent and risk in thorium cycle

    International Nuclear Information System (INIS)

    Ney, C.L.V.N.

    1988-01-01

    In these report are presented the calculations of dose equivalent and risk, utilizing the dosimetric model described in publication 30 of the International Comission on Radiological Protection. This information was obtained by the workers of the thorium cycle, employed at the Praia and Santo Amaro Facilities, by assessing the quantity and concentration of thorium in the air. The samples and the number of measurements were established through design of experiments techniques, and the results were evaluated with the aid of variance analysis. The estimater of dose equivalent for internal and external radiation exposure and risk associated were compared with the maximum recommended limits. The results indicate the existence of operation areas whose values were above those limits, requiring so an improvement in the procedures and services in order to meet the requirements of the radiological protetion. (author) [pt

  9. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future

  10. Design study of a PWR of 1300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, J.G.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and of the thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. Reactor core design calculations were performed for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM-2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. No technical problem that precluded the utilization of any of the options analyzed was found. The savings in uranium ore introduced by the thorium cycle with fuel recycling ranges from 13% to 52% as compared with the usual uranium once-through cycle; the SWU savings goes from 13% to 22%. (Author) [pt

  11. Advanced plutonium management in PWR - complementarity of thorium and uranium cycles

    International Nuclear Information System (INIS)

    Ernoult, Marc

    2014-01-01

    In order to study the possibility of advanced management of plutonium in existing reactors, 8 strategies for plutonium multi-recycling in PWRs are studied. Following equilibrium studies, it was shown that, by using homogeneous assemblies, the use of thorium cannot reduce the plutonium inventory of equilibrium cycle or production of americium. By distributing the different fuel types within the same assembly, some thoriated strategies allow however lower inventories and lower production americium best strategies using only the uranium cycle. However, in all cases, low fuel conversion theories in PWRs makes it impossible to lower resource consumption more than a few percent compared to strategies without thorium. To study the transition, active participation in development of the scenario code CLASS has been taken. It led to the two simulation scenarios among those studied in equilibrium with CLASS. These simulations have shown discrepancies with previously simulated scenarios. The major causes of these differences were identified and quantified. (author)

  12. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978

  13. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978.

  14. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  15. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  16. Preliminary study on characteristics of equilibrium thorium fuel cycle of BWR

    International Nuclear Information System (INIS)

    Waris, A.; Kurniadi, R.; Su'ud, Z.; Permana, S.

    2007-01-01

    One of the main objectives behind the transuranium recycling ideas is not merely to utilize natural resource that is uranium much more efficiently, but to reduce the environmental impact of the radio-toxicity of the nuclear spent fuel. Beside uranium resource, there is thorium which has three times abundance compared to that of uranium which can be utilized as nuclear fuel. On top of that thorium is believed to have less radio-toxicity of spent fuel since its produce smaller amount of higher actinides compared to that of uranium. However, the studies on the thorium utilization in nuclear reactor in particular in light water reactors (LWR) are not performed intensively yet. Therefore, the aim of the present study is to evaluate the characteristics of thorium fuel cycle in LWR, especially boiling water reactor (BWR). To conduct the comprehensive investigations we have employed the equilibrium burnup model (1-3). The equilibrium burnup model is an alternative powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor1). We have employed 1368 nuclides in the equilibrium burnup calculation where 129 of them are heavy metals (HMs). This burnup code then is coupled with SRAC cell calculation code by using PIJ module to compose an equilibrium-cell burnup code. For cell calculation, 26 HMs, 66 fission products (FPs) and one pseudo FP have been utilized. The JENDL 3.2 library has been used in this study. References: 1. A. Waris and H. Sekimoto, 'Characteristics of several equilibrium fuel cycles of PWR', J. Nucl. Sci. Technol., 38, p.517-526, 2001 2. A. Waris, H. Sekimoto, and G. Kastchiev, Influence of Moderator-to-Fuel Volume Ratio on Pu and MA Recycling in Equilibrium Fuel Cycles of

  17. Waste arisings from a high-temperature reactor with a uranium-thorium fuel cycle

    International Nuclear Information System (INIS)

    1979-09-01

    This paper presents an equilibrium-recycle condition flow sheet for a high-temperature gas-cooled reactor (HTR) fuel cycle which uses thorium and high-enriched uranium (93% U-235) as makeup fuel. INFCE Working Group 7 defined percentage losses to various waste streams are used to adjust the heavy-element mass flows per gigawatt-year of electricity generated. Thorium and bred U-233 are recycled following Thorex reprocessing. Fissile U-235 is recycled one time following Purex reprocessing and then is discarded to waste. Plutonium and other transuranics are discarded to waste. Included are estimates of volume, radioactivity, and heavy-element content of wastes arising from HTR fuel element fabrication; HTR operation, maintenance, and decommissioning; and reprocessing spent fuel where the waste is unique to the HTR fuel cycle

  18. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  19. Once-through uranium thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Ozdemir, S.; Cubukcu, E.

    2000-01-01

    In this study, the performance of the once-through uranium-thorium fuel cycle in CANDU reactors is investigated. (Th-U)O 2 is used as fuel in all fuel rod clusters where Th and U are mixed homogeneously. CANDU reactors have the advantage of being capable of employing various fuel cycle options because of its good neutron economy, continuous on line refueling ability and axial fuel replacement possibility. For lattice cell calculations transport code WIMS is used. WIMS cross-section library is modified to achieve precise lattice cell calculations. For various enrichments and Th-U mixtures, criticality, heavy element composition changes, diffusion coefficients and cross-sections are calculate. Reactor core is modeled by using the diffusion code CITATION. We conclude that an overall saving of 22% in natural uranium demand can be achieved with the use of Th cycle. However, slightly enriched U cycle still consumes less natural Uranium and is a lot less complicated. (author)

  20. Thorium utilization

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B [Oak Ridge National Lab., TN (USA)

    1978-01-01

    Some of the factors that provide incentive for the utilization of thorium in specific reactor types are explored and the constraints that stand in the way are pointed out. The properties of thorium and derived fuels are discussed, and test and reactor operating experience is reviewed. In addition, symbiotic systems of breeder and converter reactor are suggested as being particularly attractive systems for energy production. Throughout the discussion, the High-Temperature Gas-Cooled Reactor and Molten Salt Reactor are treated in some detail because they have been developed primarily for use with thorium fuel cycles.

  1. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  2. Fuel cycle performance indices in a high-converting LWR core design with once-through thorium fuel cycle

    International Nuclear Information System (INIS)

    Kim, Myung-Hyun; Kim, Kwan-Hee; Kim, Young-il

    2004-01-01

    A design concept of pressure-tube type light water cooled reactor (HCPLWR) core was proposed as a thermal high-conversion reactor using a thorium based once-through cycle strategy. In a previous work, fuel cycle economics and nuclear safety were confirmed. In this work, HCPLWR was evaluated in the aspects of proliferation resistance and transmutation capability. Evaluation was done as a direct comparison of indices with PWR, CANDU and Radkowsky Thorium Fuel (RTF). Conversion ratio was measured by fissile inventory ratio and fissile gain. Proliferation resistance of plutonium composition from spent seed and blanket fuels was measured by bare critical mass, spontaneous neutron source rate, and thermal heat generation rate. For the evaluation of long-lived minor actinide transmutation was measured by a new parameter, effective fission half-life. Two-dimensional calculation for the assembly-wise unit module showed each parameter values. Even though conversion capability of HCPLWR was higher than one of RTF, it was concluded that current HCPLWR design was not favorable than RTF. Design optimization is required for the future work. (author)

  3. Thorium fuel cycle development activities in India (a decade of progress: 1981-1990)

    International Nuclear Information System (INIS)

    Basu, T.K.; Srinivasan, M.

    1990-01-01

    The report comprises of 72 papers on various aspects of thorium fuel cycle. These papers report the research work carried out at the Bhabha Atomic Research Centre, Bombay and other units of the Department of Atomic Energy during the decade 1981-1990. figs., tabs

  4. Comparison of two thorium fuel cycles for use in light water prebreeder/breeder reactor systems (AWBA Development Program)

    International Nuclear Information System (INIS)

    Merriman, F.C.; McCoy, D.F.; Boyd, W.A.; Dwyer, J.R.

    1983-05-01

    Light water prebreeder/breeder conceptual reactor systems have been developed which have the potential to significantly improve the fuel utilization of present generation light water reactors. The purpose of this study is to describe and compare two possible types of thorium fuel cycles for use in these light water prebreeder and breeder concepts. The two types of thorium fuel cycles basically differ in the fuel rod design used in the prebreeder cores and the uranium isotopic concentration of fuel supplied to the breeder cores

  5. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    Saraceno; Marcos.

    1978-10-01

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author) [es

  6. Analysis of Uranium and Thorium in Radioactive Wastes from Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Gunandjar

    2008-01-01

    The assessment of analysis method for uranium and thorium in radioactive wastes generated from nuclear fuel cycle process have been carried out. The uranium and thorium analysis methods in the assessment are consist of Titrimetry, UV-VIS Spectrophotometry, Fluorimetry, HPLC, Polarography, Emission Spectrograph, XRF, AAS, Alpha Spectrometry and Mass Spectrometry methods. From the assessment can be concluded that the analysis methods of uranium and thorium content in radioactive waste for low concentration level using UV-VIS Spectrometry is better than Titrimetry method. While for very low concentration level in part per billion (ppb) can be used by Neutron Activation Analysis (NAA), Alpha Spectrometry and Mass Spectrometry. Laser Fluorimetry is the best method of uranium analysis for very low concentration level. Alpha Spectrometry and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) methods for isotopic analysis are favourable in the precision and accuracy aspects. Comparison of the ICP-MS and Alpha Spectrometry methods shows that the both of methods have capability to determining of uranium and thorium isotopes content in the waste samples with results comparable very well, but the time of its analysis using ICP-MS method is faster than the Alpha Spectrometry, and also the cost of analysis for ICP-MS method is cheaper. NAA method can also be used to analyze the uranium and thorium isotopes, but this method needs the reactor facility and also the time of its analysis is very long. (author)

  7. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  8. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  9. An assessment of once-through homogeneous thorium fuel economics for light water reactors

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Yoo, Jae Woon

    2001-01-01

    The fuel economics of an once-through homogeneous thorium fuel concept for PWR was assessed by doing a detailed core analysis. In addition to this, the fuel economics assessment was also performed for two other ways enhancing the economic potential of thorium fuel; thorium utilization in the mixed core with uranium fuel assembly and Duplex thorium fuel concepts. As a results of fuel economics assessment, the thorium fuel cycle does not show any economic incentives in preference to uranium fuel cycle under the 18-months fuel cycle for PWR. However, the utilization of thorium is the mixed core with uranium fuel assembly and Duplex thorium fuel cycle and show superior fuel economics to uranium fuel under the longer fuel cycle scheme. The economic potential of once-through thorium fuel cycle is expected to be increased further by utilizing the Duplex thorium fuel in the mixed core with uranium fuel assembly

  10. Thorium Energy for the World

    CERN Document Server

    Revol, Jean-Pierre; Bourquin, Maurice; Kadi, Yacine; Lillestol, Egil; De Mestral, Jean-Christophe; Samec, Karel

    2016-01-01

    The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy ...

  11. Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (Thorium Molten-Salt nuclear energy synergetics)

    International Nuclear Information System (INIS)

    Furukawa, K.; Furuhashi, A.; Chigrinov, S.E.

    1996-01-01

    Thorium fuel-cycle has benefit on not-only trans-U element reduction but also their incineration. The disadvantage of high gamma activity of fuel, which is useful for improving the resistance to nuclear proliferation and terrorism, can overcome by molten fluorides fuel, and practically by THORIMS-NES, symbiotically coupled with fission Molten-Salt Reactor (FUJI) and fissile-producing Accelerator Molten-Salt Breeder (AMSB). This will have wide excellent advantages in global application, and will be deployed by incinerating Pu and Producing 233 U. Some details of this strategy including time schedule are presented. 14 refs, 2 figs, 4 tabs

  12. A review on the status of development in thorium-based nuclear fuels

    International Nuclear Information System (INIS)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C.Y.

    2000-02-01

    Thorium as an alternative nuclear energy source had been widely investigated in the 1950s-1960s because it is more abundant than uranium, but the studies of thorium nuclear fuel cycle were discontinued by political and economic reasons in the 1970s. Recently, however, renewed interest was vested in thorium-based nuclear fuel cycle because it may generate less long-lived minor actinides and has a lower radiotoxicity of high level wastes after reprocessing compared with the thorium fuel cycle. In this state-of the art report, thorium-based nuclear cycle. In this state-of the art report, thorium-based nuclear fuel cycle and fuel fabrication processes developed so far with different reactor types are reviewed and analyzed to establish basic technologies of thorium fuel fabrication which could meet our situation. (author)

  13. Thorium research and development in Turkey

    International Nuclear Information System (INIS)

    Güngör, Görkem

    2015-01-01

    Turkey has a great potential regarding thorium resources. Thorium exploration activities have been done in the past mainly by state organizations for determining the thorium resources in Turkey. Thorium occurs as complex mineral together with barite, fluorite and rare earth elements (REE). The increase in global demand for REE creates the opportunity for REE production which will also produce thorium as a by-product. The development of nuclear energy program in Turkey provides the stimulus for research and development activities in nuclear technologies. The final declaration of the workshop emphasizes the importance of thorium reserves in Turkey and the necessity for thorium exploration and development activities in order to determine the feasibility of thorium mining and fuel cycle in Turkey. These activities should be conducted together with the development of technologies for separation of these complex minerals and purification of thorium, REE and other minerals to be utilized as commercial products. There are advanced academic research studies on thorium fuel cycle which should be supported by the industry in order to commercialize the results of these studies. Turkey should be integrated to international R and D activities on ADS which is expected to commercialize on medium term. The legislative framework should be developed in order to provide the industrial baseline for nuclear technologies independent from nuclear regulatory activities

  14. A data base for PHW reactor operating on a once-through, low enriched uranium-thorium cycle

    International Nuclear Information System (INIS)

    Lungu, S.

    1984-04-01

    The study of a detailed data base for a new once-through uranium-thorium cycle using low enriched uranium (4 and 5,5% wt. U-235) and distinct UO 2 and ThO 2 fuel channels has been performed. With reference to a standard 638 MWe CANDU-type PHWR with 380 channels, evaluation of economics, fuel behaviour and safety has been performed. The Feinberg-Galanin method (code FEINGAL) has been used for calculation of axial flux distribution. All parameters have been provided by LATREP code following up the irradiation history. Economical assessment has shown that this fuel cycle is competitive with the natural uranium fuel cycle for 1979-based values of the parameters. Fuel behaviour and safety features modelling has shown that core behaviour of the uranium-thorium reactor under abnormal and accident conditions would be at least as good as that of the standard natural uranium reactor

  15. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  16. Thorium based fuel options for the generation of electricity: Developments in the 1990s

    International Nuclear Information System (INIS)

    2000-05-01

    The IAEA has maintained an interest in the thorium fuel cycle and its worldwide utilization within its framework of activities. Periodic reviews have assessed the current status of this fuel cycle, worldwide applications, economic benefits, and perceived advantages with respect to other nuclear fuel cycles. Since 1994, the IAEA convened a number of technical meetings on the thorium fuel cycle and related issues. Between 1995 and 1997 individual contributions on the thorium fuel cycle were elicited from experts from France, Germany, India, Japan, the Russian Federation and the USA. These contributions included evaluations of the status of the thorium fuel cycle worldwide; the new incentives to use thorium due to large stockpiles of plutonium produced in nuclear reactors; new reactor concepts utilizing thorium; strategies for thorium use; and an evaluation of toxicity of the thorium fuel cycle waste compared to that from other fuel cycles. The results of this updated evaluation are summarized in this publication

  17. Environmental implications of thorium use in selected nuclear fuel cycles. Final

    International Nuclear Information System (INIS)

    Buckley, D.W.; Simmons, G.L.; Ziskind, R.A.

    1978-01-01

    The objective of this study was to assess the environmental implications of the nuclear fuel cycle associated with the highly enriched uranium concept of the High Temperature Gas Cooled Reactor. Model fuel cycles were constructed for the HTGR and a reference light water reactor (LWR) cycle. Mass flows were developed, control technology cases proposed and costed, effluents determined, and population doses calculated. Emphasis was given to the intercomparison of the fuel cycles to delineate areas which show pronounced departure. The dose commitment received by the population both within and outside a radius of 50 miles of each facility was determined. The 100 year population dose commitments due to a single year's plant operation was selected to facilitate intercomparison among fuel cycle components. No account was taken for long term waste sources associated with the fuel cycle such as mill tailing piles or terminal waste storage (study groundrule). The resource utilization and radionuclide activity of various fuel cycle options for using thorium in a Pressurized Water Reactor were studied. These data were contrasted with similar results obtained for a uranium fuel PWR

  18. Thorium-based nuclear fuel: current status and perspectives

    International Nuclear Information System (INIS)

    1987-03-01

    Until the present time considerable efforts have already been made in the area of fabrication, utilization and reprocessing of Th-based fuels for different types of reactors, namely: by FRG and USA - for HTRs; FRG and Brazil, Italy - for LWRs; India - for HWRs and FBRs. Basic research of thorium fuels and thorium fuel cycles are also being undertaken by Australia, Canada, China, France, FRG, Romania, USSR and other countries. Main emphasis has been given to the utilization of thorium fuels in once-through nuclear fuel cycles, but in some projects closed thorium-uranium or thorium-plutonium fuel cycles are also considered. The purpose of the Technical Committee on the Utilization of Thorium-Based Nuclear Fuel: Current Status and Perspective was to review the world thorium resources, incentives for further exploration, obtained experience in the utilization of Th-based fuels in different types of reactors, basic research, fabrication and reprocessing of Th-based fuels. As a result of the panel discussion the recommendations on future Agency activities and list of major worldwide activities in the area of Th-based fuel were developed. A separate abstract was prepared for each of the 9 papers in this proceedings series

  19. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2001-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. he existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  20. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2000-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. The existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  1. Nuclear energy from thorium

    International Nuclear Information System (INIS)

    Coote, G.E.

    1977-06-01

    Relevant topics in nuclear and reactor physics are outlined. These include: the thorium decay series; generation of fissile from fertile nuclides, in particular U-233 from Th-232; the princiiples underlying thermal breeder reactors; the production of U-232 in thorium fuel and its important influence on nuclear safeguards and the recycling of U-233. Development work is continuing on several types of reactor which could utilise thorium; each of these is briefly described and its possible role is assessed. Other tipics covered include safety aspects of thorium oxide fuel, reprocessing, fabrication of recycle fuel and the possibility of denaturing U-233 by adding natural uranium. It is concluded that previoue arguments for development of the thorium cycle are still valid but those relating to non-proliferation of weapons may become even more compelling. (auth.)

  2. Feasibility study of self sustaining capability on water cooled thorium reactors for different power reactors

    International Nuclear Information System (INIS)

    Permana, S.; Takaki, N.; Sekimoto, H.

    2007-01-01

    Thorium fuel cycle can maintain the sustainable system of the reactor for self sustaining system for future sustainable development in the world. Some characteristics of thorium cycle show some advantages in relation to higher breeding capability, higher performance of burn-up and more proliferation resistant. Several investigations was performed to improve the breeding capability which is essential for maintaining the fissile sustainability during reactor operation in thermal reactor such as Shippingport reactor and molten salt breeder reactor (MSBR) project. The preliminary study of breeding capability on water cooled thorium reactor has been investigated for various power output. The iterative calculation system is employed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of PIJ module of SRAC2000. In this calculation, 1238 fission products and 129 heavy nuclides are employed. In the cell calculation, 26 heavy metals and 66 fission products and 1 pseudo FP are employed. The employed nuclear data library was JENDL 3.2. The reactor is fueled by 2 33U-Th Oxide and it has used the light water coolant as moderator. Some characteristics such as conversion ratio and void reactivity coefficient performances are evaluated for the systems. The moderator to fuel ratio (MFR) values and average burnups are studied for survey parameter. The parametric survey for different power outputs are employed from 10 MWt to 3000 MWt for evaluating the some characteristics of core size and leakage effects to the spectra profile, required enrichment, breeding capability, fissile inventory condition, and void reactivity coefficient. Different power outputs are employed in order to evaluate its effect to the required enrichment for criticality, breeding capability, void reactivity and fissile inventory accumulation. The obtained value of the conversion ratios is evaluated by using the equilibrium atom composition. The conversion ratio is employed based on the

  3. Contribution to the study of the conversion PWR type reactors to the thorium cycle

    International Nuclear Information System (INIS)

    Martins Filho, J.R.

    1980-01-01

    The use of the thorium cycle in PWR reactors is discussed. The fuel has been calculated in the equilibrium condition for a economic comparison with the uranium cycle (in the same condition). First of all, a code named EQUILIBRIO has been developed for the fuel equilibrium calculation. The results gotten by this code, were introduced in the LEOPARD code for the fuel depletion calculation (in the equilibrium cycle). Same important physics details of fuel depletion are studied, for instance: the neutron balance, power sharing, fuel burnup, etc. The calculations have been done taking as reference the Angra-1 PWR reactor. (Author) [pt

  4. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  5. Basic analysis and comparison among GCFR and LMFBR characteristics in thorium cycle by difusion theory in one energy group

    International Nuclear Information System (INIS)

    Sabundjian, G.; Ishiguro, Y.

    1982-01-01

    A preliminary study of the neutronic characteristics of fast of fast breeding reactors with thorium cycle, is done, using models and simplified methods of reactor analysis, aiming to meet an adequate type of breeder reactor with an efficient thorium utilization, that is abundant at Brazil. Basic methods of cross section and reactor calculations are studied, and they are applied for the analysis of GCFRs and LMFBRs breeding characteristics. (E.G.) [pt

  6. A study of sodium-cooled fast breeder reactor with thorium blanket for supply of U-233 to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Yoshida, H.; Nishimura, H.; Osugi, T.

    1978-08-01

    Symbiotic energy system between fast breeder reactor and thermal reactor would have a potential merit for nuclear proliferation problem. And when using HTGR as the thermal reactor in the system, the energy system appears to be promising as an energy system self-sufficient in fuels, which can generate both electricity and high temperature process heat. In the system the fast breeder reactor has to supply sufficient amount of fissile plutonium to keep the reactor going, and also produce U-233 necessary to the associated U-233 fuelled process heat production HTGR. Three types of LMFBR concepts with thorium blanket, conventional homogeneous core LMFBR, and axial and radial parfait heterogeneous core LMFBRs, have been investigated to find out suitable configurations of LMFBR for supply of U-233 to the HTGR with relatively high conversion ratio of 0.85, in the symbiotic energy system between LMFBR and HTGR. The investigation on LMFBR has been made on fuel sufficiency of the system, inherent safety such as sodium-void and Doppler coefficients, and fuel cycle cost. The followings were revealed; (1) Conventional homogeneous core LMFBR with thorium radial blanket well satisfies the condition of fuel sufficiency, if adequate radial blanket thickness is chosen. However, the sodium-void coefficient and fuel cycle cost are inferior to the other concepts. (2) Axial parfait heterogeneous core LMFBR can be regarded as one of the best LMFBR concepts installed in the symbiotic energy system, from the viewpoints of fuel sufficiency, inherent safety and fuel cycle cost. However, further investigations should be needed on reliability and operationability of the concept. (3) Radial parfait heterogeneous core LMFBR seems inadequate as the LMFBR in the system, because the configurations based on this concept does not satisfy plutonium and U-233 breedings, simultaneously. This LMFBR concept, however, has excellent breeding performance in the internal radial blanket. So further

  7. A novel concept of QUADRISO particles Part III: applications to the plutonium-thorium fuel cycle

    International Nuclear Information System (INIS)

    Talamo, A.

    2009-01-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the 233 U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing 233 U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the 233 U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  8. Self-sufficiency, free trade and safety.

    Science.gov (United States)

    Rautonen, Jukka

    2010-01-01

    The relationship between free trade, self-sufficiency and safety of blood and blood components has been a perennial discussion topic in the blood service community. Traditionally, national self-sufficiency has been perceived as the ultimate goal that would also maximize safety. However, very few countries are, or can be, truly self-sufficient when self-sufficiency is understood correctly to encompass the whole value chain from the blood donor to the finished product. This is most striking when plasma derived medicines are considered. Free trade of blood products, or competition, as such can have a negative or positive effect on blood safety. Further, free trade of equipment and reagents and several plasma medicines is actually necessary to meet the domestic demand for blood and blood derivatives in most countries. Opposing free trade due to dogmatic reasons is not in the best interest of any country and will be especially harmful for the developing world. Competition between blood services in the USA has been present for decades. The more than threefold differences in blood product prices between European blood services indicate that competition is long overdue in Europe, too. This competition should be welcomed but carefully and proactively regulated to avoid putting safe and secure blood supply at risk. Copyright 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  9. Toxicology of thorium cycle nuclides

    International Nuclear Information System (INIS)

    Ballou, J.E.

    1984-01-01

    The purpose of this project is to investigate the biological hazards associated with uranium-thorium breeder fuels and fuel recycle process solutions. Initial studies emphasize the metabolism and long-term biological effects of inhaled 233 U- 232 U nitrate and oxide fuel materials and of 231 Pa, a major, long-lived, radioactive waste product. 1 figure, 3 tables

  10. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  11. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  12. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles

  13. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  14. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  15. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  16. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  17. A proposal for rational thorium utilization: thorims-nes

    International Nuclear Information System (INIS)

    Kurukawa, K.; Erbay, L. B.

    1997-01-01

    In this study, a globally applicable system depending on a new philosophy has been introduced for solving the problems connected with nuclear safety, ratio-waste, anti-nuclear proliferation and terrorism and public/institutional acceptance and economy. This rational thorium breeding fuel-cycle system named as THORIMS-NES (Thorium Molten- Salt Nuclear Energy Synergetics ) appears to be particularly promising and can be the way of nuclear power development. THORIMS-NES depends on three principles: I. Thorium utilization, II. Application of molten-fluoride fuel technology and III. Separation of fissile producing breeders and power producing reactors. Thorium fuel cycle has benefit on the reduction of trans-U elements and for recycling fuels produced by all kinds of military, research and industrial reactors. A system for the realization of THORIMS-NES has been introduced by the explanation of connections/relations between facilities. In this study, the status of countries/groups working on Th and Th fuel cycle has been summarized. Additionally, the resultant announcement of the International Conference on Thorium Molten Salt Reactor Development (8-11 April, 1997, Santa Monica) has been mentioned to present the cooperation of scientists and engineers for the realization of THORIMS-NES

  18. Thorium as an energy source. Opportunities for Norway; Thorium som energikilde - Muligheter for Norge

    Energy Technology Data Exchange (ETDEWEB)

    2008-02-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  19. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    The Resource-renewable Boiling Water Reactors (RBWRs) are a set of light water reactors (LWRs) proposed by Hitachi which use a triangular lattice and high void fraction to incinerate fuel with an epithermal spectrum, which is highly atypical of LWRs. The RBWRs operate on a closed fuel cycle, which is impossible with a typical thermal spectrum reactor, in order to accomplish missions normally reserved for sodium fast reactors (SFRs)--either fuel self-sufficiency or waste incineration. The RBWRs also axially segregate the fuel into alternating fissile "seed" regions and fertile "blanket" regions in order to enhance breeding and leakage probability upon coolant voiding. This dissertation focuses on thorium design variants of the RBWR: the self-sufficient RBWR-SS and the RBWR-TR, which consumes reprocessed transuranic (TRU) waste from PWR used nuclear fuel. These designs were based off of the Hitachi-designed RBWR-AC and the RBWR-TB2, respectively, which use depleted uranium (DU) as the primary fertile fuel. The DU-fueled RBWRs use a pair of axially segregated seed sections in order to achieve a negative void coefficient; however, several concerns were raised with this multi-seed approach, including difficulty with controlling the reactor and unacceptably high axial power peaking. Since thorium-uranium fuel tends to have much more negative void feedback than uranium-plutonium fuels, the thorium RBWRs were designed to use a single elongated seed to avoid these issues. A series of parametric studies were performed in order to find the design space for the thorium RBWRs, and optimize the designs while meeting the required safety constraints. The RBWR-SS was optimized to maximize the discharge burnup, while the RBWR-TR was optimized to maximize the TRU transmutation rate. These parametric studies were performed on an assembly level model using the MocDown simulator, which calculates an equilibrium fuel composition with a specified reprocessing scheme. A full core model was

  20. Inhalation exposures at a thorium refinery

    International Nuclear Information System (INIS)

    Mausner, L.F.

    1982-01-01

    There is a current interest in the metabolism and health effects of thorium due to its potential use in the 232 Th - 233 U nuclear fuel cycle. The airborne concentrations of thorium, thoron daughters and rare earths in a plant which produced thorium and rare earth chemicals from 1932 to 1973 were calculated from past records of alpha counting and air filter samples. This analysis showed that high airborne concentrations of 232 Th, 220 Rn, 212 Pb, 212 Bi and rare earth elements were sometimes reached during plant operations. Limited measurements on autopsy samples of former employees of the plant showed increased tissue concentrations of thorium and rare earths. (U.K.)

  1. Status of thorium technology

    International Nuclear Information System (INIS)

    Garg, R.K.; Raghavan, R.V.; Karve, V.M.; Narayandas, G.R.

    1977-01-01

    Although a number of studies have been conducted in various countries to evolve reactor systems based on thorium fuel cycle, its use, so far, is limited to only a few reactors. However, for countries having large reserves of thorium, its utilization is of great significance for their nuclear power programmes. Reasonably assured world resources of thorium in the lower price range have been estimated at more than 500,000 tons of ThO 2 . While most of these resources are in placer deposits in various parts of the world, some vein deposits and uranium ores are other important sources of thorium. Monazite, the most important mineral of thorium, is found in the beach sand deposits along with other heavy minerals like ilmenite, rutile, zircon, and sillimanite etc. Mining of these deposits is usually carried out by suction dredging and separation of monazite from other minerals is effected by a combination of magnetic, electrostatic and gravity separation techniques. Chemical processing of monazite is carried out either by sulphuric acid or caustic treatment, followed by separation of the rare earths and thorium by partial precipitation or leaching. The thorium concentrate is further processed to obtain mantle grade thorium nitrate by chemical purification steps whereas solvent extraction using TBP is adopted for making nuclear-grade material. The purified thorium nitrate is converted to the oxide usually by precipitation as oxalate followed by calcination. The oxide is reduced directly with calcium or converted to the chloride or fluoride and then reduced by calcium or magnesium to obtain thorium metal. Various fuel designs based on the metal or its alloys, mixed oxides or carbides, and dispersed type fuel elements have been developed and accordingly, different fabrication techniques have been employed. Work on irradiation of thorium containing fuel elements and separation of U 233 is being carried out. This paper reviews the status of thorium technology in the world with

  2. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  3. Radiological significance of thorium processing in manufacturing

    International Nuclear Information System (INIS)

    Davis, M.W.

    1985-01-01

    The study of thorium processing in manufacturing comprised monitoring programs at a plant where thorium dioxide was in use and another where the use of thorium nitrate had been discontinued. The measurements of the solubility in simulated lung fluid proved that both materials belonged in the Y Class with dissolution half-times greater than 500 days. Bioassay measurements of 20 subjects from both facilities proved that in vitro monitoring methods, urine, feces, hair and nails analysis were not sufficient indicators of thorium uptake. In vivo monitoring by phoswich and large sodium iodide detectors were proven to be good methods of determining thorium lung burdens. The thoron in breath technique was shown to have a lower limit of sensitivity than lung counting, however, due to lack of information regarding the thoron escape rate from the thorium particles in the lungs the method is not as accurate as lung counting. Two subjects at the thorium dioxide facility had lung burdens of 21+- 16 Bq and 29+- 24 Bq Th 232 and one at the thorium nitrate facility had a lung burden of 37+- 13 Bq. Improvements in the procedures and use of a glove box were among the recommendations to reduce the inhalation of thorium by workers at the thorium dioxide facility. Decontamination of several rooms at the thorium nitrate facility and sealing of the walls and floors were recommended in order to reduce the escape of thoron gas into the room air. The risk to non Atomic Radiation Workers was primarily due to thoron daughters in air while gamma radiation and thorium in air were less important. Conversely, at the thorium dioxide facility the inhalation of thorium in air was the most significant exposure pathway

  4. Toxicity of thorium cycle nuclides

    International Nuclear Information System (INIS)

    Ballou, J.E.

    1986-01-01

    The purpose of this project is to investigate the biological hazards associated with uranium-thorium breeder fuels and fuel recycle process solutions. Initial studies emphasize the metabolism and long-term biological effects of inhaled 233 U- 232 U nitrate and oxide fuel materials and of 231 Pa, a major, long-lived, radioactive waste product. Rats were used as test animals. Dose-response relationships for malignant lung-tumor and bone-tumor induction after 232 UO 2 (NO 3 ) 2 inhalation are discussed. 2 figures, 1 table

  5. Pramana – journal of physics

    Indian Academy of Sciences (India)

    Operation of CANDU power reactor in thorium self-sufficient fuel cycle .... . .... Painlevé test for integrability for a combination of Yang's self-dual equations .... Hartree–Fock variational bounds for ground state energy of chargeless fermi-.

  6. Role of thorium in ensuring long term energy security to India

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    Role of nuclear power in ensuring energy security to the world is inevitable due to a) dwindling fossil fuel resources and b) need for minimising green house gas emission that poses the risk of global climate change. India, keeping in mind its limited uranium and vast thorium resources, is pursuing a three stage nuclear power programme. The first stage is based on reactors that use uranium as fuel. It comprises of the indigenous Pressurised Heavy Water Reactors using natural uranium as fuel and light water reactors that employ enriched uranium as fuel and are to be set up in technical collaboration with other countries. The second stage is based on fast breeder reactors that employ plutonium derived from reprocessing of spent fuel from the first stage reactors. The third stage envisages reactors which will employ thorium based fuel after its irradiation in the second stage reactors. This programme is sequential in nature and has an ultimate objective of securing long term energy security to India through judicial use of its thorium resources. Thorium based reactors offer advantages in terms of better neutronic characteristics of thorium, it being better fertile host for plutonium disposition and better thermo-mechanical properties and slower fuel deterioration of thorium oxide. It is planned to introduce thorium in the Indian Nuclear Power Programme after sufficient (about 200 GWe) capacity build-up in the second stage. DAE is a global leader in the development of the entire thorium fuel cycle. It has a mature technology for extraction of thorium and preparation of thoria pellets. It has long back carried out irradiation of thoria pellets in its research reactors and also in PHWRs, post irradiation examination and reprocessing of irradiated thoria, fabrication of 233 U based fuel. It has KAMINI - the world's only operating reactor employing 233 U as fuel. An Advanced Heavy Water Reactor (AHWR) has been designed as a technology demonstrator for large scale

  7. The use of thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1982-04-01

    The use of thorium as an alternative or supplementary nuclear fuel is examined and compared with uranium. A description of various reactor types and their suitability to thorium fuel, and a description of various aspects of the fuel cycle from mining to waste disposal, are included. Comments are made on the safety and economics of each aspect of the fuel cycle and the extension of the lifetime of nuclear fuel

  8. Small molten-salt reactors with a rational thorium fuel-cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Mitachi, Kohshi; Kato, Yoshio

    1992-01-01

    In the fission-energy utilization for solving global social and environmental problems including the 'Greenhouse Effect' in the next century, a new strategy should be introduced considering high safety and economy, simplicity, size-flexibility, anti-nuclear proliferation and terrorism, high temperature heat supply, etc., aiming to establish a rational breeding fuelcycle. Thorium Molten-Salt Nuclear Energy Synergetics based on [I] Th utilization, [II] fluid-fuel concept and [III] separation of fissile breeding and power generation functions would be one of the most promising approach. A design study of a standard Molten-Salt Reactor: FUJI-II (350 MWth, 155-161 MWe) ensuring fuel self-sustaining nature (conversion-ratio ∝ 1.0) in spite of small-size, and pilot-plant miniFUJI-II has been proceeded. (orig.)

  9. Improving the Perception of Self-Sufficiency towards Creative Drama

    Science.gov (United States)

    Pekdogan, Serpil; Korkmaz, Halil Ibrahim

    2016-01-01

    The purpose of this study is to investigate the effects of a Creative Drama Based Perception of Self-sufficiency Skills Training Program on 2nd grade bachelor degree students' (who are attending a preschool teacher training program) perception of self-sufficiency. This is a quasi-experimental study. Totally 50 students were equally divided into…

  10. Thorium fuels for heavy water reactors. Romanian experience

    International Nuclear Information System (INIS)

    Glodeanu, F.; Mirion, I.; Mehedinteanu, S.; Balan, V.

    1984-01-01

    The renewed interest in thorium fuel cycle due to the increased demand for fissile materials has resulted in speeding up the related research and development activities. For heavy water reactors the thorium cycles, especially SSET, are very promising and many efforts are made to demonstrate their feasibility. In our country, at INPR, the research and development activity has been initiated in the following areas: the conceptual design of thorium bearing fuel elements; fuel modelling; nuclear grade thorium dioxide powder technology; mixed oxide fuel technology. In the design area, the key factors in performance limitation, especially at extended burnup have been accounted and different remedies proposed. An irradiation programme has been settled and will start this year. The modelling activities are focused on mixed oxide behaviour and material data measurements are in progress. In the nuclear grade thorium powder technology area, a good piece of work has been done to develop an integrated technology for monasite processing (thorium being a by-product in lanthanides extraction). As regards the mixed oxide fuel technology, efforts have been made to obtain (ThU)O 2 pellets with good homogeneity and high density at different compositions. Besides the mixing powders route, other non-conventional technologies for refabrication like: microspheres, pellet impregnation and clay extrusion are studied. Experimental fuel rods for irradiation testing have been manufactured. (author)

  11. On the radiology of thorium-uranium electro breeding

    International Nuclear Information System (INIS)

    Gai, E.V.; Rabotnov, N.S.; Shubin, Y.N.

    1995-01-01

    Radiological problems arising in thorium-uranium electro-breeding with thorium accelerator target are discussed. Following radiological problems are discussed and evaluated in simplified model calculations: U-232 formation, accumulation of light Th isotopes in (n, xn) reactions on thorium target: accumulation of the same nuclides in final repository after alpha-decay of uranium isotopes. The qualitative comparison of U-Pu and U-Th fuel cycles is performed. The problems seem to be serious enough to justify detailed quantitative investigation. (authors)

  12. Extraction of thorium from solution using tribenzylamine

    International Nuclear Information System (INIS)

    Whitehead, N.E.; Ditchburn, R.G.

    1975-01-01

    A method is described for isolating thorium from solutions in a state sufficiently pure for alpha spectroscopy. It parallels the method described by Moore and Thern (Radiochemical Radioanalytical Letters 19(2), 117-125, 1974), but uses tribenzylamine instead of Adogen 364. The method involves extracting thorium from a solution in 8M nitric acid, into a 6% w/v solution of tribenzylamine in toluene. The thorium is concentrated in a third, interfacial layer which forms. This layer is isolated, diluted with chloroform, and back extracted with 10M HC1. Overall yields range between 83 and 90% for one extraction. The acidic solution is taken down to near dryness, diluted until the pH is 2 and extracted into 1.2 ml of thenoyltrifluoroacetone in toluene. This solution is evaporated onto a stainless steel disk, flamed, and the disk may be used for alpha spectroscopy of thorium isotopes. (auth.)

  13. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  14. Transforming the energy system: Why municipalities strive for energy self-sufficiency

    International Nuclear Information System (INIS)

    Engelken, Maximilian; Römer, Benedikt; Drescher, Marcus; Welpe, Isabell

    2016-01-01

    Despite evidence that a rising number of municipalities in Germany are striving for energy self-sufficiency, there is little understanding of the driving factors behind this development. We investigate economic, ecological, social and energy system related factors that drive municipalities to strive for energy self-sufficiency with a focus on electricity supply. The empirical data for this study is based on insights generated through expert interviews (N =19) with mayors, energy experts and scientists as well as a quantitative study among mayors and energy officers (N =109) of German municipalities. Results show that environmental awareness, tax revenues and greater independence from private utilities are positively related to the mayors’ attitude towards the realization of energy self-sufficiency. Furthermore, citizens, the political environment, the mayor's political power, and his/her financial resources are relevant factors for a municipality striving for energy self-sufficiency. Policymakers need to decide whether or not to support mayors in this development. For suitable policy interventions, the results suggest the importance of an integrated approach that considers a combination of identified factors. Finally, we propose a morphological box to structure different aspects of energy self-sufficiency and categorize the present study. - Highlights: • Municipalities striving for energy self-sufficiency can play a key role in the transition of the energy system. • Tax revenues and environmental awareness main drivers behind mayors’ attitude towards energy self-sufficiency. • Citizens and the political environment main influencers of mayors striving for energy self-sufficiency. • 19 expert interviews analyzed for the framework of the study based on the theory of planned behavior (TPB). • 109 mayors and energy officers participated in the quantitative main survey.

  15. An overview of the potential of the CANDU reactor as a thermal breeder

    International Nuclear Information System (INIS)

    Slater, J.B.

    1977-02-01

    This paper is concerned with the use of thorium as a fuel in the existing CANDU concept. The neutron balance of the reactor core is analyzed and an assessment is made of the potential for development of a thermal 'breeder' reactor system. It is concluded that while the SSET cycle (i.e. self-sufficient equilibrium thorium cycle) appears feasible, there is little potential for developing a significant 'breeding' fuel cycle if current reactor operating capability and capital costs are to be maintained. (author)

  16. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  17. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  18. Group cross sections in the resolved resonance region calculated for a CANDU-PHW reactor operating on closed thorium-uranium and thorium-plutonium-uranium fuel cycles

    International Nuclear Information System (INIS)

    Hamel, D.; Wilkin, G.B.

    1979-09-01

    Group cross sections in the resolved resonance region are commonly computed for each nuclide independently of other resonance nuclides present in the fuel mixture. While this technique is usually entirely adequate for uranium fuel cycles, it is necessary to establish its legitimacy for closed thorium fuel cycles topped with fissile uranium or plutonium by analysis of a number of representative cases. At the same time cross sections originating from WIMS (Winfrith Improved Multigroup Scheme) calculations are compared with values computed in this study. In this context, particular attention is paid to the adequacy of the lower boundary for the WIMS resonance treatment. All calculations are based on heavy nuclide cross sections from the ENDF/B-IV data compilaton (Evaluated Nuclear Data File). Appreciable interaction effects have been determined for all nuclides except for 232 Th. In most cases, these are due to the strong 232 Th resonance doublet at 21.8 eV and 23.5 eV but some effects also result from resonances of 234 U (5.19 eV, 48.75 eV), 236 U (5.45 eV), 242 Pu (2.67 eV) and others. The influence of mutual interaction on the infinite lattice multiplicaton factor is very small in comparison to the effects of self-shielding. WIMS cross sections do not always compare well with the values computed in the study, but discrepancies are in most cases related to the different sources of data. Interaction effects are not explicitly taken into account in WIMS. Several nuclides ( 233 Pa, 233 U, 240 Pu, 242 Pu) show appreciable self-shielding below the WIMS resonance region and are therefore not treated adequately. The impact of these discrepancies on the multiplication factor is relatively small, however, because of error cancellation. (author)

  19. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1964-04-01

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might he reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  20. How much of the rocks and the oceans for power? Exploiting the uranium-thorium fission cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1964-04-15

    Even at quite low costs there appear to be many routes available to supply the world population of the future with its power for electricity, heat, energy storage, portable fuel, desalting water and local climate control. For example, sufficient power could come from nuclear fission in thermal neutron reactors. When rich uranium ores have become scarce, the price will rise from the current $13/kg U, but with improved techniques of extraction and the choice of an economical fuel cycle, abundant uranium for many centuries appears to be available in the rocks and the oceans. Even from reactors already developed to the stage of engineering design it is possible to choose a fuel cycle to which uranium at $250/kg U would contribute no more than 2 mill/kWh. Without suggesting when such a high cost might be reached, its implications are examined. The optimum fuel cycle would balance the financing charges on the fuel inventory and the costs of fuel make-up supply and reprocessing. By using uranium and thorium in combination at least 50,000 MWd can be derived per tonne of uranium. At a current low net conversion efficiency of 30% and an overall rating of 6 thermal kW/kg, the natural uranium inventory would cost at the suggested high price $250/(6 x 0.3) $139/ekW and for 7000 hr/yr at 7% annual charges would contribute 1.4 mill/ekWh. At 50 MWd/kg U the make-up supply contributes 250/(50 x 24 x 0.3) = 0.7 mill/ekWh. Probably higher efficiency and possibly higher specific power ratings would be used to lower such costs. The value of uranium is related to its content of the fissile U-235, and even though most power may be derived from thorium, its value will not rise comparably with that of uranium. In the course of time a ceiling will be set on the value of fissile material by the introduction of processes other than the thermal neutron fission chain reaction for producing power or neutrons. The total cost of nuclear power includes also contributions from the cost of equipment

  1. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  2. Increasing urban water self-sufficiency: New era, new challenges

    DEFF Research Database (Denmark)

    Rygaard, Martin; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2011-01-01

    and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional...... pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten...... amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We...

  3. Cycle thorium et réacteurs à sel fondu. Exploration du champ des paramètres et des contraintes définissant le "Thorium Molten Salt Reactor"

    OpenAIRE

    Mathieu , Ludovic

    2005-01-01

    Producing nuclear energy in order to reduce the anthropic CO2 emission requires major technological advances. Nuclear plants of IVth generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this...

  4. A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow

    International Nuclear Information System (INIS)

    Furukawa, K.; Arakawa, K.; Erbay, L. B.

    2007-01-01

    For global survival in this century, we urgently need to launch a completely new global nuclear fission industry. To get worldwide public acceptance of nuclear energy, improvements are essential not only on safety, radio-waste management and economy but also especially nuclear proliferation resistance and safeguards. However, such global fission industry cannot replace the present fossil fuel industry in the next 50 years, unless the doubling-time of nuclear energy is less than 10 years, preferably 5-7 years. Such a doubling-time cannot be established by any kind of classical 'Fission Breeding Power Station' concept. We need a symbiotic system which couples fission power reactors with a system which can convert fertile thorium to fissile U-233, such as a spallation or D/T fusion (if and when it becomes available). For such a purpose, THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System] has been proposed, which is composed of simple thermal fission power stations (FUJI) and fissile producing Accelerator Molten-Salt Breeder (AMSB). Its system functions are very ambitious, delicate and complex, but can be realized in the form of simple hardware applying the multifunctional 'single-phase molten-fluoride' circulation system. This system has no difficulties relating with 'radiation-damage', 'heat-removal' and 'chemical processing' owing to the simple 'idealistic ionic liquid' character. FUJI is size-flexible (economical even in smaller sizes), fuel self-sustaining without any continuous chemical processing and without core-graphite replacement, and AMSB is based on a single-fluid molten-salt target/blanket concept, which solves most engineering difficulties such as radiation-damage, heat-removal etc., except high-current proton accelerator development. Several AMSBs are accommodated in the regional centers (several ten sites in the world) with batch chemical processing plants including radio-waste management. The integrated thorium breeding fuel cycle is

  5. Uranium and thorium mining and milling: material security and risk assessment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Zaitseva, L.

    2005-01-01

    Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or

  6. The autonomous house: a bio-hydrogen based energy self-sufficient approach.

    Science.gov (United States)

    Chen, Shang-Yuan; Chu, Chen-Yeon; Cheng, Ming-Jen; Lin, Chiu-Yue

    2009-04-01

    In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an "autonomous house" emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses' two attributes are: (1) a self-sufficient energy cycle and (2) autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment.

  7. The Autonomous House: A Bio-Hydrogen Based Energy Self-Sufficient Approach

    Science.gov (United States)

    Chen, Shang-Yuan; Chu, Chen-Yeon; Cheng, Ming-jen; Lin, Chiu-Yue

    2009-01-01

    In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an “autonomous house” emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses’ two attributes are: (1) a self-sufficient energy cycle and (2) autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment. PMID:19440531

  8. The Relationship between Organizational Support Perceptions and Self-Sufficiencies of Logistics Sector Employees

    Directory of Open Access Journals (Sweden)

    Sefer Gumus

    2016-01-01

    Full Text Available This study was performed in order to examine the relationship between organizational support perceptions and self-sufficiency levels of logistics sector employees and to determine whether organizational support perceptions and self-sufficiency levels of employees differ according to some specification. The questionnaire form consisting of perceived organizational support scale in accordance with the purpose, general self-sufficiency scale and personal information form, was applied to 124 employees of 3 separate logistics firms operating in Istanbul. The data obtained from the questionnaire were analyzed using SPSS17.0 statistical software package on computer. In the assessment of data, descriptive characteristics of employees were determined by frequency and percentage statistics and the self-sufficiency and perceived organizational support levels by the mean and standard deviation statistics. The t test, Tukey test and one-way Anova tests were utilized in determining employees' self-sufficiency and perceived organizational support levels differentiation according to descriptive characteristics, and correlation analysis was utilized in determining the relationship between self-sufficiency and perceived organizational support levels of employees. In conclusion, it was determined that there was statistical relationship between organizational support and self-sufficiency levels perceived by logistics sector employees. Accordingly, when employees' perceived organizational support levels increase then self-sufficiency levels also increase, and when perceived organizational support levels decrease then self-sufficiency levels also decrease.

  9. Evaluation of thorium based nuclear fuel. Chemical aspects

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.)

  10. Evaluation of thorium based nuclear fuel. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.).

  11. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  12. Reprocessed and combined thorium fuel cycles in a PER system with a micro heterogeneous approaches

    International Nuclear Information System (INIS)

    Monteiro, Fabiana B.A.; Castro, Victor F.; Faria, Rochkhudson B. de; Pereira, Claubia; Fortini, Angela

    2015-01-01

    A micro heterogeneous approaches were used to study the behavior of reprocessed fuel spiked with thorium in a PWR fuel element considering (TRU-Th) cycle. The goal is to achieve a higher burnup using three different configurations to model the fuel element using SCALE 6.0. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a spent PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment. The spent fuel remained in the cooling pool for five years and then reprocessed using the UREX+ technique. Three configurations of micro heterogeneous approaches were analyzed, and the k inf and plutonium evolution during the burnup were evaluated. The preliminary results show that the behavior of advanced fuel based on transuranic elements spiked with thorium, and micro heterogeneous approach are satisfactory in PWRs, and the configuration that use a combination of Th and TRU (configuration 1) seems to be the most promising once has higher values for k inf during the burnup, compared with other configurations. (author)

  13. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  14. Lattice dynamics of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, J [Agra Coll. (India). Dept. of Physics

    1977-03-01

    In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.

  15. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  16. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  17. Denmark. Self-sufficiency and reserves management

    International Nuclear Information System (INIS)

    Erceville, H. d'.

    1997-01-01

    Since 1991, Denmark is a self-sufficient and a net petroleum and natural gas exporting country. Like all neighboring countries of the North sea, this country enjoys many advantages. However, Denmark exports and imports about a third of its hydrocarbons. This policy is a way to control its reserves for the future. (J.S.)

  18. A review of the current status of nuclear data for major and minor isotopes of thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2000-03-01

    In this paper, we present a critical overview of the status of the available nuclear data of isotopes of thorium fuel cycle, viz., 230 Th, 232 Th, 231 Pa, 233 Pa, 232 U, 233 U and 234 U. Induced in the main body of the paper is a critical analysis of information contained in the two basic evaluated nuclear data files JENDL-3.2 and ENDF/B-VI (Rev.5) recently released by the IAEA/NDS as a result of truly international efforts. In some of the cases, the information and data given in EXFOR is examined to get an idea of the status of measured nuclear data of these isotopes. Some comments regarding gaps in experimental data as of 1999 are included in the discussion. Most of these experimental data were those generated two decades ago. In addition, generally, these experimental data are very limited in comparison to the voluminous nuclear data generated for the uranium-plutonium cycle. Experimental data is absent in most of the cases and, in such cases, evaluated cross sections in the two basic evaluated nuclear data files JENDL-3.2 and ENDF/B-VI(Rev.5) are based upon theoretical models and nuclear systematics. Some of these differences between JEF-2.2 and its source ENDF/B-V that were carried over to ENDF/B-VI(Rev.5) are explained. The role and the importance of 231 Pa and 233 Pa in the thorium fuel cycle in advanced concepts such as the Energy Amplifier are mentioned. New calculations of criticality property of 231 Pa and 233 Pa are presented using the neutron reaction data of JENDL-3.2 and ENDF/B-VI(Rev.5). The possible influence of 230 Th is examined with respect to its cross sections and production of 231 Pa in a typical Indian PHWR environment. The quality assurance in design and safety studies in nuclear energy in the next few decades and centuries require new and improved data with high accuracy and energy resolution. As a starter, the nuclear data of the set of isotopes of thorium fuel cycle discussed in this paper is a challenging sample for consideration as a

  19. Thorium as an energy source. Opportunities for Norway

    International Nuclear Information System (INIS)

    2008-01-01

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  20. Thorium as an energy source. Opportunities for Norway

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  1. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  2. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  3. A review on the heterogeneous thorium fuel concept for PWR applications

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H.

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10δ18%, but the SWU utilization factor decreased by 6-δ11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost, the capcity

  4. A review on the heterogeneous thorium fuel concept for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10{delta}18%, but the SWU utilization factor decreased by 6-{delta}11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost

  5. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  6. Thorium in heavy water reactors

    International Nuclear Information System (INIS)

    Andersson, G.

    1984-12-01

    Advanced heavy water reactors can provide energy on a global scale beyond the foreseeable future. Their economic and safety features are promising: 1. The theoretical feasibility of the Self Sufficient Equilibrium Thorium (SSET) concept is confirmed by new calculations. Calculations show that the adjuster rod geometry used in natural uranium CANDU reactors is adequate also for SSET if the absorption in the rods is graded. 2. New fuel bundle designs can permit substantially higher power output from a CANDU reactor. The capital cost for fuel, heavy water and mechanical equipment can thereby be greatly reduced. Progress is possible with the traditional fuel material oxide, but the use of thorium metal gives much larger effects. 3. A promising long range possibility is to use pressure tanks instead of pressure tubes. Heat removal from the core is facilitated. Negative temperature and void coefficients provide inherent safety features. Refuelling under power is no longer needed if control by moderator displacement is used. Reduced quality demand on the fuel permits lower fuel costs. The neutron economy is improved by the absence of pressure and clandria tubes and also by the use of radial and axial blankets. A modular seed blanket design can reduce the Pa losses. The experience from construction of tank designs is good e.g. AAgesta, Attucha. It is now also possible to utilize technology from LWR reactors and the implementation of advanced heavy water reactors would thus be easier than HTR or LMFBR systems. (Author)

  7. Deuterium-tritium fuel self-sufficiency in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.; Vold, E.L.; Gung, C.Y.; Youssef, M.Z.; Shin, K.

    1986-01-01

    Conditions necessary to achieve deuterium-tritium fuel self-sufficiency in fusion reactors are derived through extensive modeling and calculations of the required and achievable tritium breeding ratios as functions of the many reactor parameters and candidate design concepts. It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties. Thus, the goal of attaining fuel self-sufficiency significantly restricts the allowable parameter space and design concepts. For example, the required breeding ratio can be reduced by (A) attaining high tritium fractional burnup, >5%, in the plasma, (B) achieving very high reliability, >99%, and very short times, <1 day, to fix failures in the tritium processing system, and (C) ensuring that nonradioactive decay losses from all subsystems are extremely low, e.g., <0.1% for the plasma exhaust processing system. The uncertainties due to nuclear data and calculational methods are found to be significant, but they are substantially smaller than those due to uncertainties in system definition

  8. Evaluation of thorium based nuclear fuel. Extended summary

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Bultman, J.H.; Konings, R.J.M.; Wichers, V.A.

    1995-04-01

    Application of thorium based nuclear fuels has been evaluated with emphasis on possible reduction of the actinide waste. As a result three ECN-reports are published, discussing in detail: - The reactor physics aspects, by comparing the operation characteristics of the cores of Pressurized Water Reactors and Heavy Water Reactors with different fuel types, including equilibrium thorium/uranium free, once-through uranium fuel and equilibrium uranium/plutonium fuel, - the chemical aspects of thorium based fuel cycles with emphasis on fuel (re)fabrication and fuel reprocessing, - the possible reduction in actinide waste as analysed for Heavy Water Reactors with various types of thorium based fuels in once-through operation and with reprocessing. These results are summarized in this report together with a short discussion on non-proliferation and uranium resource utilization. It has been concluded that a substantial reduction of actinide radiotoxicity of the disposed waste may be achieved by using thorium based fuels, if very efficient partitioning and multiple recycling of uranium and thorium can be realized. This will, however, require large efforts to develop the technology to the necessary industrial scale of operation. (orig.)

  9. Environmental and radiological aspects of thorium processing in India

    International Nuclear Information System (INIS)

    Rudran, Kamala; Paul, A.C.; Pillai, P.M.B.; Saha, S.C.; Vidyasagar, D.; Sawant, Pramilla D.

    1997-01-01

    India has an active programme for using thorium as third stage self- sustaining nuclear fuel. A significant amount of thorium is also used in the gas mantle industry. The presently estimated monazite deposits amounting to five million tonnes are distributed in the beach sands of south western and eastern coasts and some areas in Andhra Pradesh. The sands are processed for recovery of rare earth minerals and thorium. The mineral processing and thorium separation involves hazards to workers from exposure to radiation, radioactive and silica bearing dusts as well as from conventional chemicals used in the processing. Releases of wastes from the plants may necessitate environmental surveillance. The present paper reviews the hazards envisaged, steps taken to mitigate such hazards and achievements in this regard in the thorium industry in India. (author)

  10. Anticipated radiological impacts from the mining and milling of thorium for the nonproliferative fuels

    International Nuclear Information System (INIS)

    Meyer, H.R.; Till, J.E.

    1978-01-01

    Recent emphasis on proliferation-resistant fuel cycles utilizing thorium--uranium-233 fuels has necessitated evaluation of the potential radiological impact of mining and milling thorium ore. Therefore, an analysis has been completed of hypothetical mine-mill complexes using population and meteorological data representative of a thorium resource site in the Lemhi Pass area of Idaho/Montana, United States of America. Source terms for the site include thorium-232 decay chain radionuclides suspended as dusts and radon-220 and daughters initially released as gas. Fifty-year dose commitments to maximally exposed individuals of 2.4 mrem to total body, 9.5 mrem to bone, and 35 mrem to lungs are calculated to result from facility operation. Radium-228, thorium-228, thorium-232 and lead-212 (daughter of radon-220) are found to be the principal contributors to dose. General population doses for a 50-mile radius surrounding the facility are estimated to be 0.05 man-rem to total body, 0.1 man-rem to bone, and 0.7 man-rem to lungs. Generally speaking, the results of this study indicate that the radiological aspects of thorium mining and milling should pose no significant problems with regard to implementation of thorium fuel cycles

  11. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  12. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  13. Measurements of Fission Cross Sections for the Isotopes relevant to the Thorium Fuel Cycle

    CERN Multimedia

    2002-01-01

    The present concern about a sustainable energy supply is characterised by a considerable uncertainty: the green house effect and foreseeable limits in fossil fuel resources on the one hand, the concern about the environmental impact of nuclear fission energy and the long term fusion research on the other hand, have led to the consideration of a variety of advanced strategies for the nuclear fuel cycle and related nuclear energy systems. The present research directories concern such strategies as the extension of the life span of presently operating reactors, the increase of the fuel burn-up, the plutonium recycling, and in particular the incineration of actinides and long-Lived fission products, the accelerator driven systems (ADS), like the "Energy Amplifier" (EA) concept of C. Rubbia, and the possible use of the Thorium fuel cycle. The detailed feasibility study and safety assessment of these strategies requires the accurate knowledge of neutron nuclear reaction data. Both, higher fuel burn-up and especiall...

  14. EVALUATION OF FOOD SELF-SUFFICIENCY OF THE REPUBLIC OF TATARSTAN DISTRICTS

    Directory of Open Access Journals (Sweden)

    R. E. Mansurov

    2017-01-01

    Full Text Available The article presents the author's method for estimation of the level of food self-sufficiency for the main types of food products in the regions of Republic of Tatarstan. The proposed method is based on the use of analytical methods and mathematical comparative analysis to compose a final rating. The proposed method can be used in the system of regional management of agro-industrial complex on the federal and local level. Relevance. The relevance of this work is caused by on the one hand a hardening of foreign policy that may negatively impact on national food security, and on the other hand the state crisis of the domestic agricultural sector. All this requires the development of new approaches to regional agribusiness management. Goal. To develop a methodology is used to assess the level of food self-sufficiency. To rate the level of self-sufficiency in main types of foodstuff in regions of Republic of Tatarstan. Materials and Methods. Statistical data of the results of the AIC of the Republic of Tatarstan for 2016 was used for the study. Analytical methods, including mathematical analysis and comparison were used. Results. Based on the analysis of the present situation for ensuring of food security in Russia it was shown that now it is necessary to develop effective indicators identifying the level of self-sufficiency in basic food regions. It was also revealed that there are no such indicators in system of regional agrarian and industrial complex at present time. As a result of analysis existing approaches the author's method of rating the level of self-sufficiency of regions was offered. This method was adopted on the example of the Republic of Tatarstan. Conclusions. The proposed method of rating estimation of self-sufficiency for basic foodstuffs can be used in the regional agroindustrial complex management system at the federal and local level. It can be used to rank areas in terms of their self-sufficiency for basic foodstuffs. This

  15. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  16. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  17. Vaccine procurement and self-sufficiency in developing countries.

    Science.gov (United States)

    Woodle, D

    2000-06-01

    This paper discusses the movement toward self-sufficiency in vaccine supply in developing countries (and countries in transition to new economic and political systems) and explains special supply concerns about vaccine as a product class. It traces some history of donor support and programmes aimed at self-financing, then continues with a discussion about self-sufficiency in terms of institutional capacity building. A number of deficiencies commonly found in vaccine procurement and supply in low- and middle-income countries are characterized, and institutional strengthening with procurement technical assistance is described. The paper also provides information about a vaccine procurement manual being developed by the United States Agency for International Development (USAID) and the World Health Organization (WHO) for use in this environment. Two brief case studies are included to illustrate the spectrum of existing capabilities and different approaches to technical assistance aimed at developing or improving vaccine procurement capability. In conclusion, the paper discusses the special nature of vaccine and issues surrounding potential integration and decentralization of vaccine supply systems as part of health sector reform.

  18. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    International Nuclear Information System (INIS)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B.

    2013-01-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  19. Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, G.W.R.; Priest, N.D.; Richardson, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

  20. Norms of radiation protection in uranium and thorium production cycles. Normas de protecao radiologica nos ciclos de producao do uranio e torio

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    A deliberation aiming to complement the basic norms of radiation protection for applying to uranium and thorium production cycle is presented. The activitires of excavation, remotion, storage, and physical and chemical processing of the ores, are included. The transport of radioactive materials into the establishments is governed by these norms. (M.C.K.).

  1. Uranium and thorium cycles for sodium fast reactors: Neutronic aspects and associated wastes

    International Nuclear Information System (INIS)

    Brizi, J.

    2010-10-01

    Sodium fast reactors (SFR-Na) with uranium 238/plutonium 239(U/Pu) cycle, its technical feasibility has already proven, allow to overcome the problem of natural uranium resources in achieving the regeneration of the fuel fissile element. In addition, a waste management can be performed to reduce the radiotoxicity of actinides produced by the reactor in transmuting the AM in the core (homogeneous transmutation). Another alternative to minimize waste is to use another couple fertile-fissile: the thorium 232 and the uranium 233 (Th/U). The comparison is performed on neutronic and safety aspects and on waste production, in using an evolutive Monte Carlo. Although one does not disclose real clear advantages concerning the radiotoxicity of wastes for a particular cycle, the Th/U cycle reduces the radiotoxicity during periods when it is the highest. The homogeneous transmutation minimizes significantly for both cycles, radiotoxicity of wastes, with different factors depending on the considered time period. However, it is done to the detriment of an important increase of AM in the core. If we consider the nuclear stop, the inventory of the reactor core becomes a waste. The gain provided by the transmutation, taking into account both the core and accumulated waste radio-toxicities, will be quantified, and shows the transmutation does not provide a significant gain if the burning of main fissile elements is not considered when the nuclear is stopped. (author)

  2. POLITICAL ECONOMIC ANALYSIS OF RICE SELF-SUFFICIENCY IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sri Nuryanti

    2018-01-01

    Full Text Available Rice self-sufficiency is an important programme in Indonesia. The programme has four major targets, i.e. increasing production, stabilizing prices and reserve stocks, and minimizing import. For that purpose, the government gave a mandate to a parastatal, namely National Logistic Agency (Bulog in implementing the rice policies. Some studies found that involvement of such a parastatal could lead to government failure in budget allocation. The study aimed to estimate social cost of rice self-sufficiency programme based on the implementation of rice instrument policies by Bulog. The study used the national annual data of 2002–2014 period. The method used was the political preference function model to estimate economic rent and dead-weight loss using rice price elasticity of demand and supply. The result showed that in terms of percentage of food security budget, the average of economic rent reached IDR 6.37 trillion per annum (18.54%, while the average of dead-weight loss amounted at IDR 0.90 trillion per annum (2.34%. It proved that rice self-sufficiency programme along with the involvement of Bulog was economically inefficient. The government should provide better agricultural infrastructure, review governmental procurement prices, and stop rice import policy to remedy market failure.

  3. Aspects on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-11-01

    Some of the main problems of the Th - PHWR cycles are analyzed. With respect to the burnup limitations introduced by SSET cycle conditions and the burnup sensitivities of this reference cycle, estimates are presented using an integrated neutron-heavy element balance method. A PHWR of 1 GW(e) very similar to the CANDU current design was selected. In the case of 0.5% uranium losses, 11000 MWD/tHE and 13000 MWD/tHE were considered for U-235, respectively, for the Pu initialization of the cycle, the corresponding inventory being 4 t U-235/GW(e) and 5 t Pu (with 72% fissile content) per GW(e) for one year delay time between reactor out to reactor in, 66% capacity factor, 27 MW (fission)/tHE medium specific power. The following aspects are also analyzed: Safety problems associated with low delayed neutron fraction values; High and intermediate burnup fuel elements conceptual problems; Specific problems of thorium reprocessing; Specific problems for radioactive wastes and thorium storage; U-232 content evaluations and related fuel fabrication problems

  4. Control rod studies for alternative fuel cycles in the GA 1160 MW(e) high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, H. J.

    1975-06-15

    The control system, which is investigated in this paper for both the low enriched uranium high enriched uranium/thorium fuel cycles, has been developed to control the General Atomics (GA) thorium fuel cycle 1160 MW(e) reactor. It has been shown in this investigation that its effectiveness in the low enriched and subsequent thorium cycle switch-over reactor is equivalent to the effectiveness in the thorium cycle. The shutdown margin in the low enriched core is even higher compared to the thorium core, mainly due to the presence of Pa-233 in the thorium cycle. As long as the fuel cycle for the thorium cycle is not closed with the recycling of U-233, the low enriched cycle will offer an attractive alternative. It was found that the GA 1160 MW(e) control system has enough built-in control rod capacity to accommodate the low enriched uranium cycle and to perform a later switch-over to a thorium-based fuel cycle.

  5. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    Linardi, M.

    1987-01-01

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233 U and 232 U and 232 Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author) [pt

  6. Recovering of thorium contained in wastes from Thorium Purification Plant

    International Nuclear Information System (INIS)

    Brandao Filho, D.; Hespanhol, E.C.B.; Baba, S.; Miranda, L.E.T.; Araujo, J.A. de.

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author)

  7. Conversion rate for PWR reactors in thorium cycle

    International Nuclear Information System (INIS)

    Angelkorte, G.M.

    1980-01-01

    This work concerns to the determination of the conversion-rate for a PWR reactor with an enrichment of 7.47%, considering a cell, geometrically equal to Angra I, composed by Thorium and U-238 in a 1:1 relation. The study was performed considering neutrons of one and two groups of energy, according to the suggestion from other authors sup(1,2). It was also performed a study about the production and consumption of fissile material. (author)

  8. Pricing and crude oil self-sufficiency. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    How Canada should go about achieving crude oil self-sufficiency and who should develop Canada's petroleum resources are discussed. The degree of urgency and the level of commitment required by government, industry, and consumers are evaluated. What the price should be of Canadian crude oil and who should establish this price are also discussed. The economic aspects of investment, return, and taxation are also included. (DC)

  9. How, When, and Where? Assessing Renewable Energy Self-Sufficiency at the Neighborhood Level.

    Science.gov (United States)

    Grosspietsch, David; Thömmes, Philippe; Girod, Bastien; Hoffmann, Volker H

    2018-02-20

    Self-sufficient decentralized systems challenge the centralized energy paradigm. Although scholars have assessed specific locations and technological aspects, it remains unclear how, when, and where energy self-sufficiency could become competitive. To address this gap, we develop a techno-economic model for energy self-sufficient neighborhoods that integrates solar photovoltaics (PV), conversion, and storage technologies. We assess the cost of 100% self-sufficiency for both electricity and heat, comparing different technical configurations for a stylized neighborhood in Switzerland and juxtaposing these findings with projections on market and technology development. We then broaden the scope and vary the neighborhood's composition (residential share) and geographic position (along different latitudes). Regarding how to design self-sufficient neighborhoods, we find two promising technical configurations. The "PV-battery-hydrogen" configuration is projected to outperform a fossil-fueled and grid-connected reference configuration when energy prices increase by 2.5% annually and cost reductions in hydrogen-related technologies by a factor of 2 are achieved. The "PV-battery" configuration would allow achieving parity with the reference configuration sooner, at 21% cost reduction. Additionally, more cost-efficient deployment is found in neighborhoods where the end-use is small commercial or mixed and in regions where seasonal fluctuations are low and thus allow for reducing storage requirements.

  10. FOOD SELF-SUFFICIENCY OF THE EUROPEAN UNION COUNTRIES – ENERGETIC APPROACH

    Directory of Open Access Journals (Sweden)

    Arkadiusz Sadowski

    2016-06-01

    Full Text Available The paper covers the issues of a basic social need, namely alimentation. The aim of the research is to evaluate the energetic food self-sufficiency and its changes in the European Union countries. The research has been conducted using the author’s methodology basing on the amount of energy produced and consumed in 1990-2009. The analyses proved that within the considered period, the European Union became an importer of net energy comprised in agricultural products. The excess in produced energy was mainly observed by the countries of European lowland. Moreover in most of the countries, a decrease in the analyzed factor was observed when compared with the 1990-1999 period. On the other hand, in relation to the new member states the increase in food energetic self-sufficiency was observed. The conclusion has been drawn that, while the general food self-sufficiency is mainly determined by environmental factors, its dynamics is primarily influenced by the factors connected with agricultural policy.

  11. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    Hartanto, Donny

    2010-02-01

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  12. Conceptual design of a passively safe thorium breeder Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    Highlights: • This work proposes three possible designs for a thorium Pebble Bed Reactor. • A high-conversion PBR (CR > 0.96), passively safe and within practical constraints. • A thorium breeder PBR (220 cm core) in practical regime, but not passively safe. • A passively safe breeder, requiring higher fuel reprocessing and recycling rates. - Abstract: More sustainable nuclear power generation might be achieved by combining the passive safety and high temperature applications of the Pebble Bed Reactor (PBR) design with the resource availability and favourable waste characteristics of the thorium fuel cycle. It has already been known that breeding can be achieved with the thorium fuel cycle inside a Pebble Bed Reactor if reprocessing is performed. This is also demonstrated in this work for a cylindrical core with a central driver zone, with 3 g heavy metal pebbles for enhanced fission, surrounded by a breeder zone containing 30 g thorium pebbles, for enhanced conversion. The main question of the present work is whether it is also possible to combine passive safety and breeding, within a practical operating regime, inside a thorium Pebble Bed Reactor. Therefore, the influence of several fuel design, core design and operational parameters upon the conversion ratio and passive safety is evaluated. A Depressurized Loss of Forced Cooling (DLOFC) is considered the worst safety scenario that can occur within a PBR. So, the response to a DLOFC with and without scram is evaluated for several breeder PBR designs using a coupled DALTON/THERMIX code scheme. With scram it is purely a heat transfer problem (THERMIX) demonstrating the decay heat removal capability of the design. In case control rods cannot be inserted, the temperature feedback of the core should also be able to counterbalance the reactivity insertion by the decaying xenon without fuel temperatures exceeding 1600 °C. Results show that high conversion ratios (CR > 0.96) and passive safety can be combined in

  13. Studies on the preparation of thorium metal sponge from thorium oxalate

    International Nuclear Information System (INIS)

    Vijay, P.L.; Sehra, J.C.; Sundaram, C.V.; Gurumurthy, K.R.; Raghavan, R.V.

    1978-01-01

    The results of investigations carried out on the production of high purity thorium metal sponge, starting with thorium oxalate are presented. The flow sheet includes chlorination of thorium oxalate, purification of raw thorium tetrachloride, magnesium reduction of anhydrous thorium tetrachloride, slag metal separation, vacuum distillation for removal of residual MgCl 2 and excess magnesium, and consolidation of the metal sponge. Studies have been carried out to investigate the optimum chlorination efficiency and chlorine utilization attainable using different chlorinating agents, and to compare the quality of the sponge obtained with single and double distilled chloride. The overall process efficiency under optimum conditions was 81%. The thorium metal button, prepared from the sponge by arc-melting, analysed : O 2 - 847, N 2 - 20, C - 179, Mg - 100, Fe - 49, Ni<50, Al - 11, Cr - 7 (expressed in parts per million parts of thorium). The button could be further purified by electron beam melting to improve its ductility. (author)

  14. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Lainetti, Paulo E.O.

    2013-01-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope 233 U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO 2 because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO 2 has higher corrosion resistance than UO 2 , besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt

  15. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose A.; Lainetti, Paulo E.O., E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope {sup 233}U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO{sub 2} because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO{sub 2} has higher corrosion resistance than UO{sub 2}, besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the

  16. Thorium-applications and handling

    International Nuclear Information System (INIS)

    Reichelt, A.

    1993-01-01

    The most important aspects concerning the natural occurrence and extraction of thorium are presented the topics covered are: natural isotopes, occurence in minerals, thorium-activity-content of naturally occuring materials, the resulting radiation exposure, extraction of thorium from ores, time-dependent activity after separation. The sources of radiation exposure due to Thorium, caused by human activity, can be divided into two categories, namely, those in which thorium is deliberately added to (consumer) products in order to improve their usefullness, and those in which the thorium is present accidentally and unwanted due to the naturally occuring thorium in the material used in the manufacturing processes. Some examples of such products and substances will be presented and results about their specific thorium activity will be discussed. Experimental data from a currently running research programme, will be presented, and will include results concerning the radiation occupational exposure due to phosphate fertilizers, thorium impregnated gas mantles and the use of thoriated TIG-Electrodes in arc welding. (orig.) [de

  17. Analysis on specific nuclear data for reactors physics computations applied to CANDU reactors using thorium-based fuels

    International Nuclear Information System (INIS)

    Visan, Iuliana E.

    2010-01-01

    The purpose of this work is to analyze the evaluated nuclear data from ENDF libraries IAEA69 (69 energy groups library) and IAEA172 (172 energy groups library), respectively, in WIMS library format and to represent neutron fission yield, absorption and fission cross-section dependence for 233 Uranium, 232 Thorium isotopes and some actinides of interest on the incident energy. Our interest for these two isotopes is mainly based on the importance of 233 Uranium as 'fissile nucleus' in Thorium-Uranium fuel cycle. Nowadays, nuclear data evaluation for the actinides generated in Thorium-Uranium fuel cycle is seen as a world-wide priority. The fissile nucleus, 233 Uranium 'plays' the same function in Thorium-Uranium fuel cycle as the 235 Uranium in 'the classic' Uranium-Plutonium fuel cycle. As opposed to natural Uranium which contains 0.7 % of the fissile isotope 235 Uranium, natural Thorium doesn't contain fissile isotopes, being composed entirely by the fertile isotope 232 Thorium. Graphical evolutions of interest parameters versus the incident energy are presented. Our interest was also to observe the behavior of these nuclear data for fast, resonance and thermal energy groups, respectively. The ENDF nuclear data libraries are constantly up-dated, so that we can observe an improvement of the IAEA172 library, which disposes of evaluated nuclear data at higher energies (about 20 MeV), as opposed to IAEA69 library (which includes evaluated nuclear data below 10 MeV). Based on our graphical representation, a good agreement between the considered libraries has been observed, sustaining nuclear data validity. (authors)

  18. Can New Zealand achieve self-sufficiency in its nursing workforce?

    Science.gov (United States)

    North, Nicola

    2011-01-01

    This paper reviews impacts on the nursing workforce of health policy and reforms of the past two decades and suggests reasons for both current difficulties in retaining nurses in the workforce and measures to achieve short-term improvements. Difficulties in retaining nurses in the New Zealand workforce have contributed to nursing shortages, leading to a dependence on overseas recruitment. In a context of global shortages and having to compete in a global nursing labour market, an alternative to dependence on overseas nurses is self-sufficiency. Discursive paper. Analysis of nursing workforce data highlighted threats to self-sufficiency, including age structure, high rates of emigration of New Zealand nurses with reliance on overseas nurses and an annual output of nurses that is insufficient to replace both expected retiring nurses and emigrating nurses. A review of recent policy and other documents indicates that two decades of health reform and lack of a strategic focus on nursing has contributed to shortages. Recent strategic approaches to the nursing workforce have included workforce stocktakes, integrated health workforce development and nursing workforce projections, with a single authority now responsible for planning, education, training and development for all health professions and sectors. Current health and nursing workforce development strategies offer wide-ranging and ambitious approaches. An alternative approach is advocated: based on workforce data analysis, pressing threats to self-sufficiency and measures available are identified to achieve, in the short term, the maximum impact on retaining nurses. A human resources in health approach is recommended that focuses on employment conditions and professional nursing as well as recruitment and retention strategies. Nursing is identified as 'crucial' to meeting demands for health care. A shortage of nurses threatens delivery of health services and supports the case for self-sufficiency in the nursing

  19. Historical and perspectives of thorium compounds production and purification at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Abrao, A.; Freitas, Antonio A.; Carvalho, Fatima M.S. de; Bergamaschi, Vanderlei S.; Cunha, Edgar F.; Ayoub, Jamil M.S.; Mindrisz, Ana C.

    2000-01-01

    The production and purification of some thorium compounds has been performed in the IPEN in the last 15 years. Some raw materials have been employed in this production, obtained from the monazite exploitation in industrial scale that it was performed in Sao paulo during the period 1948 until 1994. More than 160 t of high purity thorium nitrate were produced, purified by the solvent extraction process. The thorium nitrate has been supplied for the Brazilian portable gaslight industry to the production of Welsbach Mantle. Nowadays, a new facility is being designed and built. The main concern is the recovering of the production capacity, lost after some years of operation without suitable maintenance. This activity has an important strategic role, considering the huge Brazilian thorium resources and the renewed interest in thorium fuel cycle. This paper describes a brief historical background of thorium activities in the IPEN as well as their perspectives. (author)

  20. CANDU: Meeting the demand for energy self-sufficiency

    International Nuclear Information System (INIS)

    Lawson, D.S.

    1985-01-01

    The success of the CANDU program can been seen quickly by examining the comparison of typical electricity bills in various provinces of Canada. The provinces of Quebec and Manitoba benefit b extensive hydro electric schemes, many of which were constructed years ago at low capital cost. In Ontario, the economic growth has outstripped these low cost sources of hydro power and hence the province has to rely on thermal sources of electricity generation. The success of the CANDU program is shown by the fact that it can contribute over a third of electricity in Ontario while keeping the total electricity rate comparable with that of those provinces that can rely on low cost hydro sources. Energy self-sufficiency encompasses a spectrum of requirements. One consideration would be the reliable supply and control of fuel during the operating life of a power plant: A greater degree of self-sufficiency would be obtained by having an involvement in the building and engineering of the power plant prior to its operation

  1. Energy self-sufficiency in Northampton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The study is not an engineering analysis but begins the process of exploring the potential for conservation and local renewable-resource development in a specific community, Northampton, Massachusetts, with the social, institutional, and environmental factors in that community taken into account. Section I is an extensive executive summary of the full study, and Section II is a detailed examination of the potential for increased local energy self-sufficiency in Northampton, including current and future demand estimates, the possible role of conservation and renewable resources, and a discussion of the economic and social implications of alternative energy systems. (MOW)

  2. Determination of natural thorium in urines; Dosage du thorium dans les urines

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmaire, L; Jammet, H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A procedure for the quantitative analysis of thorium in urine is described. After precipitation with ammonium hydroxide, dissolution of the precipitate, extraction at pH 4-4.2 with cupferron in chloroformic solution and mineralization, a colorimetric determination of thorium with thorin is performed. It is thus possible to detect about 2 {gamma} of thorium in the sample. (author) [French] Cet article decrit une technique de dosage du thorium dans l'urine. Apres precipitation par l'ammoniaque, remise en solution, extraction a pH 4-4,2 par le cupferron en solution chloroformique et mineralisation, le thorium est dose par colorimetrie avec le thorin. Cette methode permet de deceler environ 2 {gamma} de thorium dans l'echantillon. (auteur)

  3. to view fulltext PDF

    Indian Academy of Sciences (India)

    Operation of CANDU power reactor in thorium self-sufficient fuel cycle. 143. Bharti Arun see Dua ... design and modeling of accelerator driven systems. 269 ..... On non-extensive nature of thermal con- ductivity. 61 ... catalytic vapor decomposition (CVD) method: ... Heavy density liquid metal spallation tar- get studies for ...

  4. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  5. A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor

    International Nuclear Information System (INIS)

    Kim, G.; May, D.; McIntyre, P.; Sattarov, A.

    2001-01-01

    Designs for thorium-cycle power reactors require a proton driver capable of 1 GeV energy and 10 MW total power. For this purpose we have prepared a preliminary design for the magnetic structure for a stack of 5 super-conducting isochronous cyclotrons, each delivering 2 MW beam power. By achieving the required power with multiple independent apertures rather than pushing beyond currently achieved limits, we hope to arrive at a design that is cost-minimum and reliable. Each sector magnet consists of a flux-coupled stack of cold-iron inserts supported within a single warm-iron, in a fashion inspired by the new Riken heavy-ion cyclotron. We have developed a preliminary field design in which in-plane fields are cancelled in all 5 apertures and the field-map is appropriate for the focusing optics of the sector cyclotron

  6. Entrepreneurship by any other name: self-sufficiency versus innovation.

    Science.gov (United States)

    Parker Harris, Sarah; Caldwell, Kate; Renko, Maija

    2014-01-01

    Entrepreneurship has been promoted as an innovative strategy to address the employment of people with disabilities. Research has predominantly focused on the self-sufficiency aspect without fully integrating entrepreneurship literature in the areas of theory, systems change, and demonstration projects. Subsequently there are gaps in services, policies, and research in this field that, in turn, have limited our understanding of the support needs and barriers or facilitators of entrepreneurs with disabilities. A thorough analysis of the literature in these areas led to the development of two core concepts that need to be addressed in integrating entrepreneurship into disability employment research and policy: clarity in operational definitions and better disability statistics and outcome measures. This article interrogates existing research and policy efforts in this regard to argue for a necessary shift in the field from focusing on entrepreneurship as self-sufficiency to understanding entrepreneurship as innovation.

  7. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as

  8. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  9. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  10. Assessment of thorium and thoron decay products in air - thorium plant

    International Nuclear Information System (INIS)

    Dhandayutham, R.; Gohel, C.O.; Shetty, P.N.; Savant, P.B.; Rao, D.V.V.

    1977-01-01

    For the evaluation of radiation dose to the lungs in a thorium plant, it is necessary to estimate the concentration of thorium, thoron and its daughter products in air. Methods employed in estimating thorium and its decay products and 'working level' are presented. (M.G.B.)

  11. Determination of sulfate in thorium salts using gravimetric technique with previous thorium separation

    International Nuclear Information System (INIS)

    Silva, C.M. da; Pires, M.A.F.

    1994-01-01

    Available as short communication only. A simple analytical method to analyze sulfates in thorium salt, is presented. The method is based on the thorium separation as hydroxide. The gravimetric technique is used to analyze the sulfate in the filtered as barium sulfate. Using this method, the sulfate separation from thorium has been reach 99,9% yield, and 0,1% precision. This method is applied to thorium salts specifically thorium sulfate, carbonate and nitrate. (author). 5 refs, 2 tabs

  12. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  13. Transformation of thorium sulfate in thorium nitrate by ion exchange resin

    International Nuclear Information System (INIS)

    Pereira, W.

    1991-01-01

    A procedure for transforming thorium sulfate into thorium nitrate by means of a strong cationic ion exchanger is presented. The thorium sulfate solution (approximately 15 g/L Th (SO 4 ) 2 ) is percolate through the resin and the column is washed first with water, with a 0,2 M N H 4 OH solution and then with a 0.2 M N H 4 NO 3 solution in order to eliminate sulfate ion. Thorium is eluted with a 2 M solution of (N H 4 ) 2 CO 3 . This eluate is treated with a solution of nitric acid in order to obtain the complete transformation into Th (NO 3 ) 4 . The proposed procedure leads to good quality thorium nitrate with high uranium decontamination. (author)

  14. Basic analysis and a comparison of the characteristics GCFRs and the LMFBR with the thorium cycle in one-group diffusion theory

    International Nuclear Information System (INIS)

    Sabundjian, G.; Ishiguro, Y.

    1991-09-01

    A preliminary study of neutronics of thorium cycle fast breeder reactor has been done using simplified reactor models and analyses methods with the aim of finding a type of breeder reactor suitable for an efficient utilization of thorium that is abundant in Brazil. Basic methods of cross section processing and reactor calculation are studied and applied to analyse breeding characteristics of GCFRs and LMFBRs. The GCFR is fueled with oxide pins and cooled with helium. The LMFBR is fueled with thin metallic pins to achieve high power densities. Neutronics characteristics are determined as functions of the average power density and the fuel volume fraction. Results show that a high power density and a high fuel volume fraction are desirable to achieve short doubling times, that the GCFR is inferior to the LMFBR in regard to the doubling time and that the LMFBR can achieve reactor doubling times ten years with an average power density of ∼ 600MW/m 3 and fuel volume fraction of 40%. (author)

  15. Radkowsky Thorium Fuel Project

    International Nuclear Information System (INIS)

    Todosow, Michael

    2006-01-01

    In the early/mid 1990's Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a uranium-based central 'driver' zone, surrounded by a 'blanket' zone containing uranium and thorium. Therefore, the SBU could be retrofit without significant modifications into existing/next generation PWRs. The objective was to improve the proliferation and waste characteristics of the current once-through fuel cycle. The objective of a series of projects funded by the Initiatives for Proliferation Prevention program of the U.S. Department of Energy (DOE-IPP) - BNL-T2-0074,a,b-RU 'Radkowsky Thorium Fuel (RTF) Concept' - was to explore the characteristics and potential of this concept. The work was performed under several BNL CRADAs (BNL-C-96-02 and BNL-C-98-15) with the Radkowsky Thorium Power Corp./Thorium Power Inc. and utilized the technical and experimental capabilities in the Former Soviet Union (FSU) to explore the potential of this concept for implementation in Russian pressurized water reactors (VVERs), and where possible, also generate data that could be used for design and licensing of the concept for Western PWRs. The Project in Russia was managed by the Russian Research Center-?'Kurchatov Institute' (RRC-KI), and included several institutes (e.g., PJSC 'Electrostal', NPO 'LUCH' (Podolsk), RIINM (Bochvar Institute), GAN RF (Gosatomnadzor), Kalininskaja NPP (VVER-1000)), and consisted of the following phases: Phase-1 ($550K/$275K to Russia): The objective was to perform an initial review of all aspects of the concept (design, performance, safety, implementation issues, cost, etc.) to confirm feasibility/viability and identify any 'show-stoppers'; Phase-2 ($600K/$300K to Russia

  16. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1989-01-01

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  17. Energy Self-Sufficient Island

    International Nuclear Information System (INIS)

    Bratic, S.; Krajacic, G.; Duic, N.; Cotar, A.; Jardas, D.

    2011-01-01

    In order to analyze energy self-sufficient island, example of a smaller island, connected to the power system of a bigger island with an undersea cable, was taken. Mounting substation 10/0,4 is situated on the island and for the moment it provides enough electricity using the medium voltage line. It is assumed that the island is situated on the north part of the Adriatic Sea. The most important problem that occurs on the island is the population drop that occurs for a significant number of years, therefore, life standard needs to be improved, and economic development needs to be encouraged immediately. Local authorities to stimulate sustainable development on the island through different projects, to breath in a new life to the island, open new jobs and attract new people to come live there. Because of the planned development and increase of the population, energy projects, planned as a support to sustainable development, and later achievement of the energy self-sufficiency, is described in this paper. Therefore, Rewisland methodology appliance is described taking into the account three possible scenarios of energy development. Each scenario is calculated until year 2030. Also, what is taken into the account is 100% usage of renewable sources of energy in 2030. Scenario PTV, PP, EE - This scenario includes installation of solar photovoltaic modules and solar thermal collectors on the buildings roofs, as well as well as implementation of energy efficiency on the island (replacement of the street light bulbs with LED lightning, replacement of the old windows and doors on the houses, as well as the installation of the thermal insulation). Scenario PV island - This scenario, similarly to the previous one, includes installation of solar photovoltaic modules and solar thermal collectors an the residential buildings, as well as the 2 MW photovoltaic power plant and ''Green Hotel'', a building that satisfies all of its energy needs completely from renewable energy sources

  18. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste

  19. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  20. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  1. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  2. Study of characteristics of Th-U cycle in CANDU SCWR

    International Nuclear Information System (INIS)

    Shi, J.; Shi, G.

    2010-01-01

    The flexibility of CANDU technology allows the use of different fuel cycles including various uranium-driven thorium cycles. Direct self-recycle method and heterogeneous cycle modes with supercritical water as coolant were studied for (U,Th)O 2 CANFLEX fuel bundle. Lattice pitch and enrichment of driver fuel were treated as independent variables, taking account of coolant void reactivity, fuel burnup, and linear power uneven factor. In the end, appropriate cycle mode and parameters of bundle were chosen for (U,Th)O 2 cycle in CANDU SCWR. Calculations were processed by the two-dimensional multigroup neutron transport code WIMS-AECL release 3.1.2.1. (author)

  3. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  4. Radiological implications of plutonium recycle and the use of thorium fuels in power reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, H. F.

    1976-01-15

    As economically attractive sources of natural uranium are gradually depleted attention will turn to recycling plutonium or to the use of thorium fuels. The radiological implications of these fuel cycles in terms of fuel handling and radioactive waste disposal are investigated in relation to a conventional /sup 235/U enriched oxide fuel. It is suggested that a comparative study of this nature may be an important aspect of the overall optimization of future fuel cycle strategies. It is shown that the use of thorium based fuels has distinct advantages in terms of neutron dose rates from irradiated fuels and long term proportional to decay heating commitment compared with conventional uranium/plutonium fuels. However, this introduces a ..gamma.. dose rate problem in the fabrication and handling of unirradiated /sup 233/U fuels. For both plutonium and thorium fuels these radiological problems increase during storage of the fuel prior to reactor irradiation. The novel health physics problems which arise in the handling and processing of thorium fuels are reviewed in an appendix.

  5. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  6. The indispensable role of thorium for creating a sustainable society

    International Nuclear Information System (INIS)

    Kamei, T.

    2012-01-01

    Several approaches are required in parallel for constructing a sustainable society. One of them is to fight against global warming. The other one is to make this world nuclear weapon free. Nuclear power has been used for peaceful purpose because nuclear power produces electricity without emitting CO 2 . Nearly 15% of world electricity is produced by nuclear power. Through nuclear power plant has a possibility of severe accident such as Fukushima Daiichi, its advantage is still valuable for the world. President Obama's speech in Prague in 2009 brought a impact to the world to move toward the world without nuclear weapon. The remaining subject is how to treat dismantled fissionable materials. Existing nuclear power plants utilize uranium because only uranium contains natural occurring fissionable material, uranium-235. The spent uranium fuel contains fissionable plutonium-239. Thus, uranium fuel cycle always accompanies possibility of nuclear proliferation. Thorium plays an important role for both solving global warming and nuclear weapon. Fertile thorium can be used as nuclear fuel by support of fissionable plutonium-239 from spent uranium fuel or weapon head. Preliminary calculation indicates that the USA's and Russia's dismantle nuclear weapon enable to start more than 10 GWe of thorium nuclear power plants. In addition, plutonium-239 obtained from uranium fuel is available of 392 GWe of thorium nuclear power. Uranium-233 coming from thorium is also a fissionable but it is hard to be used for weapon because of its accompanied gamma-ray. Thorium itself is now obtained as by-product of rare-earth mining, which is used for high-tech products including photovoltaic cell, wind-mill, and hybrid-vehicle. However, thorium is not taken care adequately and becomes environmental hazard. Both to take care of environment, to support implementation of high-tech product and to make the world without nuclear weapon, a comprehensive role of thorium will be presented

  7. Different periods of uranium and thorium occurrence in Madagascar (1960); Cycles uraniferes et thoriferes a Madagascar (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In Madagascar, the first typical occurrences of thorium and uranium are about 500 million years old. Previously thorium and uranium were rather concentrated in the granitic and charnockitic zones, chiefly in minerals such as monazite, apatite and zircon. At the end of the Precambrian period, metasomatic granites occur especially in the anticlinal series (Andriba orthite granite). The granitization is followed by the formation of the main pegmatitic areas in the Island with Th-U niobotantalates, uraninite and beryl. The pegmatites are well developed in the synclinal series with a poor migmatization or no migmatization at all. In the same time a large uranium and thorium province with uranothorianite deposits appears within the calcomagnesian series of the Southern part of Madagascar. Later, large amounts of monazite were carried down to the detritic Karroo sediments during tile erosion of the metamorphic precambrian rocks. Monazite has been concentrated again by frequent marine incursions, till the present time. In the medium Karroo, near Folakara, uranium minerals occur in direct relation with carbonaceous material. Finally we must note the uranium occurrence in the pleistocene carbonaceous shales of Antsirabe basin, in contact with crystalline rocks. (author) [French] A Madagascar, le premier cycle uranifere et thorifere bien caracterise se situe aux alentours de 500 millions d'annees. Auparavant, le thorium et l'uranium sont concentres de preference dans les zones granitiques et charnockites sous forme de monazite, apatite ou zircon. Vers la fin du Precambrien, se produisent des granitisations metasomatiques, surtout dans les zones anticlinales (type Andriba a orthite). La fin de cette granitisation s'accompagne de la formation des principaux champs pegmatitiques de l'Ile a niobotantalates uraniferes, uraninite et beryl, qui se developpent de preference dans les series synclinales peu ou pas migmatisees. A cette meme epoque s'individualise au sein des series

  8. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  10. The feasibility and challenges of energy self-sufficient wastewater treatment plants

    International Nuclear Information System (INIS)

    Gu, Yifan; Li, Yue; Li, Xuyao; Luo, Pengzhou; Wang, Hongtao; Robinson, Zoe P.; Wang, Xin; Wu, Jiang; Li, Fengting

    2017-01-01

    Highlights: •Various influencing factors of energy use in WWTPs are characterized. •Benchmark energy consumption in WWTPs in different countries are highlighted. •Energy recovery or saving technologies in WWTPs are summarized. •Recent advances in optimization of energy recovery technologies are highlighted. •Feasibility and challenges of energy self-sufficient WWTPs are explored. -- Abstract: Energy efficiency optimization is crucial for wastewater treatment plants (WWTPs) because of increasing energy costs and concerns about global climate change. Energy efficiency optimization can be achieved through a combination of energy recovery from the wastewater treatment process and energy saving-related technologies. Through these two approaches energy self-sufficiency of WWTPs is achievable, and research is underway to reduce operation costs and energy consumption and to achieve carbon neutrality. In this paper, we analyze energy consumption and recovery in WWTPs and characterize the factors that influence energy use in WWTPs, including treatment techniques, treatment capacities, and regional differences. Recent advances in the optimization of energy recovery technologies and theoretical analysis models for the analysis of different technological solutions are presented. Despite some challenges in implementation, such as technological barriers and high investment costs, particularly in developing countries, this paper highlights the potential for more energy self-sufficient WWTPs to be established in the future.

  11. Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households

    International Nuclear Information System (INIS)

    Oliveira e Silva de, Guilherme; Hendrick, Patrick

    2016-01-01

    Highlights: • Grid parity is reached for PV installations up to nearly 40% self-sufficiency. • Reaching beyond 40% self-sufficiency requires storage and support policies. • Peak consumption remains constant but load variability rises with self-sufficiency. • Changes in power plants portfolio and wholesale electricity prices are expected. • Limiting feed-in power is a promising solution for reducing load variability. - Abstract: With distributed generation of electricity growing in importance (especially with photovoltaics) and buildings being one of the main consumers of energy in modern societies, distributed storage of energy in buildings is expected to become increasingly present. This paper analyses the use of residential lead–acid energy storage coupled with photovoltaics and its possible interaction with the grid for different limits of feed-in power without any support policies. In the literature, these subjects are often treated independently and for very specific, non-optimised cases, thus motivating further research. Results show that reaching self-sufficiency values up to 40% is possible, close to grid parity values, and only with photovoltaics. Beyond 40%, energy storage must be used, strongly raising the cost of the electricity consumed and therefore the need for support policies for widespread adoption. Also, peak power consumption from the grid remains constant and load variability rises, suggesting that an increase in self-sufficiency would be accompanied by lower utilisation factors of power plants and, consequently, higher wholesale electricity prices during no sunshine hours. Limiting feed-in power attenuates the increased load variability and only slightly affects the economic viability of such installations. These results present a novel optimisation tool for developers and should be considered in future studies of distributed photovoltaics and energy storage as well as in energy policy.

  12. A thorium breeder reactor concept for optimal energy extraction from uranium and thorium

    International Nuclear Information System (INIS)

    Jagannnathan, V.; Lawande, S.V.

    1999-01-01

    An attractive thorium breeder reactor concept has been evolved from simple physics based guidelines for induction of thorium in a major way in an otherwise enriched uranium reactor. D 2 O moderator helps to maximise reactivity for a given enrichment. A relatively higher flux level compared to LWRs offers the advantage of higher rate of 233 U production in thoria rods. Thus fresh thoria clusters consider no feed enrichment. In an equilibrium core, a full batch of pure thoria clusters are loaded during each fuel cycle. They undergo irradiation for about one year duration. By this time they accumulate nearly 70% of the asymptotic stable concentration of 233 U, if they face a flux level of the order of 10 14 n/cm 2 /sec. In the next fuel cycle, these thoria rods in ring cluster form are juxtaposed with the fresh enriched fuel rods, also in ring cluster form. Such integrated fuel assemblies are then irradiated for four or five fuel cycles, at the end of which U as well as Th rods attain a reasonably high burnup of about 30-32 MWD/kg. The core characteristics are quite attractive. The core excess reactivity remains low due to large thoria inventory which makes the net burnup reactivity load to be below 1%. The core is capable of being operated in an annual batch mode of operation like a LWR. The control requirement during power operation is negligible. Xenon over-ride requirement is low and can be managed by partial withdrawal of a few thoria clusters. Void reactivity is nearly zero or negative by the optimum design of the fuel cluster. Reactivity changes due to temperatures of fuel, coolant and moderator are also small. (author)

  13. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    Moraes, A.

    1977-01-01

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  14. Complete self-sufficiency planning: designing and building disaster-ready hospitals.

    Science.gov (United States)

    Brands, Chad K; Hernandez, Raquel G; Stenberg, Arnold; Carnes, Gary; Ellen, Jonathan; Epstein, Michael; Strouse, Timothy

    2013-01-01

    The need for healthcare systems and academic medical centers to be optimally prepared in the event of a disaster is well documented. Events such as Hurricane Katrina demonstrate a major gap in disaster preparedness for at-risk medical institutions. To address this gap, we outline the components of complete self-sufficiency planning in designing and building hospitals that will function at full operational capacity in the event of a disaster. We review the processes used and outcomes achieved in building a new critical access, freestanding children's hospital in Florida. Given that hurricanes are the most frequently occurring natural disaster in Florida, the executive leadership of our hospital determined that we should be prepared for worst-case scenarios in the design and construction of a new hospital. A comprehensive vulnerability assessment was performed. A building planning process that engaged all of the stakeholders was used during the planning and design phases. Subsequent executive-level review and discussions determined that a disaster would require the services of a fully functional hospital. Lessons learned from our own institution's previous experiences and those of medical centers involved in the Hurricane Katrina disaster were informative and incorporated into an innovative set of hospital design elements used for construction of a new hospital with full operational capacity in a disaster. A freestanding children's hospital was constructed using a new framework for disaster planning and preparedness that we have termed complete self-sufficiency planning. We propose the use of complete self-sufficiency planning as a best practice for disaster preparedness in the design and construction of new hospital facilities.

  15. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  16. A solar house self-sufficient of energy. Experiences on the way to energy autarky

    International Nuclear Information System (INIS)

    Voss, K.; Dohlen, K. v.; Lehmberg, H.; Stahl, W.; Wittwer, C.; Goetzberger, A.

    1994-01-01

    The solar house Freiburg which is self-sufficient of energy was completed in October 1992. After a long and complex planning phase now measuring and monitoring tasks as well as the realization fo improvement measures are to the fore. This article presents exemplary results of the first year of operation and compare them with the expectations. Self-sufficient operation of the building could be attained between April and October 1993. Here among others hydrogen was successfully produced by photovoltaic supplied electrolysis and was to a large degree used for thermal applications (cooking, heating). The fact that the supply of energy was not self-sufficient all the year round was due to the failure of the fuel cell used to produce electric power again with hydrogen. (orig./BWI) [de

  17. Review of thorium-U233 cycle thermal reactor benchmark studies (AWBA Development Program)

    International Nuclear Information System (INIS)

    Ullo, J.J.; Hardy, J. Jr.; Steen, N.M.

    1980-03-01

    A survey is made of existing integral experiments for U233 systems and thorium-uranium based fuel systems. The aim is to understand to what extent they give a consistent test of ENDF/B-IV nuclear data. A principal result is that ENDF/B-IV leads to an underprediction of neutron leakage. Results from testing alternate thorium data sets are presented. For one evaluation due to Leonard, the results depict a possible growing discrepancy between measured integral parameters such as rho 02 and I 232 and the differential data, which underpredicts these parameters. Sensitivities to other nuclear data components, notably the fission neutron spectrum, were determined. A new harder U233 spectrum significantly reduces a bias trend in K/sub eff/ vs leakage

  18. Selective alpha autoradiography for monitoring thorium distribution in UO2-ThO2 fuel pellets

    International Nuclear Information System (INIS)

    Shriwastwa, B.B.; Raghunath, B.; Ghosh, J.K.

    1992-01-01

    Although natural uranium and thorium decay with similar alpha energies (4.20 and 3.98 MeV), their daughter products have different alpha characteristics. This has been exploited for selective alpha autoradiography for thoria in urania-thoria mixed nuclear fuel pellets. Difficulties in getting sufficient track density in alpha sensitive films due to the very low specific activity of natural uranium and thorium material were overcome by using a special film with annealing and pre-etching treatment. (orig./HP) [de

  19. Staple Food Self-Sufficiency of Farmers Household Level in The Great Solo

    Science.gov (United States)

    Darsono

    2017-04-01

    Analysis of food security level of household is a novelty of measurement standards which usually includes regional and national levels. With household approach is expected to provide the basis of sharp food policy formulation. The purpose of this study are to identify the condition of self-sufficiency in staple foods, and to find the main factors affecting the dynamics of self-sufficiency in staple foods on farm household level in Great Solo. Using primary data from 50 farmers in the sample and secondary data in Great Solo (Surakarta city, Boyolali, Sukoharjo, Karanganyar, Wonogiri, Sragen and Klaten). Compiled panel data were analyzed with linear probability regression models to produce a good model. The results showed that farm households in Great Solo has a surplus of staple food (rice) with an average consumption rate of 96.8 kg/capita/year. This number is lower than the national rate of 136.7 kg/capita/year. The main factors affecting the level of food self-sufficiency in the farmer household level are: rice production, rice consumption, land tenure, and number of family members. Key recommendations from this study are; improvement scale of the land cultivation for rice farming and non-rice diversification consumption.

  20. New twists and turns for actinide chemistry. Organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge.

  1. Assessment of the thorium and uranium fuel cycle in the fast breeder and the high temperature reactor

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    1977-01-01

    This report assesses the fissile fuel economy of the uranium and thorium cycle in the advanced reactors currently under development, the fast breeder reactor (FBR) and the high temperature reactor (HTR). It is shown by means of detailed burnup calculations that replacing UO 2 with ThO 2 or Th-metal as the radial blanket breeding material will not have any significant imapct on the breeding and burnup properties of the FBR. A global, analytical investigation is performed to study the fissile fuel economy of the many fissile fuel cycles possible in the HTR. Here it is demonstrated that the optimum conversion ratio of CR 3 O 8 ) demands are evaluated for a country such as the FRG under the assumptions of different future reactor strategy scenarios. Here it is demonstrated that the employement of both HTRs and FBRs can lead to a practically resource independent energy supply system within the next 40 to 60 years. However only through the large scale employement of the fast breeder can the future nuclear resource requirements be assured. (orig.) [de

  2. Ideal energy self-sufficient bioclimatic house

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1990-04-01

    This paper points out some of the interesting architectural features of a conceptual house being designed to be self-sufficient relative to the use of conventional energy sources. Brief notes are given on the following special design characteristics: the house's orientation and form - essentially a V - shaped two storey design with an orientation such as to maximize the surface area exposed to winter insolation; its special low emissivity glazing equipped with nightfall insulating screens; the adoption of maximized insulation, in which case cost benefits were assessed based on amortization over the entire life span of the house; hybrid space heating and ventilation systems involving the integration of pumps and ventilators for air circulation, and the use of a varied mix of active and passive solar heating and cooling systems.

  3. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  4. Proposed plan for critical experiments supporting thorium fuel cycle development

    International Nuclear Information System (INIS)

    Gore, B.F.

    1978-09-01

    A preliminary plan is proposed for critical experiments to provide data needed for the recycle of thorium based nuclear fuels. The sequence of experimentation starts with well moderated solutions followed by highly concentrated low moderated solutions. It then progresses through lattices moderated by water, by water plus soluble poisons, and by fissile solutions, to solutions poisoned by raschig rings and soluble poisons. Final experiments would treat lattices moderated by poisoned fissile solution, and arrays of stored fissile units

  5. 76 FR 39115 - Notice of Proposed Information Collection: Transformation Initiative Family Self-Sufficiency...

    Science.gov (United States)

    2011-07-05

    ... Information Collection: Transformation Initiative Family Self-Sufficiency Demonstration Small Grants AGENCY... information: Title of Proposal: Notice of Funding Availability for the Transformation Initiative Family Self..., think tanks, consortia, Institutions of higher education accredited by a national or regional...

  6. Energy self-sufficient sensory ball screw drive; Energieautarker sensorischer Kugelgewindetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Oliver

    2012-07-01

    Nowadays the availability of machine tools plays a decisive role in competition to increase in productivity. From state of the art it arises, that ball screw drives are the most abusive component in feed drives because of abrasive wear. Furthermore condition monitoring enables avoiding unplanned machine failure and increasing the availability of the deployed production facility. Thereby the application of additional sensors allows the direct acquisition of wear correlative measurements. To reduce the required effort for integration and increase the robustness, reliability and clarity in industrial environment energy self-sufficient sensor systems can be applied. In this thesis the development and investigation of an energy self-sufficient sensory ball screw drive with direct measurement of wear correlative pretension for condition monitoring application is described. The prototype measures the pretension with force sensors based on strain gauges. The sensor system includes microcontroller-based electronics for signal processing as well as wireless data transmission with ZigBee-standard. A hybrid system assures the energy supply of the sensor system. On the one hand a stepper motor generator produces electrical energy from the motion energy of the ball screw drive. On the other hand an energy buffer based on super caps is reloaded in stationary position by wireless energy transmission. For verification a prototype system is build up. In measurements the sensory and energetic characteristics of the energy self-sufficient sensor systems are analyzed. Moreover, the functionality of the ball screw drive as well as the signal characteristics of the force sensors are examined for different pretensions. In addition, pretension losses due to wear are established in realized endurance trials, which means that timely maintenance can be planned.

  7. Thorium: Issues and prospects in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia. walareqi@yahoo.com (Malaysia)

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  8. Thorium: Issues and prospects in Malaysia

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-01-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment

  9. Thorium: Issues and prospects in Malaysia

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  10. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    International Nuclear Information System (INIS)

    Josephs, J.M.

    1980-01-01

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison is made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10 9 over a 30 year period assuming a 200 gigawatt supply of electrical power

  11. Thorium as a substitute for uranium

    International Nuclear Information System (INIS)

    Hunt, H.

    1977-01-01

    Reference is made to the paper by E. Teller in Atom, February 1977, who suggested that it appears, at least theoretically, that the use of a thorium cycle in thermal reactors would give enough nuclear fuel for a long time to come, and so avoid the need for using Pu in fast reactors. This appears at first sight to be an attractive proposition, but loses some of this attraction on close examination. Reasons for this are discussed. (U.K.)

  12. Design study of a PWR of 1.300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, G.J.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. The PWR of 1300 MWe from KWU (Angra-2 type) is taken as the reference reactor for the study. Reactor core design calculations for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM 2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. (Author) [pt

  13. Actinide production in different HTR-fuel cycle concepts

    International Nuclear Information System (INIS)

    Filges, D.; Hecker, R.; Mirza, N.; Rueckert, M.

    1978-01-01

    At the 'Institut fuer Reaktorentwicklung der Kernforschungsanlage Juelich' the production of α-activities in the following HTR-OTTO cycle concepts were studied: 1. standard HTR cycle (U-Th); 2. low enriched HTR cycle (U-Pu); 3. near breeder HTR cycle (U-Th); 4. combined system (conventional and near breeder HTR). The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The calculations were performed by the short depletion code KASCO and the well-known ORIGEN program

  14. Systematic study on Thorium fuel

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kimura, Itsuro; Iwata, Shiro; Furuya, Hirotaka; Suzuki, Susumu.

    1988-01-01

    Introduced is the activities of the Joint Research Project Team on Thorium Fuel organized by mainly university researchers in Japan and supported by the Ministry of Education, Science and Culture for seven years since 1980. Four major groups were organized; (1) nuclear data, reactor physics and design, (2) nuclear fuel, (3) down stream and (4) biological effects of thorium. The first group covered measurements and analysis on nuclear data of thorium related nuclides, experiment and analysis on nuclear characteristics of thorium containing cores, basic engineering on a thorium molten salt reactor, and designs of several types of reactors. Fabrication and irradiation tests of thorium oxide fuel, and basic studies on new type thorium fuels (e.g. carbide and nitride) were studied by the second group. The third group covered the use of solutions in reprocessing of spent fuel, behavior of fission products, immobilization of high level radioactive waste, and continuous reprocessing for a molten salt reactor. The fourth group performed the trace study for patients who had been intravascularly injected with thorotrast for diagnosis of war injuries during the Second World War. (author)

  15. The effect of formal training of cardiopulmonary resuscitation (CPR skills on medical students perceived self-sufficiency

    Directory of Open Access Journals (Sweden)

    Shaghaghi A

    2004-07-01

    Full Text Available Background: Experience of cardiopulmonary resuscitation (CPR in real clinical setting is not easily possible for all medical students. Purpose: To assess medical student perceived self-sufficiency on three procedural skill on internship courses after they had taken a training course in clerkship period. Methods: Forty three medical students who had attended a workshop on CPR, tracheal intubations and venopuncture answered the questionnaires on their perceived self-sufficiency in performing these procedures after serving a few months as interns. Results: The mean score for perceived self-sufficiency (PSS was 75.84 (±18.63.Thre were a high correlation between the score given for the applicability of training in real life situation and the stress reduction scores on first time performing the procedure. Conclusion: The high degree of correlation between PSS scores and applicability scores, may warrant the consideration of new methods in procedural skills. Keywords: SKILL TRAINING, CPR TRAINING, PERCEIVED SELF-SUFFICIENCY

  16. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  17. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    International Nuclear Information System (INIS)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-01-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  18. Post-Disaster Food and Nutrition from Urban Agriculture: A Self-Sufficiency Analysis of Nerima Ward, Tokyo.

    Science.gov (United States)

    Sioen, Giles Bruno; Sekiyama, Makiko; Terada, Toru; Yokohari, Makoto

    2017-07-10

    Background : Post-earthquake studies from around the world have reported that survivors relying on emergency food for prolonged periods of time experienced several dietary related health problems. The present study aimed to quantify the potential nutrient production of urban agricultural vegetables and the resulting nutritional self-sufficiency throughout the year for mitigating post-disaster situations. Methods : We estimated the vegetable production of urban agriculture throughout the year. Two methods were developed to capture the production from professional and hobby farms: Method I utilized secondary governmental data on agricultural production from professional farms, and Method II was based on a supplementary spatial analysis to estimate the production from hobby farms. Next, the weight of produced vegetables [t] was converted into nutrients [kg]. Furthermore, the self-sufficiency by nutrient and time of year was estimated by incorporating the reference consumption of vegetables [kg], recommended dietary allowance of nutrients per capita [mg], and population statistics. The research was conducted in Nerima, the second most populous ward of Tokyo's 23 special wards. Self-sufficiency rates were calculated with the registered residents. Results : The estimated total vegetable production of 5660 tons was equivalent to a weight-based self-sufficiency rate of 6.18%. The average nutritional self-sufficiencies of Methods I and II were 2.48% and 0.38%, respectively, resulting in an aggregated average of 2.86%. Fluctuations throughout the year were observed according to the harvest seasons of the available crops. Vitamin K (6.15%) had the highest self-sufficiency of selected nutrients, while calcium had the lowest (0.96%). Conclusions : This study suggests that depending on the time of year, urban agriculture has the potential to contribute nutrients to diets during post-disaster situations as disaster preparedness food. Emergency responses should be targeted

  19. Post-Disaster Food and Nutrition from Urban Agriculture: A Self-Sufficiency Analysis of Nerima Ward, Tokyo

    Directory of Open Access Journals (Sweden)

    Giles Bruno Sioen

    2017-07-01

    Full Text Available Background: Post-earthquake studies from around the world have reported that survivors relying on emergency food for prolonged periods of time experienced several dietary related health problems. The present study aimed to quantify the potential nutrient production of urban agricultural vegetables and the resulting nutritional self-sufficiency throughout the year for mitigating post-disaster situations. Methods: We estimated the vegetable production of urban agriculture throughout the year. Two methods were developed to capture the production from professional and hobby farms: Method I utilized secondary governmental data on agricultural production from professional farms, and Method II was based on a supplementary spatial analysis to estimate the production from hobby farms. Next, the weight of produced vegetables [t] was converted into nutrients [kg]. Furthermore, the self-sufficiency by nutrient and time of year was estimated by incorporating the reference consumption of vegetables [kg], recommended dietary allowance of nutrients per capita [mg], and population statistics. The research was conducted in Nerima, the second most populous ward of Tokyo’s 23 special wards. Self-sufficiency rates were calculated with the registered residents. Results: The estimated total vegetable production of 5660 tons was equivalent to a weight-based self-sufficiency rate of 6.18%. The average nutritional self-sufficiencies of Methods I and II were 2.48% and 0.38%, respectively, resulting in an aggregated average of 2.86%. Fluctuations throughout the year were observed according to the harvest seasons of the available crops. Vitamin K (6.15% had the highest self-sufficiency of selected nutrients, while calcium had the lowest (0.96%. Conclusions: This study suggests that depending on the time of year, urban agriculture has the potential to contribute nutrients to diets during post-disaster situations as disaster preparedness food. Emergency responses should be

  20. Relative probabilities of the uranium isotopes for thorium x-ray emission and fluorescence of uranium x-rays

    International Nuclear Information System (INIS)

    Parker, J.L.

    1991-01-01

    Both thorium x-rays from decaying uranium isotopes and self-fluoresced uranium x-rays are prominent in high-resolution gamma-ray spectra of uranium-bearing materials. Useful application of the information carried by those x-rays has been curtailed because the probabilities of the uranium isotopes for thorium x-ray emission and for uranium x-ray fluorescence have not been known. By analyzing enrichment-meter geometry spectra from uranium oxide standards whose enrichments ranged from 0.7% to 91%, relative values, primarily, have been obtained for the probabilities of both processes. Thorium x-ray emission is very heavily dominated by 235 U. In all ordinarily occurring uranium isotopic distributions, thorium x-rays may be used as a valid 235 U signature. The probability for a thorium K α1 x-ray to be emitted in the decay of a 235 U atom is 0.048 ±0.002. In infinitely thick uranium oxide materials, the relative ratios of effectiveness for self-fluorescence, on a per unit mass basis, are approximately 234 U : 235 U : 236 U : 238 U = 1.13 : 1.00 : 0.52 : 0.028. on a per decay basis, the approximate ratios are 0.00039 : 1.00 : 0.017 : 0.18. These results imply that, contrary to what has often been stated, gamma rays are far more important than alpha particles in the self-fluorescence of uranium. Because of the importance of gamma-ray self-fluorescence, the uranium x-ray yield will be somewhat influenced by the size, shape, and composition of the materials. 4 refs., 1 fig

  1. Investigation of the use of thorium in LWRs for improving reactor core performance

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah

    2012-01-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins

  2. Investigation of the use of thorium in LWRs for improving reactor core performance

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Cheuk Wah

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins.

  3. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  4. Thorium and health: state of the art; Thorium et sante: etat de l'art

    Energy Technology Data Exchange (ETDEWEB)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-07-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  5. Selective alpha autoradiography for monitoring thorium distribution in UO[sub 2]-ThO[sub 2] fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B.B.; Raghunath, B.; Ghosh, J.K. (Bhabha Atomic Research Centre, Bombay (India))

    1992-10-01

    Although natural uranium and thorium decay with similar alpha energies (4.20 and 3.98 MeV), their daughter products have different alpha characteristics. This has been exploited for selective alpha autoradiography for thoria in urania-thoria mixed nuclear fuel pellets. Difficulties in getting sufficient track density in alpha sensitive films due to the very low specific activity of natural uranium and thorium material were overcome by using a special film with annealing and pre-etching treatment. (orig./HP).

  6. Comparison of control rod effectiveness for thorium and low-enriched fuel cycles in the GA-1, 160 MW(e) design

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Hans Joachim

    1974-03-15

    In an investigation of the properties of the Thorium-Uranium (Th) and the Low-Enriched Uranium (LEU) fuel cycles it is also necessary to compare the effectiveness of the control rods in a reactor system operating with these sorts of fuel. Furthermore, it is under consideration to start a reactor with LEU fuel and switch-over to a Th cycle. It is also of interest to look at the switch-over phase in respect to the control rod effectiveness. The various fuel cycles have been studied for the same fuel element and control rod design, namely the one of GA's commercially available 1,160 MW(e) reference power station. This paper gives the first results on the control rod calculations and is presented mainly in two parts. Part 1 describes spectral effects which have been investigated by cell calculations with a discrete ordinates transport code. The main result is the higher effectiveness of a rod in a Th-cycle compared with a LEU-cycle. Part 2 reports on reactor calculations with a diffusion code and shows that this advantage can partially disappear in the reactor because of the spatial flux distribution. This effect has to be studied in further investigations for a full understanding.

  7. CaFe2O4 as a self-sufficient solar energy converter

    Science.gov (United States)

    Tablero, C.

    2017-10-01

    An ideal solar energy to electricity or fuel converter should work without the use of any external bias potential. An analysis of self-sufficiency when CaFe2O4 is used to absorb the sunlight is carried out based on the CaFe2O4 absorption coefficient. We started to obtain this coefficient theoretically within the experimental bandgap range in order to fix the interval of possible values of photocurrents, maximum absorption efficiencies, and photovoltages and thus that of self-sufficiency considering only the radiative processes. Also for single-gap CaFe2O4, we evaluate an alternative for increasing the photocurrent and maximum absorption efficiency based on inserting an intermediate band using high doping or alloying.

  8. Potentialities of the molten salt reactor concept for a sustainable nuclear power production based on thorium cycle in epithermal spectrum

    International Nuclear Information System (INIS)

    Nuttin, Alexis

    2002-01-01

    In the case of a significant nuclear contribution to world energy needs, the problem of present nuclear waste management pose the sustainability of the PWR fuel cycle back into question. Studies on storage and incineration of these wastes should therefore go hand in hand with studies on innovative systems dedicated to a durable nuclear energy production, as reliable, clean and safe as possible. We are here interested in the concept of molten salt reactor, whose fuel is liquid. This particularity allows an online pyrochemical reprocessing which gives the possibility to overcome some neutronic limits. In the late sixties, the MSBR (Molten Salt Breeder Reactor) project of a graphite-moderated fluoride molten salt reactor proved thus that breeding is attainable with thorium in a thermal spectrum, provided that the online reprocessing is appropriate. By means of simulation tools developed around the Monte Carlo code MCNP, we first re-evaluate the performance of a reference system, which is inspired by the MSBR project. The complete study of the pre-equilibrium transient of this 2,500 MWth reactor, started with 232 Th/ 233 U fuel, allows us to validate our reference choices. The obtained equilibrium shows an important reduction of inventories and induced radio-toxicities in comparison with the other possible fuel cycles. The online reprocessing is efficient enough to make the system breed, with a doubling time of about thirty years at equilibrium. From the reference system, we then test different options in terms of neutron economy, transmutation and control of reactivity. We find that the online reprocessing brings most of its flexibility to this system, which is particularly well adapted to power generation with thorium. The study of transition scenarios to this fuel cycle quantifies the limits of a possible deployment from the present French power stock, and finally shows that a rational management of the available plutonium would be necessary in any case. (author)

  9. A study of uranium-thorium mixed lattices; Etude de reseaux mixtes uranium - thorium

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Eckert, R; Mazancourt, R de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Some subcritical experiments have been carried out during the charging of the pile G1 by introducing thorium bars in a regular lattice into the pile. The spreading out of these experiments over a period of three months has permitted: a) work on a pile gradually increasing in size and b) measurements on comparable charges in so far that they have either the same number of bars of thorium, or the same concentration of thorium. From the measurements at constant charge and at constant concentration, it is possible by extrapolation to determine the critical charges and concentrations. The values obtained have showed that the material Laplacian of the lattice depends linearly on the thorium concentration and must cancel out for a concentration T = 8.8 {+-} 0.3 per cent by volume. These results have been found, to a very good approximation, by a simple calculation. (author) [French] Des experiences sous-critiques ont ete effectuees au cours du chargement de la pile G1 en introduisant des barres de thorium reparties suivant un reseau regulier dans la pile. L'etalement de ces experiences sur trois mois a permis d'operer sur une pile de plus en plus grosse et de faire un grand nombre de mesures sur des chargements comparables par le fait qu'ils avaient soit le meme nombre de barres de thorium, soit la meme concentration en thorium. A partir des mesures a chargement constant et a concentration constante, il a ete possible de determiner par extrapolation les chargements et concentrations critiques. Les valeurs obtenues ont montre que le laplacien matiere moyen du reseau dependait lineairement de la concentration en thorium, et devrait s'annuler pour une concentration T = 8,8 {+-} 0,3% en volume. Ces resultats ont ete retrouves avec une tres bonne approximation par un calcul elementaire. (auteur)

  10. Neutronic and Isotopic Simulation of a Thorium-TRU's fuel Closed Cycle in a Lead Cooled ADS

    International Nuclear Information System (INIS)

    Garcia-Sanz, J. M.; Embid, M.; Fernandez, R.; Gonzalez, E. M.; Perez-Parra, A.

    2000-01-01

    The FACET group at CIEMAT is studying the properties and potentialities of several lead-cooled ADS designs for actinide and fission product transmutation. The main characteristics of these systems are the use of lead as primary coolant and moderator and fuels made by transuranics inside a thorium oxide matrix. The strategy assumed in this simulation implies that every discharge of the ADS will be reprocessed and would produce four waste streams: fission and activation products, remaining ''232 Th, produced ''233 U and remaining TRU's. The ''233 U is separated for other purposes; the remaining TRU are recovered altogether and mixed with the adequate amount of ''232 Th and fresh TRUs coming from LWR spent fuel. The simulations performed in this study have been focused primarily in the evolution of the fuel isotopic composition during and after each ADS burn-up cycle. (Author) 10 refs

  11. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  12. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  13. Study on thorium removal from effluent by electrocoagulation

    International Nuclear Information System (INIS)

    Nath, Baidurjya; Swaroopa Lakshmi, Y.V.; Tiwari, S.K.; Setty, D.S.; Kalyanakrishnan, G.; Saibaba, N.

    2015-01-01

    Coagulation-flocculation, membrane separation and ion-exchange are traditional methods for treatment of radioactive wastewater generated primarily from the front end processes of the fuel cycle. Electrocoagulation presents a robust and novel alternative to conventional coagulation process. The present study involves the establishment of electrocoagulation as a treatment process for thorium bearing non-process effluents in batch mode. This involved an electrolytic reactor with iron electrodes. The non-process effluent was subjected to coagulation and floatation by Fe(II) ions dissolved from the anode with the resultant flocs floating on the surface after being captured by hydrogen gas bubbles generated at the cathode. The effect of various operational parameters like initial pH, residence time, current density and initial thorium concentration on the removal efficiency was investigated. Maximum decontamination factor obtained was of the order of 10 4 . (author)

  14. New twists and turns for actinide chemistry: organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Micronutrients in the life cycle: Requirements and sufficient supply

    Directory of Open Access Journals (Sweden)

    K. Biesalski Hans

    2018-06-01

    its consequences. Keywords: Micronutrients, Recommended dietary allowance (RDA, Life cycle, Sufficient supply, Safety, Deficiency

  16. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  17. Financial Consumer Protection in the EU : Towards a Self-Sufficient European Contract Law for Consumer Financial Services?

    NARCIS (Netherlands)

    Cherednychenko, O.O.

    2014-01-01

    The rapid expansion of European contract law in the field of consumer financial services gives rise to the question to what extent it is self-sufficient. A self-sufficient European contract law presupposes the existence of an EU-made and EU-enforced contract-related legal order which is largely

  18. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  19. Investigation of thorium hydroxotrifluoroacetates

    International Nuclear Information System (INIS)

    Andryushin, V.G.; Samatov, A.V.; Chuklinov, R.N.; Shmidt, V.S.

    1984-01-01

    The precipitation process of thorium hydroxotrifluoroacetates in the Th(NO 3 ) 4 -HNO 3 -CF 3 COOH-NH 4 OH-H 2 O system in the pH range from 0.1 to 8.6 at a 100 g/l thorium concentration in it has been investigated. The curve of the pH dependence of the main thorium salts solubility in the pH=4.4 range exhibits a local maximum, the position of the latter being in complete accordance with its earlier established relation to the parameter of the ligand anion nucleophility. The composition of isolated hydroxotrifluoroacetate hydrates corresponds to the generic formula Th(OH)sub(x)(CFsub(3)COO)sub(4-x)xnHsub(2)O, where 3.0 >= x >= 1.5, and n=1.0-6.0. The density of the crystals obtained is measured and the thermal stability is studied. It is established, that, for the thorium hydroxotrifluoroacetate hydrates, the same general regularities in the effect of degree of hydrolysis and hydration on the position of decomposition temperature effects and on the density of compounds hold, as has been previously found in studying thorium- and plutonium hydroxosalts

  20. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  1. Drying characteristics of thorium fuel corrosion products

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.-E. E-mail: rzl@inel.gov

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 deg. C. Complete removal of chemisorbed water requires heating above 1000 deg. C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  2. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de

    2008-01-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T 1/2 =5.7y), known as meso thorium and Thorium-228(T 1/2 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  3. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  4. Minerals yearbook, 1991: Thorium. Annual report

    International Nuclear Information System (INIS)

    Hedrick, J.B.

    1992-10-01

    Domestic mine production data for thorium-bearing monazite are developed by the U.S. Bureau of Mines from a voluntary survey of U.S. operations entitled, 'Rare Earths, Thorium, and Scandium.' The one mine to which a survey form was sent responded, representing 100% of domestic production. Mine production data for thorium are withheld to avoid disclosing company proprietary data. Statistics on domestic thorium consumption are developed by surveying various processors and end users, evaluating import-export data, and analyzing Government stockpile shipments

  5. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    Directory of Open Access Journals (Sweden)

    Andreas Diomedes Soteriades

    Full Text Available We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc. associated with the production of imported inputs (e.g. concentrates, fertilizer; and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.. We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc. and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.. Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive

  6. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    Science.gov (United States)

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming

  7. Thorium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main occurences of the thorium minerals of the Argentine Republic which have not been exploited, due to their reduced volume, are described. The thoriferous deposits have three genetic types: pegmatitic, hydrothermal and detritic, being the most common minerals: monazite, thorite and thorogummite. The most important thorium accumulations are located in Salta, being of less importance those of Cordoba, Jujuy and San Juan. (M.E.L.) [es

  8. Technology assessment HTR. Part 6. The radiological risks associated with the thorium-fuelled High Temperature Reactor. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Van Hienen, J.F.A.

    1996-06-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuel led LWR cycle was used. The structure of the report is as follows. In Chapter 2 the general methodology for assessing the radiological risks associated with nuclear installations is described. An overview is given of the measures commonly used to quantify these risks. In Chapter 3 an overview is given of the different stages of the reference uranium fuel led LWR cycle and the thorium fuel led HTGR cycle. In Chapter 4 a stage-by-stage analysis is given of the radiological risks associated with the two fuel cycles. Finally, in Chapter 5 an evaluation is made of the radiological risks associated with the LWR and HTGR cycles and with thorium and uranium fuels. In Appendix A the production and releases of 14 C for LWR and HTGR fuel cycle facilities is considered in detail. 11 figs., 10 tabs., 10 refs

  9. A blueprint for complete energy self-sufficiency in British Columbia

    International Nuclear Information System (INIS)

    2007-01-01

    The Endless Energy Project is a partnership between the Globe Foundation, BC Hydro, Day 4 Energy, the Power Technology Alliance, the National Research Council of Canada, and Western Economic Diversification. The purpose of the project is to examine British Columbia's potential to be energy self-sufficient from renewable sources by 2025. Background information on the Endless Energy Project was presented with reference to energy use in all sectors of the economy and energy supply from all sources indigenous to the province. The report discussed global drivers and scenarios as well as energy use trends specific to British Columbia. These trends were related to energy use for residential buildings; commercial sector; domestic transportation; gateway transportation; and industrial sources. The report also provided an outlook for each of these sectors. A large-scale supply outlook was also described for solar; geothermal; wind; hydro; biomass; forest waste to energy potential; ocean wave energy potential; and tidal current systems. The report concluded with a discussion of matching renewable energy supplies to demand. It was concluded that based on a combination of renewable energy supply, cleaner burning fuels, such as hydrogen and ethanol, and energy use reduction in homes, businesses, and public sector operations, British Columbia could reasonably achieve energy self-sufficiency by 2025. tabs., figs

  10. The Influences of Percent of Tributyl Phosphate and Ratio of Feed and Solvent on the Uranium-Thorium Extraction of Thorex Process

    International Nuclear Information System (INIS)

    Setyadji, Moch; Endang Susiantini

    2002-01-01

    The investigation of uranium and thorium extraction in water phase of thorex process first cycle using tributyl phosphate diluted in kerosine as extractant has been done. The one stage extractor was used. The effects of percent of tributyl phosphate and ratio of feed and solvent on the extraction efficiency and distribution coefficients of uranium and thorium were studied. The result of experiment showed that percent of tributyl phosphate and ratio of feed and solvent very influence on the extraction efficiency and distribution coefficients of uranium and thorium. The best results were reached at about 55% of tributyl phosphate and ratio of feed and solvent was 1:3. The extraction efficiencies of uranium and thorium and distribution coefficients of uranium and thorium at the condition above were 90% , 90.4% , 9.0 and 9.4. (author)

  11. Studies on the feasibility of the LWRs waste-thorium in-core fuel cycle in the Gas Turbine-Modular Helium Reactor

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    The capability to operate on LWRs waste constitutes one of the major benefits of the Gas Turbine-Modular Helium Reactor; in this paper, it has been evaluated the possibility to incinerate the LWRs waste and to simultaneously breed fissile 233 U by fertile thorium. Since a mixture of pure 239 Pu-thorium has shown a quite poor neutron economy, the LWRs waste-thorium fuel performance has been also tested when plutonium and thorium are allocated in different TRISO particles. More precisely, when fissile and fertile actinides share the same TRISO kernel, the resonance at 0.29eV of the fission and capture microscopic cross sections of 239 Pu diminishes also the absorption rate of fertile 232 Th and thus it degrades the breeding process. Consequently, in the present studies, two different types of fuel have been utilized: the Driver Fuel, made of LWRs waste, and the Transmutation Fuel, made of fertile thorium. Since, in the thermal neutron energy range, the microscopic capture cross section of 232 Th is about 80-100 times smaller than the fission one of 239 Pu, setting thorium in particles with a large kernel and LWRs waste in particles with a small one makes the volume integrated reaction rates better equilibrated. At the light of the above consideration, which drives to load as much thorium as possible, for the Transmutation Fuel they have been selected the JAERI TRISO particles packed 40%; whereas, for the Driver Fuel they have been tested different packing fractions and kernel radii. Since no configuration allowed the reactor to work, the above procedure has been repeated when fertile particles are packed 20%; the latter choice permits over one year of operation, but the build up of 233 U represents only a small fraction of the depleted 239 Pu. Finally, the previous configuration has been also investigated when the fertile and fissile fuels share the same kernel or when the fertile fuel axially alternates with the fissile one. (author)

  12. A new method for determination of trace amount thorium-spectrophotometric determination of thorium in aqueous phase by chlorophosphonazo-mA

    International Nuclear Information System (INIS)

    Xia Yuanxian; Qian Hesheng

    1986-01-01

    In this paper the spectrophotometric method for determination of trace amount of thorium in weak acidic medium by chlorophosphonazo-mA is described. The composition of the complex was estimated to be 1:4 by slope ratio method. The apparent molar absorption of thorium at 675 nm is 9.2 x 10 4 . Beer's law is obeyed for 0-12.0 μg of thorium in 10 ml solution. The coefficient of variation for thorium is 0.88%. The method has been applied to the determination of trace amounts of thorium in the extraction process of thorium

  13. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  14. Countrywide Evaluation of the Long-Term Family Self-Sufficiency Plan. Establishing the Baselines

    National Research Council Canada - National Science Library

    Schoeni, Robert

    2002-01-01

    ...) Plan on November 16,1999. The LTFSS Plan consists of 46 projects whose goal is to promote self-sufficiency among families that are participating in the California Work Opportunity and Responsibility to Kids (CalWORKs...

  15. Food Self-Sufficiency across scales: How local can we go?

    Science.gov (United States)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-04-01

    "Think global, act local" is a phrase often used in sustainability debates. Here, we explore the potential of regions to go for local supply in context of sustainable food consumption considering both the present state and the plausible future scenarios. We analyze data on the gridded crop calories production, the gridded livestock calories production, the gridded feed calories use and the gridded food calories consumption in 5' resolution. We derived these gridded data from various sources: Global Agro-ecological Zone (GAEZ v3.0), Gridded Livestock of the World (GLW), FAOSTAT, and Global Rural-Urban Mapping Project (GRUMP). For scenarios analysis, we considered changes in population, dietary patterns and possibility of obtaining the maximum potential yield. We investigate the food self-sufficiency multiple spatial scales. We start from the 5' resolution (i.e. around 10 km x 10 km in the equator) and look at 8 levels of aggregation ranging from the plausible lowest administrative level to the continental level. Results for the different spatial scales show that about 1.9 billion people live in the area of 5' resolution where enough calories can be produced to sustain their food consumption and the feed used. On the country level, about 4.4 billion population can be sustained without international food trade. For about 1 billion population from Asia and Africa, there is a need for cross-continental food trade. However, if we were able to achieve the maximum potential crop yield, about 2.6 billion population can be sustained within their living area of 5' resolution. Furthermore, Africa and Asia could be food self-sufficient by achieving their maximum potential crop yield and only round 630 million populations would be dependent on the international food trade. However, the food self-sufficiency status might differ under consideration of the future change in population, dietary patterns and climatic conditions. We provide an initial approach for investigating the

  16. Technology of getting of microspheric thorium dioxide

    International Nuclear Information System (INIS)

    Balakhonov, V.G.; Matyukha, V.A.; Saltan, N.P.; Filippov, E.A.; Zhiganov, A.N.

    1999-01-01

    There has been proposed a technique for getting granulated thorium dioxide from its salts solutions according to the cryogenic technology by the method of a solid phase conversion. It includes the following operations: dispersion of the initial solution into liquid nitrogen and getting of cryogranules of the necessary size by putting oscillations of definite frequency on a die device and by charging formed drops in the constant electric field; solid phase conversion of thorium salts into its hydroxide by treating cryogranules with a cooled ammonia solution, drying and calcination of hydroxide granules having got granulated thorium dioxide. At the pilot facility there have been defined and developed optimum regimes for getting granulated thorium dioxide. The mechanism of thorium hydroxide cryogranules conversion into thorium dioxide was investigated by the thermal analysis methods. (author)

  17. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  18. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides; L'hydrolyse du dicarbure de thorium et des dicarbures mixtes d'uranium et de thorium

    Energy Technology Data Exchange (ETDEWEB)

    Del Litto, B [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-09-01

    The hydrolysis of thorium dicarbide leads to the formation of a complex mixture of gaseous and condensed carbon hydrides. The temperature, between 25 and 100 deg. C, has no influence on the nature and composition of the gas phase. The reaction kinetics, however, are strongly temperature dependent. In a hydrochloric medium, an enrichment in hydrogen of the gas mixture is observed. On the other hand a decrease in hydrogen and an increase in acetylene content take place in an oxidizing medium. The general results can be satisfactorily interpreted through a reaction mechanism involving C-C radical groups. In the same way, the hydrolysis of uranium-thorium-carbon ternary alloys leads to the formation of gaseous and condensed carbon hydrides. The variation of the composition of the gas phase versus uranium content in the alloy suggests an hypothesis about the carbon-carbon distance in the alloy crystal lattice. The variation of methane content, on the other hand, has lead us to discuss the nature of the various phases present in uranium-carbon alloys and carbon-rich uranium-thorium-carbon alloys. We have reached the conclusion that these alloys include a proportion of monocarbide which is dependent upon the ratio. Th/(Th + U). We put forward a diagram of the system uranium-carbon with features proper to explain some phenomena which have been observed in the uranium-thorium-carbon ternary diagram. (author) [French] L'hydrolyse du dicarbure de thorium conduit a la formation d'un melange complexe d'hydrures de carbone gazeux et condenses. La temperature entre 25 et 100 deg. C n'a pas d'influence sur la nature ef la composition de la phase gazeuse. Par contre la cinetique en depend fortement. En milieu chlorhydrique, on observe un enrichissement en hydrogene du melange gazeux. Au contraire, en milieu oxydant il se produit une diminution du taux d'hydrogene et une augmentation tres nette du taux d'acetylene. L'ensemble des resultats obtenus peut etre interprete d'une maniere

  19. Hodgkin's disease following thorium dioxide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, A I; Kirk, M E [McGill Univ., Montreal, Quebec (Canada). Dept. of Pathology; Hutchison, J L [Montreal General Hospital, Quebec (Canada)

    1976-09-04

    Hodgkin's disease occurred in a 53-year-old man who, 25 years previously, had undergone cerebral angiography, for which thorium dioxide suspension (Thorotrast) was used. Deposits of thorium dioxide were noted in reticuloendothelial cells in various locations. An association between thorium dioxide administration and the subsequent development of malignant tumours and neoplastic hematologic disorders has previously been reported.

  20. Sufficiency of the Nuclear Fuel

    International Nuclear Information System (INIS)

    Pevec, D.; Knapp, V.; Matijevic, M.

    2008-01-01

    Estimation of the nuclear fuel sufficiency is required for rational decision making on long-term energy strategy. In the past an argument often invoked against nuclear energy was that uranium resources are inadequate. At present, when climate change associated with CO 2 emission is a major concern, one novel strong argument for nuclear energy is that it can produce large amounts of energy without the CO 2 emission. Increased interest in nuclear energy is evident, and a new look into uranium resources is relevant. We examined three different scenarios of nuclear capacity growth. The low growth of 0.4 percent per year in nuclear capacity is assumed for the first scenario. The moderate growth of 1.5 percent per year in nuclear capacity preserving the present share in total energy production is assumed for the second scenario. We estimated draining out time periods for conventional resources of uranium using once through fuel cycle for the both scenarios. For the first and the second scenario we obtained the draining out time periods for conventional uranium resources of 154 years and 96 years, respectively. These results are, as expected, in agreement with usual evaluations. However, if nuclear energy is to make a major impact on CO 2 emission it should contribute much more in the total energy production than at present level of 6 percent. We therefore defined the third scenario which would increase nuclear share in the total energy production from 6 percent in year 2020 to 30 percent by year 2060 while the total world energy production would grow by 1.5 percent per year. We also looked into the uranium requirement for this scenario, determining the time window for introduction of uranium or thorium reprocessing and for better use of uranium than what is the case in the once through fuel cycle. The once through cycle would be in this scenario sustainable up to about year 2060 providing most of the expected but undiscovered conventional uranium resources were turned

  1. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  2. 'Once through' cycles in the pebble bed HTR

    International Nuclear Information System (INIS)

    Teuchert, E.

    1977-12-01

    In the pebble bed HTR the 'Once Through' cycles achieve a favorable conservation of uranium resources due to their high burnup and due to the relatively low fissile inventory. A detailed study is given for cycles with highly enriched uranium and thorium, 20% enriched uranium and thorium, and for the low (approximately 8%) enriched cycle. The recommended cycle is based on the known THTR fuel element in the Th/U (93%) cycle. The variant with separate Seed elements and Breed elements presents the best pioneer in view of later recycling and thermal breeding. The minimum proliferation risk is achieved in the Th/U (20%) cycle basing on the fuel element type of the AVR, due to the low amount and high denaturization of the disloaded plutonium. (orig.) [de

  3. Magellanic Clouds Cepheids: Thorium Abundances

    Directory of Open Access Journals (Sweden)

    Yeuncheol Jeong

    2018-03-01

    Full Text Available The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC and the Small Magellanic Cloud (SMC, namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

  4. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  5. Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2012-11-01

    Full Text Available The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2 up to a fourth-order stream (67 km2. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon, Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was

  6. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  7. Thorium and health: state of the art

    International Nuclear Information System (INIS)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-01-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  8. Competitive biosorption of thorium and uranium by actinomycetes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Tsuruta, Takehiko

    2002-01-01

    The competitive biosorption of thorium and uranium by actinomycetes was examined. Of the actinomycetes tested, Streptomyces levoris showed the highest ability to sorb both thorium and uranium from aqueous systems. Thorium sorption was not affected by co-existed uranium, while uranium sorption was strongly hindered by co-existed thorium. The amounts of both thorium and uranium sorbed by Streptomyces levoris cells increased with an increase of the solution pH. Although the equilibrium isotherm of uranium biosorption is in similar manner as that of thorium biosorption, uranium was sorbed much faster than thorium. Biosorption isotherm of each metal ion could be well fitted by Langmuir isotherm taking the ionic charge of metal ions into account. The Langmuir isotherm for binary system did not explain completely the competitive biosorption of thorium and uranium by Streptomyces levoris. However, the results suggested that the ion species of both metals in the cells should be Th(OH) 2 2+ and UO 2 2+ , respectively. (author)

  9. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  10. Determination of natural thorium in urines

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Jammet, H.

    1959-01-01

    A procedure for the quantitative analysis of thorium in urine is described. After precipitation with ammonium hydroxide, dissolution of the precipitate, extraction at pH 4-4.2 with cupferron in chloroformic solution and mineralization, a colorimetric determination of thorium with thorin is performed. It is thus possible to detect about 2 γ of thorium in the sample. (author) [fr

  11. An immobilized and highly stabilized self-sufficient monooxygenase as biocatalyst for oxidative biotransformations

    NARCIS (Netherlands)

    Valencia, Daniela; Guillén, Marina; Fürst, Maximilian; Josep, López-Santín; Álvaro, Gregorio

    BACKGROUND The requirement of expensive cofactors that must be efficiently recycled is one of the major factors hindering the wide implementation of industrial biocatalytic oxidation processes. In this research, a sustainable approach based on immobilized self-sufficient Baeyer-Villiger

  12. Economic efficiency or self-sufficiency: alternative strategies for oil consumers?

    International Nuclear Information System (INIS)

    Heal, D.W.

    1992-01-01

    The ideal energy source is low cost (efficient) and reliable (secure). The high price and perceived political unreliability of Middle East oil supplies prompted a nearly worldwide trend towards energy self-sufficiency. Gains in energy efficiency, which have been most marked in the OECD, are permanent and, prompted by environmental concern, probably progressive. But the opportunity that is still available to low cost oil suppliers to regain lost markets will only be realized if those supplies are demonstrably reliable. (author)

  13. Separation and purification of uranium product from thorium in thorex process by precipitation technique

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Mukherjee, A.; Dhumwad, R.K.

    1989-01-01

    A sequential precipitation technique is reported for the separation of uranium and thorium present in the uranium product stream of a single cycle 5 per cent TBP Thorex Process. It involves the precipitation of thorium as oxalate in 1M HNO 3 medium at 60-70degC and after filtration, precipitation of uranium as ammonium diuranate at 80-90degC from the oxalate supernatant. This technique has several advantages over the ion-exchange process normally used for treating these products. In order to meet the varying feed conditions, this method has been tested for feeds containing 10 g/1 uranium and 1-50 g/1 thorium in 1-6M HNO 3 . Various parameters like feed acidities, uranium and thorium concentrations, excess oxalic acid concentrations in the oxalate supernatant, precipitation temperatures, precipitate wash volumes etc. have been optimised to obtain more than 99 per cent recovery of thorium and uranium as their oxides with less than 50 ppm uranium losses to ammonium diuranate filtrate. The distribution patterns of different fission products and stainless steel corrosion products during various steps of this procedure have also been studied. For simulating the actual Thorex plant scale operation, experiments have been conducted with 25g and 100g lots of uranium per batch. (author). 6 tabs., 8 figs., 22 refs

  14. Utilization of thorium in thermal reactors

    International Nuclear Information System (INIS)

    Srinivasan, K.R.; Nakra, A.N.

    1978-01-01

    Large deposits of thorium are found in India. 233 U produced by neutron capture in 232 Th is a more valuable fuel for thermal reactors than the plutonium that results from capture in 238 U. These two facts are the main reasons for the interest in utilizing thorium in power reactors. But natural thorium does not contain any fissile material and its capture cross section is nearly two and a half times that of 238 U. These have made the fuelling cost high. However, in certain conditions and certain types of reactors the costs are comparable with those using uranium fuel. The relative cost effectiveness of different fuels is discussed. Apart from long term interest, the short term interest of using thorium fuel in RAPP type reactors is also briefly described. Finally the reactor physics experiments using thorium fuel and their comparison with calculations are presented. (author)

  15. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  16. Some alternatives to the mixed oxide fuel cycle

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel fabrication operations

  17. Self irradiation effects on the thorium phosphate diphosphate dissolution (TPD): simulation by external irradiations

    International Nuclear Information System (INIS)

    Tamain, C.; Ozgumus, A.; Dacheux, N.; Garrido, F.; Thome, L.; Corbel, C.; Genet, M.

    2004-01-01

    The Thorium Phosphate Diphosphate (TPD), proposed as a ceramic for the long term immobilization of actinides, was externally irradiated with several ions and energies (but also with gamma rays) in order to simulate the self-irradiation. The influence of the electronic energy loss was first investigated. Thus, the XRD measurements have shown a complete amorphization of the material under 10 13 ions of Kr.cm -2 , while no significant structural change occurred after 5.10 13 S.cm -2 , 2.10 16 He.cm -2 or 320 kGy of dose of gamma rays. The dissolution of the raw and irradiated pellets was studied versus several parameters such as amorphized fraction, energy loss of incident ions, radiolytic species produced in situ in the leachate during irradiation (such as H 2 O 2 ), temperature and acidity. The results reveal an important increase of the dissolution kinetics for amorphized pellets compared to raw ceramic. (authors)

  18. The hydrolysis of thorium dicarbide and of mixed uranium-thorium dicarbides

    International Nuclear Information System (INIS)

    Del Litto, B.

    1966-09-01

    The hydrolysis of thorium dicarbide leads to the formation of a complex mixture of gaseous and condensed carbon hydrides. The temperature, between 25 and 100 deg. C, has no influence on the nature and composition of the gas phase. The reaction kinetics, however, are strongly temperature dependent. In a hydrochloric medium, an enrichment in hydrogen of the gas mixture is observed. On the other hand a decrease in hydrogen and an increase in acetylene content take place in an oxidizing medium. The general results can be satisfactorily interpreted through a reaction mechanism involving C-C radical groups. In the same way, the hydrolysis of uranium-thorium-carbon ternary alloys leads to the formation of gaseous and condensed carbon hydrides. The variation of the composition of the gas phase versus uranium content in the alloy suggests an hypothesis about the carbon-carbon distance in the alloy crystal lattice. The variation of methane content, on the other hand, has lead us to discuss the nature of the various phases present in uranium-carbon alloys and carbon-rich uranium-thorium-carbon alloys. We have reached the conclusion that these alloys include a proportion of monocarbide which is dependent upon the ratio. Th/(Th + U). We put forward a diagram of the system uranium-carbon with features proper to explain some phenomena which have been observed in the uranium-thorium-carbon ternary diagram. (author) [fr

  19. Thorium-230 contamination

    International Nuclear Information System (INIS)

    Noey, K.C.; Liedle, S.D.; Hickey, C.R.; Doane, R.W.

    1989-01-01

    The authors are currently performing radiological surveys on approximately ninety properties in the St. Louis, Missouri area as part of the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program. The properties involved are the St. Louis Airport Site, Latty Avenue Properties, St. Louis Downtown Site, Coldwater Creek, and the associated roads and vicinity properties. The primary radioactive contaminant on these properties is thorium-230. Since field instrumentation is not available to detect the presence of alpha-emitting contamination in soil, soil samples are being collected and sent to an analytical laboratory for analysis. Thorium-230 analysis is costly and time-consuming, and as a result, soil sample analysis results are not available to help direct the field sampling program. This paper provides discussion of the manner in which the properties became radioactively contaminated, followed by a discussion of the difficulties associated with the detection of thorium-230. Finally, new methodologies for detecting alpha-emitting radionuclides in the field are described

  20. Thoron and associated risks in the handling of thorium compounds; Le thoron et les risques associes dans la manipulation des composes du thorium

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J; Billard, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10{sup -7} {mu}c/cm{sup 3}. However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [French] 1. Le thoron et ses descendants se degagent constamment des composes du thorium et leur radioactivite peut presenter un danger pour les personnes qui sont amenees a les respirer. 2. Par analogie avec le radon, la teneur maximum admissible dans l'air de thoron et de ses descendants a ete fixee a 10{sup -7} {mu}c/cm{sup 3}. Mais, les differences de comportement du radon et de son depot actif d'une part, du thoron et de ses descendants d'autre part, ont paru suffisantes pour justifier une etude plus complete. Il semblait en effet probable, contrairement a ce qui se produit pour le radon, qu'en un meme point, la teneur en thoron + thorium A puisse differer notablement de la teneur en

  1. Thoron and associated risks in the handling of thorium compounds; Le thoron et les risques associes dans la manipulation des composes du thorium

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J.; Billard, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10{sup -7} {mu}c/cm{sup 3}. However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [French] 1. Le thoron et ses descendants se degagent constamment des composes du thorium et leur radioactivite peut presenter un danger pour les personnes qui sont amenees a les respirer. 2. Par analogie avec le radon, la teneur maximum admissible dans l'air de thoron et de ses descendants a ete fixee a 10{sup -7} {mu}c/cm{sup 3}. Mais, les differences de comportement du radon et de son depot actif d'une part, du thoron et de ses descendants d'autre part, ont paru suffisantes pour justifier une etude plus complete. Il semblait en effet probable, contrairement a ce qui se produit pour le radon, qu'en un meme point, la teneur en thoron + thorium A puisse

  2. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  3. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  4. High priority nuclear data request list. The data for long-lived fission products, minor actinides and the thorium cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, J. [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France)

    2002-07-01

    This workshop is organised by the Research Group GEDEON together with CERN, OECD-NEA and the CFDN (French Committee for Nuclear Data). It is the continuation of the one at CERN on September 21 and 22, 1998, jointly organised with EC, GEDEON and OCDE-NEA. This last one is centred on the CERN proposal of a facility for neutron production up to 250 MeV, devoted to neutron data measurements. The first aim of the Paris workshop is to identify the present status of specific nuclear data relevant to innovative options (accelerator driven system - ADS and thorium) in the nuclear fuel cycle, beyond what has been gathered for standard reactors (PWR, FBR) and for the associated fuel cycles based on uranium and plutonium. The following topics were presented and discussed: 1. extension of present evaluated nuclear data files beyond 20 MeV needed to correctly describe the high energy part (up to approximately 200 MeV) of the spallation process used to generate the external neutrons needed for the sub-critical assemblies; 2. differential and integral cross section data in relation with the use of a thorium based; 3. the same for minor actinides and some long-lived fission residues likely to be destroyed in reactors; 4. the same for new type of materials such as lead or lead-bismuth, to be used as spallation target or as cooling, in relation with corrosion and irradiation effects. Beyond these specific issues, ADS will also take advantage of better known nuclear data coming from the existing reactors in operation. Very recent results related to spallation target physics such as neutron and residues production from heavy targets were also presented at this workshop. One very important aim of this workshop is also to bring physicists from different origin, especially from CERN, to cooperate in a program on nuclear data in relation with innovative options. This document brings together two articles entitled ''high priority nuclear data request list. The data for long lived

  5. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    CANDU reactor's high neutron economy to reuse spent LWR fuel without the need to separate, then enrich the contained fissile material. Thorium, can provide a significant extension to uranium resources in the longer term. It is of shorter-term interest in those countries possessing extensive thorium, resources, but lacking indigenous uranium reserves. The once-through thorium (OTT) cycle provides a bridge between current uranium-based fuel cycles, and a thorium, fuel cycle based on recycle of 233 U . The optimal OTT cycle is economical today, in terms both of money and uranium resources. This cycle creates a mine of valuable 233 U, safeguarded in the spent fuel, for future recovery predicated by economic or resource considerations. AECL has recently devised practical OTT strategies. (author)

  6. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    CANDU reactor's high neutron economy to reuse spent LWR fuel without the need to separate, then enrich the contained fissile material. Thorium can provide a significant extension to uranium resources in the longer term. It is of shorter-term interest in those countries possessing extensive thorium resources, but lacking indigenous uranium reserves. The once-through thorium (OTT) cycle provides a bridge between current uranium-based fuel cycles, and a thorium fuel cycle based on recycle of 233 U . The optimal OTT cycle is economical today, in terms both of money and uranium resources. This cycle creates a mine of valuable 233 U, safeguarded in the spent fuel, for future recovery predicated by economic or resource considerations. AECL has recently devised practical OTT strategies. (author)

  7. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  8. AN ALTERNATIVE APPROACH TO MEET BEEF SELF-SUFFICIENCY IN WEST PAPUA

    Directory of Open Access Journals (Sweden)

    S. Hartono

    2011-09-01

    Full Text Available The main objective of this research is to present an alternative approach to meet beef self-sufficiency in West Papua, Indonesia. It mainly focuses on calculating the needed number of productive cows to enhance beef production in the province. Out of the total farmer households in Manokwari, Indonesia, 189 farmer-respondents were selected as samples of the study. Selection of the sample was based on the number of cattle kept in every age group (less than one (2 years old and the number of productive cows. Secondary data came from the time series data of the number of slaughtered cattle vis-à-vis the population of all districts in West Papua Province from 1980-2008. Data were analyzed using the Partial Adjustment Model (PAM and Ordinary Least Square (OLS method. Results of the study showed that beef self-sufficiency in West Papua depend on the availability of the number of productive cows to produce ready-slaughtered-bull in the previous year. Particularly for West Papua, to produce one unit of bull in the tth –year, with the assumption that cattle mortality is 4.92%, a number of 2.38 animal units AU of productive cows must be provided in the previous two (2 years.

  9. Thorium Th

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting thorium from monazites and determining it photometrically and complexometrically are described. Monazite is decomposed by fusion with sodium peroxide, then thorium and the totality of lanthanides are precipitated in the form of oxalates. After the oxalates have been broken down, thorium is determined photometrically with the aid of arsenazo 1, quercetin of 1-2(-pyridylazo)-resorcin. It takes 25 to 30 minutes to photometrically determine Th in monazites with the aid of arsenazo 2 (error: 3 to 5%). Arsenazo 2 is recommended for analysis of monazites containing 20 to 30% of lanthanides. Arsenazo 3 permits determining Th in zircon and in Nb-containing materials. In this case, the determination is possible in strongly acidic solutions, the ratio of arsenazo 3 to Th being 7.5:1. Arsenazo 3 can also be used in determining trace amounts of Th (1x10 -5 to 1x10 -4 %) in rocks, as well as in extraction-photometric determination of Th traces. The dyed compound of Th with arsenazo 3 is extracted with isoamyl alcohol in the presence of diphenylguanidinium chloride and monochloroacetic acid. The method permits determining Th at 1:5x10 8 (0.002 g/ml) dilution. Also described is the iodate-complexometric method for determining Th

  10. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  11. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  12. Thorium in occupationally exposed men

    International Nuclear Information System (INIS)

    Stehney, A. F.

    1999-01-01

    Higher than environmental levels of 232 Th have been found in autopsy samples of lungs and other organs from four former employees of a thorium refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Examination of the distribution of thorium among the organs revealed poor agreement with the distribution calculated from the dosimetric models in Publication 30 of the International Commission on Radioprotection (ICRP). Concentrations in the lungs relative to pulmonary lymph nodes, bone or liver were much higher than calculated from the model for class Y thorium and the exposure histories of the workers. Much better agreement was found with more recently proposed models in Publications 68 and 69 of the ICRP. Radiation doses estimated from the amounts of thorium in the autopsy samples were compatible with health studies that found no significant difference in mortality from that of the general population of men in the US

  13. Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi

    Directory of Open Access Journals (Sweden)

    Prayitno

    2017-11-01

    Full Text Available Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.

  14. Electronic States in Thorium under Pressure

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Jan, J. P.

    1980-01-01

    We have used the local-density formalism and the atomic-sphere approximation to calculate self-consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state agrees very well with static pressure experiments and shock data. Below the Fermi level (EF......) the electronic band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned 0.07 Ry above EF. The calculated extremal areas of the Fermi surface and their calculated pressure dependence agree with earlier calculations and with de Haas-van Alphen measurements...

  15. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  16. Determination of uranium and thorium during chemical treatment of monazite

    International Nuclear Information System (INIS)

    El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F.; Kregsamer, P.

    2000-01-01

    Total reflection x-ray fluorescence (TXRF) is a very useful technique for both qualitative and quantitative analysis because of its high detection power and its needed to small sample volumes (less than 100 μl are sufficient). In this work TXRF was used to determine the initial concentrations of the elements included in monazite sand and following up the chemical steps for treatment of monazite with special attention to uranium and thorium concentration as well as lanthanides. The results were compared to those obtained from EDXRF and ICP-MS techniques. (author)

  17. Symbiotic energy demand and supply system based on collaboration between rare-earth and thorium utilization

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progressive economic growth as well as prodigious consumption of energy are expected among Asian countries. Nuclear power has myriad advantages, among them particularly being its status as a low carbon technology and therefore nuclear power would make a significant contribution to curtailing CO 2 emissions. However, the prospects for nuclear power are hindered by some unresolved problems: perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes. Thorium utilization as a nuclear fuel will serve as a cornerstone of circumventing such problems, because thorium produces less radioactive waste (i.e. less plutonium) and thus safety, which is of paramount concern, will be enhanced. The deployment of electric vehicles (EVs) as an alternative to supplant gasoline engine cars in the transportation network, will significantly contribute in the reduction of global CO 2 emissions. Rare-earth materials such as neodymium and dysprosium will be essential as a new material for electric automobiles. Thorium is often obtained as a by-product of rare-earth metals, but it is still not utilized as a nuclear fuel currently due to the lack of its own fissionable isotopes and as such, it cannot be employed in the production of nuclear weapons. Recent trends of nuclear disarmament and accumulation of plutonium from uranium fuel cycle can propel the deployment of thorium. The implementation capacity of thorium nuclear power is estimated to be about 392 GWe at 2050. The utilization of thorium will both help to provide clean energy and to supply rare-earth materials for clean automobiles. In order for us to effect the commercial deployment of thorium resources, establishment of an international framework to supply resources from developing countries as well as to supply technology from developed countries is indeed imperative. Herein, the author propose 'The Bank

  18. Fuel self-sufficient and low proliferation risk multi-recycling of spent fuel

    International Nuclear Information System (INIS)

    Cho, N. Z.; Hong, S. G.; Kim, T. H.; Greenspan, E.; Kastenberg, W. E.

    1998-01-01

    A preliminary feasibility study has been performed in search of promising nuclear energy systems which could make efficient use of the spent fuel from LWRs and be proliferation resistant. The energy considered consist of a dry process and a fuel-self-sufficient reactor which are synergistic. D 2 O, H 2 O and Pb (or Pb-Bi) are considered for the coolant. The most promising identified consists of Pb-cooled reactors with either an AIROX or an IFR-like reprocessing. H 2 O- (possibly mixed with D 2 O) cooled reactors can be designed to be fuel-self-sufficient and multi-recycle LWR spent fuel, provided they are accelerator driven. Moderator-free, D 2 O-cooled critical reactors can multi-recycle Th- 233 U fuel using IFR-type reprocessing; they are significantly more attractive than their thermal counterparts. H 2 O- (possibly mixed with D 2 O) cooled, accelerator-driven reactors appear attractive for converting Th into denatured 233 U using LWR spent fuel and the IFR process. The CANDU reactor technology appears highly synergistic with accelerator-driven systems. (author). 25 refs., 3 tabs., 6 figs

  19. Can British Columbia Achieve Electricity Self-Sufficiency and Meet its Renewable Portfolio Standard?

    NARCIS (Netherlands)

    Sopinka, A.; Kooten, van G.C.; Wong, L.

    2012-01-01

    British Columbia’s energy policy is at a crossroads; the province has set a goal of electricity self-sufficiency, a 93% renewable portfolio standard and provincial natural gas strategy that could increase electricity consumption by 2,500-3,800 MW. To ascertain the reality of BC’s supply position, we

  20. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  1. Relationships between paranoid thinking, self-esteem and the menstrual cycle.

    Science.gov (United States)

    Brock, Rosalind; Rowse, Georgina; Slade, Pauline

    2016-04-01

    This study aimed to investigate whether paranoid experiences and levels of self-esteem fluctuate over the menstrual cycle and whether levels of self-esteem are lower when perceived persecution is felt to be deserved. Measures of anxiety, depression, persecution, deservedness and self-esteem were completed on-line by 278 women over their menstrual cycle. Responses were compared at the paramenstrual (3 days before and after menses onset) and mid-cycle phase. At the paramenstrual phase persecution, negative self-esteem, anxiety and depression were higher and positive self-esteem was lower than at mid-cycle. A greater proportion of women experienced persecution as deserved at the paramenstrual phase. This was associated with higher depression and negative self-esteem scores. Increased levels of deservedness significantly strengthened the relationship between persecution and negative, but not positive, self-esteem. These findings suggest that the paramenstrual phase is a time of vulnerability to increased paranoid experiences, an increased likelihood that feelings of persecution will feel deserved and lowered self-esteem. The findings support the view that interpersonal sensitivities may be key to menstrual cycle symptoms and have an impact on relationships. Further, the study illustrated that ideas developed for psychosis could make a valuable contribution to understanding and managing this aspect of menstruation-related distress.

  2. Analyzing the impact of price subsidy on rice self-sufficiency level in Malaysia: A preliminary finding

    Science.gov (United States)

    Rahim, Farah Hanim Abdul; Abidin, Norhaslinda Zainal; Hawari, Nurul Nazihah

    2017-11-01

    The Malaysian government had targeted for the rice industry in the country to achieve 100% rice self-sufficiency where Malaysia's rice self-sufficiency level (SSL) is currently at 65% to 75%. Thus, the government had implemented few policies to increase the rice production in Malaysia in order to meet the growing demand of rice. In this paper, the effect of price support on the rice production system in Malaysia is investigated. This study utilizes the system dynamics approach of the rice production system in Malaysia where the complexity of the factor is interrelated and changed dynamically through time. Scenario analysis was conducted using system dynamics model by making changes on the price subsidy to see its effect on the rice production and rice SSL. The system dynamics model provides a framework for understanding the effect of price subsidy on the rice self-sufficiency level. The scenario analysis of the model shows that a 50% increase in the price subsidy leads to a substantial increase in demand as the rice price drops. Accordingly, the local production increases by 15%. However, the SSL slightly decreases as the local production is insufficient to meet the large demand.

  3. Thoron and associated risks in the handling of thorium compounds

    International Nuclear Information System (INIS)

    Pradel, J.; Billard, F.

    1959-01-01

    1. Thorium compounds continually give off thoron and its daughters and their radioactivity can constitute a danger for operators who may inhale them. 2. By analogy with radon the maximum admissible content in air of thoron and its daughters has been set at 10 -7 μc/cm 3 . However the differences in behaviour between radon and its active deposit on the one hand, and thoron and its daughters on the other, appear great enough to justify more thorough investigation. In fact it seemed probable that, contrary to what takes place with radon, the thoron + thorium A content at a given point may differ appreciable from the thorium B + thorium C + thorium C' + thorium C'' content at the same point, because of the considerable differences in half-life which allow a greater or lesser distribution. 3. To determine the relative concentrations it was necessary to develop a method for estimating thoron in equilibrium with thorium A, the measurement of thorium B and its daughters being carried out in the conventional way by counting the activity collected on a filter. 4. Another object of this study was to estimate the danger presented by thoron in equilibrium with thorium A in the immediate vicinity of thorium sources, in a plant extracting thorium from urano-thorianite. (author) [fr

  4. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility; Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium a n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Ferrant, L

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  5. The importance of thorium in the context of the generation in advanced reactors and the IPEN's experience

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Mindrisz, Ana C.; Freitas, Antonio A.

    2011-01-01

    thorium compounds and IPEN accumulated since the 60's a wide experience in the purification of thorium, obtained primarily from the monazite processing. Studies were also conducted on obtaining nuclear fuel based on thorium, the reduction of ThF 4 to metallic thorium, neutronic studies and proposition of reactor concepts based on the element. It should also be recorded that there was at IPEN, during this period, the production in pilot scale of over one hundred and seventy metric tons of thorium nitrate with high purity. In this paper, we present briefly the experience accumulated at IPEN-CNEN/SP-Brazil and the different areas that comprise the Thorium Fuel Cycle, and the possibilities and advantages of thorium use in the IV Generation Advanced Reactors. (author)

  6. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  7. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  8. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  9. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    Science.gov (United States)

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10 10 and 1.22 × 10 10  Gm 3  yr -1 , respectively, which results in positive virtual water balance of 4.05 × 10 10  Gm 3  yr -1 . Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10 10  Gm 3  yr -1 . The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  11. A system dynamics model for tritium cycle of pulsed fusion reactor

    International Nuclear Information System (INIS)

    Zhu, Zuolong; Nie, Baojie; Chen, Dehong

    2017-01-01

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  12. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: dehong.chen@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-05-15

    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  13. Early nutritional support and physiotherapy improved long-term self-sufficiency in acutely ill older patients.

    Science.gov (United States)

    Hegerová, Petra; Dědková, Zuzana; Sobotka, Luboš

    2015-01-01

    An acute disease is regularly associated with inflammation, decreased food intake, and low physical activity; the consequence is loss of muscle mass. However, the restoration of muscle tissue is problematic, especially in older patients. Loss of muscle mass leads to further decrease of physical activity which leads, together with recurring disease, to the progressive muscle mass loss accompanied by loss of self-sufficiency. Early nutrition support and physical activity could reverse this situation. Therefore, the aim of this study was to determine whether an active approach based on early nutritional therapy and exercise would influence the development of sarcopenia and impaired self-sufficiency during acute illness. Two hundred patients >78 y were admitted to a hospital internal medicine department and participated in a prospective, randomized controlled study. The patients were randomized to a control group receiving standard treatment (n = 100) or to an intervention group (n = 100). The intervention consisted of nutritional supplements (600 kcal, 20 g/d protein) added to a standard diet and a simultaneous intensive rehabilitation program. The tolerance of supplements and their influence on spontaneous food intake, self-sufficiency, muscle strength, and body composition were evaluated during the study period. The patients were then regularly monitored for 1 y post-discharge. The provision of nutritional supplements together with early rehabilitation led to increased total energy and protein intake while the intake of standard hospital food was not reduced. The loss of lean body mass and a decrease in self-sufficiency were apparent at discharge from the hospital and 3 mo thereafter in the control group. Nutritional supplementation and the rehabilitation program in the study group prevented these alterations. A positive effect of nutritional intervention and exercise during the hospital stay was apparent at 6 mo post-discharge. The early nutritional intervention

  14. Relationships between paranoid thinking, self-esteem and the menstrual cycle.

    OpenAIRE

    Brock, R.; Rowse, G.; Slade, P.

    2015-01-01

    This study aimed to investigate whether paranoid experiences and levels of self-esteem fluctuate over the menstrual cycle and whether levels of self-esteem are lower when perceived persecution is felt to be deserved. Measures of anxiety, depression, persecution, deservedness and self-esteem were completed on-line by 278 women over their menstrual cycle. Responses were compared at the paramenstrual (3 days before and after menses onset) and mid-cycle phase. At the paramenstrual phase persecuti...

  15. Competitive biosorption of thorium and uranium by Micrococcus luteus

    International Nuclear Information System (INIS)

    Nakajima, A.; Tsuruta, T.

    2004-01-01

    Eighteen species of bacteria were screened for abilities to adsorb thorium and uranium. High adsorption capacity was observed for thorium by Arthrobacter nicotianae and Micrococcus luteus, and for uranium by Arthrobacter nicotianae. The adsorption of both thorium and uranium by Micrococcus luteus cells was rapid, was affected by the solution pH, and obeyed the Langmuir adsorption isotherm for binary systems in a competitive manner taking the ionic charge of the metal ion into account. The thorium selectivity in the competitive adsorption is assumed to be caused by the faster adsorption and the slower desorption rates of thorium than those of uranium. (author)

  16. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  17. SUSTAINING PADDY SELF-SUFFICIENCY AND LAND DEMANDS IN SABAH, MALAYSIA: A STRUCTURAL PADDY AND RICE ECONOMETRIC MODEL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Wong Kelly_Kai_Seng

    2017-01-01

    Full Text Available The objective of this study is to construct an econometric commodity model in order to forecast the long term rice production performance of the state of Sabah, Malaysia. The baseline projection shows that the Sabah rice self-sufficiency is estimated to achieve approximately38% in the next 10 years due to the scarcity of the suitable land bank allocate for paddy cultivation. In order to achieve 60% of targeted rice self-sufficiency level (SSL, the size of land for paddy cultivation must be increased in Sabah. Based on the scenario simulation projection result, the expansion of paddy cultivation area will contribute a positively to the industrial rice production and consequently achieving the expected 60% of SSL by the end of 2024. In a nutshell, the state government of Sabah possess state autonomy on the land management, thus the state government plays a significant key role on promoting the local rice self-sufficiency level in the long-term period

  18. Recovering of thorium contained in wastes from Thorium Purification Plant; Reaproveitamento do torio contido em residuos provenientes da Usina de Purificacao do Torio

    Energy Technology Data Exchange (ETDEWEB)

    Brandao Filho, D; Hespanhol, E C.B.; Baba, S; Miranda, L E.T.; Araujo, J.A. de

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author).

  19. Towards proliferation-resistant thorium fuels

    International Nuclear Information System (INIS)

    Alhaj, M. Yousif; Mohamed, Nader M.A.; Badawi, Alya; Abou-Gabal, Hanaa H.

    2017-01-01

    Thorium-plutonium mixture is proposed as alternative nuclear reactor fuel to incinerate the increasing stockpile plutonium. However, this fuel will produce an amount of uranium with about 90% 233U at applicable discharge burnups (60GWD/MTU). This research focuses on proposing an optimum non proliferative thorium fuel, by adding a small amount of 238U to reduce the attractiveness of the resultant uranium. Three types of additive which contain 238U were used: 4.98% enriched, natural and depleted uranium. We found that introducing uranium to the fresh thorium-plutonium fuel reduces its performance even if the uranium was enriched up to 5%. While uranium admixtures reduce the quality of the reprocessed uranium, it also increases the quality of the plutonium. However, this increase is very low compared to the reduced quality of uranium. We also found that using uranium as admixture for thorium-plutonium mixed fuel increases the critical mass of the extracted uranium by a factor of two when using only 1% admixture of uranium. The higher the percentage of uranium admixture the higher the critical mass of the reprocessed one.

  20. Polarographic determination of trace amounts of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Zaofan Zhao; Xiaohua Cai; Peibiao Li; Handong Yang

    1986-07-01

    A sensitive linear-sweep polarographic method for the determination of thorium is described. It is based on the thorium complex with Xylidyl Blue I (XBI) in a medium containing ethylenediamine, 1, 10-phenanthroline, oxalic acid and ninhydrin, at pH 10.5-11.5. The complex has been proved to be Th(XBI)/sub 2/, with log ..beta..'=9.6. The method can be used to determine trace amounts of thorium over the range 3.5x10/sup -8/-3x10/sup -6/M. The detection limit is 1x10/sup -8/M. A solvent extraction procedure is necessary to eliminate interference from several cations. The method has been applied to determination of traces of thorium in minerals, with good results.

  1. Thorium exposure in a niobium mine

    International Nuclear Information System (INIS)

    Fonseca, Adelaide M. Gondin da

    1995-01-01

    The workers involved in the mineral process to obtain Nb-Fe alloy are exposure to thorium. Internal contamination with radioactive materials is a common problem. This is caused by presence of U and Th and their natural decay series associated with the mine ore. The examples are the workers at the niobium mine located in the state of Goias. Twenty mine workers were evaluated using in vitro bioassay techniques. Samples of urine and feces from occupationally exposed mine workers were analyzed for thorium isotopes. The fecal samples corresponding to one complete excretion and urine sample corresponding to a 24 hours collection were analyzed using alpha spectrometry. The results of thorium excretion (feces) have shown that in all the samples the 228 Th excretions in high than 232 Th. Thorium concentration in all the urine samples were below limit of detection that is approximately 1 mBq/l. (author). 3 refs., 1 fig., 1 tab

  2. Parametric study of a thorium model

    International Nuclear Information System (INIS)

    Lourenco, M.C.; Lipsztein, J.L.; Szwarcwald, C.L.

    2002-01-01

    Models for radionuclides distribution in the human body and dosimetry involve assumptions on the biokinetic behavior of the material among compartments representing organs and tissues in the body. One of the most important problem in biokinetic modeling is the assignment of transfer coefficients and biological half-lives to body compartments. In Brazil there are many areas of high natural radioactivity, where the population is chronically exposed to radionuclides of the thorium series. The uncertainties of the thorium biokinetic model are a major cause of uncertainty in the estimates of the committed dose equivalent of the population living in high background areas. The purpose of this study is to discuss the variability in the thorium activities accumulated in the body compartments in relation to the variations in the transfer coefficients and compartments biological half-lives of a thorium-recycling model for continuous exposure. Multiple regression analysis methods were applied to analyze the results. (author)

  3. Initial and transition cycle development for KALIMER uranium fueled core

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Kim, Young In; Kim, Young Jin; Park, Chang Kue

    1998-01-01

    An economic and safe equilibrium Uranium metallic fuelled core having been established, strategic loading schemes for initial and transition cycles to early reach target equilibrium cycles are suggested for U-U and U-Pu transition cycles. An iterative method to find initial core enrichment splits is developed. With non-uniform feed enrichments at the initial core adopted, this iterative method shows KALIMER can reach Uranium equilibrium cycles just after 4 reloads, keeping feed enrichment unchanged from cycle 2. Recycling of self-generated Pu is not sufficient to make KALIMER a pure Pu equilibrium core even after 56 reloads. equilibrium cycles are suggested for U-U and U-Pu transition cycles. An iterative method to find initial core enrichment splits is developed. With non-uniform feed enrichments at the initial core adopted, this iterative method shows KALIMER can reach Uranium equilibrium cycles just after 4 reloads, keeping feed enrichment unchanged from cycle 2. Recycling of self-generated Pu is not sufficient to make KALIMER a pure Pu equilibrium core even after 56 reloads

  4. Extractive spectrophotometric determination of thorium

    International Nuclear Information System (INIS)

    Venkatesan, M.; Gopalakrishnan, V.; Ramanujam, A.; Nadkarni, M.N.

    1981-01-01

    An extractive spectrophotometric method has been standardized for the analysis of 0.2 to 1.6 milligrams of thorium present in nitric acid solutions. The method involves the extraction of thorium from nitric acid solutions into 0.5 M thenoyl trifluoro acetone (HTTA) in benzene and its direct estimation from the organic extract by spectrophotometry as Thoron colour complex. In this method, interference due to iron upto 5 milligrams can be suppressed by adding ascorbic acid in the ratio of 1:2 prior to HTTA extraction. Uranium(VI) does not interefere even when present in 2000 times the amount of thorium. Plutonium and cerium do not interfere at one milligram level whereas zirconium interferes in this method. The overall error variation and precision of this method has been determined to be +- 3.5%. (author)

  5. Thorium fuel performance assessment in HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J. [Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen, D-52072 Aachen (Germany); Kania, M.J.; Nabielek, H. [Forschungszentrum Jülich, D-52425 Jülich (Germany); Verfondern, K., E-mail: k.verfondern@fz-juelich.de [Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-05-01

    Thorium as a nuclear fuel is receiving renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTR development employed thorium together with high-enriched uranium. After 1980, most HTR fuel systems switched to low-enriched uranium. After completing fuel development for AVR and THTR with BISO coated particles, the German program expanded efforts on a new program utilizing thorium and high-enriched uranium TRISO coated particles for advanced HTR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of LTI inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with HTI-BISO coatings. The improved performance of the HEU (Th,U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 °C in normal operations and 1600 °C in accidents, with burnups up to 13% FIMA and fast fluences to 8 × 10{sup 25} m{sup −2} (E > 16 fJ), the results exceed the design limits on manufacturing and operational requirements for the German HTR Modul concept, which were: <6.5 × 10{sup −5} for manufacturing; <2 × 10{sup −4} for normal operating conditions; and <5 × 10{sup −4} for accident conditions. These

  6. Optimization of Heterogeneous Fuel Designs for Utilization of Thorium In PWRs To Enhance Proliferation Resistance and Reduce Waste

    International Nuclear Information System (INIS)

    Todosow, M.; Galperin, A.

    2002-01-01

    This paper presents a summary of the first stage of the project aimed to examine heterogeneous core design options for the implementation of the thorium- 233 U fuel cycle in pressurized water reactors (PWRs) and to identify the core design and fuel management strategies that will maximize the benefits from inclusion of thorium in the fuel. The project is carried out within a framework of Nuclear Energy Research Initiative (NERI) supported by the US Department of Energy (1). Principal investigators are M. Todosow from Brookhaven National Laboratory and M. Kazimi from Massachusetts Institute of Technology with contributions from Kurchatov Institute (Russia) and Ben-Gurion University of the Negev (Israel). The fuel cycle assessment concentrates on key measures of performance in several important areas including proliferation characteristics of the spent fuel, reliability, safety, cost, environmental impact, and licensing issues

  7. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  8. Thorium: An energy source for the world of tomorrow ?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. The ThEC13 conference organized by iThEC at CERN last October has shown that thorium is seriously considered by developing countries as a key element of their energy strategy. Developed countries are also starting to move in the same direction. How thorium could make nuclear energy (based on thorium) acceptable to society will be discussed. Thorium can be used both to produce energy and to destroy nuclear waste. As thorium is not fissile, one elegant option is to use an accelerator, in so-called “Accelerator Driven Systems (ADS)”, as suggested by Carlo Rubbia. CERN’s important contributions to R&D on thorium related issues will be mentioned as well as the main areas where CERN could contribute to this field in the future.

  9. Thorium oxide dissolution kinetics for hydroxide and carbonate complexation

    International Nuclear Information System (INIS)

    Jardin, R.; Curran, V.; Czerwinski, K.R.

    2002-01-01

    The purpose of this project was to determine the kinetics and thermodynamics of thorium oxide dissolution in the environment. Solubility is important because it establishes an upper concentration limit on the concentration of a dissolved radionuclide in solution L1. While understanding the behavior of thorium fuels in the proposed repository at Yucca Mountain is most applicable, a more rigorous study of thorium solubility over a wide pH range was performed so that the data could also be used to model the behavior of thorium fuels in any environmental system. To achieve this, the kinetics and thermodynamics of thorium oxide dissolution under both pure argon and argon with P CO2 of 0. 1 were studied under the full pH range available in each atmosphere. In addition, thorium oxide powder remnants were studied after each experiment to examine structural changes that may affect kinetics

  10. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  11. A preliminary assessment of thorium as a fuel for thermal reactors

    International Nuclear Information System (INIS)

    Duret, M.F.; Halsall, M.J.

    1965-08-01

    This report presents a preliminary survey of the contributing factors to total fuel cost, for a variety of potentially economic fuel cycles. U 238 and Th 232 are considered as fertile materials with enrichments of U 235 , U 233 and plutonium. The total fuel cost comprises: (a) a fuel supply cost which is derived from a manufacturing cost and the fuel burnup, (b) as spent fuel credit, and (c) inventory charges. The interrelation of these three factors and their dependence on reactor flux, fuel burnup, the heat rating of the fuel and the interest rate are considered for each combination of fertile and fissile material. Results show inventory charges, spent fuel credit (hence processing costs) and fabrication costs have an important effect on the fuelling cost. In addition, using highly rated thorium-based fuels will affect reactor capital costs. Further, more detailed studies of reactor design, fuel design and fuel management schemes are now required to verify the attraction of using thorium as a reactor fuel. (author)

  12. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  13. Thorium research activities in Japan

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2015-01-01

    The nuclear energy policy in Japan is based on the Uranium-Plutonium fuel cycle with Light Water Reactors (LWR) and Fast Breeder Reactors (FBR). After the accident at Fukushima-Daiichi Nuclear Power Plant, the Japanese government recognizes the importance to ensure the flexibility for future nuclear power generation and then, it was specified in the latest Japanese strategic energy plan. Two research groups related to thorium fuelled nuclear systems and fuel cycle was set up in the Atomic Energy Society of Japan in 2013. One is a 'Research Committee on Nuclear Applications of Molten Salt'. The committee was established to discuss the current molten-salt technology including molten-salt cooled reactor, molten-salt fuelled reactor, accelerator driven system, fusion reactor blankets and dry reprocessing processes. Throughout two years discussion, the committee summarizes a current state of the art and issues of molten-salt application systems. Committee also discussed the handling technologies for molten-salt reactors especially in China and United Kingdom, issues of molten-salt application to fusion reactor, dry reprocessing of spent nuclear fuel, and non-nuclear application of molten-salt. Term of the committee will be extended for further research activities

  14. Fabrication routes for Thorium and Uranium233 based AHWR fuel

    International Nuclear Information System (INIS)

    Danny, K.M.; Saraswat, Anupam; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun

    2011-01-01

    India's economic growth is on a fast growth track. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear Energy is best suited to meet this demand without causing undue environmental impact. Considering the large thorium reserves in India, the future nuclear power program will be based on Thorium- Uranium 233 fuel cycle. The major characteristic of thorium as the fuel of future comes from its superior fuel utilization. 233 U produced in a reactor is always contaminated with 232 U. This 232 U undergoes a decay to produce 228 Th and it is followed by decay chain including 212 Bi and 208 Tl. Both 212 Bi and 208 Tl are hard gamma emitters ranging from 0.6 MeV-1.6 MeV and 2.6 MeV respectively, which necessitates its handling in hot cell. The average concentration of 232 U is expected to exceed 1000 ppm after a burn-up of 24,000 MWD/t. Work related to developing the fuel fabrication technology including automation and remotization needed for 233 U based fuels is in progress. Various process for fuel fabrication have been developed i.e. Coated Agglomerate Pelletisation (CAP), impregnation technique (Pellet/Gel), Sol Gel Micro-sphere Pelletisation (SGMP) apart from Powder to Pellet (POP) route. This paper describes each process with respect to its advantages, disadvantages and its amenability to automation and remotisation. (author)

  15. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  16. Thorium: An energy source for the world of tomorrow

    Directory of Open Access Journals (Sweden)

    Revol J.-P.

    2015-01-01

    Full Text Available To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. Nuclear energy, which produces no green house gases and no air pollution, should be a leading candidate. How nuclear energy, based on thorium rather than uranium, could be an acceptable solution is discussed. Thorium can be used both to produce energy and to destroy nuclear waste. The thorium conference, organized by iThEC at CERN in October 2013, has shown that thorium is seriously considered by some major developing countries as a key element of their energy strategy. However, developed countries do not seem to move fast enough in that direction, while global cooperation is highly desirable in this domain. Thorium is not fissile. Various possible ways of using thorium will be reviewed. However, an elegant option is to drive an “Accelerator Driven System (ADS” with a proton accelerator, as suggested by Nobel Prize laureate Carlo Rubbia .

  17. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    International Nuclear Information System (INIS)

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-01-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  18. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  19. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  20. Bridging Expectations: Extension Agents’ Perception of a Gap between Expectations and Experience when Implementing the Indonesian Beef Self-Sufficiency Programme

    DEFF Research Database (Denmark)

    Gayatri, Siwi; Vaarst, Mette

    2016-01-01

    Beef self-sufficiency programme (BSSP) was launched in Indonesia in 2004 in response to the massive import of beef from other countries. The objective of the present article is to explore and discuss how Indonesian extension agents perceived the practical implementation of the programme, including...... of the programme, the future of self-sufficiency regarding beef production in the country, and how this learning could be captured and used for the future....

  1. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  2. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  3. Measurement of thorium content in gas mantles produced in India

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, P K [Bhabha Atomic Research Centre, Mumbai (India). Radiological Physics Div.; Chury, A J; Venkataraman, G [Bhabha Atomic Research Centre, Mumbai (India). Radiation Protection Services Div.

    1994-04-01

    Incandescent gas mantles, processed with thorium nitrate, were monitored for thorium content, using a 2 inch thick Nal(Tl) detector and detecting medium energy gamma radiations emitted by thorium daughters. Thirty different brands, manufactured in the country have been counted and most of them were found to contain thorium within the permissible limit specified by Atomic Energy Regulatory Board (AERB). (author). 5 refs., 1 fig., 3 tabs.

  4. Proposal and application of methodology for monitoring workers occupationally exposed to Thorium-232 and its decay products

    International Nuclear Information System (INIS)

    Dantas, Bernardo Maranhao

    1993-08-01

    Thorium-232 is the parent of one of the naturally occurring decay series and is widely spread on the earth's crust, being also present in higher concentrations at some deposits located mainly in Brazil and India. The occupational exposure to this radionuclide may occur in several steps of the thorium cycle. In Brazil, there is a large number of workers that should be monitored because they manipulate directly or indirectly different kinds of ores, raw materials and products containing significant amounts of thorium in its composition. In this study, the techniques developed specifically for the in vivo and in vitro monitoring of these workers are presented together with the application of these techniques to a group of selected workers classified as occupationally exposed. It is also presented the methodology by which the results obtained with these measurements are interpreted with the objective of identifying the main pathways of incorporation and reducing the internal doses to values as low as reasonably achievable. (author)

  5. Uranium and thorium content of some sedimentary and igneous rocks from the Rolla 10 x 20 quadrangle, Missouri

    International Nuclear Information System (INIS)

    Odland, S.K.; Millard, H.T. Jr.

    1979-01-01

    Uranium and thorium contents of 175 samples of Precambrian and overlying sedimentary rocks from 28 drill holes in the Rolla 1 0 x 2 0 quadrangle, Missouri, were determined in 1978 as part of the National Uranium Resource Evaluation (NURE) effort. The limited number of drill-hole samples analyzed and the great distance between drill holes does not provide sufficient analytical data for an evaluation of the uranium potential in this quadrangle. However, because NURE studies in the quadrangle have been recessed, the data at hand are being made available in this report. The 175 rock samples for uranium and thorium analyses were selected to determine the uranium and thorium content of lower Paleozoic stratigraphic units in the quadrangle, and to test the conceptual model of uranium accumulation in basal sandstones, conglomerates, and arkoses that onlap the Precambrian igneous rocks. The conceptual model of uranium in intragranitic veins was not tested, because not all drill holes penetrate Precambrian rocks and none penetrate them more than a few meters

  6. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  7. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  8. The environmental behaviour of uranium and thorium

    International Nuclear Information System (INIS)

    Sheppard, M. I.

    1980-08-01

    Uranium and thorium have had many uses in the past, and their present and potential use as nuclear fuels in energy production is very significant. Both elements, and their daughter products, are of environmental interest because they may have effects from the time of mining to the time of ultimate disposal of used nuclear fuel. To assess the impact on the environment of man's use and disposal of uranium and thorium, we must know the physical, chemical and biological behaviour of these elements. This report summarizes the literature, updating and extending earlier reviews pertaining to uranium and thorium. The radiological properties, chemistry, forms of occurrence in nature, soil interactions, as well as distribution coefficients and mode of transport are discussed for both elements. In addition, uranium and thorium concentrations in plants, plant transfer coefficients, concentrations in soil organisms and methods of detection are summarized. (auth)

  9. Environmental control technology for mining, milling, and refining thorium

    International Nuclear Information System (INIS)

    Weakley, S.A.; Blahnik, D.E.; Young, J.K.; Bloomster, C.H.

    1980-02-01

    The purpose of this report is to evaluate, in terms of cost and effectiveness, the various environmental control technologies that would be used to control the radioactive wastes generated in the mining, milling, and refining of thorium from domestic resources. The technologies, in order to be considered for study, had to reduce the radioactivity in the waste streams to meet Atomic Energy Commission (10 CFR 20) standards for natural thorium's maximum permissible concentration (MPC) in air and water. Further regulatory standards or licensing requirements, either federal, state, or local, were not examined. The availability and cost of producing thorium from domestic resources is addressed in a companion volume. The objectives of this study were: (1) to identify the major waste streams generated during the mining, milling, and refining of reactor-grade thorium oxide from domestic resources; and (2) to determine the cost and levels of control of existing and advanced environmental control technologies for these waste streams. Six potential domestic deposits of thorium oxide, in addition to stockpiled thorium sludges, are discussed in this report. A summary of the location and characteristics of the potential domestic thorium resources and the mining, milling, and refining processes that will be needed to produce reactor-grade thorium oxide is presented in Section 2. The wastes from existing and potential domestic thorium oxide mines, mills, and refineries are identified in Section 3. Section 3 also presents the state-of-the-art technology and the costs associated with controlling the wastes from the mines, mills, and refineries. In Section 4, the available environmental control technologies for mines, mills, and refineries are assessed. Section 5 presents the cost and effectiveness estimates for the various environmental control technologies applicable to the mine, mill, and refinery for each domestic resource

  10. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/IPEN-SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of σγ 0 = 14.6±0.7 mb was found, quite different from the σγ 0 = 174.2 ± 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  11. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  12. The possibility of precipitating thorium soap from aqueous solutions

    International Nuclear Information System (INIS)

    Drathen, H.

    1975-01-01

    The purpose of the analysis was firstly to determine the precipitation process of thorium with soap and the influence of foreign ions, secondly to explain the conditions for the best method of decontaminating waste waters contaminated by thoriuum. The result was that if thorium is precipitated with soap both thorium soaps and thorium hydroxide are formed. The proportion of each substance depends considerably upon the pH value. All the precipitation compounds exist independently. No adsorption or mixed crystal formation took place. By adding bivalent or multivalent cations the one-step decontamination factor increases to more than 20. Quantitatively, the decontamination of thorium contaminated waste waters can be carried out down to a thorium concentration of 10 -5 mol/1. Technical soaps provide the least expensive solution without displaying any qualitative disadvantages. The only disadvantage is that this method cannot be used continuously. Therefore ion exchangers provide a great advantage, although they are very expensive and have a limited capacity. The best solution, then, is a combination of ion exchangers and precipitation with soap. (orig.) [de

  13. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  14. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  15. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium nitrate purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of s ? o = 14.6 +/- 0.7 mb was found, quite different from the s ? o = 174.2 +/- 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  16. Thorium contents in soils, vegetables, cereals, and fruits

    International Nuclear Information System (INIS)

    Frindik, O.

    1989-01-01

    Thorium contents (α-activities of the naturally occurring isotopes Th-228, Th-230, and Th-232) were detrmined in soils, vegetables, cereals, and fruits. The thorium content of plants depends on the degree of contamination by soil resuspension and thus on the specific surface of the plants. The activity of the isotope Th-230 is almost the same as that of the main isotope Th-232. Th-228, with about the same activity as Th-232 in soil, increases to about 10-fold the activity in vegetables, 29-fold in sweet chestnuts and 740-fold in Brazil nuts. Thorium concentration factors from the soil to these vegetable products are calculated; they include the total concentration, not only the soluble portion of thorium. (orig.) [de

  17. Recovery of lead-208 radiogenic of residues of thorium with rare earth

    International Nuclear Information System (INIS)

    Ferreira, J.C.; Freitas, A.A. de; Seneda, J.A.F.; Carvalho, M.S. de; Abrao, A.

    2008-01-01

    In the middle of the years 1970 in IPEN, considerable work for the purification and conversion of uranium and thorium project, the production of thorium nitrate, a pilot scale from different compounds of Thorium was accomplished; This installation of thorium nitrate produced for national marketing, given the industry of incandescent lighting gas mangles.. The method used by this installation was the purification by solvent extraction with pulsed columns. The thorium was in the organic phase, which was reversed as of thorium nitrate with a high degree of purity. The aqueous phase of this chemical process, containing impurities, some not extracted thorium and virtually all rare earths was precipitated in the form of a hydroxide. This was called RETOTER hydroxide (residue of Thorium and Rare Earth). This residue containing thorium, rare earth and some impurities such as lead-208 product of the decay of thorium-232 were stored in the shed of safeguarding IPEN for further recovery of thorium and rare earth. In this work was studied the recovery of lead-208, nuclear material of interest, separating it by the technique of cementation , where it adds zinc metallic to an acid solution of RETOTER, holding up the lead on the surface of the metallic zinc. (author)

  18. Health status and body radioactivity of former thorium workers

    International Nuclear Information System (INIS)

    Stehney, A.F.; Polednak, A.P.; Rundo, J.; Brues, A.M.; Lucas, H.F. Jr.; Patten, B.C.; Rowland, R.E.

    1981-01-01

    The objectives of the study are: (1) to assess possible health effects of employment in the thorium milling industry by comparison of mortality and morbidity characteristics of former thorium workers with those of suitable general populations; (2) to examine disease outcomes by estimated exposure levels of thorium and thoron daughter products for possible radiation-related effects; and (3) to determine the body distribution of inhaled thorium (and daughters) and rare earths in humans by radioactivity measurements in vivo and by analysis of autopsy samples. The principal end points for investigation are respiratory disease and cancers of lung, liver, bone, and bone marrow

  19. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  20. Determination of Uranium and Thorium in Drinking and Seawater

    International Nuclear Information System (INIS)

    Rozmaric Macefat, M.; Gojmerac Ivsic, A.; Grahek, Z.; Barisic, D.

    2008-01-01

    Uranium and thorium are the first members of natural radioactive chain which makes their determination in natural materials interesting from geochemical and radioecological aspect. They are quantitatively determined as elements by spectrophotometric method and/or their radioisotopes by alpha spectrometry and ICP-MS. It is necessary to develop inexpensive, rapid and sensitive methods for the routine researches because of continuous monitoring of the radioactivity level. Development of a new method for the isolation of uranium and thorium from liquid samples and subsequent spectrophotometric determination is described in this paper. It is possible to isolate uranium and thorium from drinking and seawater using extraction chromatography or ion exchange chromatography. Uranium and thorium can be strongly bound on the TRU extraction chromatographic resin from 3 mol dm -3 HNO 3 (chemical recovery is 100 percent) and separated from other interfering elements (sodium, potassium, calcium, strontium etc). Their mutual separation is possible by using anion exchanger Amberlite CG-400 (NO 3 - form). From alcoholic solutions of nitric acid thorium can be strongly bound on the anion exchanger while uranium is much more weakly bound which enables its separation from thorium. After the separation, uranium and thorium are determined by spectrophotometric method with arsenazo III at 652 nm and 662 nm respectively. Developed method enables selection of the optimal mode of isolation for the given purposes.(author)

  1. Energy self-sufficiency

    International Nuclear Information System (INIS)

    Dickeman, R.L.

    1975-01-01

    The reasons why there has been a stronger commitment of capital, technical, and managerial resources to the nuclear fuel supply business, on the part of U.S. industry, are examined. First a number of observations are made on the economic risks involved, capital investment requirements and fuel growth projects. Considering the nuclear fuel industry as a whole, the need for industry, government, electric utilities, and the public, to respond to its challenge is stressed. Sources of bottlenecks to expanding production are then considered for the various sectors of the fuel cycle. The most essential ingredients for the industry are described as: the recognition that provision of nuclear fuels falls within the private sector; predictable industry requirements for the fuel; timely regulatory and licensing requirements, criteria and actions. (U.K.)

  2. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  3. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    Energy Technology Data Exchange (ETDEWEB)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

  4. Bioaccumulation of uranium and thorium from the solution containing both elements using various microorganisms

    International Nuclear Information System (INIS)

    Tsuruta, T.

    2006-01-01

    The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium

  5. Vil løyse global energikrise med thorium

    CERN Multimedia

    Aure, Gyri

    2007-01-01

    A professor from Bergen claims thorium can contribute to save the world from a global energy crisis. He wants Norway to construct the first accelerator driven reactor in the world powered by thorium. (5 pages)

  6. Thorium utilization in a small long-life HTR. Part I: Th/U MOX fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2014-02-15

    Highlights: • We propose thorium MOX (TMOX) fuel blocks for a small block-type HTR. • The TMOX fuel blocks with low-enriched uranium are recommended. • More thorium decreases the reactivity swing of the TMOX fuel blocks. • Thorium reduces the negative temperature coefficient of the TMOX fuel blocks. • Thorium increases the conversion ratio of the TMOX fuel blocks. - Abstract: The U-Battery is a small, long-life and transportable high temperature gas-cooled reactor (HTR). The neutronic features of a typical fuel block with uranium and thorium have been investigated for a application of the U-Battery, by parametrically analyzing the composition and geometric parameters. The type of fuel block is defined as Th/U MOX fuel block because uranium and thorium are assumed to be mixed in each fuel kernel as a form of (Th,U)O{sub 2}. If the initially loaded mass of U-235 is mostly consumed in the early period of the lifetime of Th/U MOX fuel block, low-enriched uranium (LEU) as ignited fuel will not largely reduce the neutronic performance of the Th/U MOX fuel block, compared with high-enriched uranium. The radii of fuel kernels and fuel compacts and packing fraction of TRISO particles determine the atomic ratio of the carbon to heavy metal. When the ratio is smaller than 400, the difference among them due to double heterogeneous effects can be neglected for the Th/U MOX fuel block. In the range between 200 and 400, the reactivity swing of the Th/U MOX fuel block during 10 years is sufficiently small. The magnitude of the negative reactivity temperature coefficients of the Th/U MOX fuel block decreases by 20–45%, which is positive to reduce temperature defect of the Th/U MOX fuel block. The conversion ratio (CR) of the fuel increases from 0.48 (typical CR of the LEU-fueled U-Battery) to 0.78. The larger conversion ratio of the Th/U MOX fuel block reduces the reactivity swing during 10 years for the U-Battery.

  7. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    Science.gov (United States)

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spallation symbiont and thorium breeding

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The medium term world energy and environment countermeasures for 2020-2070 are not yet clearly established. The forecast of energy situation hereafter, its problems and the measures for solution are considered. World trend is removing borders, and the north-south problems are increasing the importance. The rational and clear idea with the support of concrete technology is required. The demand of energy will increase enormously at the annual rate of 2.3%. The world energy situation was forecast considering the increase of population, and it will be 115 TW at the end of the next century. The present status, problems and the countermeasures in nuclear fission energy technology are explained. The countermeasures should be based on three principles, namely Th-U-233 cycle, the utilization of molten fluoride fuel medium and the separation of molten salt breeders and molten salt reactors. Accelerator molten salt breeders, small molten salt reactors, the nuclear fuel cycle and the annihilation process for radioactive wastes are reported. The perspective that the nuclear energy system, in which the reactor safety, the measures to wastes and others are improved by the spallation-fission symbiont using thorium molten salt as the working medium, can be constructed is shown. (K.I.)

  9. Immobilization of thorium over fibroin by polyacrylonitrile (PAN)

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Eral, M.

    1997-01-01

    This report describes a process for immobilization of thorium over fibroin, which was used as a bio-adsorbant, by polyacrylonitrile. The amounts of thorium in aqueous solutions which may be leached in various aqueous ambients were detected by a spectrophotometer. The results show that polyacrylonitrile processes are feasible to immobilize spent fibroins. The leachability of the materials immobilized with polyacrylonitrile can meet the requirements of storage and final disposal. The leachability of thorium ions from immobilized spent fibroin was rather low for 8 months

  10. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    Science.gov (United States)

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  11. Analysis of the thorium inclusion in the fuel of a fast reactor cooled by lead

    International Nuclear Information System (INIS)

    Juarez M, L. C.; Francois L, J. L.

    2017-09-01

    In the present work, we first verified a model of the European reactor cooled with lead (ELFR). The calculations were made with the code Monte Carlo serpent 2.27 and the library of cross sections Jeff-3.1. For this verification, three neutron parameters were compared: the evolution of the neutron multiplication factor, the Doppler constant and the effect of the vacuum fraction of the refrigerant, obtaining a good approximation with the reference values. Subsequently, the inclusion of thorium as a fertile material within the fuel was analyzed and the same neutron parameters were compared with the original fuel. The evolution of criticality for the case of thorium fuel differs significantly with respect to that of the original fuel (without thorium); this is due mainly to the breeding of the fissile isotope 233 U. Therefore, is possible to have a longer fuel cycle, favoring the availability factor of the plant, without compromising the performance of the reactor since both the Doppler constant and the effect of the vacuum fraction of the refrigerant show a similar tendency to those of the original fuel, being negative in both cases. (Author)

  12. Self-sufficiency of an autonomous reconfigurable modular robotic organism

    CERN Document Server

    Qadir, Raja Humza

    2015-01-01

    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implem...

  13. Production of thorium nitrate from uranothorianite ores

    International Nuclear Information System (INIS)

    Brodsky, M.; Sartorius, R.; Sousseuer, Y.

    1959-01-01

    The separation of thorium and uranium from uranothorianite ores, either by precipitation or solvent-extraction methods, are discussed, and an industrial process for the manufacture of thorium nitrate is described. Reprint of a paper published in 'Progress in Nuclear Energy' Series III, Vol. 2 - Process Chemistry, 1959, p. 68-76 [fr

  14. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  15. Road-map design for thorium-uranium breeding recycle in PWR - 031

    International Nuclear Information System (INIS)

    Shengyi, Si

    2010-01-01

    The paper was focused on designing a road-map to finally approach sustainable Thorium-Uranium ( 232 Th- 233 U) Breeding Recycle in current PWR, without any other change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. At first, the paper presented some insights to the inherence of Thorium-Uranium fuel conversion or breeding in PWR based on the neutronics theory and revealed the prerequisites for Thorium-Uranium fuel in PWR to achieve sustainable Breeding Recycle; And then, various Thorium-based fuels were designed and examined, and the calculation results further validated the above theoretical deductions; Based on the above theoretical analysis and calculation results, a road-map for sustainable Thorium-Uranium breeding recycle in PWR was outlined finally. (authors)

  16. The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa.

    Science.gov (United States)

    Wang, Dingna; Zhou, Sai; Liu, Li; Du, Liang; Wang, Jianmei; Huang, Zhenling; Ma, Lijian; Ding, Songdong; Zhang, Dong; Wang, Ruibing; Jin, Yongdong; Xia, Chuanqin

    2015-05-01

    The effects of different hydroponic conditions (such as concentration of thorium (Th), pH, carbonate, phosphate, organic acids, and cations) on thorium uptake by Brassica juncea var. foliosa were evaluated. The results showed that acidic cultivation solutions enhanced thorium accumulation in the plants. Phosphate and carbonate inhibited thorium accumulation in plants, possibly due to the formation of Th(HPO4)(2+), Th(HPO4)2, or Th(OH)3CO3 (-) with Th(4+), which was disadvantageous for thorium uptake in the plants. Organic aids (citric acid, oxalic acid, lactic acid) inhibited thorium accumulation in roots and increased thorium content in the shoots, which suggested that the thorium-organic complexes did not remain in the roots and were beneficial for thorium transfer from the roots to the shoots. Among three cations (such as calcium ion (Ca(2+)), ferrous ion (Fe(2+)), and zinc ion (Zn(2+))) in hydroponic media, Zn(2+) had no significant influence on thorium accumulation in the roots, Fe(2+) inhibited thorium accumulation in the roots, and Ca(2+) was found to facilitate thorium accumulation in the roots to a certain extent. This research will help to further understand the mechanism of thorium uptake in plants.

  17. Methodology of simultaneous analysis of Uranium and Thorium by nuclear and atomic techniques. Application to the Uranium and Thorium dosing in mineralogic samples

    International Nuclear Information System (INIS)

    Fakhi, S.

    1988-01-01

    This work concerns essentially the potential applications of 100 kW nuclear reactor of Strasbourg Nuclear Research Centre to neutron activation analysis of Uranium and Thorium. The Uranium dosing has been made using: 239-U, 239-Np, fission products or delayed neutrons. Thorium has been showed up by means of 233-Th or 233-Pa. The 239-U and 233-Th detection leads to a rapid and non-destructive analysis of Uranium and Thorium. The maximum sensitivity is of 78 ng for Uranium and of 160 ng for Thorium. The Uranium and Thorium dosing based on 239-Np and 233-Pa detection needs chemical selective separations for each of these radionuclides. The liquid-liquid extraction has permitted to elaborate rapid and quantitative separation methods. The sensitivities of the analysis after extraction reach 30 ng for Uranium and 50 ng for Thorium. The fission products separation study has allowed to elaborate the La, Ce and Nd extractions and its application to the Uranium dosing gives satisfying results. A rapid dosing method with a sensitivity of 0.35 microgramme has been elaborated with the help of delayed neutrons measurement. These different methods have been applied to the Uranium and Thorium dosing in samples coming from Oklo mine in Gabon. The analyses of these samples by atomic absorption spectroscopy and by the proton induced X-ray emission (PIXE) method confirm that the neutron activation analysis methods are reliable. 37 figs., 14 tabs., 50 refs

  18. Preparation of microcuries of 234-thorium

    International Nuclear Information System (INIS)

    Suner, A.; La Gamma de Batistoni, A.M.; Botbol, J.

    1974-11-01

    A procedure for the preparation of microcuries of 234 Th from hydrochloric acid solutions of uranium (VI) is described. A solution of uranyl chloride in radioactive equilibrium with 234 Th (older than 6 months) and having 232 Th as carrier, is percoled through a Dowex 50 Wx8 (H + ) resin bed, wherein is absorbed 85% of Th and some uranium, which is then desorbed with 10 N HCl. The thorium remains in the column and is extracted later with a 0,025 M SO 4 H 2 plus 1 M SO 4 (NH 4 ) 2 solution. The thorium solution is freed from sulfate by precipitation with ammonia, dissolving the precipitate with 10 N HCl, whose solution is treated with Dowex 2x8 resin. The ion exchanger absorbs the anionic impurities and the thorium obtained is of high chemical and radiochemical purity. (author)

  19. Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda

    NARCIS (Netherlands)

    Bucagu, C.; Vanlauwe, B.; Wijk, van M.T.; Giller, K.E.

    2014-01-01

    Resource use and management are major determinants of the food self-sufficiency of smallholder farmers in sub-Saharan Africa. A study was conducted in Rwanda in two contrasting agro-ecological zones (Central plateau and Buberuka) to characterise farms, quantify their resource flows, and evaluate the

  20. Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali

    NARCIS (Netherlands)

    Traore, Bouba; Descheemaeker, Katrien; Wijk, van Mark T.; Corbeels, Marc; Supit, Iwan; Giller, Ken E.

    2017-01-01

    Future climate change will have far reaching consequences for smallholder farmers in sub-Saharan Africa, the majority of whom depend on agriculture for their livelihoods. Here we assessed the farm-level impact of climate change on family food self-sufficiency and evaluated potential adaptation

  1. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Science.gov (United States)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  2. Remeasurement of thorium-230 in the pore water of Lacnor tailings

    International Nuclear Information System (INIS)

    Snodgrass, W.J.; Hart, D.R.

    1990-02-01

    A resampling of the Lacnor tailings management area was undertaken under a comprehensive quality assurance programme to establish levels of thorium 230 in pore water. A quality assurance programme was established for field sampling, sample handling and transport, and laboratory procedures and reporting. The external audit was used to evaluate analytical bias (on synthetic and field samples) and precision (by comparison of duplicate-duplicate results). Accuracy was assessed using synthetic samples. The external audit indicates that thorium 230 measurements by the main laboratory are not significantly different from the interlaboratory average within standard statistical limits. The results of the audit are based on measurement of environmental samples and known synthetic samples. This shows that present and previous measurements of thorium 230 varying from 0,1 to 150 Bq/L are valid data. A qualitative interpretation of the controls on thorium 230 geochemistry is provided in terms of control by thorium 232 and thorium dioxide(c) solid phase. Generic dose estimates for consumption of water containing thorium 230 are made but require refinement ot account for the actual pH of the drinking water and the degree of dilution of the pore water. The results of this project indicate that the performance of the laboratory that will conduct future thorium 230 measurements can be assessed satisfactorily with a smaller scale external laboratory assurance programme. The programme should include replicate samples sent to each laboratory and interlaboratory comparison on samples having high and low values of thorium 230

  3. Thorium prospect of placer deposits in Koba area and its surroundings

    International Nuclear Information System (INIS)

    Ngadenin; Fd Dian Indrastomo; Widodo

    2012-01-01

    The objective of the present study of the thorium in placer of Koba, Central Bangka District. Bangka Belitung Province and its surrounding is to find out thorium prospect in alluvial deposits. The study method are geological and radiometrical mapping, grain counting and thorium grade analysis of pan concentrated. Result of the research reveals that lithology of the investigation area compose of meta sandstone unit with radiometric value of 35 c/s - 200 c/s, granite intrusion with radiometric value of 140-550 c/s and alluvial with radiometric value of 40-300 c/s SPP2NF. Content of monazite in the pan concentrated is approximately 7.54 %, content of thorium in pan concentrated of 1410 ppm, covered alluvial deposits of about 400 kilometers square with average thickness 3.77 meters. According to the study thorium prospect in Koba area is feasible to be Based on the type of deposit (placer) which are relatively easy to be mined at low cost, high content of monazite and thorium so that the prospect thorium Koba feasible to develop. (author)

  4. The thorium alloys in aeronautics: from material analysis to regulation application

    International Nuclear Information System (INIS)

    Laroche, P.; Cazoulat, A.; Gerasimo, P.

    1999-01-01

    The thorium handled in aeronautics is a mixing in variable proportion of different thorium isotopes and its daughter products, but the regulation considers only two alpha emitters (Th-232 and Th-228): the thorium being considered as a natural radioactive substance, the legislation and the activities authorised are less restrictive than for artificial elements, it is a paradoxical situation because the thorium has the annual limit of intake the lowest of the regulation. (N.C.)

  5. Tradeoffs in fuel cycle performance for most promising options - 15346

    International Nuclear Information System (INIS)

    Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.

    2015-01-01

    A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233 U instead of just 239 Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows

  6. Validation of main nuclear libraries used in thorium reactors using the Serpent code

    International Nuclear Information System (INIS)

    Faga, Lucas J.

    2017-01-01

    The purpose of this work is to validate the library of the Serpent standard database for systems containing U-233, U-235, Th-232, Pu-239 and Pu-240. The project will support the other projects of the newly created study group of Nuclear Engineering Center (CEN) of Instituto de Pesquisas Energéticas e Nucleares (IPEN), linked to the study of several types of reactors and their application in thorium cycles, a subject that gains more and more visibility, due to strong and potential promises of energy revolution. The results obtained at the end of the simulations were satisfactory, with the multiplication factors being effective close to 100 PCM of the values provided by the benchmarks, as expected for a validated library. The minimum distance between these values was 2 PCM and the maximum of 280 PCM. The final analysis demonstrates that the ENDF / B-VII library has validated nuclear data for the isotopes of interest and may be used in future thorium study group projects

  7. Study on Thorium Hidroxide and Ammonium Diuranate precipitation

    International Nuclear Information System (INIS)

    Damunir; Sukarsono, R; Busron-Masduki; Indra-Suryawan

    1996-01-01

    Thorium hydroxide and ammonium diuranate precipitation studied by the reaction of mixed thorium nitrate and uranyl nitrate using ammonium hydroxide. The purposes of this research was study of pH condition. U/Th ratio and NH 4 OH concentration on the precipitation. Mixed of thorium nitrate and uranyl nitrate 50 ml was reacted by excess ammonium hydroxide 2 - 10 M, pH 4-8, 40-80 o C of temperature and 5 - 100 % ratio of U/Th. The best of precipitation depend on thorium and uranium content on the precipitation. The experiment result for the best condition of precipitation was 25 % of ratio U/Th, pH 6 - 8, 60-80 o C of temperature, and 6 - 10 M concentration of ammonium hydroxide, was produced precipitate by 3,938 - 5,455 weight percent of mean concentration of U and 22,365-31,873 weight percent of mean concentration of Th

  8. Thorium (IV) toxicity of green microalgae from Scenedesmus and Monoraphidium genera

    International Nuclear Information System (INIS)

    Queiroz, Juliana Cristina de

    2009-01-01

    The toxicity of thorium by two green microalgae species, Monoraphidium sp. and Scenedesmus sp was studied. During the toxicity tests, the microalgae cultures were inoculated in ASM-I culture medium in the presence and absence of thorium (cultures at pH 8.0 and 6.0 in the absence of thorium, - control - and at pH 6.0 for thorium concentrations ranging from 0.5 to 100.0 mg/L Th). Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with the help of software developed by the group during the experiments. The difference in pH value in the culture medium did not affect the growth of the microalgae, and pH 6.0 was chosen as a reference in order not to compromise solubility and speciation of thorium in solution. The toxicity of the metal over the species was observed just for thorium concentrations over 50.0 mg/L. A Monoraphidium sp. culture containing 6.25x10 5 microorganisms/mL reached a final concentration of 5.52x10 7 microorganisms/mL in the presence of thorium in the concentration of 10.0 mg/L. If we consider the 100.0 ppm thorium solution reached a final concentration of 8.57x10 6 microorganisms/mL. Control tests indicated a final concentration of 2.51x10 7 microorganisms/mL at the end of the growth. Scenedesmus sp. cells proved to be more resistant to the presence of thorium in solution. Low concentrations of the radionuclide favored the growth of these microalgae. A culture containing 7.65x10 5 microorganisms/mL reached a final concentration of 2.25x10 6 microorganisms/mL, in the absence of thorium in the medium. Toxicological tests indicated a final culture concentration of 5.87x10 6 microorganisms/mL in the presence of 0.5 mg/L thorium. The software used for comparison of direct count method proved to be very useful for the improvement of accuracy of the results obtained and a decrease in the uncertainty in counting. Beyond these advantages it also allowed recording of the data. From the present results one can conclude, that the presence

  9. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility

    International Nuclear Information System (INIS)

    Ferrant, L.

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as 232 Th, 234 U, 233 U, 237 Np, 209 Bi, and nat Pb relative to 235 U et 238 U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  10. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  11. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  12. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors; Comparação de ciclos abertos de urânio e óxidos mistos de tório-urânio utilizando reatores avançados

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Letícia C.; Maiorino, José R., E-mail: goncalves.leticiac@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste.

  13. Thorium Nitrate Stockpile--From Here to Eternity

    International Nuclear Information System (INIS)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry, J. W.; Pecullan, M.; Reilly, F. K.

    2003-01-01

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile

  14. LFTR: in search of the ideal pathway to thorium utilization-development program and current status

    International Nuclear Information System (INIS)

    Soon, Benjamin

    2015-01-01

    Thorium has gained substantial attention as a potential energy source that could rival and eventually replace fossil fuels as humanity's primary energy source. This could not have come at a more opportune time as concerns about global climate change from CO 2 emissions and the approaching spectre of finite fossil fuel resources create serious challenges for the continuation of our advanced industrial societies, which are reliant on readily available and affordable energy. Thorium also potentially represents the catalyst with which the nuclear industry could reinvent itself and finally gain widespread public acceptance. There are many opinions on how to utilize thorium as a fuel, but the question of what constitutes an 'ideal' pathway has mostly been under-emphasized. Many specific characteristics of the thorium fuel cycle can differ significantly depending on the conditions and methodologies of utilization; characteristics such as safety, efficiency, waste profile and volume, and fissile protection can vary greatly according to reactor design and utilization philosophy. With thorium, we have been given an opportunity to start over, a blank slate. Therefore, in imagining the 'Thorium Economy' to come, it behoves the scientific and engineering communities to consider the most 'elegant' solution physically possible-what constitutes the 'ideal' and is it possible to reconcile it with what is both economically and technically practical? The characteristics desired of an 'ideal' nuclear reactor, in the areas of safety, efficiency, economy, and sustainability, and the 5 key design choices that could enable such a reactor will be discussed. This will be followed by an overview of the Liquid Fluoride Thorium Reactor, a 2-fluid Molten Salt Reactor currently under development by Flibe Energy in the United States. LFTR is a direct descendant of the MSRE, which was developed at Oak Ridge National Laboratory (ORNL) in the

  15. Thorium determination by x-ray fluorescence spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1991-11-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP/n-dodecane) solutions is described. The thin film technique for sample preparation and a suitable internal standard had been used. The best conditions for Thorium determination had been established studying some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions. With the established conditions, thorium was concentration range of to 200 g Th/L and in organic solutions (2-63g Th/L) with 1,5% of precision. The accuracy of the proposed method was 3% in aqueous and organic phases. The detection limit was 1,2μg thorium for aqueous solutions and 1,4μg for organic solutions. Uranium, fission products, corrosion products and Thorex reagent components were studied as interfering elements in the thorium analysis. The matrix effect was also studied using the Thorex process simulated solutions. Finally, the method was applied to thorium determination in irradiated thorium solutions with satisfactory results. (author)

  16. Thorium--uranium cycle ICF hybrid concept

    International Nuclear Information System (INIS)

    Frank, T.G.

    1978-01-01

    The results of preliminary studies of a laser-driven fusion-fission hybrid concept utilizing the 232 Th- 233 U breeding cycle are reported. Neutron multiplication in the breeding blanket is provided by a region containing 238 UO 2 and the equilibrium concentration of 239 PuO 2 . Established fission reactor technology is utilized to determine limits on operating conditions for high-temperature fuels and structures. The implications of nonproliferation policies for the operation of fusion-fission hybrid reactors are discussed

  17. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  18. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  19. High-quality thorium TRISO fuel performance in HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich GmbH (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH (Germany); Technische Hochschule Aachen (Germany); Nabielek, Heinz; Kania, Michael J.

    2013-11-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10{sup 25} n/m{sup 2} (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10{sup -5} for manufacturing, 2 x 10{sup -4} for normal operating conditions, and 5 x 10{sup -4

  20. High-quality thorium TRISO fuel performance in HTGRs

    International Nuclear Information System (INIS)

    Verfondern, Karl; Allelein, Hans-Josef; Nabielek, Heinz; Kania, Michael J.

    2013-01-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O 2 TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10 25 n/m 2 (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10 -5 for manufacturing, 2 x 10 -4 for normal operating conditions, and 5 x 10 -4 for accident conditions. These

  1. Experiences in running solvent extraction plant for thorium compounds [Paper No. : V-5

    International Nuclear Information System (INIS)

    Gopalkrishnan, C.R.; Bhatt, J.P.; Kelkar, G.K.

    1979-01-01

    Indian Rare Earths Ltd. operates a Plant using thorium concentrates as raw material, employing hydrocarbonate route, for the manufacture of thorium compounds. A small demonstration solvent extraction plant designed by the Chemical Engineering Division, B.A.R.C. is also being operated for the same purpose using a partly purified thorium hydrocarbonate as raw material. In the solvent extraction process, separation of pure thorium is done in mixer settlers using 40% mixture of tri-butyl phosphate in kerosene. Though a comparatively purer raw material of hydrocarbonate than thorium concentrate is used, heavy muck formation is encountered in the extraction stage. Production of nuclear grade thorium oxide has been successful so far as quality is concerned. The quality of thorium nitrate suffers in the yellow colouration and high phosphate content, the former being only partly controlled through the use of pretreated kerosene. When a larger solvent extraction plant is to be designed to use thorium concentrates as raw material, some of the problems encountered will be considered. (author)

  2. Recent trends of plutonium deposition observed in Japan: comparison with naturallithogenic radionuclides, thorium isotopes

    International Nuclear Information System (INIS)

    Hirose, K.; Igarashi, Y.; Aoyama, M.

    2005-01-01

    Plutonium in monthly deposition samples from 2000 to end of 2003 collected to Tsukuba (the Meteorological Research Institute), Japan is reported, together with monthly thorium deposition. The annual deposition of 239,240 Pri during the past 18 years. ranged from 1.7 to 7.8 mBq m -2 y -1 shows no systematic inter-annual variation. However, a maximum annual 239,240 Pu deposition (7.8 mBq m -2 y -1 ) was observed in 2002. On the other hand, monthly 239,240 Pu depositions show a typical seasonal variation with a maximum in spring season (March to April), which corresponds to the seasonal cycle of generation of dust storms in the East Asian arid area. Thorium, which is a typical lithogenic radionuclide, reflects soil-derived particles in the atmospheric dust. The monthly Th deposition showed a typical seasonal trend with a maximum in spring and minimum in summer. The 230 Th/ 232 Th activity ratios in the deposition samples significantly differed from that in surface soils collected in Tsukuba area, which means that a significant part of thorium in deposition samples is not derived from suspension of local soil particles. The result reveals that the resent 239,240 Pu deposition observed in Japan are attributed to resuspension of deposited plutonium; resuspended plutonium originates from the East Asian continent desert and arid areas. These findings suggest that a significant amount of soil dust observed in Tsukuba is attributable to the long-range transport of continental dust from the East Asian arid areas. Plutonium in deposition samples as does thorium would become a proxy of the environmental change in the Asian continent.

  3. Report on intercomparisons S-14, S-15, and S-16 of the determination of uranium and thorium in thorium ores

    International Nuclear Information System (INIS)

    Pszonicki, L.; Hanna, A.N.; Suschny, O.

    1983-06-01

    Twenty-nine laboratories from 18 countries took part in this intercomparison, organized by the IAEA's Analytical Quality Control Service, to help laboratories engaged in this task to check the reliability of their results. An additional aim was to establish the concentrations of thorium and uranium in three large batches of thorium ores and certifying them as reference materials. The evaluation was based on 438 individual results (108 laboratory means) for thorium, and on 412 individual results (106 laboratory means) for uranium. The number of laboratory means per element and per sample varied from 34 to 38. The methods most frequently used in the determination of both elements were neutron activation analysis and radiometry. They were followed by spectrophotometry and X-ray fluorescence analysis for thorium and by fluorimetry, X-ray fluorescence analysis and spectrophotometry for uranium determination, respectively. The relative uncertainty of all computed overall medians which were used as the best estimations of true values, does not exceed +-10% and +-5% for the concentration values below and above 0.1%, respectively

  4. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  5. Interpretation of thorium bioassay data

    International Nuclear Information System (INIS)

    Juliao, L.M.Q.C.; Azeredo, A.M.G.F.; Santos, M.S.; Melo, D.R.; Dantas, B.M.; Lipsztein, J.L.

    1994-01-01

    A comparison have been made between bioassay data of thorium-exposed workers from two different facilities. The first of these facilities is a monazite sand extraction plant. Isotopic equilibrium between 232 Th and 238 Th was not observed in excreta samples of these workers. The second facility is a gas mantle factory. An isotopic equilibrium between 232 Th and 228 Th was observed in extra samples. Whole body counter measurements have indicated a very low intake of thorium through inhalation. As the concentration of thorium in feces was very high it was concluded that the main pathway of entrance of the nuclide was ingestion, mainly via contamination through dirty hands. The comparison between the bioassay results of workers from the two facilities shows that the lack of Th isotopic equilibrium observed in the excretion from the workers at the monazite sand plant possibly occurred due to an additional Th intake by ingestion of contaminated fresh food. This is presumably because 228 Ra is more efficiently taken up from the soil by plants, in comparison to 228 Th or 232 Th, and subsequently, 228 Th grows in from its immediate parent, 228 Ra. (author) 5 refs.; 3 tabs

  6. Recovery and purification of rare earth elements and thorium

    International Nuclear Information System (INIS)

    Sungur, A.; Saygi, Z.; Yildiz, H.

    1985-01-01

    Rare earth elements and thorium found in the low-grade Eskisehir-Beylikahir ore have been recovered by HCl leaching, Lanthanides and thorium were separated and purified from the leach solutions through the precipitation sequence as double sulphate, hydroxide and oxalate. The Ln 2 O 3 and Th(OH) 4 products, finally obtained contained 36% Ce and 65% Th. The analysis of rare earth elements, thorium and other present ingredients were carried out by instrumental neutron activation analysis, atomic absorption spectroscopy, vis-spectroscopy and gravimetry. (author)

  7. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  8. INDONESIAN FOOD POLICY: THE PROGRAMS FOR STRENGTHENING FOOD SELF-SUFFICIENCY IN REFORMATION ERA

    Directory of Open Access Journals (Sweden)

    Kamrussamad

    2018-04-01

    Full Text Available The 2012 decree #18, the policy on food states that objective of food implementation is to meet basic human needs and provide fair, equitable, and sustainable benefits based on food sovereignty, food self-sufficiency, and national food security. Food sovereignty, independence and security are fundamental and supports implementation of policies related to food implementation in Indonesia. The 2012 decree #18 stated that food implementation aims to improve ability to produce food independently, provide a variety of food and meet the requirements of security, quality, and nutrition for public consumption.

  9. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  10. Depth-Resolved Cathodoluminescence of Thorium Dioxide

    Science.gov (United States)

    2013-03-01

    plutonium-239 (239Pu)-based nuclear weapons. Thorium also results in less highly radioactive waste in comparison to the uranium fuels. Thorium is four...diameters (1/4 – 3/8”) (Mann & Thompson, 2010). The 99.99% ThO2 powder was placed into the ampoule with a basic mineralizer such as cesium fluoride...conversion ranging from 1 pA/V to 1 mA/V. The electrical noise is further reduced by cooling the PMT housing unit with liquid nitrogen as seen in

  11. Fuel cycle flexibility in Advanced Heavy Water Reactor (AHWR) with the use of Th-LEU fuel

    International Nuclear Information System (INIS)

    Thakur, A.; Singh, B.; Pushpam, N.P.; Bharti, V.; Kannan, U.; Krishnani, P.D.; Sinha, R.K.

    2011-01-01

    The Advanced Heavy Water Reactor (AHWR) is being designed for large scale commercial utilization of thorium (Th) and integrated technological demonstration of the thorium cycle in India. The AHWR is a 920 MW(th), vertical pressure tube type cooled by boiling light water and moderated by heavy water. Heat removal through natural circulation and on-line fuelling are some of the salient features of AHWR design. The physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Our recent efforts have been directed towards a case study for the use of Th-LEU fuel cycle in a once-through mode. The discharged Uranium from Th-LEU cycle has proliferation resistant characteristics. This paper gives the initial core, fuel cycle characteristics and online refueling strategy of Th-LEU fuel in AHWR. (author)

  12. The comparative distribution of thorium and plutonium in human tissues

    International Nuclear Information System (INIS)

    Singh, Narayani P.; Shawki Amin Ibrahim; Cohen, Norman; Wrenn, McDonald E.

    1978-01-01

    Thorium is the most chemically and biologically similar natural element to the manmade element plutonium. Both are actinides, and for both the most stable valency state is +4, and solubility in natural body fluids is low. They are classified together in ICRP Lung Model. The present paper deals with the question of whether or not the analogy between the two actinides in terms of deposition and retention in human tissues is a good one. Preliminary results on the thorium contents ( 228,230 Th and 232 Th) of three sets of human tissues from a western U.S. town containing a uranium tailings pile are compared with the reported values of plutonium content of human tissues from the general populations who are exposed to environmental plutonium from fallout of nuclear detonations. Samples were taken at autopsy where sudden death had occurred. For the three isotopes of thorium, the ratio of the content of each (pCi/organ, normalized by organ weight to ICRP Reference Man) in lung to lymph nodes varies from 2-25 for individuals with a mean of 8; this is similar to that we infer from the literature for 239 , 240 Pu which suggests a ratio of lung to lymph nodes with a mean of approximately 7. However, the relative thorium contents of lung and liver are dissimilar, lung/liver for thorium being 3.5 and for plutonium 0.2 to 0.1. Similarly, the ratios of thorium and plutonium content of liver and bone vary significantly; the ratio for thorium is 0.1 and for plutonium 0.8 to 0.5. The most significant observation at this stage is that the relative accumulation of thorium in human liver is much less than that of plutonium. Some of the plausible reasons will be discussed. (author)

  13. Impact of Market Reforms on the Agricultural Sector Development and Food Self-Sufficiency in the Northern Region

    Directory of Open Access Journals (Sweden)

    Valentin Aleksandrovich Ivanov

    2016-03-01

    Full Text Available The successful development of Northern and Arctic areas depends on sustainable functioning of the agricultural sector. Agriculture and fishing agriculture is a way of life of the indigenous population. The article discusses the state of agriculture and food self-sufficiency in the Komi Republic in the years of relatively stable development (1960–1980 and in the conditions of market reforms. It analyzes production and consumption of food and shows a positive effect of modernization processes on the agricultural sector in the pre-reform period. It studies market transformation of the agrarian economy, accompanied in the 1990s by the sharp decline in agricultural production, degradation of productive capacity, rural demography, rural infrastructure, decrease in living standard of farmers, and disparity of prices on agricultural and industrial products. The paper discloses trends in food self-sufficiency of the northern region in 1980–2013 and reveals reasons for the decrease in its level in the period of market reforms. It considers possible scenarios to develop the agrarian sector and food self-sufficiency. To predict the agriculture development the author identifies strong and weak sides, opportunities and threats by means of SWOT-analysis. The article proposes 3 scenarios: inertial (pessimistic, baseline and optimistic. It finds out the most reasonable optimistic development scenario based on innovative modernization for the Komi Republic. The study results can be used to adjust the current State program of agricultural development and elaborate the strategy of the agro-food sector of the region

  14. Economics and utilization of thorium in nuclear reactors

    International Nuclear Information System (INIS)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers

  15. Technical soaps - a possibility of decontaminating thorium-contaminated waste waters

    International Nuclear Information System (INIS)

    Drathen, H.; Erichsen, L. v.

    1977-01-01

    Thorium-contaminated waste waters showing a concentration of thorium higher than 10sup(-5) mol/l can be quantitatively decontaminated by adding soaps. Concentrations of impurity ions of both tap and sea waters have been taken into consideration. As there is no difference between soaps and soap mixtures concerning the quantity of precipitation rates, technical soaps are from the economic point of view best suited for decontaminating thorium-contaminated waste waters. Having a soap concentration of 200% of the stoichiometric amount of thorium and a concentration of impurity ions of 10sup(-2) mol/l, it is assumed that decontamination factors of more than 20 can be reached in one step. (orig.) [de

  16. Heavy water reactors on the once-through uranium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the once-through uranium fuel cycle for use in early comparisons of alternate nuclear systems. The denatured thorium fuel cycle is discussed in a companion paper. Information for this paper was developed under an ongoing program, and more complete reporting of the evaluation of the heavy water reactor and its fuel cycles is planned toward the end of the year

  17. The TMSR as actinide burner and thorium breeder

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Allibert, M.; Ghetta, V.

    2007-01-01

    Molten Salt Reactors (MSRs) are one of the six systems retained by Generation IV as a candidate for the next generation of nuclear reactors. Molten Salt Reactor is a very attractive concept especially for the Thorium fuel cycle which allows nuclear energy production with a very low production of radio-toxic minor actinides. Studies have thus been done on the Molten Salt Breeder Reactor (MSBR) of Oak-Ridge to re-evaluate this concept. They have shown that the MSBR suffers from major drawbacks concerning for example safety and reprocessing, drawbacks incompatible with any industrial development. On the other hand, the advantages of the Thorium fuel cycle were too attractive not to look further into it. With these considerations, we have reassessed the whole concept to propose an innovative reactor called Thorium Molten Salt Reactor (TMSR). Many parametric studies of the TMSR have been carried out, correlating the core arrangement and composition, the reprocessing performances, and the salt composition. In particular, by changing the moderation ratio of the core the neutron spectrum can be modified and placed anywhere between a very thermalized neutron spectrum and a relatively fast spectrum. Even if the epithermal TMSR configurations have not been completely excluded by our calculations, our studies have shown that the reactor design where there is no graphite moderator inside the core appears to be the most promising in terms of safety coefficients, reprocessing requirements, and breeding and deployment capabilities. Larger fissile matter inventories are necessary in such a reactor configuration compared to the thermalized TMSR configurations, but the resulting deployment limitation could be solved by using transuranic elements as initial fissile load. This work is based on the coupling of a neutron transport code called MCNP with the materials evolution code REM. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves

  18. Thorium converter (ThorCon) - a doable molten salt reactor

    International Nuclear Information System (INIS)

    Myneni, Ganapati

    2015-01-01

    ThorCon mass-producible nuclear power plants are being built to generate electricity cheaper than coal, at a scale to make a real improvement in world poverty and environment, now. ThorCon irradiated materials and fuel salt are designed to be replaced in four-year cycles with no impact on electricity generation. This flex-fuel plant and its replaceable reactor cans can operate with mixtures of thorium and uranium at multiple enrichments. Fuel salt can be NaF/BeF 2 or LiF/BeF 2 if available. ThorCon's design exceeds current nuclear power safety practice. The team calls for regulatory participation in rigorous testing of a full-scale prototype to develop licensing guidance

  19. Potential use of thorium through fusion breeders in the Indian context

    International Nuclear Information System (INIS)

    Srinivasan, M.; Basu, T.K.; Subba Rao, K.

    1991-01-01

    The Indian Nuclear Programme is based on a three stage strategy: the first stage of about 10 GWe comprises of natural uranium fuelled Pressurised Heavy Water Reactors (PHWRs); the second stage would consist of Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) to be fuelled with plutonium generated in the first stage PHWRs and the third stage is envisaged to be based on advanced converters/breeders operating on the Th/U-233 cycle. It has generally been assumed that the initial inventory of U-233 for the third stage reactors would be generated in the blankets of LMFBRs containing thorium. But the success of this strategy depends crucially on the attainment of LMFBR doubling times as short as 14 years. The progress registered in recent years in the magnetic confinement of fusion plasmas has opened up the prospects of developing Fusion Breeders for the direct conversion of fertile 232 Th into fissile 233 U using the 14 MeV neutron released in the (D-T) fusion reaction. A detailed study of the dependence of the 233 U production characteristics as well as energy cost of fissile fuel production of such systems on parameters such as plasma energy gain Q, blanket neutron multiplication has been carried out. The growth rate dynamics of the symbiotic combination of 233 U generating fusion breeders with PHWRs operating on the Th/U-233 cycle in the so called near-breeder regime has been examined. 95% of the energy generated by PHWRs operating with Th/ 233 U fuel would arise from thorium consumption rather than fission of the initially loaded 233 U. A few sub-engineering breakeven fusion breeders producing U-233 at an energy cost well under 200 MeV per atom are adequate to give the requisite nuclear capacity growth rates in conjunction with such near breeder PHWRs. This corresponds to only a 5% diversion of the grid electrical power for the operation of such fusion breeders. In summary the symbiotic combination of a few fusion breeders with a number of PHWRs gives fresh hopes

  20. Transformation using peroxide of a crude thorium hydroxide in nitrate for mantle grade

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de; Carvalho, Fatima Maria Sequeira de; Ferreira, Joao Coutinho; Abrao, Alcidio

    2002-01-01

    An alternative process for the recovery and purification of thorium starting from a crude thorium hydroxide as the precursor is outlined in this paper. Its composition is 60.1% thorium oxide (ThO 2 ), 18.6% rare earth oxides (TR 2 O 3 ), and common impurities like silicium, iron, titanium, lead and sodium. This material was produced industrially from the monazite processing in Brazil and has been stocked since several years. The crude thorium hydroxide is treated with hot nitric acid and after the digestion and addition of floculant it is filtered for the separation of the insoluble fraction. Using this nitrate solution, the thorium peroxide is precipitated after adjustment of pH and controlled addition of hydrogen peroxide. The final thorium peroxide is dissolved with nitric acid and the resulting thorium nitrate is mantle grade quality. Rare earth elements are recovered from the thorium peroxide filtrate. The main process parameters for the peroxide precipitation, like pH and temperature and main the results are presented and discussed. (author)

  1. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Yildiz, K.; Sahin, N.; Altinok, T.; Alkan, M.

    2007-01-01

    The paper investigates the prospects of exploitation of rich world thorium reserves in CANDU reactors. Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Two different fuel compositions have been selected for investigations: 1) 96% thoria (ThO 2 ) + 4% PuO 2 and 2) 91% ThO 2 + 5% UO 2 + 4 PuO 2 . The latter is used for the purpose of denaturing the new 2 33U fuel with 2 38U. The behavior of the criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k ∞ = ∼ 1.39 and the criticality drops down asymptotically to values k ∞ > 1.06, still tolerable and usable in a CANDU reactor. Reactor criticality k ∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn up can be achieved with the same fuel (> 160 000 MW.D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burnt up, provided that the fuel rods could be fabricated to withstand such high burn up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically. There is a great quantity of weapon grade plutonium accumulated in nuclear stockpiles. In the second phase of investigations, weapon grade plutonium is used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure the initial criticality at startup. Two different fuel compositions have been used: 1) 97% thoria (ThO 2 ) + 3% PuO 2 and 2) 92% ThO 2 + 5% UO 2 + 3% PuO 2 . The

  2. The dynamic simulation model of soybean in Central Java to support food self sufficiency: A supply chain perspective

    Science.gov (United States)

    Oktyajati, Nancy; Hisjam, Muh.; Sutopo, Wahyudi

    2018-02-01

    Consider food become one of the basic human needs in order to survive so food sufficiency become very important. Food sufficiency of soybean commodity in Central Java still depends on imported soybean. Insufficiency of soybean because of there is much gap between local soybean productions and its demand. In the year 2016 the shortage of supply soybean commodity as much 68.79%. Soybean is an important and strategic commodity after rice and corn. The increasing consumption of soybean is related to increasing population, increasing incomes, changing of healthy life style. The aims of this study are to determine the soybean dynamic model based on supply chain perspective, define the proper price of local soybean to trigger increasing of local production, and to define the alternative solution to support food self sufficiency. This study will capture the real condition into dynamics model, then simulate a series of scenario into a computer program to obtain the best results. This study will be conducted the following first scenario with government intervention policy and second without government intervention policy. The best solution of the alternative can be used as government consideration for governmental policy. The results of the propose scenarios showed that self sufficiency on soybean can be achieved after the next 20 years by increasing planting area 4% and land productivity 1% per year.

  3. Establishing bounding internal dose estimates for thorium activities at Rocky Flats.

    Science.gov (United States)

    Ulsh, Brant A; Rich, Bryce L; Chew, Melton H; Morris, Robert L; Sharfi, Mutty; Rolfes, Mark R

    2008-07-01

    As part of an evaluation of a Special Exposure Cohort petition filed on behalf of workers at the Rocky Flats Plant, the National Institute for Occupational Safety and Health (NIOSH) was required to demonstrate that bounding values could be established for radiation doses due to the potential intake of all radionuclides present at the facility. The main radioactive elements of interest at Rocky Flats were plutonium and uranium, but much smaller quantities of several other elements, including thorium, were occasionally handled at the site. Bounding potential doses from thorium has proven challenging at other sites due to the early historical difficulty in detecting this element through urinalysis methods and the relatively high internal dose delivered per unit intake. This paper reports the results of NIOSH's investigation of the uses of thorium at Rocky Flats and provides bounding dose reconstructions for these operations. During this investigation, NIOSH reviewed unclassified reports, unclassified extracts of classified materials, material balance and inventory ledgers, monthly progress reports from various groups, and health physics field logbooks, and conducted interviews with former Rocky Flats workers. Thorium operations included: (1) an experimental metal forming project with 240 kg of thorium in 1960; (2) the use of pre-formed parts in weapons mockups; (3) the removal of Th from U; (4) numerous analytical procedures involving trace quantities of thorium; and (5) the possible experimental use of thorium as a mold coating compound. The thorium handling operations at Rocky Flats were limited in scope, well-monitored and documented, and potential doses can be bounded.

  4. Light-water reactors: preliminary safety and environmental information document. Volume I

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle

  5. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  6. Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers.

  7. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  8. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  9. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  10. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  11. Amplified Self-replication of DNA Origami Nanostructures through Multi-cycle Fast-annealing Process

    Science.gov (United States)

    Zhou, Feng; Zhuo, Rebecca; He, Xiaojin; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul

    We have developed a non-biological self-replication process using templated reversible association of components and irreversible linking with annealing and UV cycles. The current method requires a long annealing time, up to several days, to achieve the specific self-assembly of DNA nanostructures. In this work, we accomplished the self-replication with a shorter time and smaller replication rate per cycle. By decreasing the ramping time, we obtained the comparable replication yield within 90 min. Systematic studies show that the temperature and annealing time play essential roles in the self-replication process. In this manner, we can amplify the self-replication process to a factor of 20 by increasing the number of cycles within the same amount of time.

  12. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  13. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  14. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  15. An optical chemical sensor for thorium (IV) determination based on thorin

    International Nuclear Information System (INIS)

    Rastegarzadeh, S.; Pourreza, N.; Saeedi, I.

    2010-01-01

    A selective method for the determination of thorium (IV) using an optical sensor is described. The sensing membrane is prepared by immobilization of thorin-methyltrioctylammonium ion pair on triacetylcellulose polymer. The sensor produced a linear response for thorium (IV) concentration in the range of 6.46 x 10 -6 to 9.91 x 10 -5 mol L -1 with detection limit of 1.85 x 10 -6 mol L -1 . The regeneration of optode was accomplished completely at a short time (less than 20 s) with 0.1 mol L -1 of oxalate ion solution. The relative standard deviation for ten replicate measurements of 2.15 x 10 -5 and 8.62 x 10 -5 mol L -1 of thorium was 2.71 and 1.65%, respectively. The optode membrane exhibits good selectivity for thorium (IV) over several other ionic species and are comparable to those obtained in case of spectrophotometric determination of thorium using thorin in solution. A good agreement with the ICP-MS and spiked method was achieved when the proposed optode was applied to the determination of thorium (IV) in dust and water samples.

  16. An optical chemical sensor for thorium (IV) determination based on thorin.

    Science.gov (United States)

    Rastegarzadeh, S; Pourreza, N; Saeedi, I

    2010-01-15

    A selective method for the determination of thorium (IV) using an optical sensor is described. The sensing membrane is prepared by immobilization of thorin-methyltrioctylammonium ion pair on triacetylcellulose polymer. The sensor produced a linear response for thorium (IV) concentration in the range of 6.46 x 10(-6) to 9.91 x 10(-5)mol L(-1) with detection limit of 1.85 x 10(-6)mol L(-1). The regeneration of optode was accomplished completely at a short time (less than 20s) with 0.1 mol L(-1) of oxalate ion solution. The relative standard deviation for ten replicate measurements of 2.15 x 10(-5) and 8.62 x 10(-5)mol L(-1) of thorium was 2.71 and 1.65%, respectively. The optode membrane exhibits good selectivity for thorium (IV) over several other ionic species and are comparable to those obtained in case of spectrophotometric determination of thorium using thorin in solution. A good agreement with the ICP-MS and spiked method was achieved when the proposed optode was applied to the determination of thorium (IV) in dust and water samples.

  17. Assessment of the menstrual cycle, eating disorders and self-esteem of Polish adolescents.

    Science.gov (United States)

    Drosdzol-Cop, Agnieszka; Bąk-Sosnowska, Monika; Sajdak, Dominika; Białka, Agnieszka; Kobiołka, Agnieszka; Franik, Grzegorz; Skrzypulec-Plinta, Violetta

    2017-03-01

    Eating disorders are an important factor in menstrual cycle disorders in girls. Moreover, low self-esteem among adolescent girls may be a risk factor for eating disorders. The aim of the study was to assess the menstrual cycle, eating habits and self-esteem of Polish adolescents. The study was conducted from January 2014 to March 2015 and included 623 girls, aged 15-19, from randomly selected junior high schools in Silesia, Poland, in which their menstrual cycle, risk of eating disorders and self-esteem were evaluated. A five-part questionnaire was used to assess basic demographic data, lifestyle and physical activity, gynecological history, as well as Rosenberg Self-Esteem Scale (SES) and Eating Attitude Test (EAT-26). Irregular menstrual cycles were observed in 236 (37.88%) girls; 5.20% presented secondary amenorrhea. Based on the EAT-26 test, 101 (16.21%) girls were indicated being at risk for an eating disorder. Low self-esteem was observed in 340 (54.57%) study girls on the base of SES. Girls with irregular menses had higher scores on the EAT-26 test in subscales: EAT-overall score, EAT-diet and EAT-bulimia, while lower scores on the SES. In our study, we did not observe a significant relationship between exercise intensity, body mass, BMI and menstrual cycle regularity. Low self-esteem among adolescent girls may be a risk factor for eating disorders which could interrupt the menstrual cycle.

  18. [The concept of nutritional self-sufficiency and the demographic equilibrium of Rwanda].

    Science.gov (United States)

    Habimana Nyirasafari, G

    1987-12-01

    Achieving food self-sufficiency is the basic strategy of Rwanda's 4th 5-year plan covering 1987-91. The population growth rate has increased from 3% in 1970 to 3.7% in 1983, with the population doubling between 1964 and 1985. Food production grew by about 4%/year between 1966-83, creating a slight increase in per capita food availability, but the 2171 calories available per capita is dangerously close to the theoretical minimum requirement of 2100 per day. The theoretical protein requirement is almost covered, but there is a serious shortage of oils. The increase in production since 1966 has been due almost exclusively to the extension of cultivated land. But the land supply is limited, and future production increases will need to be based on increased yields per unit cultivated. The National Office of Population has developed a simulation model that analyzes the parallel evolution of population and production so as to identify demographic and development policies that will assure food self-sufficiency and an improvement in living conditions. The population subsystem subjects the population divided by age and sex to the effects of fertility, migration, and mortality. Births are the result of 36 different fertility rates applied to the population of women aged 14-49 years. The agricultural subsystem is tied to the population subsystem by comparison of the volume of population to that of production, by estimation of the proportion of the population living exclusively by subsistence agriculture, by calculation of the potential emigration resulting from overpopulation of the countryside, and by estimation of the links between nutritional level, mortality, and duration of breastfeeding. 5 annexes contain subsystems showing effects of demographic growth on education, employment, and health. The model has various limitations including those of the reliability of its data, but it is sufficiently precise for its main function of clarifying the choices facing policymakers. 6

  19. [Benefits of nursing care service in the assisted reproduction clinic to self-cycle-management and self-efficiency of infertility patients].

    Science.gov (United States)

    Li, Xiao-Qin; Sun, Chao-Feng; Guo, Mei

    2017-06-01

    To investigate the benefits of nursing care service in the assisted reproduction clinic to self-cycle-management and self-efficiency of the outpatients with infertility. We randomly divided 600 females preliminarily diagnosed with infertility into a control and an experimental group, 288 in the former and 285 in the latter group excluding those whose husbands had azoospermia. For the women patients of the experimental group, we conducted nursing care intervention concerning related knowledge, skills, diet, excise, medication, and psychology, by one-to-one consultation, individualized or group communication, establishing files, telephone follow-up, and wechat guidance. After 3 months of intervention, we compared the compliance of medical visits, effectiveness of cycle management, sense of self-efficiency, satisfaction, and anxiety score between the two groups of patients. In comparison with the controls, the patients of the experimental group showed significantly better knowledge about assisted reproduction and higher effectiveness of self-cycle-management, self-efficiency, and satisfaction (P <0.05), but a markedly lower degree of anxiety (P <0.05). Nursing care service in the assisted reproduction clinic can improve the compliance of medical visits, effectiveness of self-cycle-management, self-efficiency, and satisfaction and reduce the anxiety of the patients.

  20. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)